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BASIC FORMALISM IN A DIELECTRIC ENVIRONMENT

Consider a pseudoscalar axion a = a(r, t) present in the entire universe, making a
two-photon interaction with the electromagnetic field.
Assume a dielectric environment where the permittivity is ε and the permeability is µ,
where these material parameters are constants. The constitutive relations are
D = εE,B = µH.
There are two field tensors, Fαβ and Hαβ , where α and β run from 0 to 3. We
assume the standard Minkowski space with the convention g00 = −1. The dual is
defined as F̃αβ = 1

2
εαβγδFγδ, with ε0123 = 1.

The field tensors are

Fαβ =


0 −Ex −Ey −Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0

 ,



Hαβ =


0 Dx Dy Dz

−Dx 0 Hz −Hy

−Dy −Hz 0 Hx

−Dz Hy −Hx 0

 .

The Lagrangian is

L = −
1

4
FαβH

αβ + A · J− ρΦ−
1

2
∂µa∂

µa−
1

2
m2

aa
2 −

1

4
gγ

α

π

1

fa
a(x)Fαβ F̃

αβ .

Here, ρ and A are the usual electromagnetic charge and current densities;
gγ is a model-dependent constant for which we adopt the value 0.36;
α is the fine structure constant, and fa is the axion decay constant whose value is
insufficiently known. Often assumed that fa ∼ 1012 GeV.



Defining the combined axion-two-photon coupling constant as

gaγγ = gγ
α

π

1

fa
,

we see that the last term in the Lagrangian can be written as Laγγ = gaγγa(x)E · B.
It is convenient to define the quantity θ(x),

θ(x) = gaγγa(x).

The extended Maxwell equations can then be written as

∇ ·D = ρ− B · ∇θ,

∇×H = J+ Ḋ+ θ̇B+∇θ × E,

∇ · B = 0,

∇× E = −Ḃ.

These equations are general, i.e., there are no restrictions so far on the spacetime
variation of a(x). The equations are moreover relativistic covariant, with respect to
shift of the inertial system.



The governing equations for the fields can correspondingly be written as

∇2E− εµË = ∇(∇ · E) + µJ̇+ µ
∂

∂t

[
θ̇B+∇θ×E

]
,

∇2H− εµḦ = −∇× J−∇×[θ̇B+∇θ×E].

Assume now a strong static magnetic field Be = Be ẑ acts in a region where ρ and J
are zero and the axion field is spatially uniform but varies harmonically in time,

a(t) = a0 cosωat.

This is the situation usually found in the inner region of a haloscope. Then it is
convenient to separate out the part of E that is caused by the uniformly fluctuating
axions. Calling this contribution Ea(t), we see that it is connected by the θ̈ term.
From the governing equation for Ea(t),

∇2Ea − εµËa = µθ̈Be



we obtain, after omitting the ∇2 term,

Ea(t) = −
1

ε
E0 cosωat ẑ,

where
E0 = θ0Be .

After the separation of the component Ea, the field equation (4) takes the reduced
form

∇2E− εµË = ∇(∇ · E) + µJ̇+ µ[θ̇Ḃ+∇θ×Ė].

Likewise for the magnetic field

∇2H− εµḦ = −∇× J−
[
θ̇∇× B+ (∇θ)∇ · E− (∇θ · ∇)E

]
.



Antenna-like behavior: One dielectric surface

Considering one single planar dielectric surface, placed at x = 0, separating the left
region 1 (refractive index n1) from the right region 2 (refractive index n2).

Assume that the media are nonmagnetic and n1, n2 constants and real. A strong
static magnetic field Be = Be ẑ is imposed in the z direction.
An incoming wave polarized in the z direction comes in from the left, propagates in the
x direction, and becomes partly reflected by the surface. The components of E and H
parallel to the surface have to be continuous (as in ordinary electrodynamics) at x = 0.

Millar et al. (2017): Because of the axions there will be produced two outgoing
electromagnetic waves, one going to the left and one going to the right. In this sense
we can consider the dielectric surface to have ”antenna-like” properties.
Distinguish the produced traveling fields by an extra index γ. Continuity of E∥ gives

Eγ
1 + E a

1 = Eγ
2 + E a

2 .



