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Stating the problem

It is textbook knowledge that the electric charge density of the
nucleon is given by the three-dimensional Fourier transform of its
electric form factor in the Breit frame.

R. Hofstadter, F. Bumiller, and M. R. Yearian, Rev. Mod. Phys. 30, 482
(1958).
F. J. Ernst, R. G. Sachs and K. C. Wali, Phys. Rev. 119, 1105-1114 (1960).
R. G. Sachs, Phys. Rev. 126, 2256-2260 (1962).

Similar relations have been suggested for Fourier transforms of
gravitational form factors and various local distributions in

M. V. Polyakov and A. G. Shuvaev, [arXiv:hep-ph/0207153 [hep-ph]].
M. V. Polyakov, Phys. Lett. B 555, 57 (2003).
M. V. Polyakov and P. Schweitzer, Int. J. Mod. Phys. A 33 (2018) no.26,
1830025.



Definition of spatial density distributions via the Fourier transform of
the corresponding form factors for systems whose intrinsic size is
comparable with the Compton wavelength was criticized in

M. Burkardt, Phys. Rev. D 62 (2000), 071503(R), [erratum: Phys. Rev. D
66 (2002), 119903(E)].
G. A. Miller, Phys. Rev. Lett. 99, 112001 (2007).
G. A. Miller, Phys. Rev. C 79, 055204 (2009).
G. A. Miller, Ann. Rev. Nucl. Part. Sci. 60 (2010), 1-25.
R. L. Jaffe, Phys. Rev. D 103 (2021) no.1, 016017.
G. A. Miller, Phys. Rev. C 99, no.3, 035202 (2019).
A. Freese and G. A. Miller, Phys. Rev. D 103, 094023 (2021).

Miller pointed out that the derivation by Sachs implicitly assumes
delocalized wave packet states. This would result in moments of the
charge distribution governed by the size of the wave packet.

The definition of the charge density distribution for a spin-0 system
was further scrutinized by Jaffe in relationship to three characteristic
length scales: ∆2 = 6F ′(q2)|q2=0, the characteristic size of the wave
packet R and the Compton wavelength 1/m.



Jaffe concluded that the interpretation of the Fourier transformed
form factor as the intrinsic charge density is not valid for light
hadrons and argued that local density distributions cannot even be
defined for systems with ∆ ∼ 1/m.



We revisited the definition of the charge density and other spatial
densities.

Using spherically symmetric wave packets in the zero averaged
momentum frame (ZAMF), we showed that the charge density is
defined unambiguously for sharply localized packets.

We also generalized the definition to moving frames and showed
that in the infinite-momentum frame (IMF), the charge density turns
into the well-known two-dimensional distribution in the transverse
plane.



The charge density in the ZAMF of the system

We consider, for the sake of definiteness, a spin-0 system.

However spin plays no special role in the analysis below.

We assume that the system is an eigenstate of the charge operator
Q̂ =

∫
d3r ρ̂(r,0), Q̂|p⟩ = Q|p⟩, where ρ̂(r,0) is the electric charge

density operator at t = 0, and we take Q = 1.

The momentum eigenstates |p⟩ are normalized in the usual way,

⟨p′|p⟩ = 2E(2π)3δ(3)(p′ − p) , (1)

with p = (E ,p), E =
√

m2 + p2.

The matrix elements of ρ̂(r,0) between momentum eigenstates of a
spin-0 system can be written as

⟨p′|ρ̂(r,0)|p⟩ = ei(p′−p)·r(E + E ′)F (q2), (2)

where F (q2) is the electric form factor and q = p′ − p.



We define a normalizable Heisenberg-picture state of the system in
terms of the wave packet

|Φ,X⟩ =
∫

d3p√
2E(2π)3

ϕ(p)e−ip·X|p⟩, (3)

where the profile function ϕ(p) is required to satisfy∫
d3p |ϕ(p)|2 = 1 (4)

in order to ensure the proper normalization of the wave packet.

For later use, we define a dimensionless profile function ϕ̃ via

ϕ(p) = R3/2 ϕ̃(Rp) , (5)

where R denotes the characteristic size of the wave packet with
R → 0 corresponding to a sharp localization.



The charge density distribution in this state has the form

⟨Φ,X|ρ̂(r,0)|Φ,X⟩ =
∫

d3p d3p′(E + E ′)

(2π)3
√

4EE ′
F
(

q2
)
ϕ⋆(p′)ϕ(p)eiq·(X+r),

where q = p′ − p and q2 = (E ′ − E)2 − q2.
Without loss of generality we choose X = 0.

Finally, introducing the total and relative momentum variables via
p = P − q/2 and p′ = P + q/2, the charge density is written as

ρϕ(r) ≡ ⟨Φ,0|ρ̂(r,0)|Φ,0⟩

=

∫
d3P d3q

(2π)3
√

4EE ′
(E + E ′)F

[
(E − E ′)2 − q2

]
× ϕ

(
P − q

2

)
ϕ⋆

(
P +

q
2

)
eiq·r, (6)

where E =
√

m2 + P2 − P · q + q2/4 and
E ′ =

√
m2 + P2 + P · q + q2/4.



