Theories of multiple spin-2 fields as ghost-free multimetric gravity

Fawad Hassan
Stockholm University, Sweden

Workshop on Recent Advances in Fundamental Physics
Sept 27 - Oct 01, 2022, Tbilisi, Georgia

Main collaborators:

Rachel. A. Rosen
Angnis Schmidt-May
Mikael von Strauss
Mikica Kocic
Anders Lundkvist
Luis Apolo
Joakim Flinckman

Disclaimer: Many people have contributed to this field, but I willl only focus of a few works)

Outline of the talk

Motivation: Why spin 2 fields?

Ghost-free Bimetric theory

Uniqueness and the local structure of spacetime

Ghost-free multi spin-2 theories

Discussion

Outline of the talk

Motivation: Why spin 2 fields?

Ghost-free Bimetric theory

Uniqueness and the local structure of spacetime

Ghost-free multi spin-2 theories

Discussion

Motivation: Why spin 2 fields?

General relativity:
The gravitational metric $g_{\mu \nu}(x)$ is a field of spin $=2$ and mass $=0$.

Bimetric \& multimetric theories:
Gravity $\left(g_{\mu \nu}\right)$ coupled to other spin-2 fields $\left(f_{\mu \nu}, \cdots\right)$.

Spectrum:

A massless spin-2 state + massive spin-2 states
Why are these theories interesting?
What are the challenges?
What is the progress?

Recall: Significance of spin

Fields/particles are classified by their spin s, mass m, \cdots
Spin s determines the basic form of field equations:

Recall: Significance of spin

Fields/particles are classified by their spin s, mass m, \cdots
Spin s determines the basic form of field equations:

- $s=0: \quad\left(\square+m^{2}\right) \phi=0$

Klein-Gordon

- $\boldsymbol{s}=\frac{1}{2}: \quad\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0$

Dirac

- $s=1: \quad D_{\mu} F^{\mu \nu}=0$

Maxwell (+ Yang-Mills)

- $s=2: \quad R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=0$

Einstein

Recall: Significance of spin

Fields/particles are classified by their spin s, mass m, \cdots
Spin s determines the basic form of field equations:

- $s=0: \quad\left(\square+m^{2}\right) \phi=0$

Klein-Gordon

- $s=\frac{1}{2}:\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0$

Dirac

- $s=1: \quad D_{\mu} F^{\mu \nu}=0$

Maxwell (+ Yang-Mills)

- $s=2: \quad R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=0$

Einstein
Origins: only Maxwell had direct experimental input. How come they still work? spin \Rightarrow unique form!

Recall: Significance of spin

Fields/particles are classified by their spin s, mass m, \cdots
Spin s determines the basic form of field equations:

- $s=0: \quad\left(\square+m^{2}\right) \phi=0$

Klein-Gordon

- $\boldsymbol{s}=\frac{1}{2}: \quad\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0$

Dirac

- $s=1: \quad D_{\mu} F^{\mu \nu}=0$

Maxwell (+ Yang-Mills)

- $s=2: \quad R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=0$

Einstein
Origins: only Maxwell had direct experimental input. How come they still work? spin \Rightarrow unique form!

Standard Model: multiplets of $s=0, \frac{1}{2}, 1+$ intricate structures
General Relativity: The simplest possible theory of $s=2$
Physics beyond GR and SM: What are the possibilities?

Recall: Spin based classification of theories

- $s<2$: Well known field theories (e.g. in Standard Model)
- $s>2$: Local theories with finite field content may not exist (cf. Higher spins, String theory)

Recall: Spin based classification of theories

- $s<2$: Well known field theories (e.g. in Standard Model)
- $s>2$: Local theories with finite field content may not exist (cf. Higher spins, String theory)
- $s=2$: Simplest possible theory is GR
(The spin-2 equivalent of $\square \phi=0 \& \partial_{\mu} F^{\mu \nu}=0$)
By contrast, in SM: $\phi \rightarrow$ Higgs multiplet,

$$
F^{\mu \nu} \rightarrow S U(2)_{W} \times U(1)_{Y}
$$

Recall: Spin based classification of theories

- $s<2$: Well known field theories (e.g. in Standard Model)
- $s>2$: Local theories with finite field content may not exist (cf. Higher spins, String theory)
- $s=2$: Simplest possible theory is GR
(The spin-2 equivalent of $\square \phi=0 \& \partial_{\mu} F^{\mu \nu}=0$)
By contrast, in SM: $\phi \rightarrow$ Higgs multiplet,

$$
F^{\mu \nu} \rightarrow S U(2)_{W} \times U(1)_{Y}
$$

Do theories of multiple spin-2 fields exist? Or, is GR unique?
(Unexplored corner of the theory space)

Digression: the ghost problem

Ghost: A field with negative kinetic energy
Example:

$$
\mathcal{L}=T-V=\left(\partial_{t} \phi\right)^{2} \ldots \quad \text { (healthy) }
$$

But

$$
\mathcal{L}=T-V=-\left(\partial_{t} \phi\right)^{2} \ldots \quad \text { (ghostly) }
$$

Consequences:

Digression: the ghost problem

Ghost: A field with negative kinetic energy
Example:

$$
\mathcal{L}=T-V=\left(\partial_{t} \phi\right)^{2} \cdots \quad \text { (healthy) }
$$

But

$$
\mathcal{L}=T-V=-\left(\partial_{t} \phi\right)^{2} \cdots \quad \text { (ghostly) }
$$

Consequences:

- Instability: unlimited energy transfer from ghost to other fields
- Negative probabilities, violation of unitarity in quantum theory

Why are higher spins $s \geq 2$ difficult?

