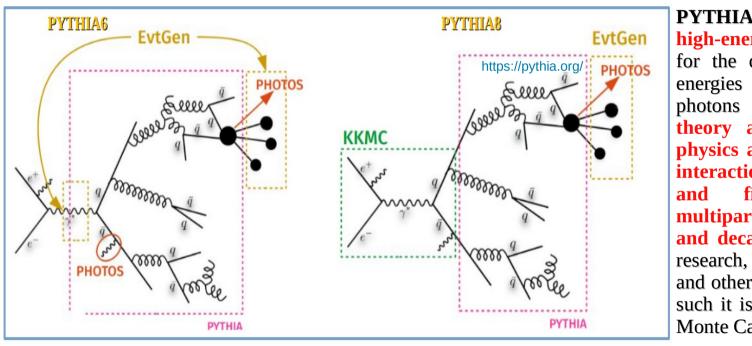
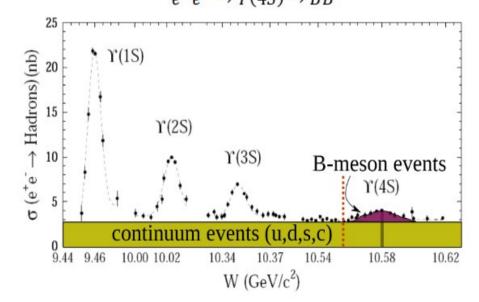
School and Workshop "Recent Advances in Fundamental Physics" 26-09-2022, Tbilisi, Georgia


Comparison of identified hadron yields and event shape variables extracted from Pythia6 & Pythia8 Monte Carlo event generators

Hazaravard Ghumaryan

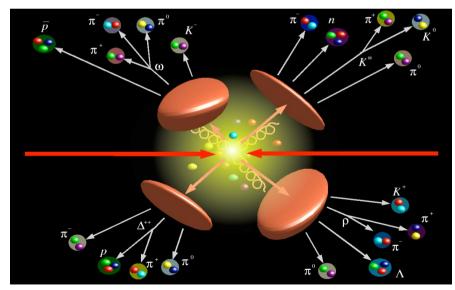
Pythia6 → Pythia8: Monte Carlo generators

PYTHIA is a program for the generation of high-energy physics collision events, i.e. for the description of collisions at high between electrons, protons, photons and heavy nuclei. It contains theory and models for a number of


physics aspects, including hard and soft interactions, parton distributions, initialand final-state parton showers, multiparton interactions, fragmentation and decay. It is largely based on original research, but also borrows many formulae and other knowledge from the literature. As such it is categorized as a general purpose Monte Carlo event generator.

The continuum events

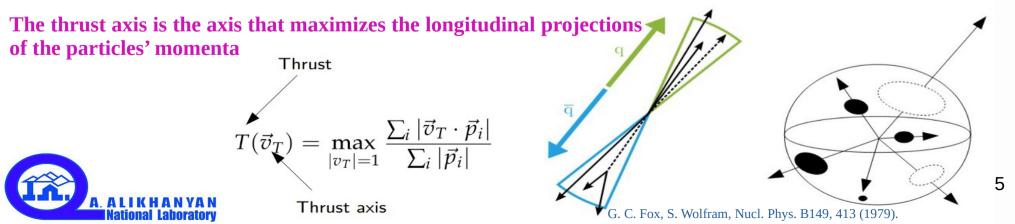
Along with B mesons at the same center of mass energies quark-antiquark qqbar (q=u,d,s,c) pairs are produced which are referred to as "continuum background". For some channels of B decays the continuum events are often considered to be the dominant source of background. It is also one of the main contributors in systematic uncertainties in precision measurements of $\mathbf{b} \rightarrow \mathbf{c}$ decays. Therefore the suppression of continuum background is one of the main challenges in B-factories requiring a good description of continuum events between the experimental data and Monte Carlo simulations. $e^+e^- \rightarrow Y(4S) \rightarrow B\bar{B}$