The traditional (“naive”) interpretation of the charge density in terms
of F (−q2), emerges by first taking the static limit by substituting
E = E ′ = m in the integrand,

ρϕ, naive(r)=
∫

d3P d3q
(2π)3 ϕ

(
P − q

2

)
ϕ⋆

(
P +

q
2

)
F
(
−q2

)
eiq·r, (7)

and subsequently taking the limit R → 0.

This can be done without specifying the functions F
(
q2) and ϕ(p)

using the method of dimensional counting

J. Gegelia, G. S. Japaridze and K. S. Turashvili, Theor. Math. Phys. 101,
1313-1319 (1994).



For F
(
q2) decreasing at large q2 faster than 1/q2, the only

non-vanishing contribution to ρϕ, naive(r) in the R → 0 limit is
obtained by substituting P = P̃/R, expanding the integrand in R
around R = 0 and keeping the zeroth order term.

The resulting naive charge density has the familiar form

ρnaive(r) =

∫
d3P̃ d3q
(2π)3 F

(
−q2

)
|ϕ̃(P̃)|2 eiq·r

=

∫
d3q
(2π)3 F

(
−q2

)
eiq·r,

This expression corresponds to R ≫ 1
m .



On the other hand, the method of dimensional counting allows one
to take the R → 0 limit without employing the static approximation.

Following the same steps as before but for arbitrary m, we obtain

ρϕ(r) =
∫

d3P̃ d3q
(2π)3 F

[
(P̃ · q)2

P̃2
− q2

]
|ϕ̃(P̃)|2 eiq·r. (8)

The resulting density depends on the shape of the wave packet
unless it is spherically symmetric.

Since there is no preferred direction in ZAMF of the system, we
define the charge density distribution by employing spherically
symmetric wave packets with ϕ̃(P̃) = ϕ̃(|P̃|).

Using spherical coordinates to perform the integration over P̃, we
arrive at the final form of the charge density distribution

ρ(r) =
∫

d3q
(2π)3 eiq·r

∫ +1

−1
dα

1
2

F
[
(α2 − 1)q2

]
. (9)



As argued by Jaffe the traditional result ρnaive(r) is valid for the
hierarchy of scales ∆ ≫ 1/m, because we have to take
∆ ≫ R ≫ 1/m.

The validity of the new definition, does not depend on the relation
between the intrinsic size of the system ∆ and its Compton
wavelength 1/m.



Discussion:

A striking feature of the obtained result for ρ(r) is its independence
of the particle’s mass.

This implies that the traditional expression for the charge density,
ρnaive(r), does not emerge from ρ(r) by taking the static limit:
ρnaive(r) ̸= limm→∞ ρ(r).

The reason for this mismatch is the non-commutativity of the R → 0
and m → ∞ limits of ρϕ(r).

While the static limit and, more generally, the non-relativistic
approximation is perfectly valid when calculating the form factor
provided −q2 ≪ m2, it is violated in certain momentum regions
when performing the integration over momenta.



To demonstrate the non-commutativity of the m → ∞ and R → 0
limits consider the wave packet in one spatial dimension with

ϕ(p) =

√
2R
π

1
1 + R2p2 , (10)

and the form factor

F (q2
0 − q2) =

2
2 −∆2(q2

0 − q2)
, (11)

so that F (0) = 1 and F ′(0) = ∆2/2.

We calculate the second order moment of the charge distribution

⟨x2⟩ϕ=
∫ +∞

−∞
dx x2

∫ +∞

−∞

dP dq
2π

√
4EE ′

(E + E ′) (12)

×F
[
(E − E ′)2 − k q2

]
ϕ

(
P − q

2

)
ϕ⋆

(
P +

q
2

)
eiqx .

For demonstration purposes, we have introduced a control
parameter k to be set to k = 1 in the final result.



The resulting expression has the form

⟨x2⟩ϕ = k∆2 − ∆2

(1 + mR)2 +
R2

2
− R

4m(1 + mR)3 . (13)

Taking the limit R → 0 in Eq. (13) leads to

⟨x2⟩ = (k − 1)∆2 = 0 , (14)

which does not depend on the mass m.

On the other hand, taking first the static limit m → ∞ and
subsequently the R → 0 limit we obtain a different result

⟨x2⟩naive = k∆2 = ∆2 . (15)



The dependence of ρ(r) on form factor 1
2

∫ +1
−1 dαF

[
(α2 − 1)q2]

rather than on F (−q2) affects the radial profile of the charge density.

We compare ρ(r) and ρnaive(r) for a charged and a neutral particles.

We employ form factors

Fp(q2) = GD(q2) = (1 − q2/Λ2)−2

with Λ2 = 0.71 GeV2,

and

Fn(q2) = Aτ/(1 + Bτ)GD(q2),

where τ = −q2/(4m2
p), A = 1.70, B = 3.30.
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Figure: Radial charge density distributions 4πr2ρ(r) (solid lines) and
4πr2ρnaive(r) (dashed lines) for a charged and a neutral particles.