Number of propagating helicities $\left(n_{h}\right)$ for spin s :

$$
\text { mass }=0: n_{h}=2 \text { or } 1, \quad \text { mass } \neq 0: n_{h}=2 s+1
$$

Why are higher spins $s \geq 2$ difficult?

Number of propagating helicities $\left(n_{h}\right)$ for spin s :

$$
\text { mass }=0: n_{h}=2 \text { or } 1, \quad \text { mass } \neq 0: n_{h}=2 s+1
$$

But, Lorentz invariance (general covariance) requires a field with $s \geq 1$ to have more than $2 s+1$ components. Examples:
$s=1: n_{h}<4$ components of A_{μ}
$s=2: n_{h}<10$ components of $g_{\mu \nu}$

Why are higher spins $s \geq 2$ difficult?

Number of propagating helicities $\left(n_{h}\right)$ for spin s :

$$
\text { mass }=0: n_{h}=2 \text { or } 1, \quad \text { mass } \neq 0: \quad n_{h}=2 s+1
$$

But, Lorentz invariance (general covariance) requires a field with $s \geq 1$ to have more than $2 s+1$ components. Examples:
$s=1: n_{h}<4$ components of A_{μ}
$s=2: n_{h}<10$ components of $g_{\mu \nu}$
The extra components contain ghost instabilities. Need to be eliminated by symmetries+constraints.
(Are there enough of these?)
For massive spin-2, $n_{h}=5+1$: The Boulware-Deser ghost (1972)

Recap: why are multiple spin-2 theories interesting?

- Uncharted corner of local field theories, difficult to probe.

Recap: why are multiple spin-2 theories interesting?

- Uncharted corner of local field theories, difficult to probe.
- New features. Relevant to gravity, dark matter, dark energy, inflation, etc.

Recap: why are multiple spin-2 theories interesting?

- Uncharted corner of local field theories, difficult to probe.
- New features. Relevant to gravity, dark matter, dark energy, inflation, etc.
- Not guided by experiments, but motivated by experience!
(Precedents: Einstein-Hilbert, KG, Dirac, Proca, YM, Higgs)

Outline of the talk

Motivation: Why spin 2 fields?

Ghost-free Bimetric theory

Uniqueness and the local structure of spacetime

Ghost-free multi spin-2 theories

Discussion

GR + a generic spin-2 field

A dynamical theory of the metric $g_{\mu \nu} \&$ spin-2 field $f_{\mu \nu}$

$$
\mathcal{L}=m_{p}^{2} \sqrt{|g|} R-
$$

GR + a generic spin-2 field

A dynamical theory of the metric $g_{\mu \nu} \&$ spin- 2 field $f_{\mu \nu}$

$$
\mathcal{L}=m_{p}^{2} \sqrt{|g|} R-\sqrt{|g|} V\left(g^{-1} f\right)+
$$

GR + a generic spin-2 field

A dynamical theory of the metric $g_{\mu \nu} \&$ spin- 2 field $f_{\mu \nu}$

$$
\mathcal{L}=m_{p}^{2} \sqrt{|g|} R-\sqrt{|g|} V\left(g^{-1} f\right)+
$$

Digression:
No dynamics for $f_{\mu \nu}=\eta_{\mu \nu}$: Massive Gravity
describes a massive spin-2 (5 helicities) + a ghost (1 helicity)

GR + a generic spin-2 field

A dynamical theory of the metric $g_{\mu \nu} \&$ spin- 2 field $f_{\mu \nu}$

$$
\mathcal{L}=m_{p}^{2} \sqrt{|g|} R-\sqrt{|g|} V\left(g^{-1} f\right)+
$$

Digression:
No dynamics for $f_{\mu \nu}=\eta_{\mu \nu}$: Massive Gravity
describes a massive spin-2 (5 helicities) + a ghost (1 helicity)
A very special $V\left(g^{-1} \eta\right) \Rightarrow$ ghost-free massive gravity:
[Creminelli, Nicolis, Papucci, Trincherini, (2005)]
[de Rham, Gabadadze (2010); de Rham, Gabadadze, Tolley (2010)] [SFH, Rosen (2011); SFH, Rosen, Schmidt-May (2011)]

GR with a generic spin-2 field

A dynamical theory of the metric $g_{\mu \nu}$ \& spin-2 field $f_{\mu \nu}$

$$
\mathcal{L}=m_{p}^{2} \sqrt{|g|} R-\sqrt{|g|} V\left(g^{-1} f\right)+
$$

GR with a generic spin-2 field

A dynamical theory of the metric $g_{\mu \nu} \&$ spin- 2 field $f_{\mu \nu}$

$$
\mathcal{L}=m_{p}^{2} \sqrt{|g|} R-\sqrt{|g|} V\left(g^{-1} f\right)+\mathcal{L}(f, \nabla f)
$$

GR with a generic spin-2 field

A dynamical theory of the metric $g_{\mu \nu} \&$ spin-2 field $f_{\mu \nu}$

$$
\mathcal{L}=m_{p}^{2} \sqrt{|g|} R-\sqrt{|g|} V\left(g^{-1} f\right)+\mathcal{L}(f, \nabla f)
$$

- what is $V\left(g^{-1} f\right)$?
- what is $\mathcal{L}(f, \nabla f)$?
- proof of absence of the Boulware-Deser ghost

Ghost-free "bi-metric" theory

[SFH, Rosen (1109.3515,1111.2070)]
Ghost-free combination of kinetic and potential terms:

$$
\mathcal{L}=m_{g}^{2} \sqrt{|g|} R_{g}-\sqrt{|g|} \sum_{n=0}^{4} \beta_{n} e_{n}\left(\sqrt{g^{-1} f}\right)+m_{f}^{2} \sqrt{|f|} R_{f}
$$

