COSMIC STRINGS AND BLACK HOLES

Alex Vilenkin

Tufts Institute of Cosmology

Tbilisi, Sept. 2022

Cosmic strings and black holes

String loops can be captured by black holes and can interact with them in interesting ways.

Work with:

Yuri Levin, Andrei Gruzinov , Hengrui Xing, Heling Deng

Strings could be formed at a symmetry breaking phase transition in the early universe.

Nielsen & Olesen (1973) Kibble (1976)

Predicted in a wide variety of particle physics models.

Can be either infinite or closed.

 $\mu \sim \eta^2 - {\rm mass \ per \ unit \ length}$ Symmetry $10^{-34} \lesssim G\mu \lesssim 10^{-10}$ breaking scale

Tension = μ relativistic motion.

String reconnection

Loop dynamics

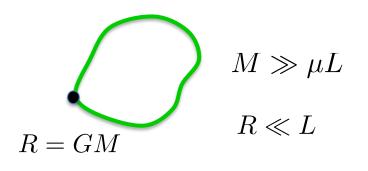
 $S = -\mu \mathcal{A} \checkmark$

Solution of NG eqs of motion:

-1

$$\mathbf{x}(\sigma, t) = \frac{1}{2} \left[\mathbf{a}(\sigma - t) + \mathbf{b}(\sigma + t) \right] \qquad \mathbf{a'}^2 = \mathbf{b'}^2 = 1$$
$$\mathbf{x}(\sigma + L, t) = \mathbf{x}(\sigma, t), \qquad L = m/\mu$$
Invariant length

Loops oscillate with a period T = L/2.


Loop captured by a black hole

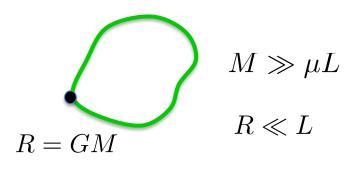
It is like a loop pinned at one point. Boundary conditions: $\mathbf{x}(0,t) = \mathbf{x}(L,t) = 0.$

$$\mathbf{x}(\sigma, t) = \frac{1}{2} \left[\mathbf{a}(\sigma - t) - \mathbf{a}(-\sigma - t) \right]$$

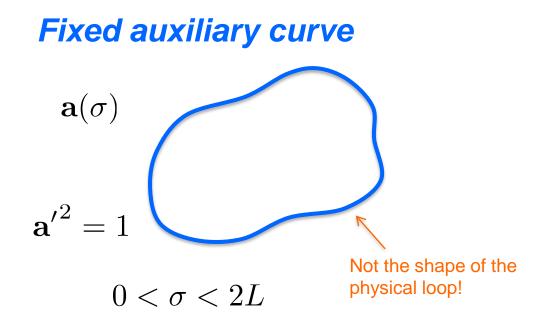
The loop oscillates with a period 2L.

H. Xing, Y. Levin, A. Gruzinov, & A.V. (2020)

 $m = \mu L$


Loop captured by a black hole

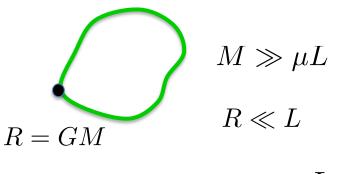
It is like a loop pinned at one point. Boundary conditions: $\mathbf{x}(0,t) = \mathbf{x}(L,t) = 0.$


$$\mathbf{x}(\sigma, t) = \frac{1}{2} \left[\mathbf{a}(\sigma - t) - \mathbf{a}(-\sigma - t) \right]$$

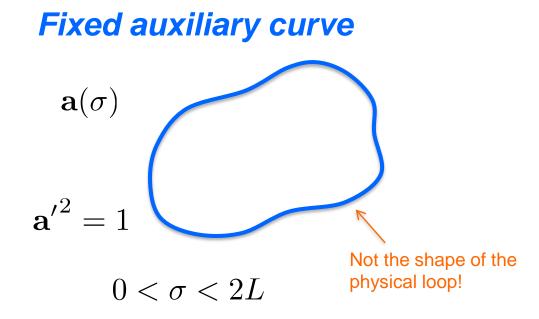
The loop oscillates with a period 2L.

```
H. Xing, Y. Levin,
A. Gruzinov, & A.V. (2020)
```

