Computing Topological Field Theories

Lecture 1: Introduction to Lattice Field Theories

Lena Funcke

Illii fi:則: $C^{2} Q A$

School "Recent Advances in Fundamental Physics", Tbilisi

Motivation: open questions of particle physics

What we know...

Standard Model of particle physics

Content: all particles \& forces (except for gravity)
Range:

Precision: 0.00000000001 (electron g-factor)
... and what we don't know
Why is there more matter than antimatter in the universe?

Why doesn't the strong force distinguish between matter and antimatter?

What are dark matter and dark energy?

How can we answer these open questions?

$$
\begin{aligned}
\zeta & =-\frac{1}{4} F_{F_{\nu}} F^{n \nu} \\
& +i \underline{X} \phi \psi+h_{c c} \\
& +x \cdot y_{l s} x_{s} \phi+h_{c} \\
& +\left|D_{m} \phi\right|^{2}-V(\phi)
\end{aligned}
$$

Simple equation
Beautiful but incomplete!
Need new models \rightarrow lectures later today

Complex phenomena
Emergent structures! Need numerical computations \rightarrow this lecture

Overview: computing topological field theories

Numerical computations

Lecture 1: Monte Carlo method
High-precision lattice computations Computational issues
\rightarrow Lecture 2: Machine learning Efficient sampling, thermodynamic observables...

Lecture 3: Tensor networks \& quantum computing
Topological θ-terms, chemical potentials...

Theoretical models

Standard Model

"Real world"
Quarks, gluons, Higgs...

1+1D ϕ^{4} theory
Higgs toy model
Symmetry breaking...

1+1D Schwinger model
QCD toy model
θ-term, confinement...

Experiments

Observables

Spectrum, free energy, entropy, pressure...

Heavy-ion collisions, Early-universe physics...

The (solitaire) origin of the Monte Carlo method

Solitaire

Chance that a solitaire will come out successfully?

Neutron Diffusion

"I immediately thought of problems of neutron diffusion and other questions of mathematical physics"

Stanislaw Ulam, 1946

Monte Carlo and other methods drive science

 with AlphaFold

Ensemble methods for meteorological predictions
National Oceanic and Atmospheric Administration (NOAA) National Weather Service

Why do we need the Monte Carlo method in field theory?

The most prominent example: "Lattice QCD"

What is Lattice QCD?

Why do we need Monte Carlo?

Quantum Chromodynamics (QCD)

Theory that describes how strong force (gluons) glues quarks into protons and neutrons

High energies
Perturbation theory: small-coupling expansion
Low energies
Non-perturbative regularization through discretization
\rightarrow "Lattice" QCD

Computational trick

Put quarks and gluons on spacetime grid and integrate over field configurations

Size of spacetime lattice

Very large: up to $192 \times 96^{3} \sim 10^{8}$ lattice points!
How to compute such integrals?
Monte Carlo: sample configurations

More details: let's start with the basics...

Quantum mechanics of point particle in 1+1D
Transition amplitude
$\left\langle x^{\prime}\right| e^{-i H T}|x\rangle=\int_{x}^{x \prime} D x e^{i S}=\int_{x}^{x \prime} D x e^{i \int_{0}^{T} d t L(x, \dot{x})}$
\rightarrow integral over all possible paths $x(t)$ from x to x^{\prime}
\rightarrow weighted by classical action S evaluated along path
\rightarrow in 1+1D: $D x=\prod_{t} d x(t)$, in 3+1D: $D x=\prod_{t, i} d x_{i}(t)$

Scalar quantum field theory in 1+1D

Time evolution

$\phi(\vec{x}, t)=e^{i H t} \phi(\vec{x}, t=0) e^{-i H t}$, where $x \rightarrow x=(\vec{x}, t)$