Ghost-free "bi-metric" theory

[SFH, Rosen (1109.3515,1111.2070)]
Ghost-free combination of kinetic and potential terms:

$$
\mathcal{L}=m_{g}^{2} \sqrt{|g|} R_{g}-\sqrt{|g|} \sum_{n=0}^{4} \beta_{n} e_{n}\left(\sqrt{g^{-1} f}\right)+m_{f}^{2} \sqrt{|f|} R_{f}
$$

- Bimetric structure
- $7=2+5$ nonlinear propagating modes, no BD ghost!
- No ghost \Rightarrow minimal matter couplings:

$$
\mathcal{L}_{\text {min }}(g, \psi)+\mathcal{L}_{\text {min }}\left(f, \psi^{\prime}\right)
$$

Mass spectrum \& Limits

[SFH, Schmidt-May, von Strauss (arXiv:1208.1515)]

$$
\bar{f}=c^{2} \bar{g}, \quad g_{\mu \nu}=\bar{g}_{\mu \nu}+\delta g_{\mu \nu}, \quad f_{\mu \nu}=\bar{f}_{\mu \nu}+\delta f_{\mu \nu}
$$

Linear modes:

Mass spectrum \& Limits

[SFH, Schmidt-May, von Strauss (arXiv:1208.1515)]

$$
\bar{f}=c^{2} \bar{g}, \quad g_{\mu \nu}=\bar{g}_{\mu \nu}+\delta g_{\mu \nu}, \quad f_{\mu \nu}=\bar{f}_{\mu \nu}+\delta f_{\mu \nu}
$$

Linear modes:

Massless spin-2: $\quad \delta G_{\mu \nu}=\left(\delta g_{\mu \nu}+\frac{m_{p}^{2}}{m_{g}^{2}} \delta f_{\mu \nu}\right)$
Massive spin-2 : $\quad \delta M_{\mu \nu}=\left(\delta f_{\mu \nu}-c^{2} \delta g_{\mu \nu}\right)$
$g_{\mu \nu}, f_{\mu \nu}$ are mixtures of massless and massive modes

Mass spectrum \& Limits

[SFH, Schmidt-May, von Strauss (arXiv:1208.1515)]

$$
\bar{f}=c^{2} \bar{g}, \quad g_{\mu \nu}=\bar{g}_{\mu \nu}+\delta g_{\mu \nu}, \quad f_{\mu \nu}=\bar{f}_{\mu \nu}+\delta f_{\mu \nu}
$$

Linear modes:

Massless spin-2: $\quad \delta G_{\mu \nu}=\left(\delta g_{\mu \nu}+\frac{m_{1}^{2}}{m_{g}^{2}} \delta f_{\mu \nu}\right)$
Massive spin-2 : $\quad \delta M_{\mu \nu}=\left(\delta f_{\mu \nu}-c^{2} \delta g_{\mu \nu}\right)$
$g_{\mu \nu}, f_{\mu \nu}$ are mixtures of massless and massive modes
General Relativity limit: $\quad m_{g}=M_{P}, \quad m_{f} / m_{g} \rightarrow 0$
Massive gravity limit: $\quad m_{g}=M_{P}, \quad m_{f} / m_{g} \rightarrow \infty$

Outline of the talk

Motivation: Why spin 2 fields?

Ghost-free Bimetric theory

Uniqueness and the local structure of spacetime

Ghost-free multi spin-2 theories

Discussion

Potential consistency problems and their solutions

Potential problem 1: Incompatible spacetimes
$g_{\mu \nu} \& f_{\mu \nu}$ may not admit compatible notions of space and time (3+1 splits)

Then:

No consistent time evolution, no Hamiltonian formulation

Potential consistency problems and their solutions

Potential problem 2: Uniqueness, Reality, Covariance
Matrix square root: $\quad S_{\nu}^{\mu}=\left(\sqrt{g^{-1} f}\right)_{\nu}^{\mu}$.

Potential consistency problems and their solutions

Potential problem 2: Uniqueness, Reality, Covariance
Matrix square root: $\quad S_{\nu}^{\mu}=\left(\sqrt{g^{-1} f}\right)_{\nu}^{\mu}$.

- Not unique: Multiple roots (primary, non-primary)
- Possibly non-real
- No general covariance (not a $(1,1)$ tensor)

Both problems happen to have a common solution

Uniqueness and the local structure of spacetime

[SFH, M. Kocic (arXiv:1706.07806)]

General Covariance:

$S=$ principal root \Rightarrow Unique.

Uniqueness and the local structure of spacetime

[SFH, M. Kocic (arXiv:1706.07806)]

General Covariance:

$S=$ principal root \Rightarrow Unique.
Reality (theorem):
S is real iff the null cones of $g_{\mu \nu}$ and $f_{\mu \nu}$ intersect as:

Type I

Type Ila

Type Ilb

Type III

Type IV

Types I-III: Allowed, proper 3+1 decompositions possible.
Type IV: Non-primary, excluded by general covariance (Implication for accausality arguments in the literature)

Bimetric theory in the vielbein formulation

[B. Zumino (1970]
[K. Hinterbichler, R. A. Rosen (arXiv:1203.5783)]

$$
g_{\mu \nu}=\eta_{A B} e^{A} e_{\nu}^{B}, \quad f_{\mu \nu}=\eta_{A B} E_{\mu}^{A} E_{\nu}^{B}
$$

$\mathcal{L}=m_{g}^{2} \operatorname{det}(e) R_{e}+m_{f}^{2} \operatorname{det}(E) R_{E}$
$-m^{4}\left(\beta_{0} e \wedge e \wedge e \wedge e+\beta_{1} e \wedge e \wedge e \wedge E+\beta_{2} e \wedge e \wedge E \wedge E\right.$
$\left.+\beta_{3} e \wedge E \wedge E \wedge E+\beta_{4} E \wedge E \wedge E \wedge E\right)$