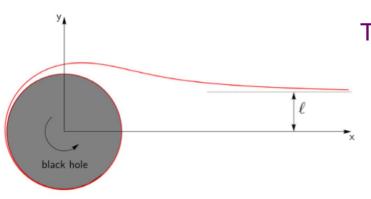

 $m = \mu L$


Loop captured by a black hole

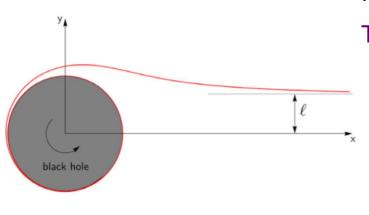
It is like a loop pinned at one point. Boundary conditions: $\mathbf{x}(0,t) = \mathbf{x}(L,t) = 0.$


 $\mathbf{x}(\sigma, t) = \frac{1}{2} \left[\mathbf{a}(\sigma - t) - \mathbf{a}(-\sigma - t) \right]$

The loop oscillates with a period 2L.

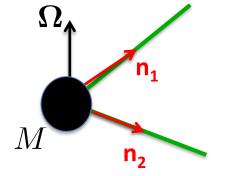


 $m = \mu L$


In the next approximation in R/L, The loop can exchange energy and angular momentum with the BH. The auxiliary curve gradually evolves.

Rotating black hole

If the string is in the equatorial plane, $\ell = 4R^2\Omega$. The torque is $Q = \mu\ell = 4\mu R^2\Omega$. Frolov et al (!989)


Rotating black hole

If the string is in the equatorial plane, $\ell = 4R^2\Omega$. The torque is $Q = \mu\ell = 4\mu R^2\Omega$. Frolov et al (!989)

Equal and opposite torque acts on the string: $\mathbf{Q} = 4\mu R^2 [\mathbf{\Omega} - (\mathbf{n} \cdot \mathbf{\Omega})\mathbf{n} - \mathbf{n} \times \dot{\mathbf{n}}]$

 $\omega = {f n} imes \dot{f n}$ – angular velocity of the string.

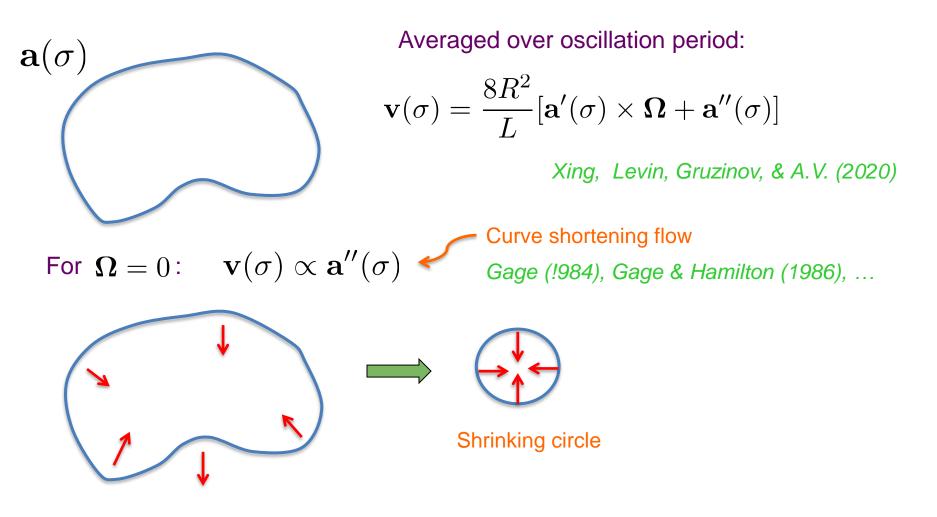
n varies on a time scale ~ L >> R \implies quasistationary

Rate of energy change:

$$\dot{E} = \mathbf{Q}_1 \cdot \omega_1 + \mathbf{Q}_2 \cdot \omega_2$$

Loop orbit evolves slowly compared to the oscillation period.