Greens functions

$\langle 0| \phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)|0\rangle=\frac{1}{Z} \int \mathcal{D} \phi \phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) e^{i S}$
\rightarrow VEVs of products of field operators, e.g. propagators: $\langle 0| \phi(x) \phi(y)|0\rangle$ or $2 \rightarrow 2$ scattering: $\langle 0| \phi\left(x_{1}\right) \cdots \phi\left(x_{4}\right)|0\rangle$
\rightarrow partition function: $Z=\int \mathcal{D} \phi e^{i S}$, where $t_{1}>t_{2}>\cdots>t_{n}$

$$
\begin{aligned}
x_{i}(t) & \leftrightarrow \phi(\vec{x}, t) \\
i & \leftrightarrow \vec{x} \\
\prod_{t, i} d x_{i}(t) & \leftrightarrow \prod_{t, \vec{x}} d \phi(\vec{x}, t) \equiv \mathcal{D} \phi \\
S=\int d t L & \leftrightarrow S=\int d t d^{3} x \mathcal{L}
\end{aligned}
$$

Going from Minkowski to Euclidean spacetime

Minkowski spacetime

Euclidean spacetime

"Sign problem"

Complex integrand $\propto \exp (i S[x(t)])$ is highly oscillatory
\rightarrow Near-cancellation of positive \& negative contributions
\rightarrow MCMC requires exponentially large sample number

No sign problem*

Wick rotation: $t \rightarrow i \tau$, path integral gets $r e a l$ weight factor
Propagator: $\left\langle x^{\prime}\right| U\left(\tau^{\prime}, \tau\right)|x\rangle=\int_{x}^{x \prime}[d x(\tau)] \exp \left\{-S_{E}[x(\tau)]\right\}$

Euclidean spacetime $=$ unphysical?

Can be advantageous, e.g. compute low-lying spectrum:
$\langle 0| A e^{-H \tau} A|0\rangle=\frac{1}{Z} \int \mathcal{D} \phi e^{-S_{E}} A(\tau) A(0)$

$$
\begin{aligned}
& =\sum_{n}\langle 0| A|n\rangle e^{-E_{n} \tau}\langle n| A|0\rangle \\
& \xrightarrow{\tau \gg 0}|\langle 0| A| 1\rangle\left.\right|^{2} e^{-m_{1} \tau}+\cdots
\end{aligned}
$$

assuming $A(\tau)=\int d^{3} x \phi(\vec{x}, \tau)$, such that $\langle 0| A|1\rangle \neq 0$ for one-particle state $|1\rangle$ with momentum $\vec{p}=0$ and mass m_{1} * actually, there can still be a sign problem (see later)

Going from continuous to discretized spacetime

Problem: infinite-dimensional integration
... over all field configurations: $\mathcal{D} \phi=\prod_{x} d \phi(x)$
Solution: space-time discretization
\ldots on hypercubic lattice: $x_{\mu}=a n_{\mu}, n_{\mu} \in \mathbb{Z}$

$\begin{array}{rll}\phi(x+a \hat{v}) & \bullet & \bullet \\ \phi(x) & \bullet & \bullet \phi(x+a \hat{\mu})\end{array}$

Lattice scalar field

\ldots is defined on lattice points only: $\phi(x), x \in$ lattice

Partial derivatives

\ldots become finite differences: $\partial_{\mu} \phi \equiv \frac{1}{a}[\phi(x+a \hat{\mu})-\phi(x)]$

Space-time integrals

\ldots are replaced by sums: $\int d^{4} x \rightarrow \sum_{x} a^{4}$

Action of lattice $\boldsymbol{\phi}^{4}$-theory

\ldots reads: $S=\sum_{x} a^{4}\left\{\frac{1}{2} \sum_{\mu}\left[\partial_{\mu} \phi(x)\right]^{2}+\frac{m_{0}^{2}}{2} \phi(x)^{2}+\frac{g_{0}}{4!} \phi(x)^{4}\right\}$

Previously infinite-dimensional integrals

... now become finite \rightarrow discrete set of variables!

This looks familiar...