Bimetric theory in the vielbein formulation

[B. Zumino (1970]
[K. Hinterbichler, R. A. Rosen (arXiv:1203.5783)]

$$
g_{\mu \nu}=\eta_{A B} e_{\mu}^{A} e_{\nu}^{B}, \quad f_{\mu \nu}=\eta_{A B} E_{\mu}^{A} E_{\nu}^{B}
$$

$$
\begin{aligned}
& \mathcal{L}=m_{g}^{2} \operatorname{det}(e) R_{e}+m_{f}^{2} \operatorname{det}(E) R_{E} \\
&-m^{4}\left(\beta_{0} e \wedge e \wedge e \wedge e+\beta_{1} e \wedge e \wedge e \wedge E+\beta_{2} e \wedge e \wedge E \wedge E\right. \\
&\left.+\beta_{3} e \wedge E \wedge E \wedge E+\beta_{4} E \wedge E \wedge E \wedge E\right)
\end{aligned}
$$

Eqns of motion imply:

$$
e_{\mu}^{A} \eta_{A B} E_{\nu}^{B}-E_{\mu}^{A} \eta_{A B} e_{\nu}^{B}=0, \quad \Longleftrightarrow \quad \text { evaluation of } \sqrt{g^{-1} f}
$$

No real simplification!

Outline of the talk

> Motivation: Why spin 2 fields?

> Ghost-free Bimetric theory

> Uniqueness and the local structure of spacetime

Ghost-free multi spin-2 theories

Discussion

Ghost-free multi spin-2 theories

Consider N spin-2 fields $g_{\mu \nu}^{\prime}=\left(e_{l}\right)^{A}\left(e_{l}\right)^{B}{ }_{\nu} \eta_{A B}$, with $I=1, \cdots, N$

Ghost-free multi spin-2 theories

Consider N spin-2 fields $g_{\mu \nu}^{\prime}=\left(e_{l}\right)_{\mu}^{A}\left(e_{l}\right)_{\nu}^{B} \eta_{A B}$, with $I=1, \cdots, N$

1) Trivial: Pairwise BiM interactions, $V\left(g^{1}, g^{2}\right)+V\left(g^{2}, g^{3}\right)+\cdots$ (but no loops)

Ghost-free multi spin-2 theories

Consider N spin-2 fields $g_{\mu \nu}^{l}=\left(e_{l}\right)^{A}\left(e_{l}\right)^{B}{ }_{\nu} \eta_{A B}$, with $I=1, \cdots, N$

1) Trivial: Pairwise BiM interactions, $V\left(g^{1}, g^{2}\right)+V\left(g^{2}, g^{3}\right)+\cdots$ (but no loops)
2) Proposed multi-vielbein interactions
[K. Hinterbichler, R. A. Rosen (arXiv:1203.5783)]

$$
V=M^{4} \sum_{I, J, K, L=1}^{\mathcal{N}} \beta^{I J K L} \epsilon_{A B C D}\left(e_{l}\right)^{A} \wedge\left(e_{J}\right)^{B} \wedge\left(e_{K}\right)^{C} \wedge\left(e_{L}\right)^{D}
$$

Ghost-free multi spin-2 theories

Consider N spin-2 fields $g_{\mu \nu}^{\prime}=\left(e_{l}\right)^{A}\left(e_{l}\right)^{B}{ }_{\nu} \eta_{A B}$, with $I=1, \cdots, N$

1) Trivial: Pairwise BiM interactions, $V\left(g^{1}, g^{2}\right)+V\left(g^{2}, g^{3}\right)+\cdots$ (but no loops)
2) Proposed multi-vielbein interactions
[K. Hinterbichler, R. A. Rosen (arXiv:1203.5783)]

$$
V=M^{4} \sum_{I, J, K, L=1}^{\mathcal{N}} \beta^{I J K L} \epsilon_{A B C D}\left(e_{l}\right)^{A} \wedge\left(e_{J}\right)^{B} \wedge\left(e_{K}\right)^{C} \wedge\left(e_{L}\right)^{D}
$$

3) But, generally, not ghost free
[C. de Rham, A. J. Tolley (arXiv:1505.01450)]
Do genuine ghost-free multi spin-2 interaction exist? Yes.

Ghost-free multi spin-2 theories

[SFH, Angnis Schmidt-May (arXiv:1804.09723)]
[SFH, Joakim Flinckman (to appear)]
Certain genuine multi spin-2 interactions for $\left(e_{l}\right)_{\mu}^{A}$ can be constructed. E.g.,

$$
\mathcal{L}=\sum_{l=1}^{N} m_{l}^{2} \sqrt{\left|g^{\prime}\right|} R\left(g^{\prime}\right)-M^{4} \operatorname{det}\left(\sum_{l=1}^{N} \beta^{\prime} e_{l}\right)
$$

- Has the correct number of constraints to eliminate the ghosts.