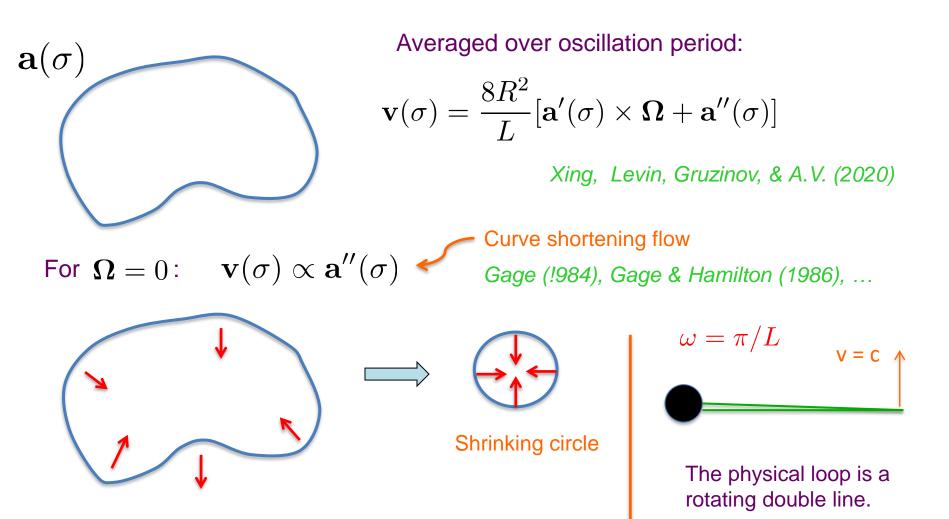
This can be described as *slow deformation of the auxiliary curve*.


Averaged over oscillation period:

$$\mathbf{v}(\sigma) = \frac{8R^2}{L} [\mathbf{a}'(\sigma) \times \mathbf{\Omega} + \mathbf{a}''(\sigma)]$$

Xing, Levin, Gruzinov, & A.V. (2020)

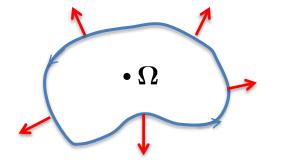
Loop orbit evolves slowly compared to the oscillation period.


This can be described as *slow deformation of the auxiliary curve*.

In the end the loop is swallowed by the BH.

Loop orbit evolves slowly compared to the oscillation period.

This can be described as *slow deformation of the auxiliary curve*.


In the end the loop is swallowed by the BH.

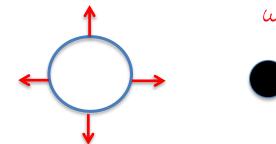
A strong emitter of gravitational waves.

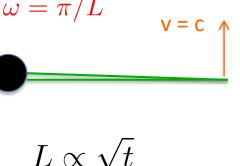
Now consider $\mathbf{\Omega} \neq 0$

$$\mathbf{v}(\sigma) = \frac{8R^2}{L} [\mathbf{a}'(\sigma) \times \mathbf{\Omega} + \mathbf{a}''(\sigma)]$$

For a maximally rotating BH: $\Omega \sim 1/R$

The 1st term dominates if $\Omega L \gg 1$. Auxiliary curve expands, approaching a circle.

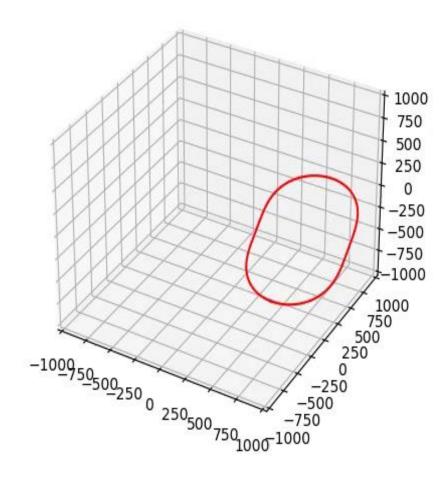

Now consider $\mathbf{\Omega} \neq 0$


$$\mathbf{v}(\sigma) = \frac{8R^2}{L} [\mathbf{a}'(\sigma) \times \mathbf{\Omega} + \mathbf{a}''(\sigma)]$$

•Ω

For a maximally rotating BH: $\Omega \sim 1/R$

The 1st term dominates if $\Omega L \gg 1$. Auxiliary curve expands, approaching a circle.