Take into account the relationship

Hγ = ±
1

n
Eγ ,

which implies
−n1E

γ
1 = n2E

γ
2 ,

expressing that the two wave vectors k1 and k2 are antiparallel. As E a = −(1/ε)E0,
we can then solve for the produced fields to get

Eγ
1 = −

E0

n1

(
1

n2
−

1

n1

)
, Eγ

2 =
E0

n2

(
1

n2
−

1

n1

)
,

(recall that E0 = θ0Be).



Two dielectric surfaces

One dielectric slab of thickness d ,surrounded by vacuum. The refractive index is
n =

√
ε.

Energy transmission coefficient

T =
∣∣ET

EI

∣∣2
in the presence of axions, ET and EI referring to the transmitted and incident wave
amplitudes. Then

T =
4n2

4n2 + (n2 − 1)2 sin2 kd
,

where k = 2π/λ = nω. This expression does not contain E0.

Special cases:
If d = λ/4 the transmission is at minimum, T = Tmin = 4n2/(n2 + 1)2,
If d = λ/2, the transmission is at maximum, T = Tmax = 1.

Compare this transmission coefficient from that occurring in ordinary electrodynamics:

Telmag =
4n2

(n2 + 1)2 − (n2 − 1)2 sin2 kd
.

It is seen that T and Telmag are different, what could be expected since their
derivations are different. Now, if d = λ/4, Telmag = 1, while if d = λ/2,
Telmag = 4n2/(n2 + 1)2, its minimum value.



The closed string geometry

Consider dielectric systems containing two interfaces separating media of refractive
indices n1 and n2, but assume that the media are elastic so that medium 2 can be
”turned back” and glued to the left side of medium 1. Therewith one gets a
ring-formed system. Does such a system allow stationary oscillations to occur when
axions are present?

Let σ denote the length coordinate along the string, such that the two dielectric
junctions are at σ = 0 and σ = LI . The total length of the string is L = II + LII , so
that the junctions σ = 0 and σ = L are overlapping. We will be interested in the fields
in the interior regions of the string. The string is lying in the xy plane, and a strong
uniform magnetic field Be is applied in the z direction.
Seek for stationary oscillations of the electromagnetic oscillations in the ring. If
EI (σ, t) and EII (σ, t) are the electric fields in the two regions, one has

EI (σ, t) = ξI e
in1ωσ−iωt + ηI e

−in1ωσ−iωt ,

EII (σ, t) = ξII e
in2ω(σ−LI )−iωt + ηII e

−in2ω(σ−LI )−iωt ,

, where ξI , ηI , ξII , ηII are constants. Analogously, using the same relationship
H = ±nE as previously, we have for the magnetic field

HI (σ, t) = n1
[
ξI e

in1ωσ−iωt − ηI e
−in1ωσ−iωt

]
,

HII (σ, t) = n2
[
ξII e

in2(σ−LI )−iωt − ηII e
−in2ω(σ−LI )−iωt

]
.



We omit the time factor e−iωt and introduce the shorthand notation

δ1 = n1ωLI , δ2 = n2ωLII .

The boundary conditions at the junctions are, for the electric field,

−
E0

ε1
+ ξI e

iδ1 + ηI e
−iδ1 = −

E0

ε2
+ ξII + ηII , σ = LI ,

−
E0

ε2
+ ξII e

iδ2 + ηII e
−iδ2 = −

E0

ε1
+ ξI + ηI , σ = L,



and for the magnetic field,

n1(ξ1e
iδ1 − ηI e

−iδ1 ) = n2(ξII − ηII ), σ = LI ,

n1(ξI − ηI ) = n2(ξII e
iδ2 − ηII e

−iδ2 ), σ = L,

where E0 = θ0Be = gaγγa0Be as before.
We introduce the symbol x for the refractive index ratio,

x =
n1

n2
,



and consider the scheme
e iδ1 e−iδ1 −1 −1

1 1 −e iδ2 −e−iδ2

xe iδ1 −xe−iδ1 −1 1
x −x −e iδ2 e−iδ2




ξI
ηI
ξII
ηII

 =


E0

(
1
ε1

− 1
ε2

)
E0

(
1
ε1

− 1
ε2

)
0
0

 .

