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Computing Topological Field Theories
Lecture 1: Introduction to Lattice Field Theories

Lena Funcke

School “Recent Advances in Fundamental Physics”, Tbilisi
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Standard Model of particle physics

Content: all particles & forces (except for gravity)

Range:

10−18 meters 1026 meters

Precision: 0.00000000001 (electron 𝑔𝑔-factor)

Motivation: open questions of particle physics

Why is there more matter 
than antimatter in the universe?

Why doesn’t the strong force distinguish 
between matter and antimatter?

What are dark matter and dark energy?

…

… and what we don’t knowWhat we know…
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Simple equation

Complex phenomena

Beautiful but incomplete! 
Need new models → lectures later today  

Emergent structures! 
Need numerical computations → this lecture 

How can we answer these open questions?
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Theoretical models ExperimentsNumerical computations

Lecture 1: Monte Carlo method
High-precision lattice computations
Computational issues

Lecture 2: Machine learning
Efficient sampling,
thermodynamic observables…

Lecture 3: Tensor networks & 
quantum computing
Topological θ-terms, 
chemical potentials…

Overview: computing topological field theories

Standard Model
“Real world”
Quarks, gluons, Higgs…

1+1D 𝝓𝝓𝟒𝟒 theory
Higgs toy model
Symmetry breaking… 

1+1D Schwinger model
QCD toy model
θ-term, confinement…

Observables
Spectrum, free energy, 
entropy, pressure…

LHC, cosmology, …
Heavy-ion collisions,
Early-universe physics…

(Image credit: ALICE Collaboration / CERN)
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Chance that a solitaire will come out successfully?

Neutron DiffusionSolitaire

The (solitaire) origin of the Monte Carlo method

 𝑡𝑡3
𝑡𝑡2
𝑡𝑡1

 

“I immediately thought of problems of neutron diffusion 
and other questions of mathematical physics”

Stanislaw Ulam, 1946

Monte Carlo method
(Markov chain → MCMC) 
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1940s
Monte Carlo 
simulations

1980s
Deep Learning

Δt

1800s
Fast Fourier 
Transformation

1760s
Euler’s method

1950s
Fortran

Monte Carlo and other methods drive science
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Why do we need the Monte Carlo method in field theory?

Too complex: 
no exact computation!

∫ 𝒅𝒅𝒅𝒅 𝒅𝒅𝒅𝒅 𝒅𝒅𝝓𝝓
Integrate over forces (𝐹𝐹), matter (𝜓𝜓), Higgs field (𝜙𝜙)

Way out: 
approximation!
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Quantum Chromodynamics (QCD)
Theory that describes how strong force (gluons) glues 
quarks into protons and neutrons

High energies
Perturbation theory: small-coupling expansion
Low energies
Non-perturbative regularization through discretization
→ “Lattice” QCD

The most prominent example: “Lattice QCD”

∫
Why do we need Monte Carlo?What is Lattice QCD?

Computational trick
Put quarks and gluons on spacetime grid 
and integrate over field configurations

Size of spacetime lattice
Very large: up to 192 × 963 ∼ 108 lattice points!
How to compute such integrals?
Monte Carlo: sample configurations
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More details: let’s start with the basics…

Transition amplitude

𝑥𝑥′ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥 = �
𝑥𝑥

𝑥𝑥′
𝐷𝐷𝑥𝑥 𝑒𝑒𝑖𝑖𝑖𝑖 = �

𝑥𝑥

𝑥𝑥′
𝐷𝐷𝑥𝑥 𝑒𝑒𝑖𝑖 ∫0

𝑇𝑇 𝑑𝑑𝑑𝑑 𝐿𝐿(𝑥𝑥,�̇�𝑥)

→ integral over all possible paths 𝑥𝑥 𝑡𝑡 from 𝑥𝑥 to 𝑥𝑥′

→ weighted by classical action 𝑆𝑆 evaluated along path

→ in 1+1D: 𝐷𝐷𝑥𝑥 = ∏𝑑𝑑 𝑑𝑑𝑥𝑥(𝑡𝑡), in 3+1D: 𝐷𝐷𝑥𝑥 = ∏𝑑𝑑,𝑖𝑖 𝑑𝑑𝑥𝑥𝑖𝑖(𝑡𝑡)

Scalar quantum field theory in 1+1DQuantum mechanics of point particle in 1+1D

Time evolution
𝜙𝜙 �⃗�𝑥, 𝑡𝑡 = 𝑒𝑒𝑖𝑖𝑖𝑖𝑑𝑑𝜙𝜙 �⃗�𝑥, 𝑡𝑡 = 0 𝑒𝑒−𝑖𝑖𝑖𝑖𝑑𝑑, where 𝑥𝑥 → 𝑥𝑥 = (�⃗�𝑥, 𝑡𝑡)
Greens functions
0 𝜙𝜙 𝑥𝑥1 ⋯𝜙𝜙 𝑥𝑥𝑛𝑛 0 =

