Computing Topological Field Theories Lecture 1: Introduction to Lattice Field Theories

Lena Funcke

School "Recent Advances in Fundamental Physics", Tbilisi

Lena Funcke (MIT)

Motivation: open questions of particle physics

What we know...

Standard Model of particle physics

Content: all particles & forces (except for gravity)

Range:

Precision: 0.0000000001 (electron g-factor)

... and what we don't know

Why is there more matter than antimatter in the universe?

Why doesn't the strong force distinguish between matter and antimatter?

What are dark matter and dark energy?

How can we answer these open questions?

Lena Funcke (MIT)

Overview: computing topological field theories

Numerical computations

Lecture 1: Monte Carlo method High-precision lattice computations Computational issues

 Lecture 2: Machine learning Efficient sampling, thermodynamic observables...

Lecture 3: Tensor networks & quantum computing Topological θ-terms, chemical potentials...

Theoretical models

Standard Model "Real world" Quarks, gluons, Higgs...

1+1D ϕ^4 **theory** Higgs toy model Symmetry breaking...

1+1D Schwinger model QCD toy model θ-term, confinement...

Experiments

Observables Spectrum, free energy, entropy, pressure...

LHC, cosmology, ... Heavy-ion collisions, Early-universe physics...

(Image credit: ALICE Collaboration / CERN)

The (solitaire) origin of the Monte Carlo method

Solitaire

Neutron Diffusion

Monte Carlo method (Markov chain \rightarrow MCMC)

 t_3

 t_2

 t_1

Chance that a solitaire will come out successfully?

"I immediately thought of problems of neutron diffusion and other questions of mathematical physics" Stanislaw Ulam, 1946

Monte Carlo and other methods drive science

Lena Funcke (MIT)

Why do we need the Monte Carlo method in field theory?

 $C = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu}$ + $i \not F \not D \not + h.c$ + $\chi_i y_{ij} \chi_j \not + h.c$ + $|D_{\mu} \varphi|^2 - V(\varphi)$ $dF d\psi d\phi$ over forces (F), matter (ψ), Higgs field (ϕ) Integrate Too complex: Way out: approximation! no exact computation!

Lena Funcke (MIT)

The most prominent example: "Lattice QCD"

What is Lattice QCD?

Quantum Chromodynamics (QCD)

Theory that describes how strong force (gluons) glues quarks into protons and neutrons

High energies

Perturbation theory: *small-coupling expansion*

Low energies

Non-perturbative regularization through discretization

 \rightarrow "Lattice" QCD

Why do we need Monte Carlo?

Computational trick

Put quarks and gluons on spacetime grid and integrate over field configurations

gluon quark

Size of spacetime lattice

Very large: up to $192 \times 96^3 \sim 10^8$ lattice points!

How to compute such integrals?

Monte Carlo: sample configurations

More details: let's start with the basics...

Quantum mechanics of point particle in 1+1D

Scalar quantum field theory in 1+1D

Time evolution

$$\phi(\vec{x},t) = e^{iHt}\phi(\vec{x},t=0)e^{-iHt}$$
, where $x \to x = (\vec{x},t)$

Greens functions

$$\langle 0|\phi(x_1)\cdots\phi(x_n)|0\rangle = \frac{1}{Z}\int \mathcal{D}\phi \ \phi(x_1)\cdots\phi(x_n)e^{iS}$$

→ VEVs of products of field operators, e.g. propagators: $\langle 0|\phi(x)\phi(y)|0\rangle$ or 2 → 2 scattering: $\langle 0|\phi(x_1)\cdots\phi(x_4)|0\rangle$

 \rightarrow partition function: $Z = \int \mathcal{D}\phi e^{iS}$, where $t_1 > t_2 > \cdots > t_n$

$$\begin{aligned} x_i(t) &\leftrightarrow \phi(\vec{x}, t) \\ i &\leftrightarrow \vec{x} \\ \prod_{t,i} dx_i(t) &\leftrightarrow \prod_{t,\vec{x}} d\phi(\vec{x}, t) \equiv \mathcal{D}\phi \\ S &= \int dt \ L \leftrightarrow S = \int dt \ d^3 x \mathcal{L} \end{aligned}$$