Pythia6 / Pythia8

Continuum event simulation is done by using **Pythia 8.215** and **Pythia 6.202**. All kinematic variables have been computed in the Center of Momentum (CM) frame. We have generated samples of uubar, ddbar, ssbar, ccbar which then materialized into hadrons by using Pythia event generators. The final state hadrons i.e. π^+ , π^- , K^+ , K^- , proton, anti-proton and gammas are selected with the following cuts:

p > 0.3 [GeV/c] p_T > 0.1 [GeV/c]

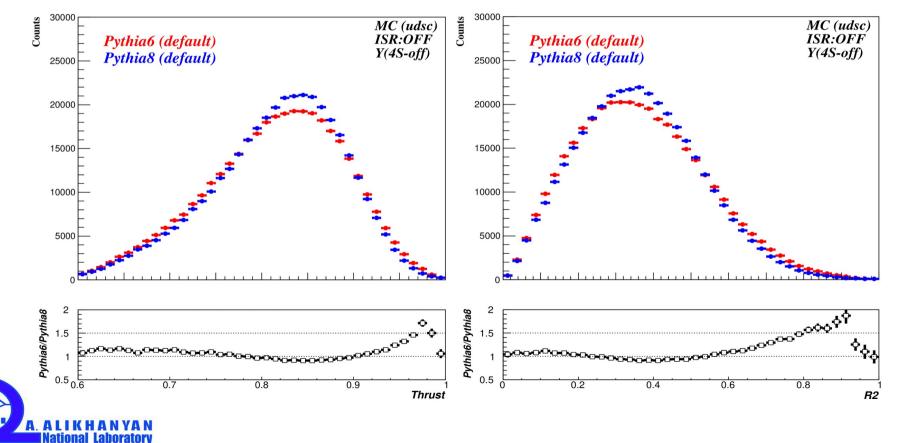
True particle ID

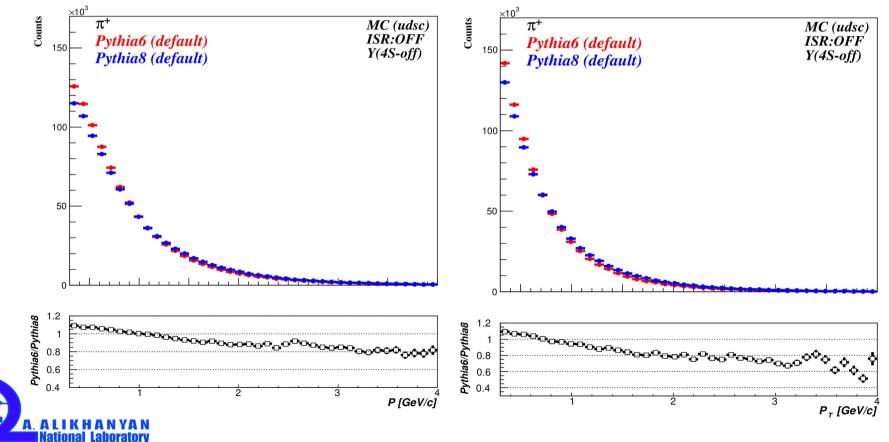

Event Shape variables

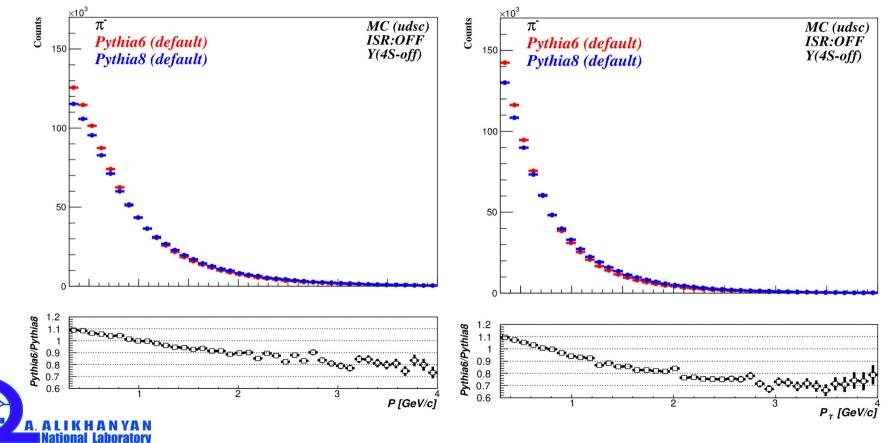
Important feature of physics event is the characterization of an **"event shape"** reconstructed from measured hadron yields which allows to separate physics events produced in various physics processes. It is well known that an "event shape" can be described by **Fox-Wolfram moments** [1] as it is shown in Eq. 1.