1
𝑍𝑍
∫ 𝒟𝒟𝜙𝜙 𝜙𝜙 𝑥𝑥1 ⋯𝜙𝜙 𝑥𝑥𝑛𝑛 𝑒𝑒𝑖𝑖𝑖𝑖

→ VEVs of products of field operators, e.g. propagators: 
⟨0|𝜙𝜙 𝑥𝑥 𝜙𝜙 𝑦𝑦 |0⟩ or 2 → 2 scattering: ⟨0|𝜙𝜙 𝑥𝑥1 ⋯𝜙𝜙 𝑥𝑥4 |0⟩

→ partition function: 𝑍𝑍 = ∫ 𝒟𝒟𝜙𝜙𝑒𝑒𝑖𝑖𝑖𝑖, where 𝑡𝑡1 > 𝑡𝑡2 > ⋯ > 𝑡𝑡𝑛𝑛

𝑥𝑥𝑖𝑖(𝑡𝑡) ↔ 𝜙𝜙(�⃗�𝑥, 𝑡𝑡)
𝑖𝑖 ↔ �⃗�𝑥

∏𝑑𝑑,𝑖𝑖 𝑑𝑑𝑥𝑥𝑖𝑖(𝑡𝑡) ↔ ∏𝑑𝑑,�⃗�𝑥 𝑑𝑑𝜙𝜙 �⃗�𝑥, 𝑡𝑡 ≡ 𝒟𝒟𝜙𝜙
𝑆𝑆 = ∫ 𝑑𝑑𝑡𝑡 𝐿𝐿 ↔ 𝑆𝑆 = ∫ 𝑑𝑑𝑡𝑡 𝑑𝑑3𝑥𝑥𝑥

𝑥𝑥 0 𝑥𝑥′(𝑇𝑇)

⋅ ⋅⋯
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Going from Minkowski to Euclidean spacetime

“Sign problem”
Complex integrand ∝ exp 𝑖𝑖𝑆𝑆 𝑥𝑥 𝑡𝑡 is highly oscillatory
→ Near-cancellation of positive & negative contributions
→ MCMC requires exponentially large sample number

No sign problem* 
Wick rotation: 𝑡𝑡 → 𝑖𝑖𝑖𝑖, path integral gets real weight factor 

Propagator: 𝑥𝑥′ 𝑈𝑈 𝑖𝑖′, 𝑖𝑖 𝑥𝑥 = ∫𝑥𝑥
𝑥𝑥′ 𝑑𝑑𝑥𝑥 𝑖𝑖 exp{−𝑆𝑆𝐸𝐸 𝑥𝑥 𝑖𝑖 }

Euclidean spacetime = unphysical?
Can be advantageous, e.g. compute low-lying spectrum:

0 𝐴𝐴𝑒𝑒−𝑖𝑖𝐻𝐻𝐴𝐴 0 =
1
𝑍𝑍 ∫ 𝒟𝒟𝜙𝜙𝑒𝑒

−𝑖𝑖𝐸𝐸𝐴𝐴 𝑖𝑖 𝐴𝐴 0

= �
𝑛𝑛

0 𝐴𝐴 𝑛𝑛 𝑒𝑒−𝐸𝐸𝑛𝑛𝐻𝐻⟨𝑛𝑛|𝐴𝐴|0⟩

𝐻𝐻≫0
0 𝐴𝐴 1 2𝑒𝑒−𝑚𝑚1𝐻𝐻 + ⋯

assuming 𝐴𝐴(𝑖𝑖) = ∫ 𝑑𝑑3𝑥𝑥𝜙𝜙(�⃗�𝑥, 𝑖𝑖), such that 0 𝐴𝐴 1 ≠ 0 for 
one-particle state |1⟩ with momentum 𝑝𝑝 = 0 and mass 𝑚𝑚1

* actually, there can still be a sign problem (see later)

Euclidean spacetimeMinkowski spacetime

𝜆𝜆 = 0
𝜆𝜆 = 20

in
te

gr
an

d

𝑥𝑥 = 0 3−3

∫ 𝑑𝑑𝑥𝑥 exp −𝑥𝑥2 + 𝑖𝑖𝜆𝜆𝑥𝑥 → ∫ 𝑑𝑑𝑥𝑥 exp −𝑥𝑥2 cos(𝜆𝜆𝑥𝑥)
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Going from continuous to discretized spacetime

Problem: infinite-dimensional integration
… over all field configurations: 𝒟𝒟𝜙𝜙 = ∏𝑥𝑥𝑑𝑑𝜙𝜙(𝑥𝑥)