Transition amplitude

$$\langle x' | e^{-iHT} | x \rangle = \int_{x}^{x'} Dx \ e^{iS} = \int_{x}^{x'} Dx \ e^{i \int_{0}^{T} dt \ L(x,\dot{x})}$$

 \rightarrow integral over all possible paths x(t) from x to x'

 \rightarrow weighted by classical action *S* evaluated along path

 \rightarrow in 1+1D: $Dx = \prod_t dx(t)$, in 3+1D: $Dx = \prod_{t,i} dx_i(t)$

Going from Minkowski to Euclidean spacetime

Minkowski spacetime

"Sign problem"

Complex integrand $\propto \exp(iS[x(t)])$ is highly oscillatory \rightarrow Near-cancellation of positive & negative contributions \rightarrow MCMC requires *exponentially* large sample number

 $\int dx \exp(-x^2 + i\lambda x) \to \int dx \exp(-x^2) \cos(\lambda x)$

Euclidean spacetime

No sign problem*

Wick rotation: $t \to i\tau$, path integral gets *real* weight factor Propagator: $\langle x'|U(\tau',\tau)|x\rangle = \int_{\tau}^{x'} [dx(\tau)] \exp\{-S_E[x(\tau)]\}$

Euclidean spacetime = unphysical?

Can be advantageous, e.g. compute low-lying spectrum: $\langle 0|Ae^{-H\tau}A|0\rangle = \frac{1}{Z} \int \mathcal{D}\phi e^{-S_E}A(\tau)A(0)$ $= \sum_n \langle 0|A|n\rangle e^{-E_n\tau} \langle n|A|0\rangle$ $\xrightarrow{\tau \gg 0} |\langle 0|A|1\rangle|^2 e^{-m_1\tau} + \cdots$

assuming $A(\tau) = \int d^3x \phi(\vec{x}, \tau)$, such that $\langle 0|A|1 \rangle \neq 0$ for one-particle state $|1\rangle$ with momentum $\vec{p} = 0$ and mass m_1

* actually, there can still be a sign problem (see later)

Going from continuous to discretized spacetime

Infinite- vs. finite-dim. integration

Problem: infinite-dimensional integration

... over all field configurations: $\mathcal{D}\phi = \prod_x d\phi(x)$

Solution: space-time discretization

... on hypercubic lattice: $x_{\mu} = an_{\mu}, n_{\mu} \in \mathbb{Z}$

 $\nu \uparrow \phi(x + a\hat{\nu}) \bullet a \uparrow \phi(x + a\hat{\mu})$

μ

Example: lattice scalar field theory

Lattice scalar field

... is defined on lattice points only: $\phi(x)$, $x \in$ lattice

Partial derivatives

... become finite differences: $\partial_{\mu}\phi \equiv \frac{1}{a}[\phi(x+a\hat{\mu})-\phi(x)]$

Space-time integrals

... are replaced by sums: $\int d^4x \to \sum_x a^4$ Action of lattice ϕ^4 -theory ... reads: $S = \sum_x a^4 \left\{ \frac{1}{2} \sum_\mu \left[\partial_\mu \phi(x) \right]^2 + \frac{m_0^2}{2} \phi(x)^2 + \frac{g_0}{4!} \phi(x)^4 \right\}$ Previously infinite-dimensional integrals ... now become finite \rightarrow discrete set of variables!

This looks familiar...

Fourier transforms

Fourier-transformed lattice field

 $\tilde{\phi}(p) = \sum_{x} a^{4} e^{-ipx} \phi(x)$ is periodic in momentum-space Lattice momentum

 $p_{\mu} \cong p_{\mu} + \frac{2\pi}{a}$ restricted to first Brillouin zone: $-\frac{\pi}{a} < p_{\mu} \le \frac{\pi}{a}$

Inverse-Fourier-transformed lattice field

$$\phi(x) = \int_{-\pi/a}^{\pi/a} \frac{d^4p}{(2\pi)^4} e^{ipx} \tilde{\phi}(p), \text{ ultraviolet cutoff: } |p_{\mu}| \le \frac{\pi}{a}$$

