Intrinsic coherence and particle oscillations

Anca Tureanu

University of Helsinki

Workshop on Recent Advances in Fundamental Physics, Tbilisi, 28 September 2022

Based on: Phys.Rev.D 98 (2018) 1, 015019, arXiv:1804.06433;
Eur.Phys.J.C 80 (2020) 1, 68, arXiv:1902.01232;
Eur.Phys.J.C 81 (2021) 12, 1092, arXiv: 2109.02139.

Particle oscillations

(

\qquad

\square

N
N

1

Particle oscillations

- Particle-antiparticle oscillations:
- Observed: $K^{0}-\bar{K}^{0}$ (more recently also $B^{0}-\bar{B}^{0}, D^{0}-\bar{D}^{0}$)

Gell-Mann and Pais (1955), Pais and Piccioni (1955)

Particle oscillations

- Particle-antiparticle oscillations:
- Observed: $K^{0}-\bar{K}^{0}$ (more recently also $B^{0}-\bar{B}^{0}, D^{0}-\bar{D}^{0}$)

Gell-Mann and Pais (1955), Pais and Piccioni (1955)

- Hypothetical: neutron-antineutron $(\Delta B=2)$

Kuzmin (1970), Glashow (1979), Mohapatra and Marshak (1980), Kuo and Love (1980), Chang and Chang (1980)

Particle oscillations

- Particle-antiparticle oscillations:
- Observed: $K^{0}-\bar{K}^{0}$ (more recently also $B^{0}-\bar{B}^{0}, D^{0}-\bar{D}^{0}$)

Gell-Mann and Pais (1955), Pais and Piccioni (1955)

- Hypothetical: neutron-antineutron $(\Delta B=2)$

Kuzmin (1970), Glashow (1979), Mohapatra and Marshak (1980), Kuo and Love (1980), Chang and Chang (1980)
neutron-mirror neutron $(\Delta B=1)$

Particle oscillations

- Particle-antiparticle oscillations:
- Observed: $K^{0}-\bar{K}^{0}$ (more recently also $B^{0}-\bar{B}^{0}, D^{0}-\bar{D}^{0}$)

Gell-Mann and Pais (1955), Pais and Piccioni (1955)

- Hypothetical: neutron-antineutron $(\Delta B=2)$

Kuzmin (1970), Glashow (1979), Mohapatra and Marshak (1980),
Kuo and Love (1980), Chang and Chang (1980)
neutron-mirror neutron $(\Delta B=1)$

- Neutrino flavour oscillations $\left(\nu_{e} \longleftrightarrow \nu_{\mu}\right.$ etc.)

Particle oscillations

- Particle-antiparticle oscillations:
- Observed: $K^{0}-\bar{K}^{0}$ (more recently also $B^{0}-\bar{B}^{0}, D^{0}-\bar{D}^{0}$)
Gell-Mann and Pais (1955), Pais and Piccioni (1955)
- Hypothetical: neutron-antineutron $(\Delta B=2)$

Kuzmin (1970), Glashow (1979), Mohapatra and Marshak (1980),
Kuo and Love (1980), Chang and Chang (1980)
neutron-mirror neutron $(\Delta B=1)$

- Neutrino flavour oscillations $\left(\nu_{e} \longleftrightarrow \nu_{\mu}\right.$ etc.)
- 2015 Nobel Prize in Physics to T. Kajita and A. McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass."

Outline

- Standard approach to neutrino oscillations and the theoretical challenge
- Oscillations and coherence in Quantum Mechanics
- two-level systems
- coherent states in quantum optics
- Intrinsically coherent oscillating particle states
- Conclusions and outlook

Standard theory of neutrino oscillations

Standard theory of neutrino oscillations

- Lagrangian with flavour violation (induced by Yukawa terms in SM Lagrangian) and Dirac neutrino masses:

$$
\mathcal{L}=\bar{\Psi}_{\nu_{e}} i \not \partial \Psi_{\nu_{e}}+\bar{\Psi}_{\nu_{\mu}} i \not \partial \Psi_{\nu_{\mu}}-\left(\bar{\Psi}_{\nu_{e}} \bar{\Psi}_{\nu_{\mu}}\right)\left(\begin{array}{cc}
m_{e e} & m_{e \mu} \\
m_{e \mu} & m_{\mu \mu}
\end{array}\right)\binom{\Psi_{\nu_{e}}}{\Psi_{\nu_{\mu}}}
$$

Standard theory of neutrino oscillations

- Lagrangian with flavour violation (induced by Yukawa terms in SM Lagrangian) and Dirac neutrino masses:

$$
\begin{aligned}
\mathcal{L} & =\bar{\Psi}_{\nu_{e}} i \not \partial \Psi_{\nu_{e}}+\bar{\Psi}_{\nu_{\mu}} i \not \partial \Psi_{\nu_{\mu}}-\left(\bar{\Psi}_{\nu_{e}} \bar{\Psi}_{\nu_{\mu}}\right)\left(\begin{array}{cc}
m_{e e} & m_{e \mu} \\
m_{e \mu} & m_{\mu \mu}
\end{array}\right)\binom{\Psi_{\nu_{e}}}{\Psi_{\nu_{\mu}}} \\
& =\bar{\Psi}_{1}\left(i \not \partial-m_{1}\right) \Psi_{1}+\bar{\Psi}_{2}\left(i \not \partial-m_{2}\right) \Psi_{2}
\end{aligned}
$$

Standard theory of neutrino oscillations

- Lagrangian with flavour violation (induced by Yukawa terms in SM Lagrangian) and Dirac neutrino masses:

$$
\begin{aligned}
\mathcal{L} & =\bar{\Psi}_{\nu_{e}} i \not \partial \Psi_{\nu_{e}}+\bar{\Psi}_{\nu_{\mu}} i \not \partial \Psi_{\nu_{\mu}}-\left(\bar{\Psi}_{\nu_{e}} \bar{\Psi}_{\nu_{\mu}}\right)\left(\begin{array}{ll}
m_{e e} & m_{e \mu} \\
m_{e \mu} & m_{\mu \mu}
\end{array}\right)\binom{\Psi_{\nu_{e}}}{\Psi_{\nu_{\mu}}} \\
& =\bar{\Psi}_{1}\left(i \not \partial-m_{1}\right) \Psi_{1}+\bar{\Psi}_{2}\left(i \not \partial-m_{2}\right) \Psi_{2}
\end{aligned}
$$

- Diagonalization in terms of massive neutrino fields Ψ_{1}, Ψ_{2} of masses m_{1}, m_{2} :

$$
\binom{\Psi_{\nu_{e}}(x)}{\Psi_{\nu_{\mu}}(x)}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\binom{\Psi_{1}(x)}{\Psi_{2}(x)}, \quad \tan ^{2} \theta=\frac{2 m_{e \mu}}{m_{\mu \mu}-m_{e e}}
$$

Standard theory of neutrino oscillations

- Lagrangian with flavour violation (induced by Yukawa terms in SM Lagrangian) and Dirac neutrino masses:

$$
\begin{aligned}
\mathcal{L} & =\bar{\Psi}_{\nu_{e}} i \not \partial \Psi_{\nu_{e}}+\bar{\Psi}_{\nu_{\mu}} i \not \partial \Psi_{\nu_{\mu}}-\left(\bar{\Psi}_{\nu_{e}} \bar{\Psi}_{\nu_{\mu}}\right)\left(\begin{array}{ll}
m_{e e} & m_{e \mu} \\
m_{e \mu} & m_{\mu \mu}
\end{array}\right)\binom{\Psi_{\nu_{e}}}{\Psi_{\nu_{\mu}}} \\
& =\bar{\Psi}_{1}\left(i \not \partial-m_{1}\right) \Psi_{1}+\bar{\Psi}_{2}\left(i \not \partial-m_{2}\right) \Psi_{2}
\end{aligned}
$$

- Diagonalization in terms of massive neutrino fields Ψ_{1}, Ψ_{2} of masses m_{1}, m_{2} :

$$
\binom{\Psi_{\nu_{e}}(x)}{\Psi_{\nu_{\mu}}(x)}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\binom{\Psi_{1}(x)}{\Psi_{2}(x)}, \quad \tan ^{2} \theta=\frac{2 m_{e \mu}}{m_{\mu \mu}-m_{e e}}
$$