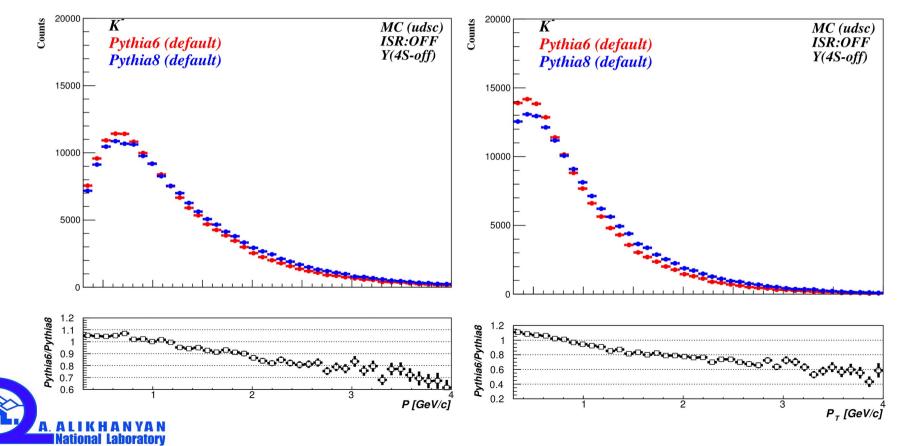
$$H_{\ell}^{x} = \sum_{i,j=1}^{N} W_{ij}^{x} P_{\ell}(\cos \Omega_{ij})$$

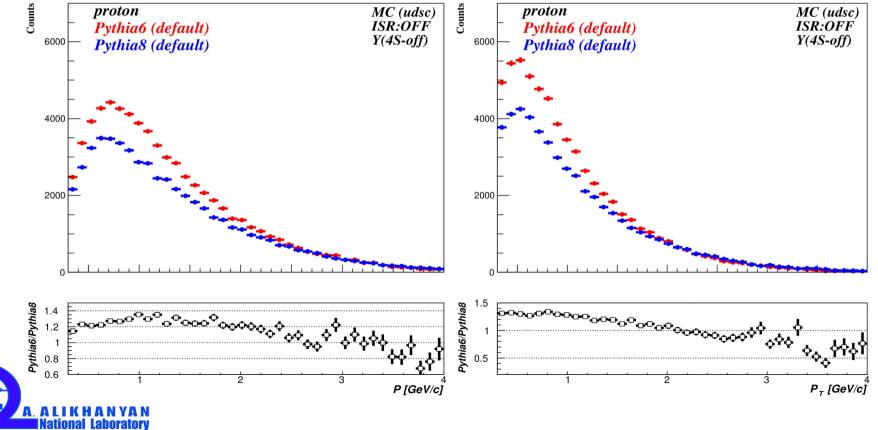
where W_{ij}^{x} is a weight factor and $P_{l}(\cos \Omega_{ij})$ is the Legendre polynomial. Commonly used variables for an "event shape" description are variables **Thrust** and **R2 (Fox-Wolfram's second moment)**