Here the determinant D of the system matrix Mik can be calculated to be

D = detMik = −8x + 2(1 + x)2 cos(δ1 + δ2)− 2(1− x)2 cos(δ1 − δ2).

This is a real quantity.

We can now calculate explicit expressions for the field amplitudes ξI , ηI , ξII , ηII ,in the
two regions of the string.



One particular case of interest:

x =
n1

n2
→ 0.

The lengths LI and LII are assumed arbitrary. Then

D(x → 0) = 2 cos(δ1 + δ2)− 2 cos(δ1 − δ2) = −4 sin δ1 sin δ2,

which leads to

ξI =
E0

2ε1

[
1− i

1− cos δ1

sin δ1

]
, x → 0.

This expression does not contain the phase δ2 related to the length LII .

It is of further interest to consider LI → 0, corresponding to a kind of point defect
sitting on an otherwise uniform string. As δ1 → 0 in this case, it follows that

ξI =
E0

2ε1
, x → 0, LI → 0,

which is a real quantity. If E0 = 0, the axion-induced forced oscillations vanish.
In conclusion, the axionic electrodynamic scheme is flexible enough to upheld
stationary oscillations in the closed string geometry.



Casimir effect for the closed string

Now put E0 = 0, so that the forced axion-induced oscillations vanish, and those
remaining possible are only the free oscillations. They correspond to the system
determinant D being zero. Striking similarity to the Casimir teory for a relativistic
piecewise uniform string.
Uniform string, x = 1, corresponds to n1 = n2 = n. Then,

D(x = 1) = −8(1− cosωnL),

so that the eigenfrequencies become

ωN =
2πN

nL
,

with N = 1, 2, 3, ... After applying regularization (for instance cutoff), we obtain the
Casimir energy

Euniform = 2×
1

2

∞∑
N=1

ωN ,

where the factor 2 in front accounts for the degeneracy of the left-right running
modes. The result is (Brevik - Nielsen 1990)

Euniform = −
π

6L
.



The case of arbitrary x

Can make use of the argument principle: Any meromorphic function g(ω) satisfies the
equation

1

2πi

∮
ω

d

dω
ln g(ω)dω =

∑
ω0 −

∑
ω∞,

where ω0 are the zeros and ω∞ are the poles of g(ω) inside the contour of
integration. Contour is taken to be a semicircle of large radius R in the right half
plane. A definite advantage of this method is that the multiplicities of zeros and poles
are automatically included. (van Kampen et al., 1968).

For the function g(ω) it is natural to start from the expression for D above, but
normalized it in a convenient way. We first introduce a convenient parametrization
which relates the pieces LI and LII to the total length L,

LI = pL, LII = qL, p + q = 1.

Then, define the quantity A as

A =
1

4
(1 + x)2 cos[(n1p + n2q)ωL]−

1

4
(1− x)2 cos[(n1p − n2q)ωL].



For a uniform string, x = 1 (n1 = n2 = n), we have A = cos(nωL). We now define
g(ω) as

g(ω) =
∣∣1− A

A

∣∣.
With this form, the big semicircle does not contribute to the integration. Let ω = iξ,
where ξ is the frequency along the imaginary axis. This Wick rotation implies that the
quantity A goes into

A → A(ξ) =
1

4
(1 + x)2 cosh[(n1p + n2q)ξL]−

1

4
(1− x)2 cosh[(n1p − n2q)ξL].

By performing a partial integration along the imaginary axis, observing that the
positive and negative frequencies contribute equally, we obtain for the Casimir energy

E =
1

2π

∫ ∞

0
ln
∣∣1− A(ξ)

A(ξ)

∣∣dξ.
To simplify the formalism somewhat, choose n1 = 1, the lowest possible value for n1 in
nondispersive theory. Then n2 = 1/x . Also choose L = 1. This implies

A(ξ) =
1

4
(1 + x)2 cosh

[(
p +

q

x

)
ξ
]
−

1

4
(1− x)2 cosh

[(
p −

q

x

)
ξ
]
.