- Conjecture: There exist flavour neutrino states $\left|\nu_{e}\right\rangle,\left|\nu_{\mu}\right\rangle$ defined as COHERENT superpositions of massive neutrino states $\left|\nu_{1}\right\rangle,\left|\nu_{2}\right\rangle$ with different masses (m_{1}, m_{2}), by replicating the mixing formula for the fields:

$$
\binom{\left|\nu_{e}\right\rangle}{\left|\nu_{\mu}\right\rangle}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\binom{\left|\nu_{1}\right\rangle}{\left|\nu_{2}\right\rangle} .
$$

- Then oscillations can take place:

$$
\begin{aligned}
\mathcal{P}_{\nu_{e} \rightarrow \nu_{\mu}} & \left.=\left|\left\langle\nu_{\mu}(\mathbf{p})\right| e^{-i H t}\right| \nu_{e}(\mathbf{p})\right\rangle\left.\right|^{2} \\
& =\sin ^{2}(2 \theta) \sin ^{2}\left(\frac{\Delta m^{2}}{4 E} L\right), \\
\Delta m^{2} & =m_{2}^{2}-m_{1}^{2}, \quad \frac{m_{i}}{E} \ll 1 .
\end{aligned}
$$

- Then oscillations can take place:

$$
\begin{aligned}
\mathcal{P}_{\nu_{e} \rightarrow \nu_{\mu}} & \left.=\left|\left\langle\nu_{\mu}(\mathbf{p})\right| e^{-i H t}\right| \nu_{e}(\mathbf{p})\right\rangle\left.\right|^{2} \\
& =\sin ^{2}(2 \theta) \sin ^{2}\left(\frac{\Delta m^{2}}{4 E} L\right), \\
\Delta m^{2} & =m_{2}^{2}-m_{1}^{2}, \quad \frac{m_{i}}{E} \ll 1 .
\end{aligned}
$$

- Requirements for neutrino oscillations:
- flavour-violating Lagrangian;
- massive neutrinos;
- flavour neutrino states are coherent superpositions of massive neutrino states with different masses (belonging to different Fock spaces).
- Then oscillations can take place:

$$
\begin{aligned}
\mathcal{P}_{\nu_{e} \rightarrow \nu_{\mu}} & \left.=\left|\left\langle\nu_{\mu}(\mathbf{p})\right| e^{-i H t}\right| \nu_{e}(\mathbf{p})\right\rangle\left.\right|^{2} \\
& =\sin ^{2}(2 \theta) \sin ^{2}\left(\frac{\Delta m^{2}}{4 E} L\right), \\
\Delta m^{2} & =m_{2}^{2}-m_{1}^{2}, \quad \frac{m_{i}}{E} \ll 1 .
\end{aligned}
$$

- Requirements for neutrino oscillations:
- flavour-violating Lagrangian;
- massive neutrinos;
- flavour neutrino states are coherent superpositions of massive neutrino states with different masses (belonging to different Fock spaces).
- Recall QFT: particles with different masses are always incoherently produced and absorbed!
- Attempts to incorporate the oscillation phenomenon into quantum field theory: Giunti, Kim and Lee (1992), Giunti, Kim, Lee and Lee (1993), Blasone and Vitiello (1995),

Grimus and Stockinger (1996), Giunti and Bilenky (2001),
Giunti (2007), Akhmedov and Kopp (2010), etc.

- Attempts to incorporate the oscillation phenomenon into quantum field theory: Giunti, Kim and Lee (1992), Giunti, Kim, Lee and Lee (1993), Blasone and Vitiello (1995), Grimus and Stockinger (1996), Giunti and Bilenky (2001), Giunti (2007), Akhmedov and Kopp (2010), etc.

Coherent flavour neutrino states cannot be derived in conventional QFT!

- Attempts to incorporate the oscillation phenomenon into quantum field theory: Giunti, Kim and Lee (1992), Giunti, Kim, Lee and Lee (1993), Blasone and Vitiello (1995), Grimus and Stockinger (1996), Giunti and Bilenky (2001), Giunti (2007), Akhmedov and Kopp (2010), etc.

Coherent flavour neutrino states cannot be derived in conventional QFT!

- Proposed ways out:
- Attempts to incorporate the oscillation phenomenon into quantum field theory: Giunti, Kim and Lee (1992), Giunti, Kim, Lee and Lee (1993), Blasone and Vitiello (1995), Grimus and Stockinger (1996), Giunti and Bilenky (2001), Giunti (2007), Akhmedov and Kopp (2010), etc.

Coherent flavour neutrino states cannot be derived in conventional QFT!

- Proposed ways out:
- invoke position-momentum and time-energy uncertainty relations;
- Attempts to incorporate the oscillation phenomenon into quantum field theory: Giunti, Kim and Lee (1992), Giunti, Kim, Lee and Lee (1993), Blasone and Vitiello (1995), Grimus and Stockinger (1996), Giunti and Bilenky (2001), Giunti (2007), Akhmedov and Kopp (2010), etc.

Coherent flavour neutrino states cannot be derived in conventional QFT!

- Proposed ways out:
- invoke position-momentum and time-energy uncertainty relations;
- neutrinos oscillate as virtual particles described by propagators;
- Attempts to incorporate the oscillation phenomenon into quantum field theory:

Giunti, Kim and Lee (1992), Giunti, Kim, Lee and Lee (1993), Blasone and Vitiello (1995),
Grimus and Stockinger (1996), Giunti and Bilenky (2001),
Giunti (2007), Akhmedov and Kopp (2010), etc.

Coherent flavour neutrino states cannot be derived in conventional QFT!

- Proposed ways out:
- invoke position-momentum and time-energy uncertainty relations;
- neutrinos oscillate as virtual particles described by propagators;
- production and detection flavour neutrino states are different and depend on the process;
- Attempts to incorporate the oscillation phenomenon into quantum field theory:

Giunti, Kim and Lee (1992), Giunti, Kim, Lee and Lee (1993), Blasone and Vitiello (1995),
Grimus and Stockinger (1996), Giunti and Bilenky (2001),
Giunti (2007), Akhmedov and Kopp (2010), etc.

Coherent flavour neutrino states cannot be derived in conventional QFT!

- Proposed ways out:
- invoke position-momentum and time-energy uncertainty relations;
- neutrinos oscillate as virtual particles described by propagators;
- production and detection flavour neutrino states are different and depend on the process;
- neutrinos oscillate only if their momenta and energies are imprecisely
"measured";
- Attempts to incorporate the oscillation phenomenon into quantum field theory:

Giunti, Kim and Lee (1992), Giunti, Kim, Lee and Lee (1993), Blasone and Vitiello (1995),
Grimus and Stockinger (1996), Giunti and Bilenky (2001),
Giunti (2007), Akhmedov and Kopp (2010), etc.

Coherent flavour neutrino states cannot be derived in conventional QFT!

- Proposed ways out:
- invoke position-momentum and time-energy uncertainty relations;
- neutrinos oscillate as virtual particles described by propagators;
- production and detection flavour neutrino states are different and depend on the process;
- neutrinos oscillate only if their momenta and energies are imprecisely
"measured";
- flavour neutrinos are described as superposition of wave packets;
- Attempts to incorporate the oscillation phenomenon into quantum field theory:

Giunti, Kim and Lee (1992), Giunti, Kim, Lee and Lee (1993), Blasone and Vitiello (1995),
Grimus and Stockinger (1996), Giunti and Bilenky (2001),
Giunti (2007), Akhmedov and Kopp (2010), etc.

Coherent flavour neutrino states cannot be derived in conventional QFT!

