
Theories of multiple spin-2 fields as
ghost-free multimetric gravity

Fawad Hassan
Stockholm University, Sweden

Workshop on Recent Advances in Fundamental Physics
Sept 27 – Oct 01, 2022, Tbilisi, Georgia



Main collaborators:

Rachel. A. Rosen

Angnis Schmidt-May

Mikael von Strauss

Mikica Kocic

Anders Lundkvist

Luis Apolo

Joakim Flinckman

Disclaimer: Many people have contributed to this field, but I
willl only focus of a few works)



Outline of the talk

Motivation: Why spin 2 fields?

Ghost-free Bimetric theory

Uniqueness and the local structure of spacetime

Ghost-free multi spin-2 theories

Discussion



Outline of the talk

Motivation: Why spin 2 fields?

Ghost-free Bimetric theory

Uniqueness and the local structure of spacetime

Ghost-free multi spin-2 theories

Discussion



Motivation: Why spin 2 fields?

General relativity:

The gravitational metric gµν(x) is a field of spin = 2 and
mass = 0.

Bimetric & multimetric theories:

Gravity (gµν) coupled to other spin-2 fields (fµν , · · · ).

Spectrum:

A massless spin-2 state + massive spin-2 states

Why are these theories interesting?
What are the challenges?
What is the progress?



Recall: Significance of spin

Fields/particles are classified by their spin s, mass m, · · ·

Spin s determines the basic form of field equations:

I s = 0: (�+ m2)φ = 0 Klein-Gordon

I s = 1
2 : (iγµ∂µ −m)ψ = 0 Dirac

I s = 1: DµFµν = 0 Maxwell (+ Yang-Mills)

I s = 2: Rµν − 1
2gµνR = 0 Einstein

Origins: only Maxwell had direct experimental input.
How come they still work? spin⇒ unique form!

Standard Model: multiplets of s = 0, 1
2 ,1 + intricate structures

General Relativity: The simplest possible theory of s = 2

Physics beyond GR and SM: What are the possibilities?
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Recall: Spin based classification of theories

I s < 2: Well known field theories (e.g. in Standard Model)

I s > 2: Local theories with finite field content may not exist
(cf. Higher spins, String theory)

I s = 2: Simplest possible theory is GR
(The spin-2 equivalent of �φ = 0 & ∂µFµν = 0)

By contrast, in SM: φ→ Higgs multiplet,
Fµν → SU(2)W × U(1)Y

Do theories of multiple spin-2 fields exist? Or, is GR unique?

(Unexplored corner of the theory space)
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Digression: the ghost problem

Ghost: A field with negative kinetic energy
Example:

L = T − V = (∂tφ)2 · · · (healthy)

But
L = T − V = −(∂tφ)2 · · · (ghostly)

Consequences:

I Instability: unlimited energy transfer from ghost to other
fields

I Negative probabilities, violation of unitarity in quantum
theory
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Why are higher spins s ≥ 2 difficult?

Number of propagating helicities (nh) for spin s:

mass = 0 : nh = 2 or 1 , mass 6= 0 : nh = 2s + 1

But, Lorentz invariance (general covariance) requires a field
with s ≥ 1 to have more than 2s + 1 components. Examples:

s = 1 : nh < 4 components of Aµ

s = 2 : nh < 10 components of gµν

The extra components contain ghost instabilities. Need to be
eliminated by symmetries+constraints.

(Are there enough of these?)
For massive spin-2, nh = 5 + 1: The Boulware-Deser ghost
(1972)
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Recap: why are multiple spin-2 theories interesting?

I Uncharted corner of local field theories, difficult to probe.

I New features. Relevant to gravity, dark matter, dark energy,
inflation, etc.

I Not guided by experiments, but
motivated by experience!

(Precedents: Einstein-Hilbert, KG, Dirac, Proca, YM, Higgs)
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GR + a generic spin-2 field

A dynamical theory of the metric gµν & spin-2 field fµν

L = m2
p

√
|g|R −

√
|g|V (g−1f ) +

Digression:
No dynamics for fµν = ηµν : Massive Gravity

describes a massive spin-2 (5 helicities) + a ghost (1 helicity)

A very special V (g−1η)⇒ ghost-free massive gravity:

[Creminelli, Nicolis, Papucci, Trincherini, (2005)]
[de Rham, Gabadadze (2010); de Rham, Gabadadze, Tolley (2010)]

[SFH, Rosen (2011); SFH, Rosen, Schmidt-May (2011)]
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L(f ,∇f )

I what is V (g−1f ) ?