Fourier transforms

Periodic boundary conditions $\phi(x)=\phi\left(x+a L_{\mu} \hat{\mu}\right)$

Discretized lattice momentum

Lattice momentum

$p_{\mu} \cong p_{\mu}+\frac{2 \pi}{a}$ restricted to first Brillouin zone: $-\frac{\pi}{a}<p_{\mu} \leq \frac{\pi}{a}$ Inverse-Fourier-transformed lattice field
$\phi(x)=\int_{-\pi / a}^{\pi / a} \frac{d^{4} p}{(2 \pi)^{4}} e^{i p x} \tilde{\phi}(p)$, ultraviolet cutoff: $\left|p_{\mu}\right| \leq \frac{\pi}{a}$

Finite lattice volume

Hypercubic lattice with length $L_{1}=L_{2}=L_{3}=L$ in spatial direction and length $L_{4}=T$ in Euclidean time:
$V=L^{3} T, x_{\mu}=a n_{\mu}, n_{\mu}=0,1,2, \ldots, L_{\mu}-1$
$p_{\mu}=\frac{2 \pi}{a} \frac{l_{\mu}}{L_{\mu}}$ with $l_{\mu}=0,1,2, \ldots, L_{\mu}-1$

Condensed Matter Physics

Fourier-transformed lattice field

$\tilde{\phi}(p)=\sum_{x} a^{4} e^{-i p x} \phi(x)$ is periodic in momentum-space

Momentum-space integration
$\int \frac{d^{4} p}{(2 \pi)^{4}} \rightarrow \frac{1}{a^{4} L^{3} T} \sum_{l_{\mu}}$

Previously infinite integrals...
... are now regularized (finite a) and finite (finite V)
Recover "true" physics...
\ldots by taking limits $L, T \rightarrow \infty$ and $a \rightarrow 0$

Fourier transforms

Fourier-transformed lattice field

$\tilde{\phi}(p)=\sum_{x} a^{4} e^{-i p x} \phi(x)$ is periodic in momentum-space

Lattice momentum

$p_{\mu} \cong p_{\mu}+\frac{2 \pi}{a}$ restricted to first Brillouin zone: $-\frac{\pi}{a}<p_{\mu} \leq \frac{\pi}{a}$ Inverse-Fourier-transformed lattice field
$\phi(x)=\int_{-\pi / a}^{\pi / a} \frac{d^{4} p}{(2 \pi)^{4}} e^{i p x} \tilde{\phi}(p)$, ultraviolet cutoff: $\left|p_{\mu}\right| \leq \frac{\pi}{a}$

Finite lattice volume

Hypercubic lattice with length $L_{1}=L_{2}=L_{3}=L$ in spatial direction and length $L_{4}=T$ in Euclidean time:
$V=L^{3} T, x_{\mu}=a n_{\mu}, n_{\mu}=0,1,2, \ldots, L_{\mu}-1$
... are now re We can use similar computational methods Recover "tr
... by taking

Periodic boundary conditions

 $\phi(x)=\phi\left(x+a L_{\mu} \hat{\mu}\right)$
Discretized lattice momentum

$p_{\mu}=\frac{2 \pi}{a} \frac{l_{\mu}}{L_{\mu}}$ with $l_{\mu}=0,1,2, \ldots, L_{\mu}-1$
Momentum-space integration
$\int \frac{d^{4} p}{(2 \pi)^{4}} \rightarrow \frac{1}{a^{4} L^{3} T} \sum_{l_{\mu}}$

Previously infinite integrals...

Condensed Matter Physics

Crystals, Liquids, Liquid Crystals,

Going beyond $\phi(x) \ldots$ How to deal with fermions?