- Proposed ways out:
- invoke position-momentum and time-energy uncertainty relations;
- neutrinos oscillate as virtual particles described by propagators;
- production and detection flavour neutrino states are different and depend on the process;
- neutrinos oscillate only if their momenta and energies are imprecisely
"measured";
- flavour neutrinos are described as superposition of wave packets;

Oscillations of states and coherence in Quantum Mechanics

Prototypical quantum oscillations: two-level quantum systems

Prototypical quantum oscillations: two-level quantum systems

Quantum mechanical system with two stationary states

Prototypical quantum oscillations: two-level quantum systems

Quantum mechanical system with two stationary states

- System described by Hamiltonian H_{0} with (orthonormal) basis states $|0\rangle$ and $|1\rangle$

Prototypical quantum oscillations: two-level quantum systems

Quantum mechanical system with two stationary states

- System described by Hamiltonian H_{0} with (orthonormal) basis states $|0\rangle$ and $|1\rangle$
- Include interaction:

$$
H=H_{0}+H_{i n t}
$$

- new basis of stationary states $\left|\phi_{1}\right\rangle$ and $\left|\phi_{2}\right\rangle$:

$$
H\left|\phi_{i}\right\rangle=E_{i}\left|\phi_{i}\right\rangle, \quad i=1,2 .
$$

Prototypical quantum oscillations: two-level quantum systems

Quantum mechanical system with two stationary states

- System described by Hamiltonian H_{0} with (orthonormal) basis states $|0\rangle$ and $|1\rangle$
- Include interaction:

$$
H=H_{0}+H_{i n t}
$$

- new basis of stationary states $\left|\phi_{1}\right\rangle$ and $\left|\phi_{2}\right\rangle$:
- $t=t_{0}$

$$
H\left|\phi_{i}\right\rangle=E_{i}\left|\phi_{i}\right\rangle, \quad i=1,2
$$

Prototypical quantum oscillations: two-level quantum systems

Quantum mechanical system with two stationary states

- System described by Hamiltonian H_{0} with (orthonormal) basis states $|0\rangle$ and $|1\rangle$
- Include interaction:

$$
H=H_{0}+H_{i n t}
$$

- new basis of stationary states $\left|\phi_{1}\right\rangle$ and $\left|\phi_{2}\right\rangle$:
- $t=t_{0}$

$$
H\left|\phi_{i}\right\rangle=E_{i}\left|\phi_{i}\right\rangle, \quad i=1,2
$$

- Initially, system prepared in the stationary state $|0\rangle$, evolves with H_{0}

Prototypical quantum oscillations: two-level quantum systems

Quantum mechanical system with two stationary states

- System described by Hamiltonian H_{0} with (orthonormal) basis states $|0\rangle$ and $|1\rangle$
- Include interaction:

$$
H=H_{0}+H_{i n t}
$$

- new basis of stationary states $\left|\phi_{1}\right\rangle$ and $\left|\phi_{2}\right\rangle$:

$$
H\left|\phi_{i}\right\rangle=E_{i}\left|\phi_{i}\right\rangle, \quad i=1,2
$$

- $t=t_{0}$
- Initially, system prepared in the stationary state $|0\rangle$, evolves with H_{0}
- Turn on interaction suddenly (diabatically)

$$
|0\rangle=c_{1}\left|\phi_{1}\right\rangle+c_{2}\left|\phi_{2}\right\rangle, \quad\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}=1
$$

Initial state $|0\rangle$ is a coherent superposition of the states $\left|\phi_{1}\right\rangle$ and $\left|\phi_{2}\right\rangle$

Prototypical quantum oscillations: two-level quantum systems

Quantum mechanical system with two stationary states

- System described by Hamiltonian H_{0} with (orthonormal) basis states $|0\rangle$ and $|1\rangle$
- Include interaction:

$$
H=H_{0}+H_{i n t}
$$

- new basis of stationary states $\left|\phi_{1}\right\rangle$ and $\left|\phi_{2}\right\rangle$:

$$
H\left|\phi_{i}\right\rangle=E_{i}\left|\phi_{i}\right\rangle, \quad i=1,2
$$

- $t=t_{0}$
- Initially, system prepared in the stationary state $|0\rangle$, evolves with H_{0}
- Turn on interaction suddenly (diabatically)

$$
|0\rangle=c_{1}\left|\phi_{1}\right\rangle+c_{2}\left|\phi_{2}\right\rangle, \quad\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}=1
$$

Initial state $|0\rangle$ is a coherent superposition of the states $\left|\phi_{1}\right\rangle$ and $\left|\phi_{2}\right\rangle$

- The system starts to evolve with the Hamiltonian H.

Prototypical quantum oscillations: two-level quantum systems

Quantum mechanical system with two stationary states

- System described by Hamiltonian H_{0} with (orthonormal) basis states $|0\rangle$ and $|1\rangle$
- Include interaction:

$$
H=H_{0}+H_{i n t}
$$

- new basis of stationary states $\left|\phi_{1}\right\rangle$ and $\left|\phi_{2}\right\rangle$:

$$
H\left|\phi_{i}\right\rangle=E_{i}\left|\phi_{i}\right\rangle, \quad i=1,2
$$

- $t=t_{0}$
- Initially, system prepared in the stationary state $|0\rangle$, evolves with H_{0}
- Turn on interaction suddenly (diabatically)

$$
|0\rangle=c_{1}\left|\phi_{1}\right\rangle+c_{2}\left|\phi_{2}\right\rangle, \quad\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}=1
$$

Initial state $|0\rangle$ is a coherent superposition of the states $\left|\phi_{1}\right\rangle$ and $\left|\phi_{2}\right\rangle$

- The system starts to evolve with the Hamiltonian H.
- $t=t_{0}+\Delta t$

Prototypical quantum oscillations: two-level quantum systems

Quantum mechanical system with two stationary states

- System described by Hamiltonian H_{0} with (orthonormal) basis states $|0\rangle$ and $|1\rangle$
- Include interaction:

$$
H=H_{0}+H_{i n t}
$$

- new basis of stationary states $\left|\phi_{1}\right\rangle$ and $\left|\phi_{2}\right\rangle$:

$$
H\left|\phi_{i}\right\rangle=E_{i}\left|\phi_{i}\right\rangle, \quad i=1,2
$$

- $t=t_{0}$
- Initially, system prepared in the stationary state $|0\rangle$, evolves with H_{0}
- Turn on interaction suddenly (diabatically)

$$
|0\rangle=c_{1}\left|\phi_{1}\right\rangle+c_{2}\left|\phi_{2}\right\rangle, \quad\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}=1
$$

Initial state $|0\rangle$ is a coherent superposition of the states $\left|\phi_{1}\right\rangle$ and $\left|\phi_{2}\right\rangle$

- The system starts to evolve with the Hamiltonian H.
- $t=t_{0}+\Delta t$
- Remove suddenly the interaction and determine the state of the system (can be either $|0\rangle$ or $|1\rangle$)

Prototypical quantum oscillations: two-level quantum systems

Quantum mechanical system with two stationary states

- System described by Hamiltonian H_{0} with (orthonormal) basis states $|0\rangle$ and $|1\rangle$
- Include interaction:

$$
H=H_{0}+H_{i n t}
$$

- new basis of stationary states $\left|\phi_{1}\right\rangle$ and $\left|\phi_{2}\right\rangle$:

$$
H\left|\phi_{i}\right\rangle=E_{i}\left|\phi_{i}\right\rangle, \quad i=1,2
$$

- $t=t_{0}$
- Initially, system prepared in the stationary state $|0\rangle$, evolves with H_{0}
- Turn on interaction suddenly (diabatically)

$$
|0\rangle=c_{1}\left|\phi_{1}\right\rangle+c_{2}\left|\phi_{2}\right\rangle, \quad\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}=1
$$

Initial state $|0\rangle$ is a coherent superposition of the states $\left|\phi_{1}\right\rangle$ and $\left|\phi_{2}\right\rangle$

- The system starts to evolve with the Hamiltonian H.
- $t=t_{0}+\Delta t$
- Remove suddenly the interaction and determine the state of the system (can be either $|0\rangle$ or $|1\rangle$)

$$
\mathcal{P}_{|0\rangle \rightarrow|1\rangle}=\langle 1| e^{-i H \Delta t}|0\rangle \sim \sin ^{2}\left(\frac{\Delta E}{2} \Delta t\right)
$$

Note:

- because of Stone-von Neumann theorem, all the representations of the canonical algebra for a given quantum mechanical system are equivalent, implying unitary change of basis:

$$
\binom{|0\rangle}{|1\rangle}=\left(\begin{array}{ll}
c_{1} & c_{2} \\
c_{3} & c_{4}
\end{array}\right)\binom{\left|\phi_{1}\right\rangle}{\left|\phi_{2}\right\rangle} ;
$$

Note:

- because of Stone-von Neumann theorem, all the representations of the canonical algebra for a given quantum mechanical system are equivalent, implying unitary change of basis:

$$
\binom{|0\rangle}{|1\rangle}=\left(\begin{array}{ll}
c_{1} & c_{2} \\
c_{3} & c_{4}
\end{array}\right)\binom{\left|\phi_{1}\right\rangle}{\left|\phi_{2}\right\rangle} ;
$$

- the states of the two bases are well-defined as stationary states of either H_{0} or H;

Note:

- because of Stone-von Neumann theorem, all the representations of the canonical algebra for a given quantum mechanical system are equivalent, implying unitary change of basis:

$$
\binom{|0\rangle}{|1\rangle}=\left(\begin{array}{ll}
c_{1} & c_{2} \\
c_{3} & c_{4}
\end{array}\right)\binom{\left|\phi_{1}\right\rangle}{\left|\phi_{2}\right\rangle} ;
$$

- the states of the two bases are well-defined as stationary states of either H_{0} or H;
- the coherent superposition of states (leading to interference and finally to oscillation)
is achieved by turning on/off suddenly the interaction.

