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Reminder: Non-Perturbative QCD Vacuum

▶ QCD: θ-term LQCD ⊃ θGG̃ is made
physical by non-perturbative effects [1].
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physicality is unknown → assumption!
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structures, massive pseudoscalars [3].
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Non-perturbative topological
effects in pure gravity.
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Physical θ-term in pure
gravity: ⟨RR̃,RR̃⟩p→0 ̸= 0.

Neutrino flavor symmetry
breaking through chiral
gravitational anomaly.

Neutrino condensation
below scale ΛG : ⟨ν̄ν⟩ ≠ 0.

Emergence of ην and up to
14 massless Goldstones ϕk .
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The Model: Neutrino Mass Generation

▶ Small effective neutrino mass generation through
non-perturbative coupling to neutrino condensate?

▶ Coupling analogous to ’t Hooft vertex in QCD [8].
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▶ Effective potential allows for neutrino mass hierarchy:
V (X̂ ) =

∑
n

1
ncn Tr[(X̂

+X̂ )n] with X̂αR
αL

≡ ⟨ν̄αL
ναR

⟩
→ ∂V /∂xi = 0 determines X̂ = diag(x1, x2, x3).

▶ Mechanism works for Dirac and Majorana masses.

[8] ’t Hooft (1986).
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Constraints: Symmetry Breaking Scale ΛG

Neutrino condensate |⟨ν̄ν⟩| ∼ scale Λ3
G ∼ temperature T 3

χSB

∼ 0.3 eV
Upper bound from

SM and cosmology [9].

∼ 4 meV
Lower bound from

∆mν and gravity [10].

→ Neutrino vacuum condensate ⟨ν̄ν⟩ on dark energy scale

[9] Archidiacono, Hannestad (2014). [10] Tanabashi et al. (Particle Data Group) (2018).

Image credits: NASA / WMAP Science Team [http://map.gsfc.nasa.gov/] and Patterson (2005).
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Phenomenological Implications

Weakened cosmological neutrino mass bounds.

▶ Relic neutrinos massless until late phase transition at TχSB ≲ ΛG .

▶ Neutrinos decay & (partially) annihilate →
∑

i mνi ��≲ 0.12 eV [11].

⇒ Masses mνe ≲ 0.8 eV [12] still allowed, measurable at .

Impact on other cosmic parameters.

Decaying dark energy?

0.2 0.4 0.6 0.8 1.0

Ωm

0.50

0.75

1.00

1.25

σ
8

Supercool-ν KiDS WL

Planck lensing

Planck SZ+BBN

Planck CMB

σ8(Ωm) for late mν

0.2 0.4 0.6 0.8 1.0

Ωm

0.50

0.75

1.00

1.25

σ
8

ΛCDM+
∑

mν KiDS WL

Planck lensing

Planck SZ+BBN

Planck CMB

vs. σ8(Ωm) for ΛCDM

1.5 3.0 4.5 6.0

Σmν[eV]

0.50

0.55

0.60

0.65

0.70

Ω
Λ

ΛCDM+Σmν

late mν

ΩΛ(mν) for both models

[11] Aghanim et al. (Planck) (2018). [12] Aker et al. (KATRIN) (2019).

Image credit: KATRIN [http://www.ikp.kit.edu/]. Plots: Lorenz, LF, Calabrese, Hannestad (2018).
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i mνi ��≲ 0.12 eV [11].

⇒ Masses mνe ≲ 0.8 eV [12] still allowed, measurable at .

Impact on other cosmic parameters. Decaying dark energy?
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Phenomenological Implications

Cross-check: neutrino masses as a function of time?

▶ “Model-independent” cosmological reconstruction of
∑

mν [14].

▶ Mass bound increases around onset of dark energy domination.

⇒ Parameter degeneracy and/or new physics?
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[14] Lorenz, LF, Löffler, Calabrese (2021).



Phenomenological Implications

Cross-check: neutrino masses as a function of time?

▶ “Model-independent” cosmological reconstruction of
∑

mν [14].

▶ Mass bound increases around onset of dark energy domination.

⇒ Parameter degeneracy and/or new physics?

10 1 100 101 102 103

z

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

m
 (e

V)

CMB + CMBL + BAO + SN 68% CL
95% CL
Non-relativistic transition
DE domination
m (z)=const. (95% CL)
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Phenomenological Implications

Soft topological defects in Dirac case

▶ Symmetry: SU(3)V → U(1)× U(1), SU(3)A → 1, U(1)A → Z2

▶ Monopoles, skyrmions, string-wall network quickly annihilate [15]

Soft topological defects in Majorana case

▶ Symmetry: SU(3)L → Z2 × Z2, U(1)L → Z2

▶ Two string-wall networks: “anomalous” one quickly annihilates

▶ Other network: yields time-dependent neutrino mixing angles

▶ Time scale: ∆ (θij , αk , δ) = O(1) after ∆t = ξ/v , v = 230 km/s

▶ Observable at Daya Bay? ∆t = 6 y, ∆d = v∆t = 4× 1013 m ∼ ξ

[15] Dvali, LF, Vachaspati (2021). Image credit: Roy Kaltschmidt, Berkeley Lab.
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Phenomenological Implications

Astrophysical neutrinos:

▶ Enhanced neutrino decays: distinct flavor patterns at Earth.

▶ Majorana vs. Dirac neutrinos: different decay channels νi → νj + ϕ
and νi → ν j +ϕ observable in solar (and future IceCube) data [15].

[15] LF, Raffelt, Vitagliano (2019).
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Phenomenological Implications

Gravity measurements:

▶ Different polarization intensities of gravitational waves [16].

▶ ...

New particle detection:

▶ Searching for new ϕ bosons in axion-like experiments [17].

▶ ...

[16] Jackiw, Pi (2003).