I what is L(f ,∇f ) ?

I proof of absence of the Boulware-Deser ghost
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Ghost-free “bi-metric” theory

[SFH, Rosen (1109.3515,1111.2070)]

Ghost-free combination of kinetic and potential terms:

L = m2
g

√
|g|Rg −

√
|g|

4∑
n=0

βn en

(√
g−1f

)
+ m2

f

√
|f |Rf

I Bimetric structure

I 7 = 2 + 5 nonlinear propagating modes, no BD ghost!

I No ghost⇒ minimal matter couplings:

Lmin(g, ψ) + Lmin(f , ψ′)
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Mass spectrum & Limits

[SFH, Schmidt-May, von Strauss (arXiv:1208.1515)]

f̄ = c2ḡ , gµν = ḡµν + δgµν , fµν = f̄µν + δfµν

Linear modes:

Massless spin-2: δGµν =
(
δgµν +

m2
f

m2
g
δfµν

)
(2)

Massive spin-2 : δMµν =
(
δfµν − c2δgµν

)
(5)

gµν , fµν are mixtures of massless and massive modes

General Relativity limit: mg = MP , mf/mg → 0

Massive gravity limit: mg = MP , mf/mg →∞
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Potential consistency problems and their solutions

Potential problem 1: Incompatible spacetimes

gµν & fµν may not admit compatible notions of space and time
(3+1 splits)

(a) (b) (c) (d)

Then:
No consistent time evolution, no Hamiltonian formulation



Potential consistency problems and their solutions

Potential problem 2: Uniqueness, Reality, Covariance

Matrix square root: Sµ
ν =

(√
g−1f

)µ
ν
.

I Not unique: Multiple roots (primary, non-primary)

I Possibly non-real

I No general covariance (not a (1,1) tensor)

Both problems happen to have a common solution
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Uniqueness and the local structure of spacetime

[SFH, M. Kocic (arXiv:1706.07806)]
General Covariance:
S = principal root⇒ Unique.

Reality (theorem):
S is real iff the null cones of gµν and fµν intersect as:

Type I Type IIa Type IIb Type III Type IV

Types I-III: Allowed, proper 3+1 decompositions possible.
Type IV: Non-primary, excluded by general covariance

(Implication for accausality arguments in the literature)
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Bimetric theory in the vielbein formulation
[B. Zumino (1970]

[K. Hinterbichler, R. A. Rosen (arXiv:1203.5783)]

gµν = ηABeA
µeB

ν , fµν = ηABEA
µEB

ν

L =m2
g det(e)Re + m2

f det(E)RE

−m4
(
β0e ∧ e ∧ e ∧ e + β1e ∧ e ∧ e ∧ E + β2e ∧ e ∧ E ∧ E

+ β3e ∧ E ∧ E ∧ E + β4E ∧ E ∧ E ∧ E
)

Eqns of motion imply:

eA
µηABEB

ν − EA
µηABeB

ν = 0 , ⇐⇒ evaluation of
√

g−1f

No real simplification!
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Ghost-free multi spin-2 theories

Consider N spin-2 fields gI
µν = (eI)

A
µ(eI)

B
νηAB, with I = 1, · · · ,N

1) Trivial: Pairwise BiM interactions, V (g1,g2) + V (g2,g3) + · · ·
(but no loops)

2) Proposed multi-vielbein interactions
[K. Hinterbichler, R. A. Rosen (arXiv:1203.5783)]

V = M4
N∑

I,J,K ,L=1

βIJKL εABCD (eI)
A ∧ (eJ)B ∧ (eK )C ∧ (eL)D ,

3) But, generally, not ghost free
[C. de Rham, A. J. Tolley (arXiv:1505.01450)]

Do genuine ghost-free multi spin-2 interaction exist? Yes.
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Ghost-free multi spin-2 theories

[SFH, Angnis Schmidt-May (arXiv:1804.09723)]

[SFH, Joakim Flinckman (to appear)]

Certain genuine multi spin-2 interactions for (eI)
A
µ can be

constructed. E.g.,

L =
N∑

I=1

m2
I

√
|gI |R(gI)−M4 det

(
N∑

I=1

βIeI

)

I Has the correct number of constraints to eliminate the
ghosts.