Note:

- because of Stone-von Neumann theorem, all the representations of the canonical algebra for a given quantum mechanical system are equivalent, implying unitary change of basis:

$$
\binom{|0\rangle}{|1\rangle}=\left(\begin{array}{ll}
c_{1} & c_{2} \\
c_{3} & c_{4}
\end{array}\right)\binom{\left|\phi_{1}\right\rangle}{\left|\phi_{2}\right\rangle} ;
$$

- the states of the two bases are well-defined as stationary states of either H_{0} or H;
- the coherent superposition of states (leading to interference and finally to oscillation)
is achieved by turning on/off suddenly the interaction.

Note:

- because of Stone-von Neumann theorem, all the representations of the canonical algebra for a given quantum mechanical system are equivalent, implying unitary change of basis:

$$
\binom{|0\rangle}{|1\rangle}=\left(\begin{array}{ll}
c_{1} & c_{2} \\
c_{3} & c_{4}
\end{array}\right)\binom{\left|\phi_{1}\right\rangle}{\left|\phi_{2}\right\rangle} ;
$$

- the states of the two bases are well-defined as stationary states of either H_{0} or H;
- the coherent superposition of states (leading to interference and finally to oscillation) is achieved by turning on/off suddenly the interaction.

Can this simple quantum mechanical picture be extended straightforwardly to particle oscillations?

In the case of neutrinos:

In the case of neutrinos:

- the flavour violating part of the Lagrangian (mixing the flavour fields) cannot be turned on and off at will;

In the case of neutrinos:

- the flavour violating part of the Lagrangian (mixing the flavour fields) cannot be turned on and off at will;
- the coherence of flavour neutrino states is not triggered by external factors, it is intrinsic;

In the case of neutrinos:

- the flavour violating part of the Lagrangian (mixing the flavour fields) cannot be turned on and off at will;
- the coherence of flavour neutrino states is not triggered by external factors, it is intrinsic;
- the quantum mechanical principle of superposition of states fails: the two massive neutrino states which are superposed are not states of the same system, but states of two distinct systems!

In the case of neutrinos:

- the flavour violating part of the Lagrangian (mixing the flavour fields) cannot be turned on and off at will;
- the coherence of flavour neutrino states is not triggered by external factors, it is intrinsic;
- the quantum mechanical principle of superposition of states fails: the two massive neutrino states which are superposed are not states of the same system, but states of two distinct systems!

In the case of neutrinos:

- the flavour violating part of the Lagrangian (mixing the flavour fields) cannot be turned on and off at will;
- the coherence of flavour neutrino states is not triggered by external factors, it is intrinsic;
- the quantum mechanical principle of superposition of states fails: the two massive neutrino states which are superposed are not states of the same system, but states of two distinct systems!

The quantum mechanical interpretation of neutrino oscillation as two-level system oscillation is conceptually untenable!

\section*{Coherent states in quantum optics

\author{

-

 .
}}
\qquad

Coherent states in quantum optics

- Coherent states are superpositions of infinite number of Fock states

Klauder (1960), Sudarshan (1963), Glauber (1963)

Coherent states in quantum optics

- Coherent states are superpositions of infinite number of Fock states

Klauder (1960),
Sudarshan (1963), Glauber (1963)

- Eigenstates of the annihilation operator of the harmonic oscillator:

$$
\hat{a}|\alpha\rangle=\alpha|\alpha\rangle, \quad \hat{a}|0\rangle=0,
$$

$\alpha=|\alpha| e^{i \theta}$ is a complex number

Coherent states in quantum optics

- Coherent states are superpositions of infinite number of Fock states

Klauder (1960),
Sudarshan (1963), Glauber (1963)

- Eigenstates of the annihilation operator of the harmonic oscillator:

$$
\hat{a}|\alpha\rangle=\alpha|\alpha\rangle, \quad \hat{a}|0\rangle=0,
$$

$\alpha=|\alpha| e^{i \theta}$ is a complex number

- Then

$$
|\alpha\rangle=e^{\alpha \hat{a}^{\dagger}-\alpha^{*} \hat{a}}|0\rangle=e^{-\frac{|\alpha|^{2}}{2}} \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle,
$$

i.e. the coherent state is a superposition of an infinite number of particle states (or Fock states), all belonging to the same Fock space.

Coherent states in quantum optics

- Coherent states are superpositions of infinite number of Fock states

Klauder (1960),
Sudarshan (1963), Glauber (1963)

- Eigenstates of the annihilation operator of the harmonic oscillator:

$$
\hat{a}|\alpha\rangle=\alpha|\alpha\rangle, \quad \hat{a}|0\rangle=0,
$$

$\alpha=|\alpha| e^{i \theta}$ is a complex number

- Then

$$
|\alpha\rangle=e^{\alpha \hat{a}^{\dagger}-\alpha^{*} \hat{a}}|0\rangle=e^{-\frac{|\alpha|^{2}}{2}} \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle,
$$

i.e. the coherent state is a superposition of an infinite number of particle states (or Fock states), all belonging to the same Fock space.

- In QFT, the notion of coherent state appears as vacuum condensate.

How to define coherent oscillating states in quantum field theory, as superposition of finite number of particle states belonging to different Fock spaces?

Intrinsically coherent oscillating neutrino states

- Return to first principles:

In QFT, particle states are defined by the action of an operator on the physical vacuum state.

Intrinsically coherent oscillating neutrino states

- Return to first principles: In QFT, particle states are defined by the action of an operator on the physical vacuum state.
- Idea: associate the flavour neutrino states to the actual flavour neutrino fields of the Standard Model.

Intrinsically coherent oscillating neutrino states

- Return to first principles: In QFT, particle states are defined by the action of an operator on the physical vacuum state.
- Idea: associate the flavour neutrino states to the actual flavour neutrino fields of the Standard Model.

Connect massless to massive neutrino fields

Intrinsically coherent oscillating neutrino states

- Return to first principles:

In QFT, particle states are defined by the action of an operator on the physical vacuum state.

- Idea: associate the flavour neutrino states to the actual flavour neutrino fields of the Standard Model.

$$
\text { AT }(2018,2019)
$$

Connect massless to massive neutrino fields

- Procedure reminiscent of the Nambu-Jona-Lasinio model for dynamical generation of nucleon masses

Nambu and Jona-Lasinio (1961),
see also Umezawa, Takahashi and Kamefuchi (1964)

Intrinsically coherent oscillating neutrino states

- Return to first principles:

In QFT, particle states are defined by the action of an operator on the physical vacuum state.

- Idea: associate the flavour neutrino states to the actual flavour neutrino fields of the Standard Model.

$$
\text { AT }(2018,2019)
$$

Connect massless to massive neutrino fields

- Procedure reminiscent of the Nambu-Jona-Lasinio model for dynamical generation of nucleon masses

Nambu and Jona-Lasinio (1961),
see also Umezawa, Takahashi and Kamefuchi (1964)
inspired by Bardeen-Cooper-Schrieffer theory of superconductivity in Bogoliubov's formulation

The technique: Quantum Hamiltonian diagonalization

The technique: Quantum Hamiltonian diagonalization

- Flavour number-violating Hamiltonian

$$
\begin{aligned}
H & =\int d^{3} x\left[-\bar{\Psi}_{\nu_{e}} i \gamma^{i} \partial_{i} \Psi_{\nu_{e}}-\bar{\Psi}_{\nu_{\mu}} i \gamma^{i} \partial_{i} \Psi_{\nu_{\mu}}\right] \\
& +\int d^{3} x\left[m_{e e} \bar{\Psi}_{\nu_{e}} \Psi_{\nu_{e}}+m_{\mu \mu} \bar{\Psi}_{\nu_{\mu}} \Psi_{\nu_{\mu}}+m_{e \mu}\left(\bar{\Psi}_{\nu_{e}} \Psi_{\nu_{\mu}}+\bar{\Psi}_{\nu_{\mu}} \Psi_{\nu_{e}}\right)\right]=H_{0}+H_{\text {mass }} .
\end{aligned}
$$