Solution: space-time discretization
… on hypercubic lattice: 𝑥𝑥𝜇𝜇 = 𝑎𝑎𝑛𝑛𝜇𝜇, 𝑛𝑛𝜇𝜇 ∈ ℤ

Lattice scalar field
… is defined on lattice points only: 𝜙𝜙(𝑥𝑥), 𝑥𝑥 ∈ lattice

Partial derivatives

… become finite differences: 𝜕𝜕𝜇𝜇𝜙𝜙 ≡ 1
𝑎𝑎
𝜙𝜙 𝑥𝑥 + 𝑎𝑎�̂�𝜇 − 𝜙𝜙 𝑥𝑥

Space-time integrals
… are replaced by sums: ∫ 𝑑𝑑4𝑥𝑥 → ∑𝑥𝑥 𝑎𝑎4

Action of lattice 𝝓𝝓𝟒𝟒-theory

… reads: 𝑆𝑆 = ∑𝑥𝑥 𝑎𝑎4
1
2
∑𝜇𝜇 𝜕𝜕𝜇𝜇𝜙𝜙 𝑥𝑥 2 + 𝑚𝑚0

2

2
𝜙𝜙 𝑥𝑥 2 + 𝑔𝑔0

4!
𝜙𝜙 𝑥𝑥 4

Previously infinite-dimensional integrals
… now become finite → discrete set of variables!

Example: lattice scalar field theoryInfinite- vs. finite-dim. integration

𝑎𝑎

𝜙𝜙 𝑥𝑥

𝜙𝜙 𝑥𝑥 + 𝑎𝑎�̂�𝜈

𝜙𝜙 𝑥𝑥 + 𝑎𝑎�̂�𝜇
𝜈𝜈

𝜇𝜇

𝑎𝑎
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This looks familiar… 

Fourier-transformed lattice field
�𝜙𝜙 𝑝𝑝 = ∑𝑥𝑥 𝑎𝑎4𝑒𝑒−𝑖𝑖𝑖𝑖𝑥𝑥𝜙𝜙(𝑥𝑥) is periodic in momentum-space

Lattice momentum

𝑝𝑝𝜇𝜇 ≅ 𝑝𝑝𝜇𝜇 + 2𝜋𝜋
𝑎𝑎

restricted to first Brillouin zone: −𝜋𝜋
𝑎𝑎

< 𝑝𝑝𝜇𝜇 ≤
𝜋𝜋
𝑎𝑎

Inverse-Fourier-transformed lattice field

𝜙𝜙 𝑥𝑥 = ∫−𝜋𝜋/𝑎𝑎
𝜋𝜋/𝑎𝑎 𝑑𝑑4𝑖𝑖

2𝜋𝜋 4 𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥 �𝜙𝜙(𝑝𝑝), ultraviolet cutoff:  𝑝𝑝𝜇𝜇 ≤ 𝜋𝜋
𝑎𝑎

Finite lattice volume
Hypercubic lattice with length 𝐿𝐿1 = 𝐿𝐿2 = 𝐿𝐿3 = 𝐿𝐿 in spatial 
direction and length 𝐿𝐿4 = 𝑇𝑇 in Euclidean time:

𝑉𝑉 = 𝐿𝐿3𝑇𝑇, 𝑥𝑥𝜇𝜇 = 𝑎𝑎𝑛𝑛𝜇𝜇, 𝑛𝑛𝜇𝜇 = 0,1,2, … , 𝐿𝐿𝜇𝜇 − 1

Periodic boundary conditions
𝜙𝜙 𝑥𝑥 = 𝜙𝜙(𝑥𝑥 + 𝑎𝑎𝐿𝐿𝜇𝜇�̂�𝜇)

Discretized lattice momentum

𝑝𝑝𝜇𝜇 = 2𝜋𝜋
𝑎𝑎

𝑙𝑙𝜇𝜇
𝐿𝐿𝜇𝜇

with 𝑙𝑙𝜇𝜇 = 0,1,2, … , 𝐿𝐿𝜇𝜇 − 1

Momentum-space integration

∫ 𝑑𝑑4𝑖𝑖
2𝜋𝜋 4 →

1
𝑎𝑎4𝐿𝐿3𝑖𝑖

∑𝑙𝑙𝜇𝜇

Previously infinite integrals…
… are now regularized (finite 𝑎𝑎) and finite (finite 𝑉𝑉)

Recover “true” physics…
… by taking limits 𝐿𝐿,𝑇𝑇 → ∞ and 𝑎𝑎 → 0

…Fourier transforms

or



Lena Funcke (MIT) Introduction to Lattice Field Theories 24 September 2022 13

This looks familiar… 

Fourier-transformed lattice field
�𝜙𝜙 𝑝𝑝 = ∑𝑥𝑥 𝑎𝑎4𝑒𝑒−𝑖𝑖𝑖𝑖𝑥𝑥𝜙𝜙(𝑥𝑥) is periodic in momentum-space