Ghost-free multi spin-2 theories

[SFH, Angnis Schmidt-May (arXiv:1804.09723)]
[SFH, Joakim Flinckman (to appear)]
Certain genuine multi spin-2 interactions for $\left(e_{l}\right)_{\mu}^{A}$ can be constructed. E.g.,

$$
\mathcal{L}=\sum_{l=1}^{N} m_{l}^{2} \sqrt{\left|g^{\prime}\right|} R\left(g^{\prime}\right)-M^{4} \operatorname{det}\left(\sum_{l=1}^{N} \beta^{\prime} e_{l}\right)
$$

- Has the correct number of constraints to eliminate the ghosts.
- A subset of the general veilbein interactions: $\beta^{I J K L}=\beta^{\prime} \beta^{J} \beta^{K} \beta^{L}$

Ghost-free multi spin-2 theories

$$
\mathcal{L}=\sum_{l=1}^{N} m_{l}^{2} \sqrt{\left|g^{\prime}\right|} R\left(g^{\prime}\right)-M^{4} \operatorname{det}\left(\sum_{l=1}^{N} \beta^{\prime} e_{l}\right)
$$

- Mass eigenstates and eigenvalues
- Is there a formulation in terms of the metrics?
- Certain "basic" extensions can be constructed and argued to be ghost free
- Compatible space and time decompositions?
[SFH, Joakim Flinckman (to appear)]
What is the most general form? Systematics not known

Outline of the talk

Motivation: Why spin 2 fields?

Ghost-free Bimetric theory

Uniqueness and the local structure of spacetime

Ghost-free multi spin-2 theories

Discussion

Discussion

The beginning of understanding theories of spin-2 fields beyond General Relativity.

Discussion

The beginning of understanding theories of spin-2 fields beyond General Relativity.

- Causal structure?
- Superluminality? (yes, not necessarily harmful, inflation?)
- Unavoidable mixings of mass eigenstates (unlike neutrino mixings)
- Systematics of multispin-2 interactions?
- A more fundamental formulation, say, (a la Higgs)
- Implications for cosmology, blackholes, GW, etc.
- Extra symmetries \Rightarrow Modified kinetic terms? MacDowell-Mansouri type theories, More interesting but less understood.

Thank you！

EXTRA MATERIAL

Can Bimetric be a fundamental theory?

- Similar to Proca theory in curved background,

$$
\sqrt{|\operatorname{det} g|}\left(F_{\mu \nu} F^{\mu \nu}-m^{2} g^{\mu \nu} A_{\mu} A_{\nu}+R_{g}\right)
$$

- May need the equivalent of Higgs mechanism with the extra fields for better quantum or even classical behaviour

Extra: Elementary symmetric polynomials $e_{n}(S)$

For a 4×4 matrix S with eigenvalues $\lambda_{1}, \cdots, \lambda_{4}$,

$$
\begin{aligned}
& e_{1}(S)=\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4} \\
& e_{2}(S)=\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{1} \lambda_{4}+\lambda_{2} \lambda_{3}+\lambda_{2} \lambda_{4}+\lambda_{3} \lambda_{4} \\
& e_{3}(S)=\lambda_{1} \lambda_{2} \lambda_{3}+\lambda_{1} \lambda_{2} \lambda_{4}+\lambda_{1} \lambda_{3} \lambda_{4}+\lambda_{2} \lambda_{3} \lambda_{4} \\
& e_{4}(S)=\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}, \quad e_{n>4}(S)=0 .
\end{aligned}
$$

$$
\begin{aligned}
& e_{0}(S)=1 \\
& e_{1}(S)=\operatorname{Tr}(S) \equiv[S], \\
& e_{2}(S)=\frac{1}{2}\left([S]^{2}-\left[S^{2}\right]\right), \\
& e_{3}(S)=\frac{1}{6}\left([S]^{3}-3[S]\left[S^{2}\right]+2\left[S^{3}\right]\right) \\
& e_{4}(S)=\operatorname{det}(S), \quad e_{n>4}(S)=0
\end{aligned}
$$

$$
\operatorname{det}(\mathbb{1}+S)=\sum_{n=0}^{4} e_{n}(S)
$$

Extra: Interaction potential:

$$
\begin{array}{r}
\operatorname{det}(\mathbb{1}+S)=\sum_{n=0}^{4} e_{n}(S) \\
V(S)=\sum_{n=0}^{4} \beta_{n} e_{n}(S)
\end{array}
$$

Where:

$$
S_{\nu}^{\mu}=\left(\sqrt{g^{-1} f}\right)_{\nu}^{\mu}
$$

("a" square root of the matrix $g^{\mu \lambda} f_{\lambda \nu}$. More on this later \cdots)
[de Rham, Gabadadze, Tolley (2010)]
[SFH, Rosen (2011); SFH, Rosen, Schmidt-May (2011)]

Extra: The matrix square root \sqrt{A}

See refs in [SFH, M. Kocic (arXiv:1706.07806)]
Put matrix A in Jordan normal form

$$
A=Z \operatorname{diag}\left(J_{1}, \ldots, \ldots, J_{s}\right) Z^{-1}, \quad J_{i} \equiv\left(\begin{array}{cccc}
\lambda_{i} & 1 & 0 & \ldots \\
0 & \lambda_{i} & 1 & \cdots \\
0 & 0 & \ddots & \ddots
\end{array}\right)
$$

Then, the matrix function $F(A)=\sqrt{A}$ is

$$
\begin{aligned}
& F(A)=Z \operatorname{diag}\left(F\left(J_{1}\right), \ldots, \ldots, F\left(J_{p}\right)\right) Z^{-1}, \\
& F\left(J_{k}\right) \equiv\left(\begin{array}{cccc}
F\left(\lambda_{k}\right) & F^{\prime}\left(\lambda_{k}\right) & \cdots & \frac{1}{\left(n_{k}-1\right)!} F^{\left(n_{k}-1\right)}\left(\lambda_{k}\right) \\
& F\left(\lambda_{k}\right) & \ddots & \vdots \\
& & \ddots & F^{\prime}\left(\lambda_{k}\right) \\
& & & F\left(\lambda_{k}\right)
\end{array}\right) .
\end{aligned}
$$

Many roots: The same branch of $F(x)=\sqrt{x}$ must be chosen within each block, but it can vary between blocks.