The technique: Quantum Hamiltonian diagonalization

- Flavour number-violating Hamiltonian

$$
\begin{aligned}
H & =\int d^{3} x\left[-\bar{\Psi}_{\nu_{e}} i \gamma^{i} \partial_{i} \Psi_{\nu_{e}}-\bar{\Psi}_{\nu_{\mu}} i \gamma^{i} \partial_{i} \Psi_{\nu_{\mu}}\right] \\
& +\int d^{3} x\left[m_{e e} \bar{\Psi}_{\nu_{e}} \Psi_{\nu_{e}}+m_{\mu \mu} \bar{\Psi}_{\nu_{\mu}} \Psi_{\nu_{\mu}}+m_{e \mu}\left(\bar{\Psi}_{\nu_{e}} \Psi_{\nu_{\mu}}+\bar{\Psi}_{\nu_{\mu}} \Psi_{\nu_{e}}\right)\right]=H_{0}+H_{\text {mass }} .
\end{aligned}
$$

- Diagonalization starting from the identification of fields at $t=0$ (Shrödinger picture):

$$
\Psi_{\nu_{l}}(\mathbf{x}, 0)=\psi_{\nu_{l}}(\mathbf{x}, 0), \quad I=e, \mu
$$

The technique: Quantum Hamiltonian diagonalization

- Flavour number-violating Hamiltonian

$$
\begin{aligned}
H & =\int d^{3} x\left[-\bar{\Psi}_{\nu_{e}} i \gamma^{i} \partial_{i} \Psi_{\nu_{e}}-\bar{\Psi}_{\nu_{\mu}} i \gamma^{i} \partial_{i} \Psi_{\nu_{\mu}}\right] \\
& +\int d^{3} x\left[m_{e e} \bar{\Psi}_{\nu_{e}} \Psi_{\nu_{e}}+m_{\mu \mu} \bar{\Psi}_{\nu_{\mu}} \Psi_{\nu_{\mu}}+m_{e \mu}\left(\bar{\Psi}_{\nu_{e}} \Psi_{\nu_{\mu}}+\bar{\Psi}_{\nu_{\mu}} \Psi_{\nu_{e}}\right)\right]=H_{0}+H_{\text {mass }} .
\end{aligned}
$$

- Diagonalization starting from the identification of fields at $t=0$ (Shrödinger picture):

$$
\Psi_{\nu_{l}}(\mathbf{x}, 0)=\psi_{\nu_{l}}(\mathbf{x}, 0), \quad I=e, \mu
$$

where

$$
i \gamma^{\mu} \partial_{\mu} \psi_{\nu_{l}}(x)=0 \quad \text { are SM massless neutrino fields. }
$$

The technique: Quantum Hamiltonian diagonalization

- Flavour number-violating Hamiltonian

$$
\begin{aligned}
H & =\int d^{3} x\left[-\bar{\Psi}_{\nu_{e}} i \gamma^{i} \partial_{i} \Psi_{\nu_{e}}-\bar{\Psi}_{\nu_{\mu}} i \gamma^{i} \partial_{i} \Psi_{\nu_{\mu}}\right] \\
& +\int d^{3} x\left[m_{e e} \bar{\Psi}_{\nu_{e}} \Psi_{\nu_{e}}+m_{\mu \mu} \bar{\Psi}_{\nu_{\mu}} \Psi_{\nu_{\mu}}+m_{e \mu}\left(\bar{\Psi}_{\nu_{e}} \Psi_{\nu_{\mu}}+\bar{\Psi}_{\nu_{\mu}} \Psi_{\nu_{e}}\right)\right]=H_{0}+H_{\text {mass }} .
\end{aligned}
$$

- Diagonalization starting from the identification of fields at $t=0$ (Shrödinger picture):

$$
\Psi_{\nu_{l}}(\mathbf{x}, 0)=\psi_{\nu_{l}}(\mathbf{x}, 0), \quad I=e, \mu
$$

where

$$
i \gamma^{\mu} \partial_{\mu} \psi_{\nu_{l}}(x)=0 \quad \text { are SM massless neutrino fields. }
$$

$$
\psi_{\nu_{l}}(x)=\int \frac{d^{3} p}{(2 \pi)^{3 / 2} \sqrt{2 p}} \sum_{\lambda}\left(a_{l \lambda}(\mathbf{p}) u_{\lambda}(\mathbf{p}) e^{-i p x}+b_{/ \lambda}^{\dagger}(\mathbf{p}) v_{\lambda}(\mathbf{p}) e^{i p x}\right), \quad I=e, \mu
$$

The technique: Quantum Hamiltonian diagonalization

- Flavour number-violating Hamiltonian

$$
\begin{aligned}
H & =\int d^{3} x\left[-\bar{\Psi}_{\nu_{e}} i \gamma^{i} \partial_{i} \Psi_{\nu_{e}}-\bar{\Psi}_{\nu_{\mu}} i \gamma^{i} \partial_{i} \Psi_{\nu_{\mu}}\right] \\
& +\int d^{3} x\left[m_{e e} \bar{\Psi}_{\nu_{e}} \Psi_{\nu_{e}}+m_{\mu \mu} \bar{\Psi}_{\nu_{\mu}} \Psi_{\nu_{\mu}}+m_{e \mu}\left(\bar{\Psi}_{\nu_{e}} \Psi_{\nu_{\mu}}+\bar{\Psi}_{\nu_{\mu}} \Psi_{\nu_{e}}\right)\right]=H_{0}+H_{\text {mass }} .
\end{aligned}
$$

- Diagonalization starting from the identification of fields at $t=0$ (Shrödinger picture):

$$
\Psi_{\nu_{l}}(\mathbf{x}, 0)=\psi_{\nu_{l}}(\mathbf{x}, 0), \quad I=e, \mu
$$

where

$$
\begin{gathered}
i \gamma^{\mu} \partial_{\mu} \psi_{\nu_{l}}(x)=0 \quad \text { are SM massless neutrino fields. } \\
\psi_{\nu_{l}}(x)=\int \frac{d^{3} p}{(2 \pi)^{3 / 2} \sqrt{2 p}} \sum_{\lambda}\left(a_{I \lambda}(\mathbf{p}) u_{\lambda}(\mathbf{p}) e^{-i p x}+b_{l \lambda}^{\dagger}(\mathbf{p}) v_{\lambda}(\mathbf{p}) e^{i p x}\right), \quad I=e, \mu
\end{gathered}
$$

- Treat $H_{\text {mass }}$ as an interaction term for massless SM flavour fields.
- Nondiagonal Hamiltonian in terms of massless (bare) particles' operators :

$$
\begin{aligned}
H & =\int d^{3} p \sum_{\lambda}\left\{p\left(a_{e \lambda}^{\dagger}(\mathbf{p}) a_{e \lambda}(\mathbf{p})+b_{e \lambda}^{\dagger}(\mathbf{p}) b_{e \lambda}(\mathbf{p})+a_{\mu \lambda}^{\dagger}(\mathbf{p}) a_{\mu \lambda}(\mathbf{p})+b_{\mu \lambda}^{\dagger}(\mathbf{p}) b_{\mu \lambda}(\mathbf{p})\right)\right. \\
& +\operatorname{sgn} \lambda\left[m_{e e}\left(a_{e \lambda}^{\dagger}(\mathbf{p}) b_{e \lambda}^{\dagger}(-\mathbf{p})+b_{e \lambda}(\mathbf{p}) a_{e \lambda}(-\mathbf{p})\right)+m_{\mu \mu}\left(a_{\mu \lambda}^{\dagger}(\mathbf{p}) b_{\mu \lambda}^{\dagger}(-\mathbf{p})+b_{\mu \lambda}(\mathbf{p}) a_{\mu \lambda}(\right.\right. \\
& \left.\left.+m_{e \mu}\left(a_{e \lambda}^{\dagger}(\mathbf{p}) b_{\mu \lambda}^{\dagger}(-\mathbf{p})+b_{\mu \lambda}(\mathbf{p}) a_{e \lambda}(-\mathbf{p})+a_{\mu \lambda}^{\dagger}(\mathbf{p}) b_{e \lambda}^{\dagger}(-\mathbf{p})+b_{e \lambda}(\mathbf{p}) a_{\mu \lambda}(-\mathbf{p})\right)\right]\right\} .
\end{aligned}
$$