Lattice momentum

𝑝𝑝𝜇𝜇 ≅ 𝑝𝑝𝜇𝜇 + 2𝜋𝜋
𝑎𝑎

restricted to first Brillouin zone: −𝜋𝜋
𝑎𝑎

< 𝑝𝑝𝜇𝜇 ≤
𝜋𝜋
𝑎𝑎

Inverse-Fourier-transformed lattice field

𝜙𝜙 𝑥𝑥 = ∫−𝜋𝜋/𝑎𝑎
𝜋𝜋/𝑎𝑎 𝑑𝑑4𝑖𝑖

2𝜋𝜋 4 𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥 �𝜙𝜙(𝑝𝑝), ultraviolet cutoff:  𝑝𝑝𝜇𝜇 ≤ 𝜋𝜋
𝑎𝑎

Finite lattice volume
Hypercubic lattice with length 𝐿𝐿1 = 𝐿𝐿2 = 𝐿𝐿3 = 𝐿𝐿 in spatial 
direction and length 𝐿𝐿4 = 𝑇𝑇 in Euclidean time:

𝑉𝑉 = 𝐿𝐿3𝑇𝑇, 𝑥𝑥𝜇𝜇 = 𝑎𝑎𝑛𝑛𝜇𝜇, 𝑛𝑛𝜇𝜇 = 0,1,2, … , 𝐿𝐿𝜇𝜇 − 1

Periodic boundary conditions
𝜙𝜙 𝑥𝑥 = 𝜙𝜙(𝑥𝑥 + 𝑎𝑎𝐿𝐿𝜇𝜇�̂�𝜇)

Discretized lattice momentum

𝑝𝑝𝜇𝜇 = 2𝜋𝜋
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𝑙𝑙𝜇𝜇
𝐿𝐿𝜇𝜇
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2𝜋𝜋 4 →

1
𝑎𝑎4𝐿𝐿3𝑖𝑖

∑𝑙𝑙𝜇𝜇

Previously infinite integrals…
… are now regularized (finite 𝑎𝑎) and finite (finite 𝑉𝑉)

Recover “true” physics…
… by taking limits 𝐿𝐿,𝑇𝑇 → ∞ and 𝑎𝑎 → 0

…Fourier transforms

or

We can use similar computational methods 
(MCMC sampling, machine learning, 

tensor networks, quantum computing, …)
in particle and condensed matter physics!
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Going beyond 𝜙𝜙(𝑥𝑥)… How to deal with fermions?

Fermionic field operators

𝜓𝜓𝛼𝛼 𝑥𝑥 ,𝜓𝜓𝛽𝛽 𝑥𝑥 = 0 → anti-commuting 

Grassmann variables

Fulfil 𝜂𝜂𝑖𝑖 , 𝜂𝜂𝑗𝑗 = 𝜂𝜂𝑖𝑖 , �̅�𝜂𝑗𝑗 = �̅�𝜂𝑖𝑖 , �̅�𝜂𝑗𝑗 = 0 → 𝜂𝜂𝑖𝑖2 = �̅�𝜂𝑖𝑖2 = 0

Integral and derivative 

∫ 𝑑𝑑𝜂𝜂𝑖𝑖 𝑎𝑎 + 𝑏𝑏𝜂𝜂𝑖𝑖 = 𝜕𝜕
𝜕𝜕𝜂𝜂𝑖𝑖

(𝑎𝑎 + 𝑏𝑏𝜂𝜂𝑖𝑖) = 𝑏𝑏

Multiple integrals and derivatives

∫ 𝑑𝑑𝜂𝜂𝑗𝑗∫ 𝑑𝑑𝜂𝜂𝑖𝑖𝜂𝜂𝑖𝑖𝜂𝜂𝑗𝑗 = 𝜕𝜕
𝜕𝜕𝜂𝜂𝑗𝑗

𝜕𝜕
𝜕𝜕𝜂𝜂𝑖𝑖

𝜂𝜂𝑖𝑖𝜂𝜂𝑗𝑗 = 1

Fermionic Greens function

0 𝐴𝐴 0 = 1
𝑍𝑍
∫ 𝒟𝒟𝜓𝜓𝒟𝒟 �𝜓𝜓 𝐴𝐴 𝑒𝑒−𝑖𝑖𝐹𝐹

Fermionic integration measure
𝒟𝒟𝜓𝜓𝒟𝒟 �𝜓𝜓 = ∏𝑥𝑥∏𝛼𝛼 𝑑𝑑𝜓𝜓𝛼𝛼 𝑥𝑥 𝑑𝑑 �𝜓𝜓𝛼𝛼(𝑥𝑥)

Fermionic action

𝑆𝑆𝐹𝐹 = ∫ 𝑑𝑑4𝑥𝑥 �𝜓𝜓 𝑥𝑥 𝛾𝛾𝜇𝜇𝜕𝜕𝜇𝜇 + 𝑚𝑚 𝜓𝜓 𝑥𝑥

Fermionic path integral

∫ 𝒟𝒟𝜓𝜓𝒟𝒟 �𝜓𝜓 𝑒𝑒−∫𝑑𝑑4𝑥𝑥 �𝜓𝜓 𝑥𝑥 𝑄𝑄 𝜓𝜓 𝑥𝑥 = det𝑄𝑄 → huge matrix! 