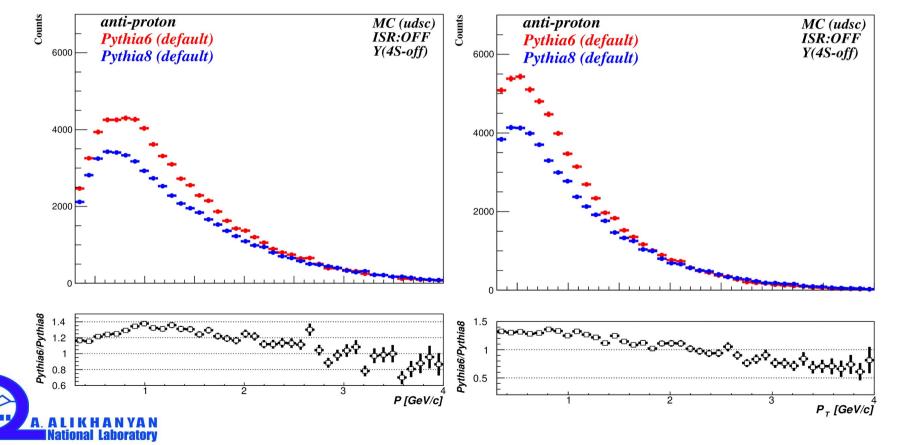

Pythia6 vs. Pythia8 parameters & values




Pythia 8.215	Pythia 6.202	Pythia 8.215 Default values	Pythia 6.202 Default values				
StringZ:aLund	PARJ(41)	0.68	0.3				
StringZ:bLund	PARJ(42)	0.98	0.58				
StringPT:sigma	PARJ(21)	0.335	0.36				
StringFragmentation:stopMass	PARJ(33)	1	0.8				
StringFlav:etaSup	PARJ(25)	0.6	1				
StringFlav:etaPrimeSup	PARJ(26)	0.12	0.4				
TimeShower:pTmin	PARJ(82)	0.5	1				
StringZ:aExtraDiquark	PARJ(45)	0.97	0.5				
StringZ:rFactC	PARJ(46)	1.32	1				
StringPT:enhancedFraction	PARJ(23)	0.01	0.01				
StringPT:enhancedWidth	PARJ(24)	2	2				
StringFragmentation:stopSmear	PARJ(37)	0.2	0.2				
MiniStringFragmentation:nTry	MSTJ(17)	2	2				
HadronLevel:mStringMin	MSTJ(14)	1	1				
StringFragmentation:eBothLeftJunction	PARJ(49)	1	1				
StringFlav:probStoUD	PARJ(2)	0.217	0.3				
StringFlav:probQQtoQ	PARJ(1)	0.081	0.1				
StringFlav:probSQtoQQ	PARJ(3)	0.915	0.4				
StringFlav:probQQ1toQQ0	PARJ(4)	0.0275	0.05				
StringFlav:mesonUDvector	PARJ(11)	0.5	0.5				
StringFlav:mesonSvector	PARJ(12)	0.55	0.6				


Pythia 8.215	Pythia 6.202	Pythia 8.215 Default values	Pythia 6.202 Default values				
StringFlav:mesonCvector	PARJ(13)	0.88	0.75				
StringFlav:mesonUDL1S0J1	PARJ(14)	0	0				
StringFlav:mesonUDL1S1J0	PARJ(15)	0	0				
StringFlav:mesonUDL1S1J1	PARJ(16)	0	0				
StringFlav:mesonUDL1S1J2	PARJ(17)	0	0				
StringFlav:decupletSup	PARJ(18)	1	1				
StringFlav:popcornSpair	PARJ(6)	0.9	0.5				
StringFlav:popcornSmeson	PARJ(7)	0.5	0.5				
TimeShower:pTminChgQ	PARJ(83)	0.5	1				
MultipartonInteractions:expPow	PARP(83)	1.85	1				
MultipartonInteractions:pT0Ref	PARP(82)	2.28	1.9				
MultipartonInteractions:ecmPow	PARP(90)	0.215	0.16				
MultipartonInteractions:coreRadius	PARP(84)	0.4	0.2				


one-to-one correspondence between Pythia6 &
Pythia8 parameters and their default values6