- Nondiagonal Hamiltonian in terms of massless (bare) particles' operators :

$$
\begin{aligned}
H & =\int d^{3} p \sum_{\lambda}\left\{p\left(a_{e \lambda}^{\dagger}(\mathbf{p}) a_{e \lambda}(\mathbf{p})+b_{e \lambda}^{\dagger}(\mathbf{p}) b_{e \lambda}(\mathbf{p})+a_{\mu \lambda}^{\dagger}(\mathbf{p}) a_{\mu \lambda}(\mathbf{p})+b_{\mu \lambda}^{\dagger}(\mathbf{p}) b_{\mu \lambda}(\mathbf{p})\right)\right. \\
& +\operatorname{sgn} \lambda\left[m_{e e}\left(a_{e \lambda}^{\dagger}(\mathbf{p}) b_{e \lambda}^{\dagger}(-\mathbf{p})+b_{e \lambda}(\mathbf{p}) a_{e \lambda}(-\mathbf{p})\right)+m_{\mu \mu}\left(a_{\mu \lambda}^{\dagger}(\mathbf{p}) b_{\mu \lambda}^{\dagger}(-\mathbf{p})+b_{\mu \lambda}(\mathbf{p}) a_{\mu \lambda}(\right.\right. \\
& \left.\left.+m_{e \mu}\left(a_{e \lambda}^{\dagger}(\mathbf{p}) b_{\mu \lambda}^{\dagger}(-\mathbf{p})+b_{\mu \lambda}(\mathbf{p}) a_{e \lambda}(-\mathbf{p})+a_{\mu \lambda}^{\dagger}(\mathbf{p}) b_{e \lambda}^{\dagger}(-\mathbf{p})+b_{e \lambda}(\mathbf{p}) a_{\mu \lambda}(-\mathbf{p})\right)\right]\right\} .
\end{aligned}
$$

- Diagonal form:

$$
H=\int d^{3} p \sum_{\lambda, i=1,2} E_{i \mathrm{p}}\left[A_{i \lambda}^{\dagger}(\mathbf{p}) A_{i \lambda}(\mathbf{p})+B_{i \lambda}^{\dagger}(\mathbf{p}) B_{i \lambda}(\mathbf{p})\right], \quad E_{i \mathbf{p}}=\sqrt{\mathbf{p}^{2}+m_{i}^{2}}
$$

- The eigenstates of the diagonal Hamiltonian are the physical particle states (Bogoliubov quasiparticles).

Three sets of canonical fields:
$\psi_{\nu_{l}}(x), I=e, \mu$ massless,
$a_{I \lambda}(\mathbf{p}), b_{I \lambda}(\mathbf{p})$
$\psi_{\nu_{i}}(x), i=1,2$ massless,
$a_{i \lambda}(\mathbf{p}), b_{i \lambda}(\mathbf{p})$

Two (orthogonal) vacua:
|0〉 non-physical
$a_{I \lambda}(\mathbf{p})|0\rangle=b_{I \lambda}(\mathbf{p})|0\rangle=0$
|0〉 non-physical
$a_{i \lambda}(\mathbf{p})|0\rangle=b_{i \lambda}(\mathbf{p})|0\rangle=0$

Three sets of canonical fields:
$\psi_{\nu_{l}}(x), I=e, \mu$ massless,
$a_{I \lambda}(\mathbf{p}), b_{I \lambda}(\mathbf{p})$
$\psi_{\nu_{i}}(x), i=1,2$ massless,
$a_{i \lambda}(\mathbf{p}), b_{i \lambda}(\mathbf{p})$
$\Psi_{\nu_{i}}(x), i=1,2$ with masses m_{1}, m_{2}
$A_{i \lambda}(\mathbf{p}), B_{i \lambda}(\mathbf{p})$

Two (orthogonal) vacua:
|0〉 non-physical
$a_{I \lambda}(\mathbf{p})|0\rangle=b_{I \lambda}(\mathbf{p})|0\rangle=0$
|0〉 non-physical
$a_{i \lambda}(\mathbf{p})|0\rangle=b_{i \lambda}(\mathbf{p})|0\rangle=0$
$\left|\Phi_{0}\right\rangle \quad$ physical
$A_{i \lambda}(\mathbf{p})\left|\Phi_{0}\right\rangle=B_{i \lambda}(\mathbf{p})\left|\Phi_{0}\right\rangle=0$

Three sets of canonical fields:
$\psi_{\nu_{l}}(x), I=e, \mu$ massless,
$a_{I \lambda}(\mathbf{p}), b_{I \lambda}(\mathbf{p})$
$\psi_{\nu_{i}}(x), i=1,2$ massless,
$a_{i \lambda}(\mathbf{p}), b_{i \lambda}(\mathbf{p})$
$\Psi_{\nu_{i}}(x), i=1,2$ with masses m_{1}, m_{2}
$A_{i \lambda}(\mathbf{p}), B_{i \lambda}(\mathbf{p})$

Two (orthogonal) vacua:
$|0\rangle \quad$ non-physical
$a_{I \lambda}(\mathbf{p})|0\rangle=b_{I \lambda}(\mathbf{p})|0\rangle=0$
|0〉 non-physical
$a_{i \lambda}(\mathbf{p})|0\rangle=b_{i \lambda}(\mathbf{p})|0\rangle=0$
$\left|\Phi_{0}\right\rangle \quad$ physical
$A_{i \lambda}(\mathbf{p})\left|\Phi_{0}\right\rangle=B_{i \lambda}(\mathbf{p})\left|\Phi_{0}\right\rangle=0$

- Unitary transformation (rotation) between the operators of the massless fields:

$$
\binom{a_{e \lambda}(\mathbf{p})}{a_{\mu \lambda}(\mathbf{p})}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\binom{a_{1 \lambda}(\mathbf{p})}{a_{2 \lambda}(\mathbf{p})}
$$

Three sets of canonical fields:
$\psi_{\nu_{l}}(x), I=e, \mu$ massless,
$a_{I \lambda}(\mathbf{p}), b_{\lambda \lambda}(\mathbf{p})$
$\psi_{\nu_{i}}(x), i=1,2$ massless,
$a_{i \lambda}(\mathbf{p}), b_{i \lambda}(\mathbf{p})$
$\Psi_{\nu_{i}}(x), i=1,2$ with masses m_{1}, m_{2}
$A_{i \lambda}(\mathbf{p}), B_{i \lambda}(\mathbf{p})$

Two (orthogonal) vacua:

$$
\begin{aligned}
& |0\rangle \quad \text { non-physical } \\
& a_{I \lambda}(\mathbf{p})|0\rangle=b_{I \lambda}(\mathbf{p})|0\rangle=0
\end{aligned}
$$

|0〉 non-physical

$$
a_{i \lambda}(\mathbf{p})|0\rangle=b_{i \lambda}(\mathbf{p})|0\rangle=0
$$

$$
\left|\Phi_{0}\right\rangle \quad \text { physical }
$$

$$
A_{i \lambda}(\mathbf{p})\left|\Phi_{0}\right\rangle=B_{i \lambda}(\mathbf{p})\left|\Phi_{0}\right\rangle=0
$$

- Unitary transformation (rotation) between the operators of the massless fields:

$$
\binom{a_{e \lambda}(\mathbf{p})}{a_{\mu \lambda}(\mathbf{p})}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\binom{a_{1 \lambda}(\mathbf{p})}{a_{2 \lambda}(\mathbf{p})}
$$

- Bogoliubov transformations between the "massless" and "massive" operators:
$A_{i \lambda}(\mathbf{p})=\alpha_{i p} a_{i \lambda}(\mathbf{p})+\beta_{i p} b_{i \lambda}^{\dagger}(-\mathbf{p}), \quad i=1,2$,
$B_{i \lambda}(\mathbf{p})=\alpha_{i \mathrm{p}} b_{i \lambda}(\mathbf{p})-\beta_{i \mathrm{p}} a_{i \lambda}^{\dagger}(-\mathbf{p}), \quad \alpha_{i \mathrm{p}}=\sqrt{\frac{1}{2}\left(1+\frac{\mathrm{p}}{E_{i \mathrm{p}}}\right)}, \beta_{i \mathrm{p}}=\operatorname{sgn} \lambda \sqrt{\frac{1}{2}\left(1-\frac{\mathrm{p}}{E_{i \mathrm{p}}}\right)}$
- Physical vacuum is a condensate of "Cooper-like pairs" of massless neutrino-antineutrino - coherent state!

$$
\left|\Phi_{0}\right\rangle=\Pi_{i, \mathbf{p}, \lambda}\left(\alpha_{i p}-\beta_{i p} a_{i \lambda}^{\dagger}(\mathbf{p}) b_{i \lambda}^{\dagger}(-\mathbf{p})\right)|0\rangle,
$$

- Physical vacuum is a condensate of "Cooper-like pairs" of massless neutrino-antineutrino - coherent state!

$$
\left|\Phi_{0}\right\rangle=\Pi_{i, \mathbf{p}, \lambda}\left(\alpha_{i p}-\beta_{i p} a_{i \lambda}^{\dagger}(\mathbf{p}) b_{i \lambda}^{\dagger}(-\mathbf{p})\right)|0\rangle
$$

such that

$$
\left\langle 0 \mid \Phi_{0}\right\rangle=\Pi_{i, \mathbf{p}, \lambda} \alpha_{i \mathrm{p}}=\Pi_{i, \mathbf{p}, \lambda}\left(1+\frac{\mathrm{p}}{E_{i \mathrm{p}}}\right)^{1 / 2} \rightarrow \exp \left[-\left(m_{1}^{2}+m_{2}^{2}\right) \int d \mathrm{p}\right]=0
$$

in the infinite volume and momentum limit.