I A subset of the general veilbein interactions:
βIJKL = βIβJβKβL
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Ghost-free multi spin-2 theories

L =
N∑

I=1

m2
I

√
|gI |R(gI)−M4 det

(
N∑

I=1

βIeI

)

I Mass eigenstates and eigenvalues
I Is there a formulation in terms of the metrics?
I Certain “basic” extensions can be constructed and argued

to be ghost free
I Compatible space and time decompositions?

[SFH, Joakim Flinckman (to appear)]

What is the most general form? Systematics not known
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Discussion

The beginning of understanding theories of spin-2 fields
beyond General Relativity.

I Causal structure?

I Superluminality? (yes, not necessarily harmful, inflation?)

I Unavoidable mixings of mass eigenstates (unlike neutrino
mixings)

I Systematics of multispin-2 interactions?
I A more fundamental formulation, say, (a la Higgs)

I Implications for cosmology, blackholes, GW, etc.

I Extra symmetries⇒ Modified kinetic terms?
MacDowell-Mansouri type theories, More interesting but
less understood.
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Thank you!



EXTRA MATERIAL



Can Bimetric be a fundamental theory?

I Similar to Proca theory in curved background,√
| det g|(FµνFµν −m2 gµνAµAν + Rg)

I May need the equivalent of Higgs mechanism with the
extra fields for better quantum or even classical behaviour



Extra: Elementary symmetric polynomials en(S)

For a 4× 4 matrix S with eigenvalues λ1 , · · · , λ4,

e1(S) = λ1 + λ2 + λ3 + λ4 ,

e2(S) = λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4,

e3(S) = λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4 ,

e4(S) = λ1λ2λ3λ4 , en>4(S) = 0 .

e0(S) = 1 ,
e1(S) = Tr(S) ≡ [S] ,

e2(S) = 1
2([S]2 − [S2]),

e3(S) = 1
6([S]3 − 3[S][S2] + 2[S3]) ,

e4(S) = det(S) , en>4(S) = 0 .

det(1 + S) =
∑4

n=0 en(S)



Extra: Interaction potential:

det(1 + S) =
∑4

n=0
en(S)

V (S) =
∑4

n=0
βn en(S)

Where:
Sµ
ν =

(√
g−1f

)µ
ν

(“a” square root of the matrix gµλfλν . More on this later · · · )

[de Rham, Gabadadze, Tolley (2010)]

[SFH, Rosen (2011); SFH, Rosen, Schmidt-May (2011)]



Extra: The matrix square root
√

A
See refs in [SFH, M. Kocic (arXiv:1706.07806)]

Put matrix A in Jordan normal form

A = Z diag(J1, . . . , . . . , Js) Z−1 , Ji ≡

λi 1 0 · · ·
0 λi 1 · · ·
0 0

. . . . . .

.
Then, the matrix function F (A) =

√
A is

F (A) = Z diag (F (J1), . . . , . . . ,F (Jp)) Z−1 ,

F (Jk ) ≡


F (λk ) F ′(λk ) · · · 1

(nk−1)!F
(nk−1)(λk )

F (λk )
. . .

...
. . . F ′(λk )

F (λk )

.

Many roots: The same branch of F (x) =
√

x must be chosen
within each block, but it can vary between blocks.



Solution to the uniqueness problem of V (S)

Matrix square roots:
I Primary roots: Max 16 distinct roots, generic
I Nonprimary roots: Infinitely many, non-generic

(when eigenvalues in different Jordan blocks coincide)

General Covariance: Aµν = gµρfρν is a (1,1) tensor,

xµ → x̃µ ⇒ A→ Q−1AQ , for Qµ
ν =

∂xµ

∂x̃ν
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Uniqueness and the local structure of spacetime

Potential consistency problems and their solutions [SFH, M. Kocic
(arXiv:1706.07806)]

The bimetric theory given above is not yet well defined.