Solution to the uniqueness problem of $V(S)$

Matrix square roots:

- Primary roots: Max 16 distinct roots, generic
- Nonprimary roots: Infinitely many, non-generic (when eigenvalues in different Jordan blocks coincide)

Solution to the uniqueness problem of $V(S)$

Matrix square roots:

- Primary roots: Max 16 distinct roots, generic
- Nonprimary roots: Infinitely many, non-generic
(when eigenvalues in different Jordan blocks coincide)

General Covariance: $A_{\nu}^{\mu}=g^{\mu \rho} f_{\rho \nu}$ is a $(1,1)$ tensor,

$$
x^{\mu} \rightarrow \tilde{x}^{\mu} \Rightarrow A \rightarrow Q^{-1} A Q, \quad \text { for } \quad Q_{\nu}^{\mu}=\frac{\partial x^{\mu}}{\partial \tilde{x}^{\nu}}
$$

Uniqueness and the local structure of spacetime

Potential consistency problems and their solutions [SFH, M. Kocic (arXiv:1706.07806)]
The bimetric theory given above is not yet well defined.
(2) The matrix $\sqrt{g^{-1}} f$ is non-unique, potentially complex \& non-tensorial. Does a unique good choice exist?
(1) The notions of "space" and "time" for $g_{\mu \nu}$ may not be consistent with that of $f_{\mu \nu}$.

Both problems have a common resolution

Potential consistency problems

Potential problem 1: Incompatible spacetimes
$g_{\mu \nu} \& f_{\mu \nu}$ may not admit compatible notions of space and time (3+1 splits)

Implications: no consistent time evolution equations, no Hamiltonian formulation.

Potential consistency problems

Problem 2: Uniqueness, reality, covariance
Recall the matrix square root $S_{\nu}^{\mu}=\left(\sqrt{g^{-1} f}\right)_{\nu}^{\mu}$.

Potential consistency problems

Problem 2: Uniqueness, reality, covariance

Recall the matrix square root $S_{\nu}^{\mu}=\left(\sqrt{g^{-1} f}\right)_{\nu}^{\mu}$.

- Multiple roots (primary, non-primary) \Rightarrow non-unique
- Possibly non-real
- May not transform as a $(1,1)$ tensor: no general covariance

Potential consistency problems

Problem 2: Uniqueness, reality, covariance

Recall the matrix square root $S_{\nu}^{\mu}=\left(\sqrt{g^{-1} f}\right)^{\mu}$.

- Multiple roots (primary, non-primary) \Rightarrow non-unique
- Possibly non-real
- May not transform as a $(1,1)$ tensor: no general covariance

Recall: General Covariance:
Since $A_{\nu}^{\mu}=g^{\mu \rho} f_{\rho \nu}$ is a $(1,1)$ tensor, for $x^{\mu} \rightarrow \tilde{x}^{\mu}$ one has

$$
A \rightarrow Q^{-1} A Q, \quad \text { where } \quad Q_{\nu}^{\mu}=\frac{\partial x^{\mu}}{\partial \tilde{x}^{\nu}}
$$

What about $(\sqrt{A})^{\mu}{ }_{\nu}$?

Potential consistency problems

Problem 2: Uniqueness, reality, covariance

Recall the matrix square root $S_{\nu}^{\mu}=\left(\sqrt{g^{-1} f}\right)^{\mu}$.

- Multiple roots (primary, non-primary) \Rightarrow non-unique
- Possibly non-real
- May not transform as a $(1,1)$ tensor: no general covariance

Potential consistency problems

Problem 2: Uniqueness, reality, covariance

Recall the matrix square root $S_{\nu}^{\mu}=\left(\sqrt{g^{-1} f}\right)^{\mu}$.

- Multiple roots (primary, non-primary) \Rightarrow non-unique
- Possibly non-real
- May not transform as a $(1,1)$ tensor: no general covariance

$$
A \rightarrow \tilde{A}=Q^{-1} A Q \Rightarrow \sqrt{A} \rightarrow \sqrt{\tilde{A}} \stackrel{?}{=} Q^{-1} \sqrt{A} Q
$$

Problem when primary roots degenerate to non-primary roots

Potential consistency problems

Problem 2: Uniqueness, reality, covariance
Recall the matrix square root $S_{\nu}^{\mu}=\left(\sqrt{g^{-1} f}\right)_{\nu}^{\mu}$.

- Multiple roots (primary, non-primary) \Rightarrow non-unique
- Possibly non-real
- May not transform as a $(1,1)$ tensor: no general covariance

$$
A \rightarrow \tilde{A}=Q^{-1} A Q \Rightarrow \sqrt{A} \rightarrow \sqrt{\tilde{A}} \stackrel{?}{=} Q^{-1} \sqrt{A} Q
$$

Problem when primary roots degenerate to non-primary roots
Can a unique, real, covariant S be specified "meaningfully"?
If not, the theory is ill defined

Solution: General covariance + Reality

Uniqueness and the local structure of spacetime

[SFH, M. Kocic (arXiv:1706.07806)]

General Covariance:

Only $S=$ principal root is always a $(1,1)$ tensor \Rightarrow Uniqueness.