- Physical vacuum is a condensate of "Cooper-like pairs" of massless neutrino-antineutrino - coherent state!

$$
\left|\Phi_{0}\right\rangle=\Pi_{i, \mathbf{p}, \lambda}\left(\alpha_{i p}-\beta_{i p} a_{i \lambda}^{\dagger}(\mathbf{p}) b_{i \lambda}^{\dagger}(-\mathbf{p})\right)|0\rangle
$$

such that

$$
\left\langle 0 \mid \Phi_{0}\right\rangle=\Pi_{i, \mathbf{p}, \lambda} \alpha_{i \mathrm{p}}=\Pi_{i, \mathbf{p}, \lambda}\left(1+\frac{\mathrm{p}}{E_{i \mathrm{p}}}\right)^{1 / 2} \rightarrow \exp \left[-\left(m_{1}^{2}+m_{2}^{2}\right) \int d \mathrm{p}\right]=0
$$

in the infinite volume and momentum limit.

- Fock spaces built on the vacua $|0\rangle$ and $\left|\Phi_{0}\right\rangle$ do not contain any common states recall Haag's theorem!
- Physical vacuum is a condensate of "Cooper-like pairs" of massless neutrino-antineutrino - coherent state!

$$
\left|\Phi_{0}\right\rangle=\Pi_{i, \mathbf{p}, \lambda}\left(\alpha_{i p}-\beta_{i p} a_{i \lambda}^{\dagger}(\mathbf{p}) b_{i \lambda}^{\dagger}(-\mathbf{p})\right)|0\rangle
$$

such that

$$
\left\langle 0 \mid \Phi_{0}\right\rangle=\Pi_{i, \mathbf{p}, \lambda} \alpha_{i \mathrm{p}}=\Pi_{i, \mathbf{p}, \lambda}\left(1+\frac{\mathrm{p}}{E_{i \mathrm{p}}}\right)^{1 / 2} \rightarrow \exp \left[-\left(m_{1}^{2}+m_{2}^{2}\right) \int d \mathrm{p}\right]=0
$$

in the infinite volume and momentum limit.

- Fock spaces built on the vacua $|0\rangle$ and $\left|\Phi_{0}\right\rangle$ do not contain any common states recall Haag's theorem!
- Massive neutrino states interpreted as Bogoliubov quasiparticles.
- Define oscillating neutrino states by
- Define oscillating neutrino states by

$$
\left|\nu_{e}(\mathbf{p}, \lambda)\right\rangle \equiv a_{e \lambda}^{\dagger}(\mathbf{p})\left|\Phi_{0}\right\rangle=\left(\cos \theta \alpha_{1 \mathrm{p}} A_{1 \lambda}^{\dagger}(\mathbf{p})+\sin \theta \alpha_{2 \mathrm{p}} A_{2 \lambda}^{\dagger}(\mathbf{p})\right)\left|\Phi_{0}\right\rangle,
$$

- Define oscillating neutrino states by

$$
\begin{aligned}
\left|\nu_{e}(\mathbf{p}, \lambda)\right\rangle & \equiv a_{e \lambda}^{\dagger}(\mathbf{p})\left|\Phi_{0}\right\rangle=\left(\cos \theta \alpha_{1 \mathrm{p}} A_{1 \lambda}^{\dagger}(\mathbf{p})+\sin \theta \alpha_{2 \mathrm{p}} A_{2 \lambda}^{\dagger}(\mathbf{p})\right)\left|\Phi_{0}\right\rangle \\
& =\cos \theta \sqrt{1 / 2+\mathrm{p} / 2 E_{1 \mathbf{p}}}\left|\nu_{1}(\mathbf{p})\right\rangle+\sin \theta \sqrt{1 / 2+\mathrm{p} / 2 E_{2 \mathbf{p}}}\left|\nu_{2}(\mathbf{p})\right\rangle
\end{aligned}
$$

- Define oscillating neutrino states by

$$
\begin{aligned}
\left|\nu_{e}(\mathbf{p}, \lambda)\right\rangle & \equiv a_{e \lambda}^{\dagger}(\mathbf{p})\left|\Phi_{0}\right\rangle=\left(\cos \theta \alpha_{1 \mathrm{p}} A_{1 \lambda}^{\dagger}(\mathbf{p})+\sin \theta \alpha_{2 \mathrm{p}} A_{2 \lambda}^{\dagger}(\mathbf{p})\right)\left|\Phi_{0}\right\rangle \\
& =\cos \theta \sqrt{1 / 2+\mathrm{p} / 2 E_{1 \mathrm{p}}}\left|\nu_{1}(\mathbf{p})\right\rangle+\sin \theta \sqrt{1 / 2+\mathrm{p} / 2 E_{2 \mathrm{p}}}\left|\nu_{2}(\mathbf{p})\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
\left|\nu_{\mu}(\mathbf{p}, \lambda)\right\rangle & \equiv a_{\mu \lambda}^{\dagger}(\mathbf{p})\left|\Phi_{0}\right\rangle=\left(-\sin \theta \alpha_{1 \mathrm{p}} A_{1 \lambda}^{\dagger}(\mathbf{p})+\cos \theta \alpha_{2 \mathrm{p}} A_{2 \lambda}^{\dagger}(\mathbf{p})\right)\left|\Phi_{0}\right\rangle \\
& =-\sin \theta \sqrt{1 / 2+\mathrm{p} / 2 E_{1 \mathbf{p}}}\left|\nu_{1}(\mathbf{p})\right\rangle+\cos \theta \sqrt{1 / 2+\mathrm{p} / 2 E_{2 \mathrm{p}}}\left|\nu_{2}(\mathbf{p})\right\rangle .
\end{aligned}
$$

- Define oscillating neutrino states by

$$
\begin{aligned}
\left|\nu_{e}(\mathbf{p}, \lambda)\right\rangle & \equiv a_{e \lambda}^{\dagger}(\mathbf{p})\left|\Phi_{0}\right\rangle=\left(\cos \theta \alpha_{1 \mathrm{p}} A_{1 \lambda}^{\dagger}(\mathbf{p})+\sin \theta \alpha_{2 \mathrm{p}} A_{2 \lambda}^{\dagger}(\mathbf{p})\right)\left|\Phi_{0}\right\rangle \\
& =\cos \theta \sqrt{1 / 2+\mathrm{p} / 2 E_{1 \mathbf{p}}}\left|\nu_{1}(\mathbf{p})\right\rangle+\sin \theta \sqrt{1 / 2+\mathrm{p} / 2 E_{2 \mathbf{p}}}\left|\nu_{2}(\mathbf{p})\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
\left|\nu_{\mu}(\mathbf{p}, \lambda)\right\rangle & \equiv a_{\mu \lambda}^{\dagger}(\mathbf{p})\left|\Phi_{0}\right\rangle=\left(-\sin \theta \alpha_{1 \mathrm{p}} A_{1 \lambda}^{\dagger}(\mathbf{p})+\cos \theta \alpha_{2 \mathrm{p}} A_{2 \lambda}^{\dagger}(\mathbf{p})\right)\left|\Phi_{0}\right\rangle \\
& =-\sin \theta \sqrt{1 / 2+\mathrm{p} / 2 E_{1 \mathbf{p}}}\left|\nu_{1}(\mathbf{p})\right\rangle+\cos \theta \sqrt{1 / 2+\mathbf{p} / 2 E_{2 \mathrm{p}}}\left|\nu_{2}(\mathbf{p})\right\rangle .
\end{aligned}
$$