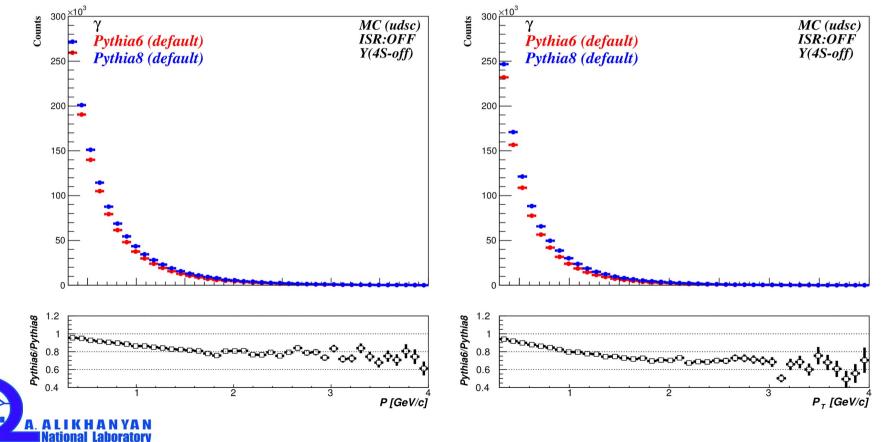


Table of correspondence (ToC)

- StringFlav:mesonCvector= $0.75 \rightarrow PARJ(13)=0.75$
- StringFlav:mesonUDL1S0J1=0 \rightarrow PARJ(14)=0
- StringFlav:mesonUDL1S1J0=0 → PARJ(15)=0
- StringFlav:mesonUDL1S1J1=0 → PARJ(16)=0
- StringFlav:mesonUDL1S1J2=0 → PARJ(17)=0
- StringFlav:decupletSup=1 → PARJ(18)=1
- StringFlav:popcornSpair=0.5 → PARJ(6)=0.5
- StringFlav:popcornSmeson=0.5 → PARJ(7)=0.5
- TimeShower:pTminChgQ=1 → PARJ(83)=1
- MultipartonInteractions:expPow=1 → PARP(83)=1
- MultipartonInteractions:pT0Ref=1.9 → PARP(82)=1.9
- MultipartonInteractions:ecmPow=0.16 → PARP(90)=0.16
- MultipartonInteractions:coreRadius=0.2 → PARP(84)=0.2
- StringZ:aLund=0.32 \rightarrow PARJ(41)=0.32
- StringZ:bLund=0.62 \rightarrow PARJ(42)=0.62
- StringPT:sigma=0.42 \rightarrow PARJ(21)=0.42
- StringFragmentation:stopMass=0.3 → PARJ(33)=0.3
- StringFlav:etaSup=0.27 → PARJ(25)=0.27
- StringFlav:etaPrimeSup=0 → PARJ(26)=0
- StringZ:aExtraDiquark=0.5 → PARJ(45)=0.5
- StringZ:rFactC=1 → PARJ(46)=1
- StringPT:enhancedFraction=0.01 → PARJ(23)=0.01
- StringPT:enhancedWidth=2 → PARJ(24)=2
- StringFragmentation:stopSmear=0.2 → PARJ(37)=0.2
- MiniStringFragmentation:nTry=2 → MSTJ(17)=2
- HadronLevel:mStringMin=1 → MSTJ(14)=1
- StringFragmentation:eBothLeftJunction= $1 \rightarrow PARJ(49)=1$
- StringFlav:probStoUD=0.3 → PARJ(2)=0.2
- StringFlav:probQQtoQ=0.1 → PARJ(1)=0.1
- StringFlav:probSQtoQQ=0.4 → PARJ(3)=0.4
- StringFlav:probQQ1toQQ0=0.05 → PARJ(4)=0.05
- StringFlav:mesonUDvector=0.5 → PARJ(11)=0.5
- StringFlav:mesonSvector=0.6 → PARJ(12)=0.6
- TimeShower:pTmin= $0.5 \rightarrow PARJ(82)=0.5$
- TimeShower:alphaSvalue=0.1365 → PARJ(81)=0.3