Fermionic field operators

$\left\{\psi_{\alpha}(x), \psi_{\beta}(x)\right\}=0 \rightarrow$ anti-commuting

Grassmann variables

Fulfil $\left\{\eta_{i}, \eta_{j}\right\}=\left\{\eta_{i}, \bar{\eta}_{j}\right\}=\left\{\bar{\eta}_{i}, \bar{\eta}_{j}\right\}=0 \rightarrow \eta_{i}^{2}=\bar{\eta}_{i}^{2}=0$
Integral and derivative
$\int d \eta_{i}\left(a+b \eta_{i}\right)=\frac{\partial}{\partial \eta_{i}}\left(a+b \eta_{i}\right)=b$
Multiple integrals and derivatives
$\int d \eta_{j} \int d \eta_{i} \eta_{i} \eta_{j}=\frac{\partial}{\partial \eta_{j}} \frac{\partial}{\partial \eta_{i}} \eta_{i} \eta_{j}=1$
Derivation: $e^{\sum_{i, j} \bar{\eta}_{i} Q_{i j} \eta_{j}}=\prod_{i} e^{\bar{\eta}_{i} \sum_{j} Q_{i j} \eta_{j}}=\prod_{i}\left(1+\bar{\eta}_{i} \sum_{j} Q_{i j} \eta_{j}\right)$ then use integration rules and: $\operatorname{det} Q=\sum_{\sigma}\left(\operatorname{sgn}(\sigma) \prod_{i} Q_{i, \sigma_{i}}\right)$

Problems with (too many) fermions on the lattice

Naïve lattice fermions

Wilson vs. staggered fermions

Fermionic lattice action

$S_{F}=\frac{1}{2} \sum_{x} \sum_{\mu} \bar{\psi}(x)\left(\gamma_{\mu} \partial_{\mu}+m\right) \psi(x)+$ h. c.
Resulting fermionic propagator...
$\tilde{\Delta}(p)=\left[i \sum_{\mu} \gamma_{\mu} \frac{1}{a} \sin \left(p_{\mu} a\right)+m\right]^{-1}$
... has too many poles
Expected pole at $p_{\mu}=(m, 0,0,0)$ but 15 additional poles at $p_{\mu}=(m, 0,0,0)+\pi^{\mu} / a$ (corners of Brillouin zone)!
Fermion "doubling" problem
S_{F} describes $2^{d}=16$ instead of 1 particle flavors!

Nielsen-Ninomiya theorem

No local, chiral fermionic lattice actions without doublers

Wilson fermions (non-chiral)
Add Wilson term: $S_{F} \rightarrow S_{F}^{W}=S_{F}-\frac{r}{2} a^{2} \sum_{x} \bar{\psi}(x) \partial_{\mu}^{2} \psi(x)$

Modified propagator

$$
\tilde{\Delta}(p)=\left[i \sum_{\mu} \gamma_{\mu} \frac{1}{a} \sin \left(p_{\mu} a\right)+m+\sum_{\mu} \frac{2 r}{a} \sin ^{2}\left(\frac{p_{\mu} a}{2}\right)\right]^{-1}
$$

Doublers acquire masses $\propto r / a$ and decouple for $a \rightarrow 0$

Staggered fermions (non-local)

Distribute 4 components of ψ_{α} on different lattice points
\rightarrow reduction to 4 flavors \rightarrow take $4^{\text {th }}$ root of determinant

Going beyond fermions... How to deal with gauge fields?

Naïve lattice discretization

Naïve approach

Define vector gauge field $A_{\mu}(x)$ at each lattice point

Problem

Finite differences and sums of vector gauge fields don't preserve gauge symmetry: $F_{\mu \nu}(x) \rightarrow \underbrace{\Omega(x)} F_{\mu \nu}(x) \Omega^{\dagger}(x)$
position-dependent $S U(3)$ matrix

Link variable

$$
U_{\mu}(x) \equiv e^{i a A_{\mu}(x)} \in S U(3)
$$

Gauge transformation

$U_{\mu}(x) \rightarrow \Omega(x) U_{\mu}(x) \Omega^{\dagger}(x+a \hat{u})$

Simplest gauge invariant quantity

$$
\begin{aligned}
U_{\mu \nu}(x) & =U_{\mu}(x) U_{v}(x+a \hat{\mu}) U_{\mu}^{\dagger}(x+a \hat{v}) U_{v}^{\dagger}(x) \\
& =e^{i a^{2} F_{\mu \nu}(x)+O\left(a^{3}\right)} \Rightarrow \text { called "plaquette" }
\end{aligned}
$$

"Wilson" lattice gauge action

$$
\begin{aligned}
S_{W} & =\frac{1}{g^{2}} \sum_{x, \mu>v} \operatorname{Re} \operatorname{Tr}\left[1-U_{\mu \nu}(x)\right]+\mathcal{O}\left(a^{2}\right) \\
& \rightarrow \frac{1}{2 g^{2}} \int d^{4} x \operatorname{Tr}\left[F_{\mu \nu}(x) F_{\mu \nu}(x)\right] \Rightarrow \text { gauge-invariant }
\end{aligned}
$$

How to compute the integrals?