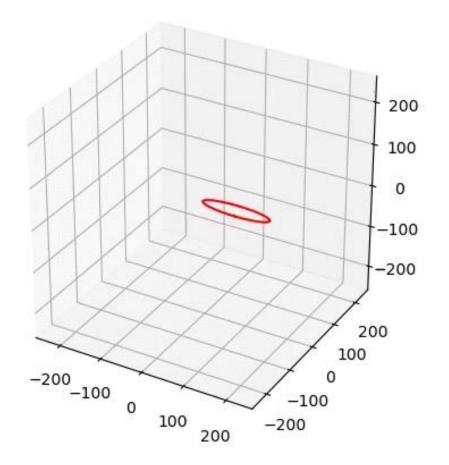

The loop grows by extracting rotational energy from the BH.

Complete spin down of a supermassive BH in 10¹⁰ yrs for $G\mu \gtrsim 10^{-15}$.

Numerical simulations

Heling Deng

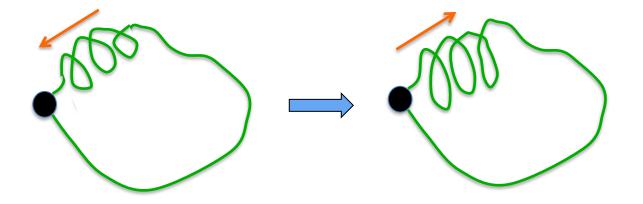
Loop in Schwarzschild spacetime


 $L_i/R \sim 100$

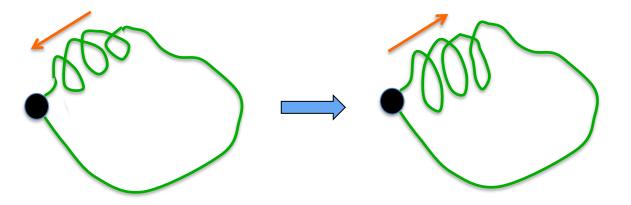
Numerical simulations

Heling Deng

Loop in Kerr spacetime

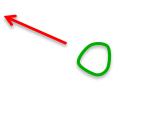


Superradiance


Helical wave amplifies upon reflection.

Zel'dovich

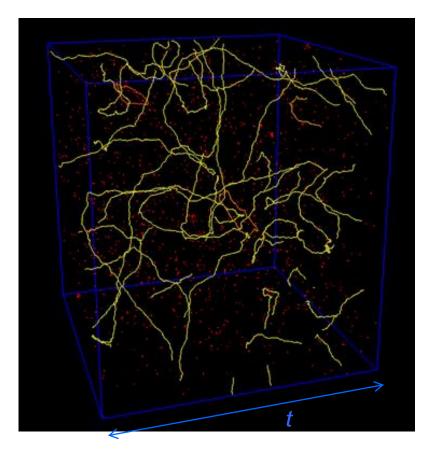
Superradiance


Helical wave amplifies upon reflection.

Then travels to the other side – and amplifies again!

Perturbations become nonlinear.

May lead to continuous loop production.