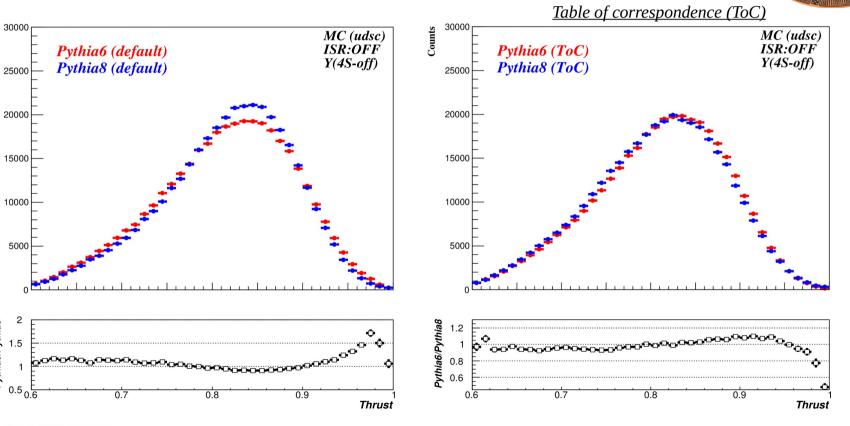
PYTHIA6 PARJ(81) : (D = 0.29 GeV) Λ value in running α s for parton showers. This is used in all user calls to PYSHOW, in the PYEEVT/PYONIA e+e-routines, and in a resonance decay.

PYTHIA8 TimeShower:alphaSvalue : (default = 0.1383; minimum = 0.06; maximum = 0.25) the α s value at scale MZ2.The default value corresponds to a crude tuning to LEP data, to be improved.

$$\alpha_{s}(Q^{2}) = \frac{12\pi}{(33 - 2n_{f})\ln\left(\frac{Q^{2}}{\Lambda^{2}}\right)}$$
 (first order)

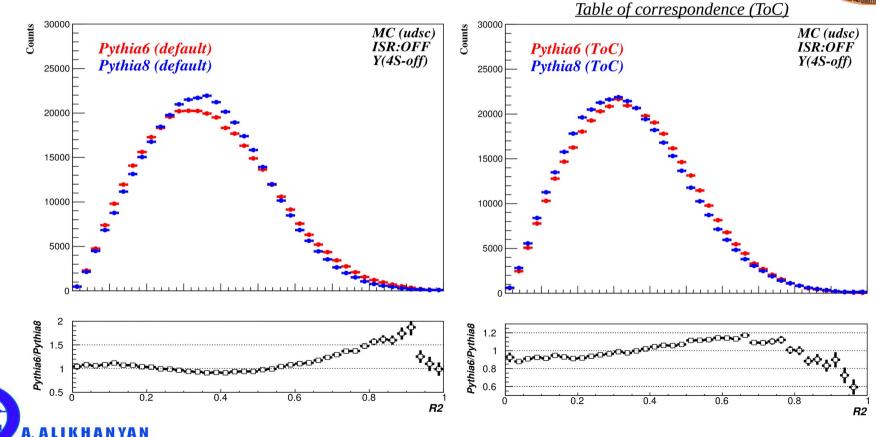
where $n_f = 5$, $Q^2 = M_Z^2$, $\Lambda = PARJ(81)$

PYTHIA6 PARJ(82) : (D = 1.0 GeV) (Q0) invariant mass cut-off m_{min} of PYSHOW parton showers, below which partons are not assumed to radiate.


PYTHIA8 TimeShower:pTmin : (default = 0.5; minimum = 0.1; maximum = 2.0) parton shower cut-off p_T for QCD emission.

PTMIN : lower scale of shower evolution. For QCD evolution, an absolute lower limit is set by **PARJ(82)**/2 or 1.1 x $\Lambda_{\text{QCD}}^{(3)}$ whichever is larger.