1. The case of a uniform string.
In this case A(ξ)

∣∣
x=1

= cosh ξ for all p, and one gets

Euniform =
1

2π

∫ ∞

0
ln
∣∣1− cosh ξ

cosh ξ

∣∣dξ = −
3π

16
.

2. The case when p = 1/2.
The string is then divided into two equal halves, the refractive index x being arbitrary.
Now

A(ξ)
∣∣
p=1/2

=
1

4
(1 + x)2 cosh

[(
1 +

1

x

)
ξ

2

]
−

1

4
(1− x)2 cosh

[(
1−

1

x

)
ξ

2

]
,

and the Casimir energy is found by inserting this expression into the expression for E
above.
3. The case when p → 0.
This case is of interest since it corresponds to a ”particle” sitting on a uniform string.
One has now A(ξ)

∣∣
p→0

= x cosh(ξ/x), and the Casimir energy becomes

E =
1

2π

∫ ∞

0
ln
∣∣1− x cosh(ξ/x)

x cosh(ξ/x)

∣∣dξ.
Without loss of generality we can assume that x lies in the interval 0 < x < 1. Figures
1 and 2 show how E varies with x in the respective two cases. Of special interest is
when x → 0 in case 3, as this corresponds to a particle of maximum refractive index
contrast sitting on a uniform string.



Curvature-induced enhancement of the produced electric field at a
dielectric boundary

Return to the axion field, and focus on a cylindrical haloscope. An enhancement of
this field will occur near the centre of the cylinder. The enhancement is solely caused
by the curvilinear geometry.
Assume a cylindrical vacuum region with radius R, surrounded by an exterior massive
nonmagnetic environment. A strong uniform static magnetic field Be is acting in the z
direction. Assume only time-varying axions, together with the extra photons Eγ that
they generate at the boundary. No propagation of electromagnetic modes are assumed
to take place in the z direction.
Expansion, in ordinary electrodynamics,

Eext
z = H

(1)
0 (k2r)aexte

−iωt , Hext
θ = in2H

(1)′

0 (k2r)aexte
−iωt ,

E int
z = J0(ωr)ainte

−iωt , H int
θ = iJ′0(ωr)ainte

−iωt .

Azimuthal symmetry is assumed, so that only zeroth order p = 0 applies. Outgoing
waves are assumed on the outside, and on the inside a stationary wave field is
assumed, finite at the center.



In the present case: the antenna-like property of the boundary r = R causes radiation
to occur into the inward region also. That means, J0 has to be replaced by the Hankel

function H
(2)
0 of the second kind:

E int
z = H

(2)
0 (ωr)ainte

−iωt , H int
θ = iH

(2)′

0 (ωr)ainte
−iωt .

As before, k2 = n2ω with n2 real. The coefficients aext and aint are determined by the
boundary conditions at r = R:

Eγ
2 → H

(1)
0 (k2R)aexte

−iωt , Eγ
1 → H

(2)
0 (ωR)ainte

−iωt .

For simplicity, assume that the radius R is so large that

H
(1)
0 (ρ) =

√
2

πρ
e i(ρ−π/4), H

(2)
0 (ρ) =

√
2

πρ
e−i(ρ−π/4), ρ ≫ 1.

As H
(1)′

0 (ρ) = iH
(1)
0 (ρ), H

(2)′

0 (ρ) = −iH
(2)
0 (ρ), we can write the boundary conditions

as

H
(1)
0 (k2R)aext −

E0

ε2
= H

(2)
0 (ωR)aint − E0,

n2H
(1)
0 (k2R)aext = −H

(2)
0 (ωR)aint,



where E0 = θ0Be , as before. The coefficients aext and aint can then be found.

H
(1)
0 (k2R)aext = −

E0

n2

(
1−

1

n2

)
,

H
(2)
0 (ωR)aint = E0

(
1−

1

n2

)
,

in agreement with plane geometry results.