Monte Carlo method (MC) Markov Chain ... method (MCMC)

Naïve approach

Randomly generate ensemble of "configurations" $\{x\}$
$\rightarrow\left\langle x_{f}\right| U\left(\tau^{\prime}, \tau\right)\left|x_{i}\right\rangle=\underbrace{\frac{1}{N}} \sum_{\{x\}} e^{-S(x)}=\underbrace{\left\langle e^{-S(x)}\right\rangle}$
number of configurations in ensemble
average value within ensemble

Problem

Generate lots of irrelevant configurations \rightarrow inefficient!

Solution

Generate configurations such that probability $P\left(x_{n}\right)$ of obtaining configuration x_{n} is $P(x) \propto \exp [-S(x)]$
\rightarrow configurations have high probability of being relevant!

Starting point

Initialization: Choose arbitrary starting point x_{n}
Proposal density: $g\left(x^{\prime} \mid x_{n}\right)$ [e.g. Gaussian centered at x_{n}] suggests candidate x^{\prime} for x_{n+1}, given previous value x_{n}

For each iteration n :

Generate x^{\prime} and calculate $\alpha=\exp \left[-S\left(x^{\prime}\right)\right] / \exp \left[-S\left(x_{n}\right)\right]$ Accept or reject:

Generate uniform random number $u \in[0,1]$
If $u \leq \alpha$, accept candidate by setting $x_{n+1}=x^{\prime}$
If $u \geq \alpha$, reject candidate and set $x_{n+1}=x_{n}$ instead

Phenomenological results of lattice QCD

Computing the light QCD spectrum

Computing topological phenomena

QCD Lagrangian

$\mathcal{L}=\frac{1}{2 g^{2}} \operatorname{Tr} F_{\mu \nu} F^{\mu \nu}+\bar{\psi}_{i}\left[\gamma_{\mu}\left(\partial_{\mu}+A_{\mu}\right)+m_{i}\right] \psi_{i}$
Input parameters of lattice calculation
Masses (e.g. assume $m_{u}=m_{d} \equiv m_{u d} \ll m_{s}$), coupling g Input quantities from experiments
Precisely measured and computable: e.g. π, K, Ξ masses

Dürr et al. (2009)

How to probe BSM physics with lattice computations?

Example: strong CP problem

Theory

QCD vacuum: non-trivial topology $\rightarrow \theta$-term
$S_{\mathrm{QCD}} \supset \frac{\theta}{16 \pi^{2}} \int d^{4} x G \tilde{G} \rightarrow$ violates CP symmetry

Experiment

$G \tilde{G}$ yields mass: $m_{\eta^{\prime}} \gg m_{\eta}$ $\theta G \tilde{G}$ yields neutron electric dipole moment x \rightarrow unobserved! $\theta<10^{-10}$

New physics beyond the Standard Model?

BSM model building

Small number \rightarrow new symmetry \rightarrow new physics
(see lectures later today)

Possible solutions: (1) $m_{u}=0$ or (2) axion

Theory

Experimental tests

"Massless up-quark" solution
$m_{u}=0$ eliminates $\theta \rightarrow \theta+\alpha$ with $U(1)_{u}$ rotation
Observed up-quark mass: $m_{u, \text { exp. }}=m_{u}+\frac{m_{d} m_{s}}{\Lambda_{\text {inst. }}}>0$

"Axion" solution

Axion eliminates $\theta \rightarrow \theta+\frac{a}{f_{a}}$ with $U(1)_{\mathrm{PQ}}$ rotation Non-perturbative axion mass: $m_{a}=\frac{\Lambda_{\text {inst }}}{f_{a}^{2}}$