Finite lattice volume

Hypercubic lattice with length $L_1 = L_2 = L_3 = L$ in spatial direction and length $L_4 = T$ in Euclidean time:

$$V = L^3 T$$
, $x_{\mu} = a n_{\mu}$, $n_{\mu} = 0, 1, 2, ..., L_{\mu} - 1$

Periodic boundary conditions $\phi(x) = \phi(x + aL_{\mu}\hat{\mu})$

Discretized lattice momentum

$$p_{\mu} = \frac{2\pi}{a} \frac{l_{\mu}}{L_{\mu}}$$
 with $l_{\mu} = 0, 1, 2, ..., L_{\mu} - 1$

Momentum-space integration

$$\int \frac{d^4p}{(2\pi)^4} \to \frac{1}{a^4 L^3 T} \sum_{l_{\mu}}$$

Matter Physics

Gert Strobl

Crystals, Liquids, Liquid Crystals, and Polymers

Condensed

Previously infinite integrals...

... are now regularized (finite *a*) and finite (finite *V*) **Recover "true" physics...**

. . .

... by taking limits $L, T \to \infty$ and $a \to 0$

This looks familiar...

Fourier transforms

Fourier-transformed lattice field

 $\tilde{\phi}(p) = \sum_{x} a^{4} e^{-ipx} \phi(x)$ is periodic in momentum-space Lattice momentum

 $p_{\mu} \cong p_{\mu} + \frac{2\pi}{a}$ restricted to first Brillouin zone: $-\frac{\pi}{a} < p_{\mu} \le \frac{\pi}{a}$

Inverse-Fourier-transformed lattice field

$$\phi(x) = \int_{-\pi/a}^{\pi/a} \frac{d^4p}{(2\pi)^4} e^{ipx} \tilde{\phi}(p), \text{ ultraviolet cutoff: } |p_{\mu}| \le \frac{\pi}{a}$$

Finite lattice volume

Hypercubic lattice with length $L_1 = L_2 = L_3 = L$ in spatial direction and length $L_4 = T$ in Euclidean time:

$$V = L^3 T$$
, $x_{\mu} = a n_{\mu}$, $n_{\mu} = 0, 1, 2, ..., L_{\mu} - 1$

Lena Funcke (MIT)

Introduction to Lattice Field Theories

Periodic boundary conditions $\phi(x) = \phi(x + aL_{\mu}\hat{\mu})$

Discretized lattice momentum

$$p_{\mu} = \frac{2\pi}{a} \frac{l_{\mu}}{L_{\mu}}$$
 with $l_{\mu} = 0, 1, 2, ..., L_{\mu} - 1$

Momentum-space integration

$$\int \frac{d^4p}{(2\pi)^4} \to \frac{1}{a^4 L^3 T} \sum_{l_\mu}$$

Gert Strobl

Condensed Matter Physics

Crystals, Liquids, Liquid Crystals, and Polymers

Previously infinite integrals...

 are now re
 Recover "tri
 ... by taking
 We can use similar computational methods (MCMC sampling, machine learning, tensor networks, quantum computing, ...) in particle *and* condensed matter physics!

. . .

24 September 2022

13

Going beyond $\phi(x)$... How to deal with fermions?

Grassmann variables

Fermion determinant

Fermionic field operators

 $\{\psi_{\alpha}(x),\psi_{\beta}(x)\}=0 \rightarrow \text{anti-commuting}$

Grassmann variables

Fulfil
$$\{\eta_i, \eta_j\} = \{\eta_i, \bar{\eta}_j\} = \{\bar{\eta}_i, \bar{\eta}_j\} = 0 \rightarrow \eta_i^2 = \bar{\eta}_i^2 = 0$$

Integral and derivative

$$\int d\eta_i (a + b\eta_i) = \frac{\partial}{\partial \eta_i} (a + b\eta_i) = b$$

Multiple integrals and derivatives

$$\int d\eta_j \int d\eta_i \eta_i \eta_j = \frac{\partial}{\partial \eta_j} \frac{\partial}{\partial \eta_i} \eta_i \eta_j = 1$$