Near the center of the cylinder: Logarithmic increase of H
(2)
0 (ρ). Thus

curvature-induced enhancement of the generated electric field. To prevent instability,
imagine a perfect cylindrical absorber of small radius r = δ centered at the z axis.

Let the inward-generated field at r = R be represented by H
(2)
0 (ωR), and use the

approximation

H
(2)
0 (ρ) = J0(ρ)− iN0(ρ) = 1 +

2i

π
ln

2

γρ
, ρ ≪ 1,

with γ = 1.78107.
Consider magnitudes only. Calculate the ratio

∣∣∣ Eγ
z (δ)

Eγ
z (R)

∣∣∣ = ∣∣∣ H(2)
0 (ωδ/c)

H
(2)
0 (ωR/c)

∣∣∣ = ∣∣∣1 + 2i
π
ln 2c

γωδ

H
(2)
0 (ωR/c)

∣∣∣.



Numerical estimates.

Take R = 20 cm, and mac2 = 10−4 eV for the axion energy, what corresponds to
ω = 1.52× 1011 rad/s. Then ωR/c = 1.0× 102, thus justifying use of the above

approximation. One gets |H(2)
0 (ωR/c)| = 0.080 . With the minimum radius

δ = 100 µm, corresponding to ρmin = ωδ/c = 0.051, it is seen that also the
low-argument approximation (20) is justified. We obtain∣∣∣ Eγ

z (δ)

Eγ
z (R)

∣∣∣ = 12.5× |1 + 2.0 i | = 28.0.

There occurs thus a considerable enhancement of the amplitude near the cylinder
center.
This enhancement is solely a geometrical focusing effect, being an extension of the
theory worked out earlier for plane geometry. An observation of the increased signal
near r = 0 may be of experimental interest. The idea may be looked upon as an
alternative to the idea recently put forward by Liu et al. (PRL 2022), concerning the
broadband solenoidal haloscope.

Collaboration with Amedeo Favitta and Masud Chaichian.



Electromagnetic energy-momentum tensor in a dielectric
environment

As before, assume that ε and permeability µ are constants.
Start from the Poynting vector,

S = E×H.

In ordinary electrodynamics when a wave falls from vacuum normally onto a dielectric
surface, the same expression for S has to hold in the interior also, as the field is unable
to do work when passing a dielectric surface at rest.
Energy conservation equation

∇ · S+ Ẇ = −E · J− gaγγ(E · B)ȧ,

where

W =
1

2
(E ·D+H · B)

is the electromagnetic energy density. There is an exchange of electromagnetic energy
with the axion ”medium”, if E and B are different from zero and a(t) is time-varying,
even if J = 0.
Balance equation for electromagnetic momentum: What the momentum density g?
Planck’s principle of inertia of energy says that

g = S/c2

(in physical units). That would mean the Abraham momentum density:

gA = E×H.



Consider the usual Maxwell stress tensor,

Tik = EiDk + HiBk −
1

2
δik (E ·D+H · B).

This expression is common for the Abraham and Minkowski alternatives,
TA
ik = TM

ik ≡ Tik .
The momentum conservation equation takes the form

∂kTik − ġA
i = f Ai ,

where f Ai are the components of Abraham’s force density

fA = ρE+ (J× B) + (εµ− 1)
∂

∂t
(E×H)− gaγγ(E · B)∇a.

This agrees with Landau and Lifshitz (1984), Chaichian et al. (2016), Møller (1972),
Brevik (1979) and others ( electrostriction omitted). Electrostriction can be omitted
because it does not contribute to the total force on the axion cloud.



The third term on the right hand side, the Abraham term, has experimentally turned
up only in a few experiments, mainly at low frequencies where the mechanical
oscillations of a test body are directly detectable.
The Walker-Lahoz experiment from 1975 tested the oscillations of a high-permittivity
disk acting as a torsional pendulum.
In optics, the Abraham force will fluctuate out. It is therefore mathematically simpler,
and in accordance with all observational experience in optics, to include the Abraham
momentum (physically, a mechanical accompanying momentum) in the effective field
momentum. Therewith, the momentum density becomes simply the Minkowski
momentum gM, given by

gM = D× B.