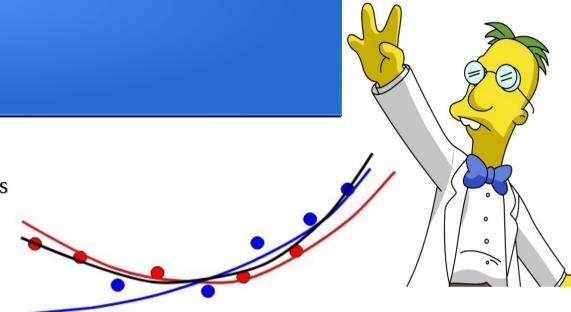
Counts


Pythia6/Pythia8

National Laboratory

National Laboratory

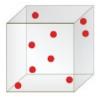
Parameter sensitivity check

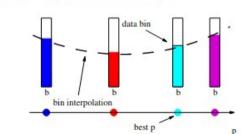


PYTHIA8 more than 100 parameters \rightarrow can't tune all at once

Tuning tool: Professor2

- → a tuning tool for Monte Carlo event generators
- automated tuning approach
- tune itself is very fast
- professor supplies the parameter grid
- → generate Monte Carlo for a given set of parameter values
- → calculate observables
- → build interpolations (parametrise the MC in parameter space with a polynomial)
- → parametrise the MC in parameter space with a polynomial
- tune polynomial to data (determination of minimum in parameters space)


Tuning tool: Professor2

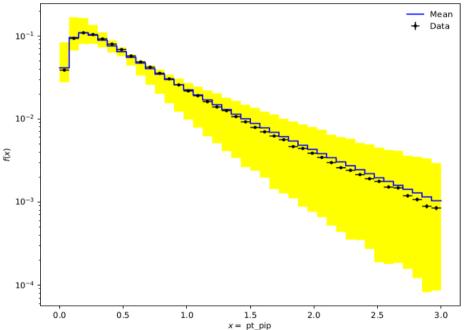

To account for lowest-order parameter correlations, a polynomial of at least second-order is used as the basis for bin parameterisation:

$$\mathrm{MC}_b(\boldsymbol{p}) \approx f^{(b)}(\boldsymbol{p}) = \alpha_0^{(b)} + \sum_i \beta_i^{(b)} p_i' + \sum_{i \le j} \gamma_{ij}^{(b)} p_i' p_j'$$

where the shifted parameter vector $p' \equiv p - p_0$

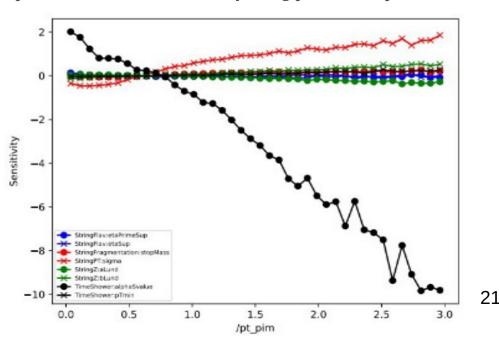
- Random sampling: N parameter points in n-dimensional space
- Q Run generator and fill histograms
- For each bin: use N points to fit interpolation (2nd or 3rd order polynomial)
- Construct overall (now trivial) $\chi^2 \approx \sum_{bins} \frac{(interpolation-data)^2}{error^2}$
- S and Numerically minimize pyMinuit, SciPy

Num params, P	$N_2^{(P)}$ (2nd order)	$N_3^{(P)}$ (3rd order)
1	3	4
2	6	10
4	15	35
6	28	84
8	45	165
10	66	286


At the first step of the tuning process, one should define a set of parameters and the spectra of various observables have to be generated. For this, the "Professor2" package has a function that allows to generate a random values of parameters in a given range: Having the set of parameters extracted one can start to generate the MC samples by using different parameter sets. The generated pseudo-data are saved in ROOT files for each specific process.