To gain further insights into the relationship between the charge
density and the form factor it is instructive to use coordinate
independent form:

ρ(r) =
1

4π

∫
d2n̂ ρn̂(r) , (16)

where n̂ ≡ n/|n| is a unit vector and

ρn̂(r) =
∫

d3q
(2π)3 F (−q2

⊥)eiq·r = ρn̂(r∥) ρn̂(r⊥) . (17)

Here, q⊥ = n̂ × (q × n̂), r⊥ = n̂ × (r × n̂), r∥ = r · n̂, r⊥ ≡ |r⊥|, and n̂
and r⊥ directions are given by

ρn̂(r∥)=
∫ dq∥

2π
eiq∥r∥ = δ(r∥) , (18)

ρn̂(r⊥)=
∫

d2q⊥
(2π)2 F (−q2

⊥)eiq⊥·r⊥ ,

with q∥ = q · n̂. These expressions establish a geometric
interpretation of ρ(r) to be discussed below.



The charge density in moving frames

While the static approximation ρnaive(r) does not depend on the
frame, the expressions for ρ(r) are valid in ZAMF only.

It is straightforward to generalize these results to a boosted frame.

We start with the general expression for ρϕ(r) and replace ϕ(p) with
ϕv(p), where v denotes the boost velocity.

ϕv(p) is expressed in terms of the rest frame quantity ϕ(p)

ϕv(p) =
√

γ
(

1 − v · p
E

)
ϕ
[
p⊥ + γ(p∥ − vE)

]
, (19)

where γ = (1 − v2)−1/2, p∥ = (p · v̂)v̂, p⊥ = p − p∥ and
E =

√
m2 + p2.

S. E. Hoffmann, [arXiv:1804.00548 [quant-ph]].



Following the same steps as in the ZAMF and using the method of
dimensional counting to evaluate the R → 0 limit we arrive at

ρϕ,v(r)=
∫

d3P̃ ′ d3q
(2π)3

∣∣ϕ̃(P̃′)∣∣2 eiq·r (20)

×F

{[
P̃′
⊥ · q⊥ + γ(P̃′

∥ + vP̃ ′) · q∥]
2

γ2(P̃ ′ + vP̃ ′
∥)

2
− q2

}
.



Using spherical symmetry of ϕ̃
(
P̃′), the integration over P̃ ′ becomes

trivial.
The remaining angular integration over ˆ̃P′ can be done in spherical
coordinates. Our final result then reads:

ρv(r) =
∫

d3q
(2π)3 F̄

(
q∥,q⊥

)
eiq·r , (21)

with q∥ ≡ v̂ · q, q⊥ ≡ |q⊥| and

F̄ (q∥,q⊥)=
1

4π

∫ +1

−1
dη

∫ 2π

0
dϕ (22)

×F

{[√
1 − η2 cosϕq⊥ + γ(η + v)q∥

]2

γ2(1 + vη)2 − q2

}
.



In the IMF with v → 1 and γ → ∞ , the charge density turns into the
usual two-dimensional distribution in the transverse plane,
ρIMF(r) = δ(r∥) ρIMF(r⊥) with

ρIMF(r⊥) =
∫

d2q⊥
(2π)2 F

(
−q2

⊥

)
eiq⊥·r⊥ . (23)



It is instructive to use a coordinate independent form similar to the
FAMF expressions.

The charge density ρv(r) can be written as

ρv(r) =
1

4π

∫
d2m̂ ρn̂(v,m̂)(r) , (24)

where ρn̂(v,m̂)(r) ≡ ρn̂(r) is defined above and

n(v, m̂) = v̂ × (m̂ × v̂) + γ(m̂ · v̂ + v)v̂ . (25)

In this form, both extreme limits for the boosting velocity become
particularly transparent by using the relations n̂(v, m̂)

v→0−→ m̂ and
n̂(v, m̂)

v→1−→ v̂, leading evidently to the ZAMF and IMF expressions,
respectively.



The interpretation of the obtained results follows directly from the
corresponding coordinate independent expressions.

The ZAMF expression ρ(r) is given by a continuous (isotropic)
superposition of the two-dimensional "images" of the system,
ρIMF(r), made in all possible IMFs.

It is intuitively clear that the full image of a three-dimensional object
can be reconstructed by putting together all possible
two-dimensional projections.



Summary
▶ We introduced an unambiguous definition of a spatial

distribution of the expectation values of local operators
independent of the specific form of the wave packet.

▶ New definition also applies to systems whose intrinsic size is
comparable or even smaller than the Compton wavelength.

▶ Our relationships between the electric form factor and the
charge density in moving frames agrees with the well-known
result in the IMF.

▶ Our results suggest an unconventional ⟨r2⟩ = 4F ′(0) in contrast
to the usual relationship ⟨r2⟩naive = 6F ′(0) motivated by the Breit
frame distribution.

▶ The approximation ρnaive(r) does not emerge in the static limit
of the exact expression for ρ(r), accuracy of which is
independent of the particle’s mass.