Quenched approximation
Up to recently: neglected fermion dynamics (det𝑄𝑄 = 1)

Fermion determinantGrassmann variables

Derivation: 𝑒𝑒∑𝑖𝑖,𝑗𝑗 �𝜂𝜂𝑖𝑖𝑄𝑄𝑖𝑖𝑗𝑗𝜂𝜂𝑗𝑗 = ∏𝑖𝑖 𝑒𝑒
�𝜂𝜂𝑖𝑖 ∑𝑗𝑗 𝑄𝑄𝑖𝑖𝑗𝑗𝜂𝜂𝑗𝑗 = ∏𝑖𝑖 1 + �̅�𝜂𝑖𝑖 ∑𝑗𝑗 𝑄𝑄𝑖𝑖𝑗𝑗𝜂𝜂𝑗𝑗

then use integration rules and: det𝑄𝑄 = ∑𝜎𝜎 sgn 𝜎𝜎 ∏𝑖𝑖 𝑄𝑄𝑖𝑖,𝜎𝜎𝑖𝑖
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Problems with (too many) fermions on the lattice

Fermionic lattice action

𝑆𝑆𝐹𝐹 = 1
2
∑𝑥𝑥∑𝜇𝜇 �𝜓𝜓 𝑥𝑥 𝛾𝛾𝜇𝜇𝜕𝜕𝜇𝜇 + 𝑚𝑚 𝜓𝜓 𝑥𝑥 + h. c.

Resulting fermionic propagator…

�̃�𝛥 𝑝𝑝 = 𝑖𝑖 ∑𝜇𝜇 𝛾𝛾𝜇𝜇
1
𝑎𝑎

sin 𝑝𝑝𝜇𝜇𝑎𝑎 + 𝑚𝑚
−1

… has too many poles 
Expected pole at 𝑝𝑝𝜇𝜇 = (𝑚𝑚, 0,0,0) but 15 additional poles 
at 𝑝𝑝𝜇𝜇 = 𝑚𝑚, 0,0,0 + 𝜋𝜋𝜇𝜇/𝑎𝑎 (corners of Brillouin zone)!

Fermion “doubling” problem
𝑆𝑆𝐹𝐹 describes 2𝑑𝑑 = 16 instead of 1 particle flavors!

Nielsen-Ninomiya theorem
No local, chiral fermionic lattice actions without doublers

Wilson fermions (non-chiral)

Add Wilson term: 𝑆𝑆𝐹𝐹 → 𝑆𝑆𝐹𝐹𝑊𝑊 = 𝑆𝑆𝐹𝐹 −
𝑟𝑟
2
𝑎𝑎2 ∑𝑥𝑥 �𝜓𝜓 𝑥𝑥 𝜕𝜕𝜇𝜇2 𝜓𝜓 𝑥𝑥

Modified propagator

�̃�𝛥 𝑝𝑝 = 𝑖𝑖 ∑𝜇𝜇 𝛾𝛾𝜇𝜇
1
𝑎𝑎

sin 𝑝𝑝𝜇𝜇𝑎𝑎 + 𝑚𝑚 + ∑𝜇𝜇
2𝑟𝑟
𝑎𝑎

sin2 𝑖𝑖𝜇𝜇𝑎𝑎
2

−1

Doublers acquire masses ∝ 𝑟𝑟/𝑎𝑎 and decouple for 𝑎𝑎 → 0

Staggered fermions (non-local)
Distribute 4 components of 𝜓𝜓𝛼𝛼 on different lattice points

→ reduction to 4 flavors → take 4th root of determinant

Wilson vs. staggered fermionsNaïve lattice fermions

or
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Going beyond fermions… How to deal with gauge fields?