(2) The matrix
√

g−1f is non-unique, potentially complex &
non-tensorial. Does a unique good choice exist?

(1) The notions of “space” and “time” for gµν may not be
consistent with that of fµν .

Both problems have a common resolution



Potential consistency problems

Potential problem 1: Incompatible spacetimes

gµν & fµν may not admit compatible notions of space and time
(3+1 splits)

(a) (b) (c) (d)

Implications: no consistent time evolution equations,
no Hamiltonian formulation.



Potential consistency problems

Problem 2: Uniqueness, reality, covariance

Recall the matrix square root Sµ
ν =

(√
g−1f

)µ
ν
.

I Multiple roots (primary, non-primary)⇒ non-unique
I Possibly non-real
I May not transform as a (1,1) tensor: no general

covariance

Recall: General Covariance:

Since Aµν = gµρfρν is a (1,1) tensor, for xµ → x̃µ one has

A→ Q−1AQ , where Qµ
ν =

∂xµ

∂x̃ν

What about
(√

A
)µ
ν
?
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Problem when primary roots degenerate to non-primary roots

Can a unique, real, covariant S be specified “meaningfully”?

If not, the theory is ill defined

Solution: General covariance + Reality
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Uniqueness and the local structure of spacetime

[SFH, M. Kocic (arXiv:1706.07806)]
General Covariance:
Only S = principal root is always a (1,1) tensor⇒ Uniqueness.

Reality (theorem):
S is real iff the null cones of gµν and fµν intersect as:

Type I Type IIa Type IIb Type III Type IV

Types I-III: Allowed, proper 3+1 decompositions possible.
Type IV: Non-primary, excluded by general covariance

(Implication for accausality arguments in the literature)



Uniqueness and the local structure of spacetime

[SFH, M. Kocic (arXiv:1706.07806)]
General Covariance:
Only S = principal root is always a (1,1) tensor⇒ Uniqueness.

Reality (theorem):
S is real iff the null cones of gµν and fµν intersect as:

Type I Type IIa Type IIb Type III Type IV

Types I-III: Allowed, proper 3+1 decompositions possible.
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(Implication for accausality arguments in the literature)



Summary: Choice of the square root

Reality + General Covariance⇒
Real principal square root (unique)⇒

Intersecting null cone, Compatible 3+1 decompositions



Uniqueness of S

Sµ
ν = (

√
A)µν :

I Primary roots:
√

A→
√

Q−1AQ = Q−1
√

A Q

I Nonprimary roots:
√

Q−1AQ 6= Q−1
√

A Q

Step 1:
General covariance⇒ only primary roots are allowed.

A Consequence: Examples of backgrounds with local CTC’s
correspond to nonprimary roots and are excluded

Step 2:
Only the principal root is always primary. Hence, S must be a
principle root.

(Nonprinciple roots degenerate to nonprimary roots when some
eigenvalues coincide).
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The “mean” metric:

Consider the mean metric

hµν = gµρ
(√

g−1f
)ρ
ν

h null-cones for the principal root always contain the
intersections of g and f null-cones:

Useful for choosing “good” coordinate systems



Ghost in Massive Gravity

gµν : N,Ni(4), γij = gij(6)

General Relativity:

Lgr =
√

gR = πij γ̇ij − NR0 − N iRi

R0 = Ri = 0, GCT⇒ 2 polarizations

Massive Gravity:

Lmgr =
√

g
(

R − V (g−1f )
)

= πij γ̇ij −NR0−N iRi − Ṽ (N,Ni , γ, f )

No constraints, no GCT⇒ 5 polarizations + 1(BD ghost)
[Boulware, Deser (1972)]

Ghost free massive gravity: with a constraint.
[de Rham, Gabadadze, Tolley (2010)]

[SFH, Rosen (2011); SFH, Rosen, Schmidt-May (2011)]



Extra: Constraints in ghost-free “bi-metric” theory

[SFH, Rosen (1109.3515,1111.2070)]
[SFH, A. Lundkvist (arXiv:1802.07267)]

Let N,Ni (L,Li ): Lapse and shifts of gµν (fµν)

H = LR0 + LiR i + NC1

Constraints:
R0 = R i = 0, C1 = 0, C2 ≡ dC1/dt = {H,C1}PB = 0 +

Gauge fixing GCT:

⇒ 7 = 2 + 5 nonlinear propagating modes, no BD ghost!