Uniqueness and the local structure of spacetime

[SFH, M. Kocic (arXiv:1706.07806)]

General Covariance:

Only $S=$ principal root is always a $(1,1)$ tensor \Rightarrow Uniqueness.
Reality (theorem):
S is real iff the null cones of $g_{\mu \nu}$ and $f_{\mu \nu}$ intersect as:

Type I

Type Ila

Type Ilb

Type III

Type IV

Types I-III: Allowed, proper 3+1 decompositions possible.
Type IV: Non-primary, excluded by general covariance (Implication for accausality arguments in the literature)

Summary: Choice of the square root

Reality + General Covariance \Rightarrow

Real principal square root (unique) \Rightarrow
Intersecting null cone, Compatible 3+1 decompositions

Uniqueness of S

$S_{\nu}^{\mu}=(\sqrt{A})^{\mu}{ }_{\nu}:$

- Primary roots:

$$
\sqrt{A} \rightarrow \sqrt{Q^{-1} A Q}=Q^{-1} \sqrt{A} Q
$$

- Nonprimary roots: $\sqrt{Q^{-1} A Q} \neq Q^{-1} \sqrt{A} Q$

Step 1:

General covariance \Rightarrow only primary roots are allowed.
A Consequence: Examples of backgrounds with local CTC's correspond to nonprimary roots and are excluded

Uniqueness of S

$S_{\nu}^{\mu}=(\sqrt{A})^{\mu}{ }_{\nu}:$

- Primary roots:

$$
\sqrt{A} \rightarrow \sqrt{Q^{-1} A Q}=Q^{-1} \sqrt{A} Q
$$

- Nonprimary roots: $\sqrt{Q^{-1} A Q} \neq Q^{-1} \sqrt{A} Q$

Step 1:

General covariance \Rightarrow only primary roots are allowed.
A Consequence: Examples of backgrounds with local CTC's correspond to nonprimary roots and are excluded

Step 2:

Only the principal root is always primary. Hence, S must be a principle root.
(Nonprinciple roots degenerate to nonprimary roots when some eigenvalues coincide).

The "mean" metric:

Consider the mean metric

$$
h_{\mu \nu}=g_{\mu \rho}\left(\sqrt{g^{-1} f}\right)_{\nu}^{\rho}
$$

h null-cones for the principal root always contain the intersections of g and f null-cones:

Useful for choosing "good" coordinate systems

Ghost in Massive Gravity

$$
g_{\mu \nu}: \quad N, N_{i}(4), \gamma_{i j}=g_{i j}(6)
$$

General Relativity:

$$
\mathcal{L}_{g r}=\sqrt{g} R=\pi^{i j} \dot{\gamma}_{i j}-N R_{0}-N^{i} R_{i}
$$

$R_{0}=R_{i}=0, \mathrm{GCT} \Rightarrow 2$ polarizations
Massive Gravity:
$\mathcal{L}_{m g r}=\sqrt{g}\left(R-V\left(g^{-1} f\right)\right)=\pi^{i j} \dot{\gamma}_{i j}-N R_{0}-N^{i} R_{i}-\tilde{V}\left(N, N_{i}, \gamma, f\right)$
No constraints, no GCT $\Rightarrow 5$ polarizations + 1(BD ghost)
[Boulware, Deser (1972)]
Ghost free massive gravity: with a constraint.
[de Rham, Gabadadze, Tolley (2010)]
[SFH, Rosen (2011); SFH, Rosen, Schmidt-May (2011)]

Extra: Constraints in ghost-free "bi-metric" theory

[SFH, Rosen (1109.3515,1111.2070)] [SFH, A. Lundkvist (arXiv:1802.07267)]

Let $N, N_{i}\left(L, L_{i}\right)$: Lapse and shifts of $g_{\mu \nu}\left(f_{\mu \nu}\right)$

$$
\mathcal{H}=L R^{0}+L_{i} R^{i}+N C_{1}
$$

Constraints:
$R^{0}=R^{i}=0, C_{1}=0, C_{2} \equiv d C_{1} / d t=\left\{\mathcal{H}, C_{1}\right\}_{P B}=0+$
Gauge fixing GCT:
$\Rightarrow 7=2+5$ nonlinear propagating modes, no BD ghost!
EOM's:

$$
R_{\mu \nu}^{g}-\frac{1}{2} g_{\mu \nu} R^{g}+V_{\mu \nu}^{g}=T_{\mu \nu}^{g}, \quad R_{\mu \nu}^{f}-\frac{1}{2} f_{\mu \nu} R^{f}+V_{\mu \nu}^{f}=T_{\mu \nu}^{f}
$$

The HKT metric

General Relativity in 3+1 decomposition ($g_{\mu \nu}: \gamma_{i j}, N, N_{i}$):

$$
\sqrt{g} R \sim \pi^{i j} \partial_{t} \gamma_{i j}-N R^{0}-N_{i} R^{i}
$$

Constraints: $R^{0}=0, R^{i}=0$.
Algebra of General Coordinate Transformations (GCT):

$$
\begin{aligned}
\left\{R^{0}(x), R^{0}(y)\right\} & =-\left[R^{i}(x) \frac{\partial}{\partial x^{\prime}} \delta^{3}(x-y)-R^{i}(y) \frac{\partial}{\partial y} \delta^{3}(x-y)\right] \\
\left\{R^{0}(x), R_{i}(y)\right\} & =-R^{0}(y) \frac{\partial}{\partial x^{\prime}} \delta^{3}(x-y) \\
\left\{R_{i}(x), R_{j}(y)\right\} & =-\left[R_{j}(x) \frac{\partial}{\partial x^{\prime}} \delta^{3}(x-y)-R_{i}(y) \frac{\partial}{\partial y} \delta^{3}(x-y)\right]
\end{aligned}
$$

$R_{i}=\gamma_{i j} R^{j}, \gamma_{i j}$: metric of spatial 3-surfaces.

- Any generally covariant theory contains such an algebra.
- HKT: The tensor that lowers the index on R^{i} is the physical metric of 3-surfaces.