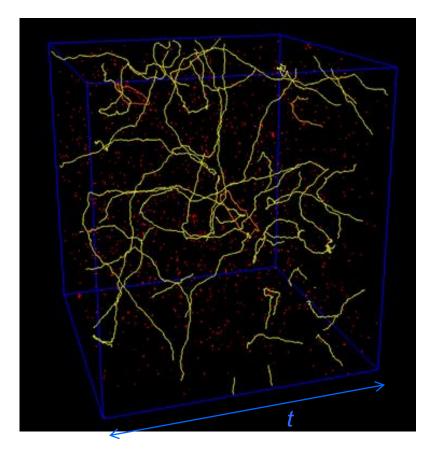
Zel'dovich

STRING EVOLUTION AND CAPTURE

Self-similar evolution

- Each horizon volume contains several long strings and a large number of loops with a wide distribution of sizes.
- Loops oscillate and decay by emitting gravitational waves.
- Loop density: $n \propto (G\mu)^{-3/2}$

Bennett & Bouchet (1990)
Allen & Shellard (1990)
Ringeval, Sakellariadou & Bouchet (2005)
Vanchurin & Olum (2005)
Blanco-Pillado, Olum & Shlaer (2011)

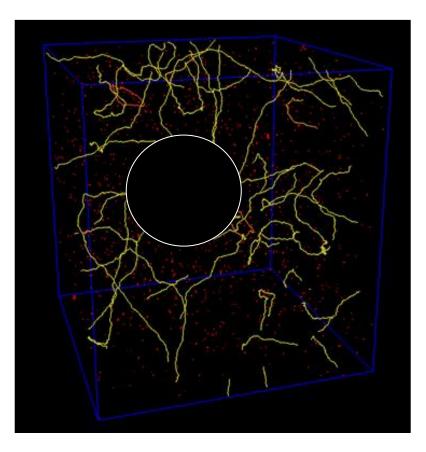

Self-similar evolution

- Each horizon volume contains several long strings and a large number of loops with a wide distribution of sizes.
- Loops oscillate and decay by emitting gravitational waves.
- Loop density: $n \propto (G\mu)^{-3/2}$

Loop capture

The probability of capture by a SMBH is *P* ~ 1 for $G\mu \lesssim 10^{-17}$.

H. Xing, Y. Levin, A. Gruzinov, & A.V. (2020)


Bennett & Bouchet (1990) Allen & Shellard (1990) Ringeval, Sakellariadou & Bouchet (2005) Vanchurin & Olum (2005) Blanco-Pillado, Olum & Shlaer (2011)

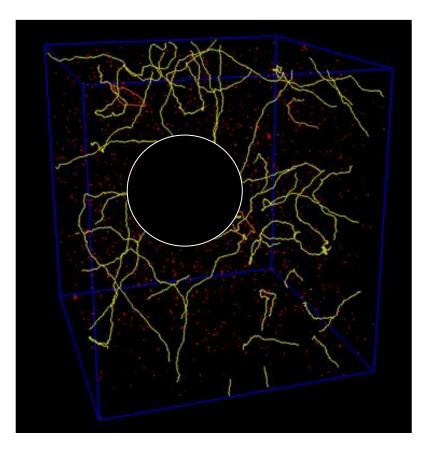
Strings and primordial BHs

A. Gruzinov, Y. Levin & A.V. (2020)

- BHs have size ~ horizon at formation.
- A few strings are captured by each BH.

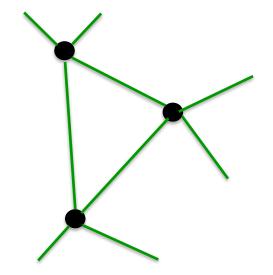
BH-string network.

Strings and primordial BHs


A. Gruzinov, Y. Levin & A.V. (2020)

- BHs have size ~ horizon at formation.
- A few strings are captured by each BH.

BH-string network.


BHs can disconnect from the network, but only with loops attached.

Numerical simulations of BH-string networks

A. Lopez, K. Olum & A.V. (in progress)

- During the radiation era, BH disconnection is very efficient. BH separation in the network grows faster than the horizon.
- In the matter era disconnection is much less efficient. BH separation may become smaller than the horizon. The strings are then stretched by the expansion and a frozen network is formed.

Conclusions

String loops are likely to be captured by SMBH in galactic centers (for sufficiently small $G\mu$) and by primordial BHs (for any $G\mu$).

A variety of physical effects:

- BH spin down
- Superradiance
- GW emission

Work in progress: reconnections, evolution of BH-string networks, etc.