EOM’s:
Rg
µν − 1

2gµνRg + V g
µν = T g

µν , Rf
µν − 1

2 fµνRf + V f
µν = T f

µν



The HKT metric
General Relativity in 3+1 decomposition (gµν : γij ,N,Ni ):

√
gR ∼ πij∂tγij − NR0 − NiR i

Constraints: R0 = 0 ,R i = 0.
Algebra of General Coordinate Transformations (GCT):{

R0(x),R0(y)
}

= −
[
R i(x) ∂

∂x i δ
3(x − y)− R i(y) ∂

∂y i δ
3(x − y)

]
{

R0(x),Ri(y)
}

= −R0(y) ∂
∂x i δ

3(x − y){
Ri(x),Rj(y)

}
= −

[
Rj(x) ∂

∂x i δ
3(x − y)− Ri(y) ∂

∂y j δ
3(x − y)

]
Ri = γijR j , γij : metric of spatial 3-surfaces.
I Any generally covariant theory contains such an algebra.
I HKT: The tensor that lowers the index on R i is the physical

metric of 3-surfaces.



The HKT metric in bimetric theory

Consider gµν = (γij ,N,Ni) and fµν = (φij ,L,Li),

Lg,f ∼ πijγij + pijφij −MR̃0 −Mi R̃ i

On the surface of second class Constraints.
GCT Algebra:{

R̃0(x), R̃0(y)
}

= −
[
R̃ i(x) ∂

∂x i δ
3(x − y)− R̃ i(y) ∂

∂y i δ
3(x − y)

]
{

R̃0(x), R̃i(y)
}

= −R̃0(y) ∂
∂x i δ

3(x − y)

R̃i = φij R̃ j , φij : the 3-metric of fµν , or
R̃i = γij R̃ j , γij : the 3-metric of gµν .
The HKT metric of bimetric theory is gµν or fµν , consistent with
ghost-free matter couplings

[SFH, A. Lundkvist [arXiv:1802.07267]]



Mass spectrum & Limits

[SFH, Schmidt-May, von Strauss (arXiv:1208.1515)]

f̄ = c2ḡ , gµν = ḡµν + δgµν , fµν = f̄µν + δfµν

Linear modes:

Massless spin-2: δGµν =
(
δgµν +

m2
f

m2
g
δfµν

)
(2)

Massive spin-2 : δMµν =
(
δfµν − c2δgµν

)
(5)

gµν , fµν are mixtures of massless and massive modes

The General Relativity limit: mg = MP , mf/mg → 0

Massive gravity limit: mg = MP , mf/mg →∞
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f̄ = c2ḡ , gµν = ḡµν + δgµν , fµν = f̄µν + δfµν

Linear modes:

Massless spin-2: δGµν =
(
δgµν +

m2
f

m2
g
δfµν

)
(2)

Massive spin-2 : δMµν =
(
δfµν − c2δgµν

)
(5)

gµν , fµν are mixtures of massless and massive modes

The General Relativity limit: mg = MP , mf/mg → 0

Massive gravity limit: mg = MP , mf/mg →∞



Mass spectrum & Limits

[SFH, Schmidt-May, von Strauss (arXiv:1208.1515)]
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GR limit and cosmology
The General Relativity limit:

mg = MP , α = mf/mg → 0

Cosmological solutions in the GR limi (e.g.):

3H2 =
ρ

M2
Pl
− 2

3
β2

1
β2

m2 − α2 β
2
1

3β2
2

H2 +O(α4)

The GR approximation breaks down at sufficiently strong fields
[Akrami, SFH,Konnig,Schmidt-May,Solomon (arXiv:1503.07521)]

More on bimetric cosmology:
[Lüben, Mörtsell, Schmidt-May (arXiv:1812.08686)]

Massive spin-2 particle as dark matter (not discussed here).
Also local (blackhole solutions) not discussed here.
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