Derivation: $e^{\sum_{i,j} \overline{\eta}_i Q_{ij} \eta_j} = \prod_i e^{\overline{\eta}_i \sum_j Q_{ij} \eta_j} = \prod_i (1 + \overline{\eta}_i \sum_j Q_{ij} \eta_j)$ then use integration rules and: det $Q = \sum_{\sigma} (\operatorname{sgn}(\sigma) \prod_i Q_{i,\sigma_i})$

Fermionic Greens function $\langle 0|A|0\rangle = \frac{1}{7}\int \mathcal{D}\psi \mathcal{D}\bar{\psi} A e^{-S_F}$ Fermionic integration measure $\mathcal{D}\psi\mathcal{D}\overline{\psi} = \prod_{x}\prod_{\alpha}d\psi_{\alpha}(x)d\overline{\psi}_{\alpha}(x)$ **Fermionic action** $S_F = \int d^4x \, \bar{\psi}(x) \big(\gamma_{\mu} \partial_{\mu} + m \big) \psi(x)$ Fermionic path integral $\int \mathcal{D}\psi \mathcal{D}\bar{\psi} \ e^{-\int d^4x \ \bar{\psi}(x) \ Q \ \psi(x)} = \det Q \rightarrow \text{huge matrix!}$ **Quenched** approximation

Up to recently: neglected fermion dynamics (det Q = 1)

Problems with (too many) fermions on the lattice

Naïve lattice fermions

Fermionic lattice action

$$S_F = \frac{1}{2} \sum_x \sum_\mu \bar{\psi}(x) (\gamma_\mu \partial_\mu + m) \psi(x) + \text{h.c.}$$

Resulting fermionic propagator...

 $\tilde{\Delta}(p) = \left[i\sum_{\mu}\gamma_{\mu}\frac{1}{a}\sin(p_{\mu}a) + m\right]^{-1}$

... has too many poles

Expected pole at $p_{\mu} = (m, 0, 0, 0)$ but 15 additional poles at $p_{\mu} = (m, 0, 0, 0) + \pi^{\mu}/a$ (corners of Brillouin zone)!

Fermion "doubling" problem

 S_F describes $2^d = 16$ instead of 1 particle flavors!

Nielsen-Ninomiya theorem

No local, chiral fermionic lattice actions without doublers

Wilson vs. staggered fermions

Wilson fermions (non-chiral) Add Wilson term: $S_F \to S_F^W = S_F - \frac{r}{2}a^2 \sum_x \bar{\psi}(x) \ \partial_{\mu}^2 \psi(x)$ Modified propagator $\tilde{\Delta}(p) = \left[i \sum_{\mu} \gamma_{\mu} \frac{1}{a} \sin(p_{\mu}a) + m + \sum_{\mu} \frac{2r}{a} \sin^2\left(\frac{p_{\mu}a}{2}\right)\right]^{-1}$ Doublers acquire masses $\propto r/a$ and decouple for $a \to 0$

Staggered fermions (non-local)

Distribute 4 components of ψ_{α} on different lattice points

 \rightarrow reduction to 4 flavors \rightarrow take 4th root of determinant

Going beyond fermions... How to deal with gauge fields?

Naïve lattice discretization

Naïve approach

Define vector gauge field $A_{\mu}(x)$ at each lattice point

Problem

Finite differences and sums of vector gauge fields don't preserve gauge symmetry: $F_{\mu\nu}(x) \rightarrow \Omega(x)F_{\mu\nu}(x)\Omega^{\dagger}(x)$

Link variable

 $U_{\mu}(x) \equiv e^{iaA_{\mu}(x)} \in SU(3)$

Gauge transformation $U_{\mu}(x) \rightarrow \Omega(x)U_{\mu}(x)\Omega^{\dagger}(x + a\hat{u})$

Simplest gauge invariant quantity $U_{\mu\nu}(x) = U_{\mu}(x)U_{\nu}(x + a\hat{\mu})U_{\mu}^{\dagger}(x + a\hat{\nu})U_{\nu}^{\dagger}(x)$ $= e^{ia^{2}F_{\mu\nu}(x) + O(a^{3})} \Rightarrow \text{called "plaquette"}$

"Wilson" lattice gauge action

$$S_W = \frac{1}{g^2} \sum_{x,\mu > \nu} \operatorname{Re} \operatorname{Tr}[1 - U_{\mu\nu}(x)] + \mathcal{O}(a^2)$$

$$\rightarrow \frac{1}{2g^2} \int d^4x \operatorname{Tr}[F_{\mu\nu}(x)F_{\mu\nu}(x)] \Rightarrow \text{gauge-invariant}$$

Gauge-invariant discretization

Naïve approach

How to compute the integrals?