vard.g	humary	an@bel	.le2:~/	tune_z	zptevt,	/13_10	/sampl	e3Ş ls																			1		1			
0000		0012	0018	0027	0034	0040	0048	0054	0061	0067	0074			0093		0105	0111	0119	0126	0132	0138	0144	0150	0156	0164	0170	0176	0182	0189	0195	0202	0209
0001	0007	0013	0020	0028	0035	0042	0049		0062		0075	0081	0087		0100	0106	0112	0120	0127	0133	0139	0145	0151	0158	0165	0171	0177	0183	0190	0196	0203	0210
0002		0014	0021	0030	0036	0043			0063		0076	0082			0101	0107	0113	0121	0128	0134	0140	0146	0152	0159	0166	0172	0178	0184	0191	0197	0204	0211
0003		0015	0023	0031	0037	0044	0051	0057	0064	0070	0077	0083			0102	0108	0114	0123	0129	0135	0141	0147	0153	0160	0167	0173	0179	0185	0192	0199	0205	0212
0004	0010	0016	0024	0032	0038		0052			0071	0078		0091	0097	0103	0109	0115	0124	0130	0136	0142	0148	0154	0162	0168	0174	0180	0187	0193	0200	0206	0213
													0092		0104	0110	0117	0125	0131	0137	0143	0149	0155	0163	0169	0175	0181	0188	0194	0201	0208	0214
		ol 7				110 10																										

After which interpolate histo bin values as a function of the parameter space by loading run data and parameter lists from run directories. As a result, we get the ipol.dat file needed for the tuning. The main tuning stage performs the optimisation of MC samples against reference data for each distribution extracted from MC run combinations with different parameter sets.


Tuning tool: Professor2

Prof2-envelopes command line makes histograms showing the range of variation available on the histograms of kinematic observables obtained from the various MC samples.

prof2-I - is a graphical user interface which reads reference data and ipol.dat files and interactively shows us how variations of parameters will affect on a particular obsevable. One can also find a sensitivity of a particular kinematic distribution versus parameter used to generate the pseudo-data. It can be done by using prof2-sens ipol.dat

The main tuning stage should be done via the **prof2-tune** program. It performs the optimisation of MC samples against reference data for each distribution extracted from MC run combinations with different parameter sets. The run combinations can either be uniquely and randomly generated at run-time by **prof2-tune**, or can be supplied via a plain text file in which each line is a white-space separated list of run

names.

parameter values before tuning.

StringFlav:etaSup = 0.27StringFlav:etaPrimeSup = 0.12StringZ:aLund = 0.32StringZ:bLund = 0.62StringPT:sigma = 0.42StringPT:enhancedFraction = 0.01StringFlav:probStoUD = 0.3StringFlav:probQQtoQ = 0.1StringZ:rFactC = 1

<pre># ProfVersion: 2.3.3</pre>	
# Date: 2022-01-27 22:17:12	
<pre># InterpolationFile: /home/va</pre>	ard.ghumaryan/grid_tune_uds/tune_21/ipol.dat
<pre># DataDirectory: /home/vard.g</pre>	ghumaryan/grid_tune_uds/tune_21/REF_HIST_21
#	
# Limits:	
<pre># StringFlav:etaSup</pre>	0.101794 0.899365
<pre># StringFlav:etaPrimeSu</pre>	
<pre># StringZ:aLund</pre>	0.100069 1.498153
<pre># StringZ:bLund</pre>	0.301898 1.592890
# StringPT:sigma	0.053686 0.899973
<pre># StringPT:enhancedFrac</pre>	
<pre># StringFlav:probStoUD</pre>	
<pre># StringFlav:probQQtoQ</pre>	0.016077 0.798140
<pre># StringZ:rFactC</pre>	0.101781 1.799188
#	
# Fixed:	
# Minimisation result:	
# Menthesacton result.	
# GOF 2222.832707	
# UNITGOF 2222.832707	
# NDOF 471.000000	
StringFlav:etaSup	0.269576
StringFlav:etaPrimeSup	0.119462
StringZ:aLund	0.179521
StringZ:bLund	0.488778
StringPT:sigma	0.191794
StringPT:enhancedFraction	0.729152
StringFlav:probStoUD	0.208804
StringFlav:probQQtoQ	0.080138
StringZ:rFactC	0.773285
#	

conclusion

• 1) Pythia6 vs. Pythia8 comparison is done for event shape variables Thrust, R₂ and momentum spectra for identified hadrons

• 2) One-to-one correspondence table is made for Pythia6 and Pythia8 parameters

• 3) Tuning procedure for Pythia8 Monte Carlo with Professor2 tool