The HKT metric in bimetric theory

Consider $g_{\mu \nu}=\left(\gamma_{i j}, N, N_{i}\right)$ and $f_{\mu \nu}=\left(\phi_{i j}, L, L_{i}\right)$,

$$
\mathcal{L}_{g, f} \sim \pi^{i j} \gamma_{i j}+p^{i j} \phi_{i j}-M \tilde{R}^{0}-M_{i} \tilde{R}^{i}
$$

On the surface of second class Constraints. GCT Algebra:

$$
\begin{aligned}
\left\{\tilde{R}^{0}(x), \tilde{R}^{0}(y)\right\} & =-\left[\tilde{R}^{i}(x) \frac{\partial}{\partial x^{i}} \delta^{3}(x-y)-\tilde{R}^{i}(y) \frac{\partial}{\partial y^{\prime}} \delta^{3}(x-y)\right] \\
\left\{\tilde{R}^{0}(x), \tilde{R}_{i}(y)\right\} & =-\tilde{R}^{0}(y) \frac{\partial}{\partial x^{i}} \delta^{3}(x-y)
\end{aligned}
$$

$\tilde{R}_{i}=\phi_{i j} \tilde{R}^{j}, \phi_{i j}$: the 3-metric of $t_{\mu \nu}$, or
$\tilde{R}_{i}=\gamma_{i j} \tilde{R}^{j}, \gamma_{i j}$: the 3-metric of $g_{\mu \nu}$.
The HKT metric of bimetric theory is $g_{\mu \nu}$ or $f_{\mu \nu}$, consistent with ghost-free matter couplings
[SFH, A. Lundkvist [arXiv:1802.07267]]

Mass spectrum \& Limits

[SFH, Schmidt-May, von Strauss (arXiv:1208.1515)]

$$
\bar{f}=c^{2} \bar{g}, \quad g_{\mu \nu}=\bar{g}_{\mu \nu}+\delta g_{\mu \nu}, \quad f_{\mu \nu}=\bar{f}_{\mu \nu}+\delta f_{\mu \nu}
$$

Linear modes:

Mass spectrum \& Limits

[SFH, Schmidt-May, von Strauss (arXiv:1208.1515)]

$$
\bar{f}=c^{2} \bar{g}, \quad g_{\mu \nu}=\bar{g}_{\mu \nu}+\delta g_{\mu \nu}, \quad f_{\mu \nu}=\bar{f}_{\mu \nu}+\delta f_{\mu \nu}
$$

Linear modes:

Massless spin-2: $\quad \delta G_{\mu \nu}=\left(\delta g_{\mu \nu}+\frac{m_{f}^{2}}{m_{g}^{2}} \delta f_{\mu \nu}\right)$
Massive spin-2 : $\quad \delta M_{\mu \nu}=\left(\delta f_{\mu \nu}-c^{2} \delta g_{\mu \nu}\right)$
$g_{\mu \nu}, f_{\mu \nu}$ are mixtures of massless and massive modes

Mass spectrum \& Limits

[SFH, Schmidt-May, von Strauss (arXiv:1208.1515)]

$$
\bar{f}=c^{2} \bar{g}, \quad g_{\mu \nu}=\bar{g}_{\mu \nu}+\delta g_{\mu \nu}, \quad f_{\mu \nu}=\bar{f}_{\mu \nu}+\delta f_{\mu \nu}
$$

Linear modes:

Massless spin-2: $\quad \delta G_{\mu \nu}=\left(\delta g_{\mu \nu}+\frac{m_{1}^{2}}{m_{g}^{2}} \delta f_{\mu \nu}\right)$
Massive spin-2 : $\quad \delta M_{\mu \nu}=\left(\delta f_{\mu \nu}-c^{2} \delta g_{\mu \nu}\right)$
$g_{\mu \nu}, f_{\mu \nu}$ are mixtures of massless and massive modes
The General Relativity limit: $\quad m_{g}=M_{P}, \quad m_{f} / m_{g} \rightarrow 0$

Mass spectrum \& Limits

[SFH, Schmidt-May, von Strauss (arXiv:1208.1515)]

$$
\bar{f}=c^{2} \bar{g}, \quad g_{\mu \nu}=\bar{g}_{\mu \nu}+\delta g_{\mu \nu}, \quad f_{\mu \nu}=\bar{f}_{\mu \nu}+\delta f_{\mu \nu}
$$

Linear modes:

Massless spin-2: $\quad \delta G_{\mu \nu}=\left(\delta g_{\mu \nu}+\frac{m_{1}^{2}}{m_{g}^{2}} \delta f_{\mu \nu}\right)$
Massive spin-2 : $\quad \delta M_{\mu \nu}=\left(\delta f_{\mu \nu}-c^{2} \delta g_{\mu \nu}\right)$
$g_{\mu \nu}, f_{\mu \nu}$ are mixtures of massless and massive modes
The General Relativity limit: $\quad m_{g}=M_{P}, \quad m_{f} / m_{g} \rightarrow 0$
Massive gravity limit: $\quad m_{g}=M_{P}, \quad m_{f} / m_{g} \rightarrow \infty$

GR limit and cosmology

The General Relativity limit:

$$
m_{g}=M_{P}, \quad \alpha=m_{f} / m_{g} \rightarrow 0
$$

Cosmological solutions in the GR limi (e.g.):

$$
3 H^{2}=\frac{\rho}{M_{P I}^{2}}-\frac{2}{3} \frac{\beta_{1}^{2}}{\beta_{2}} m^{2}-\alpha^{2} \frac{\beta_{1}^{2}}{3 \beta_{2}^{2}} H^{2}+\mathcal{O}\left(\alpha^{4}\right)
$$

The GR approximation breaks down at sufficiently strong fields [Akrami, SFH,Konnig,Schmidt-May,Solomon (arXiv:1503.07521)]

More on bimetric cosmology:
[Lüben, Mörtsell, Schmidt-May (arXiv:1812.08686)]
Massive spin-2 particle as dark matter (not discussed here). Also local (blackhole solutions) not discussed here.