Monte Carlo method (MC)

Markov Chain ... method (MCMC)

Randomly generate ensemble of "configurations" $\{x\}$

$$\rightarrow \langle x_f | U(\tau',\tau) | x_i \rangle = \underbrace{\frac{1}{N}}_{\{x\}} \sum_{\{x\}} e^{-S(x)} = \underbrace{\langle e^{-S(x)} \rangle}_{\{x\}}$$

number of configurations in ensemble average value within ensemble

Problem

Generate lots of irrelevant configurations \rightarrow inefficient!

Solution

Generate configurations such that probability $P(x_n)$ of obtaining configuration x_n is $P(x) \propto \exp[-S(x)]$

 \rightarrow configurations have high probability of being relevant!

Starting point

Initialization: Choose arbitrary starting point x_n

Proposal density: $g(x'|x_n)$ [e.g. Gaussian centered at x_n] suggests candidate x' for x_{n+1} , given previous value x_n

For each iteration *n*:

Generate x' and calculate $\alpha = \exp[-S(x')] / \exp[-S(x_n)]$

Accept or reject:

Generate uniform random number $u \in [0,1]$

If $u \leq \alpha$, accept candidate by setting $x_{n+1} = x'$

If $u \ge \alpha$, reject candidate and set $x_{n+1} = x_n$ instead

\rightarrow Metropolis-Hastings algorithm

Phenomenological results of lattice QCD

Computing the light QCD spectrum

Computing topological phenomena

QCD Lagrangian

$$\mathcal{L} = \frac{1}{2g^2} \operatorname{Tr} F_{\mu\nu} F^{\mu\nu} + \bar{\psi}_i [\gamma_\mu (\partial_\mu + A_\mu) + m_i] \psi_i$$

Input parameters of lattice calculation

Masses (e.g. assume
$$m_u = m_d \equiv m_{ud} \ll m_s$$
), coupling g

Input quantities from experiments

Axion mass at high temperatures

Temperature dependence of topological susceptibility

Topological mass contribution to up-quark

Compute $\frac{m_d m_s}{\Lambda_{\text{inst.}}}$, compare to $m_{u,\text{exp.}} = m_u + \frac{m_d m_s}{\Lambda_{\text{inst.}}} > 0$

Lena Funcke (MIT)

How to probe BSM physics with lattice computations?

Example: strong CP problem

Theory

QCD vacuum: non-trivial topology $\rightarrow \theta$ -term

 $S_{\text{QCD}} \supset \frac{\theta}{16\pi^2} \int d^4x \ G\tilde{G} \rightarrow \text{violates CP symmetry}$

Experiment

 $G\tilde{G}$ yields mass: $m_{\eta \prime} \gg m_{\eta}$ $\oint G\tilde{G}$ yields neutron electric dipole moment \Rightarrow unobserved! $\theta < 10^{-10}$

New physics beyond the Standard Model?

BSM model building

Small number \rightarrow new symmetry \rightarrow new physics (see lectures later today)

Possible solutions: (1) $m_u = 0$ or (2) axion

Theory

"Massless up-quark" solution

 $m_u = 0$ eliminates $\theta \to \theta + \alpha$ with $U(1)_u$ rotation Observed up-quark mass: $m_{u,exp.} = m_u + \frac{m_d m_s}{\Lambda_{inst.}} > 0$ "Axion" solution

Axion eliminates $\theta \rightarrow \theta + \frac{a}{f_a}$ with $U(1)_{PQ}$ rotation Non-perturbative axion mass: $m_a = \frac{\Lambda_{inst.}}{f_a^2}$

