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Topological Insulators (?)

* Existence of a conducting surface.
* Bulk remains insulator.

* Defining factors: topology of the
eigenvectors and discrete symmetries

* Different from Landau’s theory to
describe phase transitions.
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Getting to Wilson Loop
* (x1,%X5, ..., %Xn) = (kq, ko, ..., k) via Fourier transform

¢ I:I\_)}[(k)NXN Via

A= | whaeC o dk ()
BZ
1. Berry connection matrix
(4,), () = i) (k)i (k) (2)

where Y, (k) - eigenvectors of H (k), m,n,u =1, ...,N.

2. Curvature tensor

E, =0,4, — 0,4, +il|A,A,] (3) 316



Wilson loop
* Wilson loop:

W, = Pexp{—i § A, dict} (5)

« "P“ — path ordering, y — a loop on torus.

* Benefits: determinant, trace, eigenvalues — Gauge invariants.

* Non-Abelian Stokes Theorem (R.L. Karp, F. Mansouri, J.S. Rno (1999)).

W (ko) = P exp{—i§, A, dk# } = P exp{—= [ T (k)E, T(k) dk, Adk,}.  (6)
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Connection and Curvature

* Expressing F,, with eigenvectors using the expression of (4,) (k)

(4) (k) = ithy, (K) By (K),

(Fwv). = i(1n), (8,8 — 0,0,) (Pm)i (4)

* (Reul. F,, is equal to zero everywhere on T2 except the points where
Y’s are singular.
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A Model

e 2D infinite lattice with fermions on its sites.
* Choosing the first-quantized Hamiltonian to be: H'(k) = h(k) - (10)

h = (hli hz, h3), O — (0-1, 0>, 0-3) — Pauli matrices.

* E,, = £|h| = £h. Eigenvectors:

b, = 1 (hl — ih2> v, = 1 (—h + h3>
t o 2h(h—hy)\ h—hs )’ * T J2h(h = hy) \h1 —ihy)

* Source of singularities:
*h=20

¢ h — h3.
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Calculating some of the Wilson Loops

* When y's are contractible the result is trivial (identity matrix), since

vk €T? F,=0
e If there is k inside the loop

W(ko) — 71 —27TlCD(kO)T —

— T~ 1e—2nm(EZ)03T = ]]2><2 (11) <;1k0

* The same is true when the number of such points

inside a loop is more than one. 7/16



Fundamental group of Torus

¢ T[l(Tz) = 7 X /.

* Each loop can be characterized by two integers (m, n), where m
counts a winding number around a big principal circle of torus and
n —around a small principal circle.

* For example: blue loop — (1,0), . :
red loop —(0,1) _,.F;'_"'_"""M'
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Group Structure of Wilson Loops

* Let Wy, be the set of Wilson loops with k; as a starting (and ending)
point. It can be showed that for it group axioms are satisfied.

* For each element Wy of this group we have an inverse: Wk_oi = W,j01

* We can characterize each element of this group by the loop labels (m,n).

. Since Waba’ca =1, Waba’ = Wacar
/ \ Label of the loop (and the corresponding element in W)
v] b a’
(1,0)
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Group Structure of Wilson Loops

» m(T?) =ZXZ-> Wy,

¥ —=a oy __.--"}_--___-. b;
* = Wy, is an abelian group with E?\ﬂ.

two generators that correspond to
the loops (1,0) and (0,1).

* Any element of the group ﬂ

can be written as

Wimn) = W(ioy " Wio,). /—\ ,
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Group Structure of Wilson Loops

* Relation between W, and Wy, both isomorphic to Z X Z.

* Since Wyarp'ipar = 1,

K K r
Wia'a = U Waea U, b — &
* Where U = Wiy k- + 1

~
b
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Holonomy Group

Principal bundle (E=T?xSU(2),m, T?)
Sections W =121 ¥,), @ = 1/V2(y', ¥',)
Connection 1-form Apn = Ay (€ s8u(2))dk”

Curvature (2-form) | F=dA+AANA=1/2E,dk* Adk”

A, = (W)ni0, ¥Prm dk
* ® =WYg, where g € SU(2). 3 T

* h = (0,0, h3) — problem for ¥;
* h = (0,0, —h3) — problem for ®
 Assume h # 0.

E,=0,4,— 0,4, +|A,A4, ]
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Holonomy Group

HolpETz = {gy‘yg(end point) = hgy,},
» where y; means horizontal lift of y (loop on T?), h = ¥} (starting point).
- H ol](} — when y’s are contractible

e Useful features:

1) If connected, then Hol,(A) = g 'Hol,g. v
2) If simply connected, then Hol(A) = Hol°(4).
3) A is flat if and only if Hol?(A) is trivial. \/
4) Natural surjective group homomorphism:

m,(base sp.) » Hol(A)/ Hol°(4). v
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Simulating the Remaining Singular Points

* Consider a manifold T? /{ky, ko5, ..., ko, } for the base space.

e Since
n+1

1 (T?/{ko1, koo, s kon}) = HZ *
i=1

* denotes a free product.

* E.g. Z * Z is a free group with two generators
(fundamental group of figure eight)

CNole. Z + Z is not Abelian (while Z x Z is). 14/16



summary:

* F,,, is equal to zero everywhere on T* except the points where 1’s are
singular.

* Using the Non-Abelian Stokes theorem and the behaviour of F,,,
calculations are simplified.

* W = I for all contractible loops that do not contain any of the singular
points or contain singular points in which the energy gap is open.

* The set of {W} has a group structure and is isomorphic to Z X Z.

* The same results are achieved if we look at the set {WW}.} as the holonomy
group of 4.

* Including the gap closing points we arrive to non-Abelian groups.
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