Naïve approach
Define vector gauge field 𝐴𝐴𝜇𝜇 𝑥𝑥 at each lattice point

Problem
Finite differences and sums of vector gauge fields don’t 
preserve gauge symmetry: 𝐹𝐹𝜇𝜇𝜇𝜇 𝑥𝑥 → Ω 𝑥𝑥 𝐹𝐹𝜇𝜇𝜇𝜇 𝑥𝑥 Ω†(𝑥𝑥)

Gauge-invariant discretizationNaïve lattice discretization

position-dependent 𝑆𝑆𝑈𝑈(3) matrix

𝐴𝐴𝜇𝜇 𝑥𝑥

𝐴𝐴𝜇𝜇 𝑥𝑥 + 𝑎𝑎�̂�𝜈

𝐴𝐴𝜇𝜇 𝑥𝑥 + 𝑎𝑎�̂�𝜇𝜈𝜈

𝜇𝜇

Link variable

𝑈𝑈𝜇𝜇 𝑥𝑥 ≡ 𝑒𝑒𝑖𝑖𝑎𝑎𝐴𝐴𝜇𝜇 𝑥𝑥 ∈ 𝑆𝑆𝑈𝑈(3)

Gauge transformation 
𝑈𝑈𝜇𝜇 𝑥𝑥 → Ω 𝑥𝑥 𝑈𝑈𝜇𝜇 𝑥𝑥 Ω†(𝑥𝑥 + 𝑎𝑎�𝑢𝑢)

Simplest gauge invariant quantity
𝑈𝑈𝜇𝜇𝜇𝜇 𝑥𝑥 = 𝑈𝑈𝜇𝜇 𝑥𝑥 𝑈𝑈𝜇𝜇 𝑥𝑥 + 𝑎𝑎�̂�𝜇 𝑈𝑈𝜇𝜇

† 𝑥𝑥 + 𝑎𝑎�̂�𝜈 𝑈𝑈𝜇𝜇
† 𝑥𝑥

= 𝑒𝑒𝑖𝑖𝑎𝑎2𝐹𝐹𝜇𝜇𝜈𝜈 𝑥𝑥 +𝒪𝒪 𝑎𝑎3 ⇒ called “plaquette”

“Wilson” lattice gauge action

𝑆𝑆𝑊𝑊 =
1
𝑔𝑔2 �

𝑥𝑥,𝜇𝜇>𝜇𝜇

Re Tr[1− 𝑈𝑈𝜇𝜇𝜇𝜇 𝑥𝑥 ] + 𝒪𝒪 𝑎𝑎2

→
1

2𝑔𝑔2 ∫ 𝑑𝑑
4𝑥𝑥 Tr 𝐹𝐹𝜇𝜇𝜇𝜇 𝑥𝑥 𝐹𝐹𝜇𝜇𝜇𝜇 𝑥𝑥 ⇒ gauge−invariant

𝑈𝑈𝜇𝜇
† 𝑥𝑥 + �̂�𝜈

𝑈𝑈𝜇𝜇 𝑥𝑥

𝑈𝑈𝜇𝜇 𝑥𝑥 + �̂�𝜇𝑈𝑈𝜇𝜇
† 𝑥𝑥
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How to compute the integrals? 

Naïve approach
Randomly generate ensemble of “configurations” {𝑥𝑥}

→ 𝑥𝑥𝑓𝑓 𝑈𝑈 𝑖𝑖′, 𝑖𝑖 𝑥𝑥𝑖𝑖 =
1
𝑁𝑁
�
{𝑥𝑥}

𝑒𝑒−𝑖𝑖(𝑥𝑥) = 𝑒𝑒−𝑖𝑖(𝑥𝑥)

Problem
Generate lots of irrelevant configurations → inefficient!

Solution
Generate configurations such that probability 𝑃𝑃 𝑥𝑥𝑛𝑛 of 
obtaining configuration 𝑥𝑥𝑛𝑛 is 𝑃𝑃(𝑥𝑥) ∝ exp −𝑆𝑆 𝑥𝑥

→ configurations have high probability of being relevant!

Starting point
Initialization: Choose arbitrary starting point 𝑥𝑥𝑛𝑛
Proposal density: 𝑔𝑔 𝑥𝑥′ 𝑥𝑥𝑛𝑛 [e.g. Gaussian centered at 𝑥𝑥𝑛𝑛] 
suggests candidate 𝑥𝑥′ for 𝑥𝑥𝑛𝑛+1, given previous value 𝑥𝑥𝑛𝑛
For each iteration 𝒏𝒏:
Generate 𝑥𝑥′ and calculate 𝛼𝛼 = exp −𝑆𝑆 𝑥𝑥′ / exp −𝑆𝑆 𝑥𝑥𝑛𝑛
Accept or reject:
Generate uniform random number 𝑢𝑢 ∈ [0,1]
If 𝑢𝑢 ≤ 𝛼𝛼, accept candidate by setting 𝑥𝑥𝑛𝑛+1 = 𝑥𝑥′
If 𝑢𝑢 ≥ 𝛼𝛼, reject candidate and set 𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 instead

→ Metropolis-Hastings algorithm

Markov Chain … method (MCMC)Monte Carlo method (MC)    

average value 
within ensemble

number of configurations 
in ensemble

𝑥𝑥𝑛𝑛

𝑥𝑥𝑛𝑛+1 𝑥𝑥𝑛𝑛+2
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Phenomenological results of lattice QCD