Experimental tests

Massless up-quark solution

Lattice QCD: can compute both m_u and $\frac{m_d m_s}{\Lambda_{\text{inst.}}}$

Axion solution

Lattice QCD: can compute axion properties, e.g. $m_a(T)$ Dark matter experiments: search for axion(-like) particles

(Image credit: XENON Collaboration)

Testing $m_u = 0$ with lattice QCD

Computing both mass contributions

Two approaches

Computation of m_u yields m_u (2 GeV) ~ 2.130(41) MeV Computation of topological mass contribution **Details of second approach**

Compute $\frac{m_d m_s}{\Lambda_{\text{inst.}}}$, compare to $m_{u, \exp.} = m_u + \frac{m_d m_s}{\Lambda_{\text{inst.}}} > 0$ \rightarrow if $m_{u, \exp.} \gg \frac{m_d m_s}{\Lambda_{\text{inst.}}}$, we can rule out $m_u = 0$

Details of method

Lattice QCD + refinements

Reduce lattice errors: Iwasaki improved gauge action \rightarrow uses standard + *rectangular* plaquettes of size $2a \times a$ Twisted mass: $\psi(x) \rightarrow e^{-i\omega\gamma_5\tau^3/2} \psi(x), m_{\psi} \rightarrow e^{i\omega\gamma_5\tau^3}m_{\psi}$

Lena Funcke (MIT)

Introduction to Lattice Field Theories

24 September 2022

21

Lattice QCD results for topological mass contribution

Computing β_2/β_1

Procedure

Test how $m_{u, \exp} = m_u + \frac{m_d m_s}{\Lambda_{inst.}} > 0$ contributes to M_π^2 Compute $M_{\pi,i}^2 = \beta_1 (m_u + m_d) + \beta_2 m_{s,i} (m_u + m_d) + \dots$ **Results**

 $\frac{\beta_2}{\beta_1} = \frac{M_{\pi,1}^2 - M_{\pi,2}^2}{m_{s,1}^2 M_{\pi,2}^2 - m_{s,2}^2 M_{\pi,1}^2} \Big|_{M_{\pi}^2 \to 0} = 0.63(39) \text{GeV}^{-1}$ $\frac{\beta_2}{\beta_1} \Big|_{M_{\pi}^2 \to 0} \approx 5 \text{ GeV}^{-1} \text{ required for } m_u = 0 \text{ solution}$

Implication for strong CP problem

Implies $\frac{m_d m_s}{\Lambda_{\text{inst.}}} \ll m_{u, \exp}$ and rules out $m_u = 0$

Agrees with computation of m_u (2 GeV) ~ 2 MeV

Outlook: MCMC is hungry & challenging

Introduction to Lattice Field Theories

Computational costs of lattice field theory

Supercomputer usage for different fields (INCITE 2019) \rightarrow Lattice QCD: $\sim 40\%$ Figure credit: Astrophysics Biophysics Turbulence Combustion Jack Wells, Al-Materials Plasma Physics LQCD Materials/Chemistry Kate Clark Nuclear Physics Weather/Climate Seismology Subsurface Flow

Lena Funcke (MIT)

Computational challenges of lattice field theory

No direct computation of thermodynamic observables, ... \rightarrow Machine learning (lecture tomorrow) Baryon chemical potential, θ -term, real-time evolution, ...

Baryon density

Outlook: MCMC is hungry & challenging

Computational costs of lattice field theory

Supercomputer usage for different fields (INCITE 2019)

Seismology

 \rightarrow Lattice QCD: $\sim 40\%$

Subsurface Flow

No direct computation of thermodynamic observables, ... → Machine learning (lecture tomorrow) Baryon chemical potential, θ -term, real-time evolution, ...

Computational challenges of lattice field theory

Lena Funcke (MIT)

Nuclear Physics

Figure credit:

Jack Wells.

Kate Clark

Introduction to Lattice Field Theories

Weather/Climate

Baryon density

Outlook: MCMC is hungry & challenging

Introduction to Lattice Field Theories

Computational costs of lattice field theory

Lena Funcke (MIT)

Computational challenges of lattice field theory

Baryon density