Momentum conservation equation in the Minkowski case

∂kTik − ġM
i = f Mi ,

where
fM = ρE+ (J× B)− gaγγ(E · B)∇a.

Relativistically covariant form for the energy-momentum balance: Minkowski’s
energy-momentum tensor

SMν
µ = FµαH

να −
1

4
gν
µFαβH

αβ ,

which has the same form in all inertial frames. Then the conservation equations for
electromagnetic energy and momentum can be written as

−∂νS
Mν
µ = f Mµ ,

where f Mµ = (f0, fM) is the four-force density. In the rest system,

f0 = E · J+ gaγγ(E · B)ȧ,

where f M0 = f A0 ≡ f0.



Application 1: Space-dependent axions

Assume ρ = J = 0, and ȧ = 0 so that a = a(r) is a function of position only.
Of possible interest in the early universe: the Peccei-Quinn scalar field may vary in
space (typically as a tanh function of the spatial coordinate).
In galactic haloes the axions may behave differently from what they do in the open
space.
Generalized Maxwell equations reduce to

∇ ·D = −gaγγB · ∇a,

∇×H = gaγγ∇a× E,

∇ · B = 0,

∇× E = 0.

It is natural to define
ρa = −gaγγB · ∇a,

Ja = gaγγ∇a× E.



Assume there is one homogeneous material plate, of infinite extent in the horizontal x
and y directions, extending in the vertical direction from z = 0 to z = L. Assume that
a strong magnetic field B0 is applied in the z direction, and a strong electric field E0

applied in the x direction,
B0 = B0ẑ, E0 = E0x̂.

Axion-generated charges and currents are expected to be small:

B = B0 + Ba, E = E0 + Ea,

Thus neglect second order terms Ba · ∇a and ∇a× Ea.

ρa = −gaγγ∇ · (aB0),

Ja = −gaγγ∇× (aE0).

Assume that the axion field has a constant gradient in the z direction inside the plate,

a(z) = αz, 0 < z < L,

where α > 0 is constant, not necessarily small. Express α as α = a0/L, where a0 is the
maximum value at z = L. In the outside regions, a(z) = 0.



Integration across the boundary z = L yields the surface charge density,

σa = gaγγa0B0,

whereas in the interior region the volume charge density is

ρa = −gaγγαB0.

Thus, the total charge ρaL in the interior region per unit surface balances the surface
charge density,

ρaL+ σa = 0.

After the imposition of the strong external fields B0 and E0, the plate remains
electrically neutral.
Correspondingly, for the current densities Ja one obtains first a surface current density,

Ka = −gaγγa0E0ŷ,

while in the interior
Ja = gaγγαE0ŷ.

Thus, the total current in the interior per unit surface, JaL, balances the contribution
from the surface,

JaL+ Ka = 0.

There is no net current in the y direction. Note that ε and µ do not appear.



Consider next the axionic magnetic and electric fields. From Maxwell’s equations

Ha = gaγγαzE0,

Da = −gaγγαzB0.

The induced magnetic and electric fields are thus respectively horizontal and vertical,
increasing linearly in the z direction. At the bottom of the plate, z = 0, the induced
fields vanish.
As B0 and E0 are orthogonal, it follows that

fA = fM = 0.

What is the force Fsurface on the layer z = L? That force is zero:

Fsurface = σaE0 + Ka × B0 = 0.

There is thus in this case no electromagnetic force on the plate due to the interaction
with axions.
The fourth component

f0 = 0.



Application 2: Time-dependent axions

Assume that the axion field depends only on time, a = a(t). Assume hereafter
ε = µ = 1. Maxwell’s equations become

∇ · E = 0,

∇×H = Ė+ gaγγ ȧH,

∇ ·H = 0,

∇× E = −Ḣ,

while the field equations reduce to

∇2E− Ë = gaγγ ȧḂ,

∇2H− Ḧ = −gaγγ ȧ∇×H.