QCD Lagrangian

𝑥 = 1
2𝑔𝑔2

Tr 𝐹𝐹𝜇𝜇𝜇𝜇𝐹𝐹𝜇𝜇𝜇𝜇 + �𝜓𝜓𝑖𝑖 𝛾𝛾𝜇𝜇 𝜕𝜕𝜇𝜇 + 𝐴𝐴𝜇𝜇 + 𝑚𝑚𝑖𝑖 𝜓𝜓𝑖𝑖

Input parameters of lattice calculation
Masses (e.g. assume 𝑚𝑚𝑢𝑢 = 𝑚𝑚𝑑𝑑 ≡ 𝑚𝑚𝑢𝑢𝑑𝑑 ≪ 𝑚𝑚𝑠𝑠), coupling 𝑔𝑔

Input quantities from experiments
Precisely measured and computable: e.g. 𝜋𝜋, 𝐾𝐾, Ξ masses

Axion mass at high temperatures
Temperature dependence of topological susceptibility

Topological mass contribution to up-quark

Compute 𝑚𝑚𝑑𝑑𝑚𝑚𝑠𝑠
Λinst.

, compare to 𝑚𝑚𝑢𝑢,exp. = 𝑚𝑚𝑢𝑢 + 𝑚𝑚𝑑𝑑𝑚𝑚𝑠𝑠
Λinst.

> 0

Computing topological phenomenaComputing the light QCD spectrum

BMW Collaboration,
Dürr et al. (2009)

𝑚𝑚𝑑𝑑

𝑚𝑚𝑠𝑠

Λinst.
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Theory
QCD vacuum: non-trivial topology → 𝜃𝜃-term 

𝑆𝑆QCD ⊃
𝜃𝜃

16𝜋𝜋2
∫ 𝑑𝑑4𝑥𝑥 𝐺𝐺 �𝐺𝐺 → violates CP symmetry

Experiment
𝐺𝐺 �𝐺𝐺 yields mass: 𝑚𝑚𝜂𝜂′ ≫ 𝑚𝑚𝜂𝜂

𝜃𝜃𝐺𝐺 �𝐺𝐺 yields neutron electric dipole moment
→ unobserved! 𝜃𝜃 < 10−10

How to probe BSM physics with lattice computations?

vacuum energy

vacuum angle 𝜃𝜃
−2𝜋𝜋 2𝜋𝜋0

instanton




parity violation

Example: strong CP problem New physics beyond the Standard Model?

BSM model building
Small number → new symmetry → new physics
(see lectures later today)
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“Massless up-quark” solution
𝑚𝑚𝑢𝑢 = 0 eliminates 𝜃𝜃 → 𝜃𝜃 + 𝛼𝛼 with 𝑈𝑈 1 𝑢𝑢 rotation

Observed up-quark mass: 𝑚𝑚𝑢𝑢,exp. = 𝑚𝑚𝑢𝑢 + 𝑚𝑚𝑑𝑑𝑚𝑚𝑠𝑠
Λinst.

> 0

“Axion” solution
Axion eliminates 𝜃𝜃 → 𝜃𝜃 + 𝑎𝑎

𝑓𝑓𝑎𝑎
with 𝑈𝑈 1 PQ rotation

Non-perturbative axion mass: 𝑚𝑚𝑎𝑎 = Λinst.
𝑓𝑓𝑎𝑎2

Possible solutions: (1) 𝑚𝑚𝑢𝑢 = 0 or (2) axion
Theory

𝑚𝑚𝑑𝑑

𝑚𝑚𝑠𝑠

Λinst.
(Image credit: XENON Collaboration)

Experimental tests

Massless up-quark solution
Lattice QCD: can compute both 𝑚𝑚𝑢𝑢and 𝑚𝑚𝑑𝑑𝑚𝑚𝑠𝑠

Λinst.

Axion solution
Lattice QCD: can compute axion properties, e.g. 𝑚𝑚𝑎𝑎(𝑇𝑇)
Dark matter experiments: search for axion(-like) particles
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Two approaches
Computation of 𝑚𝑚𝑢𝑢 yields 𝑚𝑚𝑢𝑢 2 GeV ∼ 2.130(41) MeV
Computation of topological mass contribution
Details of second approach
Compute 𝑚𝑚𝑑𝑑𝑚𝑚𝑠𝑠

Λinst.
, compare to 𝑚𝑚𝑢𝑢,exp. = 𝑚𝑚𝑢𝑢 + 𝑚𝑚𝑑𝑑𝑚𝑚𝑠𝑠

Λinst.
> 0

→ if 𝑚𝑚𝑢𝑢,exp. ≫
𝑚𝑚𝑑𝑑𝑚𝑚𝑠𝑠
Λinst.