- Oscillation amplitude is never zero!

$$
\mathcal{A}_{\nu_{e} \rightarrow \nu_{\mu}}(t)=\frac{1}{2} \sin 2 \theta e^{-i \mathrm{p} t}\left[-\left(1-\frac{1}{4} \frac{m_{1}^{2}}{\mathrm{p}^{2}}\right)^{2} e^{-i \frac{m_{1}^{2}}{2 p} t}+\left(1-\frac{1}{4} \frac{m_{2}^{2}}{\mathrm{p}^{2}}\right)^{2} e^{-i \frac{m_{2}^{2}}{2 p} t}\right]
$$

- Define oscillating neutrino states by

$$
\begin{aligned}
\left|\nu_{e}(\mathbf{p}, \lambda)\right\rangle & \equiv a_{e \lambda}^{\dagger}(\mathbf{p})\left|\Phi_{0}\right\rangle=\left(\cos \theta \alpha_{1 \mathrm{p}} A_{1 \lambda}^{\dagger}(\mathbf{p})+\sin \theta \alpha_{2 \mathrm{p}} A_{2 \lambda}^{\dagger}(\mathbf{p})\right)\left|\Phi_{0}\right\rangle \\
& =\cos \theta \sqrt{1 / 2+\mathrm{p} / 2 E_{1 \mathbf{p}}}\left|\nu_{1}(\mathbf{p})\right\rangle+\sin \theta \sqrt{1 / 2+\mathbf{p} / 2 E_{2 \mathbf{p}}}\left|\nu_{2}(\mathbf{p})\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
\left|\nu_{\mu}(\mathbf{p}, \lambda)\right\rangle & \equiv a_{\mu \lambda}^{\dagger}(\mathbf{p})\left|\Phi_{0}\right\rangle=\left(-\sin \theta \alpha_{1 \mathrm{p}} A_{1 \lambda}^{\dagger}(\mathbf{p})+\cos \theta \alpha_{2 \mathrm{p}} A_{2 \lambda}^{\dagger}(\mathbf{p})\right)\left|\Phi_{0}\right\rangle \\
& =-\sin \theta \sqrt{1 / 2+\mathrm{p} / 2 E_{1 \mathbf{p}}}\left|\nu_{1}(\mathbf{p})\right\rangle+\cos \theta \sqrt{1 / 2+\mathrm{p} / 2 E_{2 \mathrm{p}}}\left|\nu_{2}(\mathbf{p})\right\rangle .
\end{aligned}
$$

- Oscillation amplitude is never zero!

$$
\mathcal{A}_{\nu_{e} \rightarrow \nu_{\mu}}(t)=\frac{1}{2} \sin 2 \theta e^{-i \mathrm{p} t}\left[-\left(1-\frac{1}{4} \frac{m_{1}^{2}}{\mathrm{p}^{2}}\right)^{2} e^{-i \frac{m_{1}^{2}}{2 p} t}+\left(1-\frac{1}{4} \frac{m_{2}^{2}}{\mathrm{p}^{2}}\right)^{2} e^{-i \frac{m_{2}^{2}}{2 p} t}\right] .
$$

- There is always a portion of muon neutrino in the electron neutrino and vice-versa.
- Define oscillating neutrino states by

$$
\begin{aligned}
\left|\nu_{e}(\mathbf{p}, \lambda)\right\rangle & \equiv a_{e \lambda}^{\dagger}(\mathbf{p})\left|\Phi_{0}\right\rangle=\left(\cos \theta \alpha_{1 \mathbf{p}} A_{1 \lambda}^{\dagger}(\mathbf{p})+\sin \theta \alpha_{2 \mathrm{p}} A_{2 \lambda}^{\dagger}(\mathbf{p})\right)\left|\Phi_{0}\right\rangle \\
& =\cos \theta \sqrt{1 / 2+\mathrm{p} / 2 E_{1 \mathbf{p}}}\left|\nu_{1}(\mathbf{p})\right\rangle+\sin \theta \sqrt{1 / 2+\mathbf{p} / 2 E_{2 \mathbf{p}}}\left|\nu_{2}(\mathbf{p})\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
\left|\nu_{\mu}(\mathbf{p}, \lambda)\right\rangle & \equiv a_{\mu \lambda}^{\dagger}(\mathbf{p})\left|\Phi_{0}\right\rangle=\left(-\sin \theta \alpha_{1 \mathrm{p}} A_{1 \lambda}^{\dagger}(\mathbf{p})+\cos \theta \alpha_{2 \mathrm{p}} A_{2 \lambda}^{\dagger}(\mathbf{p})\right)\left|\Phi_{0}\right\rangle \\
& =-\sin \theta \sqrt{1 / 2+\mathrm{p} / 2 E_{1 \mathrm{p}}}\left|\nu_{1}(\mathbf{p})\right\rangle+\cos \theta \sqrt{1 / 2+\mathrm{p} / 2 E_{2 \mathrm{p}}}\left|\nu_{2}(\mathbf{p})\right\rangle .
\end{aligned}
$$

- Oscillation amplitude is never zero!

$$
\mathcal{A}_{\nu_{e} \rightarrow \nu_{\mu}}(t)=\frac{1}{2} \sin 2 \theta e^{-i \mathrm{p} t}\left[-\left(1-\frac{1}{4} \frac{m_{1}^{2}}{\mathrm{p}^{2}}\right)^{2} e^{-i \frac{m_{1}^{2}}{2 \mathrm{p}} t}+\left(1-\frac{1}{4} \frac{m_{2}^{2}}{\mathrm{p}^{2}}\right)^{2} e^{-i \frac{m_{2}^{2}}{2 \mathrm{p}} t}\right]
$$

- There is always a portion of muon neutrino in the electron neutrino and vice-versa.
- In the ultrarelativistic limit, one recovers Pontecorvo's oscillation probability:

$$
P_{\nu_{e} \rightarrow \nu_{\mu}}=\sin ^{2} 2 \theta \sin ^{2}\left(\frac{\Delta m^{2}}{4 \mathrm{p}} t\right), \quad \Delta m^{2}=m_{2}^{2}-m_{1}^{2}
$$

Conclusions and outlook

Cons
[.

正

Conclusions and outlook

- Coherence of flavour states is the key element for oscillations, which cannot be implemented by usual QFT prescriptions.

Conclusions and outlook

- Coherence of flavour states is the key element for oscillations, which cannot be implemented by usual QFT prescriptions.
- Proposed prescription for constructing intrinsically coherent neutrino states, by establishing a one-to-one correspondence with the Standard Model massless neutrino states.

Conclusions and outlook

- Coherence of flavour states is the key element for oscillations, which cannot be implemented by usual QFT prescriptions.
- Proposed prescription for constructing intrinsically coherent neutrino states, by establishing a one-to-one correspondence with the Standard Model massless neutrino states.
- Procedure of defining oscillating particle states can be implemented for any type of oscillating systems ($K_{0}-\bar{K}_{0}, n-\bar{n}$, Majorana neutrinos, any number of species).

Conclusions and outlook

- Coherence of flavour states is the key element for oscillations, which cannot be implemented by usual QFT prescriptions.
- Proposed prescription for constructing intrinsically coherent neutrino states, by establishing a one-to-one correspondence with the Standard Model massless neutrino states.
- Procedure of defining oscillating particle states can be implemented for any type of oscillating systems ($K_{0}-\bar{K}_{0}, n-\bar{n}$, Majorana neutrinos, any number of species).
- Quantitatively significant differences for nonrelativistic neutrinos (see KATRIN and PTOLEMY experiments) and possibly for MSW effect (especially neutrinos in extreme conditions).

Conclusions and outlook

- Coherence of flavour states is the key element for oscillations, which cannot be implemented by usual QFT prescriptions.
- Proposed prescription for constructing intrinsically coherent neutrino states, by establishing a one-to-one correspondence with the Standard Model massless neutrino states.
- Procedure of defining oscillating particle states can be implemented for any type of oscillating systems ($K_{0}-\bar{K}_{0}, n-\bar{n}$, Majorana neutrinos, any number of species).
- Quantitatively significant differences for nonrelativistic neutrinos (see KATRIN and PTOLEMY experiments) and possibly for MSW effect (especially neutrinos in extreme conditions).
- To be elucidated:

$$
\begin{aligned}
& \text { the mechanism of interaction (production and absorbtion) of oscillating } \\
& \text { particle states. }
\end{aligned}
$$