Massless up-quark solution

Lattice QCD: can compute both m_{u} and $\frac{m_{d} m_{s}}{\Lambda_{\text {inst. }}}$

Axion solution

Lattice QCD: can compute axion properties, e.g. $m_{a}(T)$
Dark matter experiments: search for axion(-like) particles

(Image credit: XENON Collaboration)

Testing $m_{u}=0$ with lattice QCD

Computing both mass contributions

Details of method

Two approaches

Computation of m_{u} yields $m_{u}(2 \mathrm{GeV}) \sim 2.130$ (41) MeV Computation of topological mass contribution

Details of second approach

Compute $\frac{m_{d} m_{s}}{\Lambda_{\text {inst. }}}$, compare to $m_{u, \exp .}=m_{u}+\frac{m_{d} m_{s}}{\Lambda_{\text {inst. }}}>0$
\rightarrow if $m_{u, \text { exp. }} \gg \frac{m_{d} m_{s}}{\Lambda_{\text {inst. }}}$, we can rule out $m_{u}=0$

Alexandrou et al. (2020)

Lattice QCD results for topological mass contribution

Computing $\boldsymbol{\beta}_{2} / \boldsymbol{\beta}_{1}$

Results

Procedure

Test how $m_{u, \text { exp. }}=m_{u}+\frac{m_{d} m_{s}}{\Lambda_{\text {inst. }}}>0$ contributes to M_{π}^{2}
Compute $M_{\pi, i}^{2}=\beta_{1}\left(m_{u}+m_{d}\right)+\beta_{2} m_{s, i}\left(m_{u}+m_{d}\right)+\ldots$
Results
$\frac{\beta_{2}}{\beta_{1}}=\left.\frac{M_{\pi, 1}^{2}-M_{\pi, 2}^{2}}{m_{s, 1}^{2} M_{\pi, 2}^{2}-m_{s, 2}^{2} M_{\pi, 1}^{2}}\right|_{M_{\pi}^{2} \rightarrow 0}=0.63(39) \mathrm{GeV}^{-1}$
$\left.\frac{\beta_{2}}{\beta_{1}}\right|_{M_{\pi}^{2} \rightarrow 0} \approx 5 \mathrm{GeV}^{-1}$ required for $m_{u}=0$ solution
Implication for strong CP problem
Implies $\frac{m_{d} m_{s}}{\Lambda_{\text {inst. }}} \ll m_{u, \exp \text {. }}$ and rules out $m_{u}=0$
Agrees with computation of $m_{u}(2 \mathrm{GeV}) \sim 2 \mathrm{MeV}$

Outlook: MCMC is hungry \& challenging

Computational costs of lattice field theory

Computational challenges of lattice field theory

Supercomputer usage for different fields (INCITE 2019)
\rightarrow Lattice QCD: ~ 40\%

- Astrophysics
- Al-Materials
- Nuclear Physics

No direct computation of thermodynamic observables,
\rightarrow Machine learning (lecture tomorrow)
Baryon chemical potential, θ-term, real-time evolution, \ldots

Outlook: MCMC is hungry \& challenging

Computational costs of lattice field theory

Computational challenges of lattice field theory

Supercomputer usage for different fields (INCITE 2019)
\rightarrow Lattice QCD: ~ 40\%

- Astrophysics
- Al-Materials
- Nuclear Physics

No direct computation of thermodynamic observables, . \rightarrow Machine learning (lecture tomorrow)

Baryon chemical potential, θ-term, real-time evolution, \ldots

Outlook: MCMC is hungry \& challenging

Computational costs of lattice field theory

Computational challenges of lattice field theory

Supercomputer usage for different fields (INCITE 2019)
\rightarrow Lattice QCD: ~ 40\%

- Astrophysics
- Al-Materials
- Nuclear Physics

No direct computation of thermodynamic observables, ...

Baryon chemical potential, θ-term, real-time evolution, \ldots