, we can rule out 𝑚𝑚𝑢𝑢 = 0

Testing 𝑚𝑚𝑢𝑢 = 0 with lattice QCD
Computing both mass contributions Details of method

Lattice QCD + refinements
Reduce lattice errors: Iwasaki improved gauge action
→ uses standard + rectangular plaquettes of size 2𝑎𝑎 × 𝑎𝑎

Twisted mass: 𝜓𝜓 𝑥𝑥 → 𝑒𝑒−𝑖𝑖𝑖𝑖𝛾𝛾5𝐻𝐻3/2 𝜓𝜓(𝑥𝑥), 𝑚𝑚𝜓𝜓 → 𝑒𝑒𝑖𝑖𝑖𝑖𝛾𝛾5𝐻𝐻3𝑚𝑚𝜓𝜓

𝑚𝑚𝑑𝑑

𝑚𝑚𝑠𝑠

Λinst.
𝜇𝜇

𝜈𝜈
𝑎𝑎

Alexandrou et al. (2020)
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𝑀𝑀𝜋𝜋 = 386, 444, 494 MeV
(a = 0.0885(36) fm)

𝑀𝑀𝜋𝜋 = 256, 270, 284 MeV
(a= 0.0896(10) fm)

Procedure
Test how 𝑚𝑚𝑢𝑢,exp. = 𝑚𝑚𝑢𝑢 + 𝑚𝑚𝑑𝑑𝑚𝑚𝑠𝑠

Λinst.
> 0 contributes to 𝑀𝑀𝜋𝜋

2

Compute 𝑀𝑀𝜋𝜋,𝑖𝑖
2 = 𝛽𝛽1 𝑚𝑚𝑢𝑢 + 𝑚𝑚𝑑𝑑 + 𝛽𝛽2𝑚𝑚𝑠𝑠,𝑖𝑖 𝑚𝑚𝑢𝑢 + 𝑚𝑚𝑑𝑑 + …

Results
𝛽𝛽2
𝛽𝛽1

= �𝑀𝑀𝜋𝜋,1
2 −𝑀𝑀𝜋𝜋,2

2

𝑚𝑚𝑠𝑠,1
2 𝑀𝑀𝜋𝜋,2

2 −𝑚𝑚𝑠𝑠,2
2 𝑀𝑀𝜋𝜋,1

2
𝑀𝑀𝜋𝜋
2→0

= 0.63(39)GeV−1

�𝛽𝛽2
𝛽𝛽1 𝑀𝑀𝜋𝜋

2→0
≈ 5 GeV−1 required for 𝑚𝑚𝑢𝑢 = 0 solution

Implication for strong CP problem
Implies  𝑚𝑚𝑑𝑑𝑚𝑚𝑠𝑠

Λinst.
≪ 𝑚𝑚𝑢𝑢,exp. and rules out 𝑚𝑚𝑢𝑢 = 0

Agrees with computation of 𝑚𝑚𝑢𝑢 2 GeV ∼ 2 MeV

Lattice QCD results for topological mass contribution
Computing 𝜷𝜷𝟐𝟐/𝜷𝜷𝟏𝟏 Results

Alexandrou et al. (2020)
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Supercomputer usage for different fields (INCITE 2019) 
→ Lattice QCD: ∼ 𝟒𝟒𝟒𝟒%

No direct computation of thermodynamic observables, … 
→ Machine learning (lecture tomorrow)
Baryon chemical potential, 𝜃𝜃-term, real-time evolution, …

Outlook: MCMC is hungry & challenging

Computational challenges of lattice field theoryComputational costs of lattice field theory

sign problem

Figure credit: 
Jack Wells, 
Kate Clark  
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Outlook: MCMC is hungry & challenging

Computational challenges of lattice field theory

No direct computation of thermodynamic observables, … 
→ Machine learning (lecture tomorrow)
Baryon chemical potential, 𝜃𝜃-term, real-time evolution, …

Computational costs of lattice field theory

Supercomputer usage for different fields (INCITE 2019) 
→ Lattice QCD: ∼ 𝟒𝟒𝟒𝟒%

Figure credit: 
Jack Wells, 
Kate Clark  



Lena Funcke (MIT) Introduction to Lattice Field Theories 24 September 2022 25

Outlook: MCMC is hungry & challenging

Computational challenges of lattice field theoryComputational costs of lattice field theory

No direct computation of thermodynamic observables, … 
→ Machine learning (lecture tomorrow)
Baryon chemical potential, 𝜃𝜃-term, real-time evolution, …
→ Tensor networks
→ Quantum computing

(lecture on Monday)

Supercomputer usage for different fields (INCITE 2019) 
→ Lattice QCD: ∼ 𝟒𝟒𝟒𝟒%

Figure credit: 
Jack Wells, 
Kate Clark  

Thanks for listening! 
Do you have any questions? 
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