The axion-generated field Ea has been split off.



Assume now that in the outer space

a(t) = a0 sinωat.

Put ωa = ma, and take ma = 10 µeV. In physical units, ωa = 1.52× 1010 rad/s. which
corresponds to an oscillation wavelength of λa = 2π/ωa = 12.4 cm. Associate axions
with dark matter, whose energy density is estimated to be ρDM = 0.35 GeV/cm3.

ρa =
1

2
m2

aa
2
0.

Take the initial shape of an electromagnetic wave emitted from the Earth to be

A0(x , t) = c e−x2/2D2
cos k0x ŷ,

where A0 is the vector potential, c is the wave amplitude. With

A0(x .t) =
1

2

∫ ∞

−∞

[
A0(k)e

i(kx−ωt) + A∗
0 (k)e

−i(kx−ωt)
]
dk,

one obtains by inversion

A0(k) =
1

2π

∫ ∞

−∞
e−ikx

[
A0(x , 0) +

i

ω

∂A0

∂t
(x , 0)

]
dx .



With the assumption
∂A0

∂t
(x , 0) = 0

one then gets
A0(k) = A+

0 (k) + A−
0 (k),

where

A+
0 (k) =

cD

2
√
2π

exp

[
−
1

2
D2(k − k0)

2

]
ŷ.

Thus

A+
0 (x , t) =

∫ ∞

0
A+
0 (k) cos(kx − ωt)dk, ω = k > 0.

Omit the superscript plus. Incident wave components are

E0(x , t) = −Ȧ0(x , t), H0(x , t) = ∇× A0(x , t).

Force from the incident wave on the axions: f = 0. Related to the axion cloud
assumed homogeneous.
The dissipation component f0 is also zero, since the incident fields E0 and H0 are
orthogonal.



In order to calculate the interacting fields, go back to the field equations (Sikivie
2021). For the magnetic potential,

∇2A− Ä = −gaγγ ȧ∇× A,

in which we let A → A0 on the right hand side.
Neglect ∇2A on the left hand side,

Ä(x , t) = −gaγγa0ωa

∫ ∞

0
A0(k)k sin(kx − ωt) cosωat dk ẑ.

Write the trigonometric product as a sum of two terms, and extract the term that
leads to resonance. In complex representation,

Ä(x , t) =
1

2
gaγγa0ωaIm

∫ ∞

0
A0(k)ke

i(kx−ωt+ωat) ẑ.

Defining A(k, t) via

A(x , t) = Im

∫ ∞

0
e ikxA(k, t)dk,

one can write

Ä(k, t) = −
1

2
gaγγa0ωaA0(k)ke

−i(ω−ωa)t ẑ.



Defining
A(k, t) = A(k, t)e−iωt ,

one gets
Ä(k, t) = Ä(k, t)e iωt + 2iωȦ(k, t)e iωt − ω2A(k, t)e iωt ,

Keep only the resonance producing term containing Ȧ(k, t):

Ȧ(k, t) =
i

4
gaγγa0ωaA0(k)e

−i(2ω−ωa)t ẑ.

After integration with respect to t:

A(k, t) = −gaγγa0ωa
cD

8
√
2π

exp

[
−
1

2
D2(k − k0)

2

]
e−i(2ω−ωa)t

2ω − ωa
ẑ.

Resonance occurs when ω = ω/2. Imaginary part:

lim
sinαx

πx

∣∣
α→∞ = δ(x),



Result:

ImA(k, t) = gaγγa0ωa
cD

16

√
π

2
exp

[
−
1

2
D2(k − k0)

2

]
δ(ω −

1

2
ωa) ẑ.

From this interaction term at resonance, one can calculate the axion echo. The
Gaussian profile in the emitted wave from the Earth influences the strength of the
effect. To receive a maximum echo, the center frequency k0 = ω0 in the pulse should
be chosen equal to the resonance value of k, which is ωa/2.

Collaboration with Moshe Chaichian. To appear in Int. J. Mod. Phys. A.