[17] Dvali, LF (2016b), “Domestic Axion” solution to strong CP problem.

Image credits: The SXS Project [https://www.ligo.caltech.edu/]

and Kim, Carosi (2008).
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Seesaw mechanisms.
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Backup – String-Wall Network in Majorana Case

Topological defects

▶ Inter-string separation: ξ = 1014 m
(
λ
1

) (
ΛG

1 meV

) 7
2

(
1
aG

)

▶ Domain wall width: δDW = 1
mϕk

= 8× 1014 m
(

mτ

ml

)(
1 meV

ΛG

)2

Impact on neutrino mixing angles

▶ Winding: ⟨Φ(θ)⟩ = ωT (θ)⟨Φ⟩ω(θ) ̸= ⟨Φ(0)⟩ changes flavor
▶ Time scale: ∆(θij , αk , δ) = O(1) after ∆t = ξ/v , v = 230 km/s

▶ Example: ∆t = d/v ∼ 1 h for ξ < δDW = 8× 108 m, ΛG = 1 eV

Experimental constraints

▶ Daya Bay data: sin2(2θ13) = 0.0856± 0.0029, angle could exhibit
time-dependent change of sin2(2× 2πvt/δDW) ≲ 2× 0.0029

▶ Still viable: ξ < δDW with ΛG ≲ 0.2 meV and ξ > δDW

Dvali, LF, Vachaspati (2021).



Backup – Binned Reconstruction of Neutrino Masses
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Image credit: Lorenz, LF, Löffler, Calabrese (2021).



Backup – Reconstruction with Wider Redshift Bins
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Image credit: Lorenz, LF, Löffler, Calabrese (2021).



Backup – Reconstruction with Linear Splines

Mass reconstruction with Bayesian regression splines and variable knots

⇒ Two new parameters: the knots (change points) z1 and z2
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Image credit: Lorenz, LF, Löffler, Calabrese (2021).



Backup – Dark Energy and Neutrino Masses

Impose prior on ΩΛ to test degeneracy between ΩΛ and mν

→ Constraint on
∑

mν(z = 0) decreases by 42% but is still large
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Backup – Constrain Extended Neutrino Models

Reconstruction results can be converted into neutrino mass bound for
neutrino decay models [1]:

∑
mν < 0.21 eV (95% CL) [2]

→ Bound too low for possible KATRIN detection of mβ ≥ 0.2 eV
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[1] e.g., Chacko et al. (2019), [2] Lorenz, LF, Löffler, Calabrese (2021).



Backup – Data Sets and Redshift Ranges

Data set Redshift range

Planck 2018 CMB TTTEEE mostly z = 1100
Planck 2018 CMB lowl mostly z = 1100
Planck 2018 CMB lowE mostly z = 8, 1100
Planck 2018 CMB lensing 0 ≤ z ≤ 1100
BAO (6dF) z = 0.106
BAO (SDSS DR7 BOSS MGS) z = 0.15
BAO (SDSS DR12 BOSS) z = 0.38, 0.51, 0.61
BAO (SDSS DR14 eBOSS quasars) z = 1.52
BAO (SDSS DR14 eBOSS Ly-α) z = 2.34
BAO (SDSS DR14 eBOSS cross Ly-α-QSO) z = 2.35
SN (Pantheon) 0.01 < z < 2.3



Backup – Three-form Higgs Effect

▶ Chern-Pontryagin density: EG ≡ RR̃ = εµνρσRα
βµνR

β
αρσ = dCG

▶ Chern-Simons three-form: CG ≡ ΓdΓ− 3
2ΓΓΓ

▶ Effective Lagrangian for CG : L = 1
2Λ4

G
E 2
G + θGEG + higher orders [3]

▶ With neutrino: L = 1
2Λ4

G
E 2
G − 1

ΛG
ηνEG + 1

2∂µην∂
µην , ην = 1

Λ2
G
ν̄γ5ν

▶ Equation of motion for ην : □ην + 1
ΛG

EG = 0, in vacuum: RR̃ = 0.

▶ Equation of motion for CG :
(
□+ Λ2

G

)
EG = 0, mass gap generated.

[3] Dvali (2005); Dvali, Jackiw, and Pi (2006); Dvali, Folkerts, and Franca (2014).



Backup – Formation of Condensate

▶ High-energy formulation: vacuum angle θG made unobservable due
to arbitrary shift by chiral rotation of massless neutrino field

▶ Low-energy formulation: EG = RR̃ screened in vacuum by massless
neutrino, as CG “eats up” pseudoscalar ην and becomes massive

▶ Integrated e.o.m. of EG : ⟨RR̃⟩q→0 ≃ −θGmνΛ
3
G = −θGmν⟨ν̄ν⟩

▶ From Lagrangian:L = 1
2Λ4

G
E 2
G − 1

ΛG
ηνEG + 1

2∂µην∂
µην − 1

2mνΛGη
2
ν

▶ Effective potential: V (X̂ ) =
∑

n
1
nc2n Tr[(X̂

+X̂ )n], X̂αR
αL

≡ ⟨ν̄αL
ναR

⟩

▶ Extrema: ∂V
∂xj

= x∗j

(∑
n c2n|x |

2(n−1)
j

)
= 0 for X̂ = diag(x1, x2, x3)

Dvali, LF (2016a).



Backup – Structure of Fermion Condensates

▶ Flavor structure of condensate determined by minimization of
effective potential for following order parameters:

X̂i j̄ ≡ ψiψcj̄ , Xij ≡ ψiCψj , X̄ī j̄ ≡ ψcīCψcj̄ ,

▶ 1) Flavor-invariant terms, Tr(X̂+X̂ ), Tr(X̂+X̂ X̂+X̂ ), ... , Tr(X+X ),
Tr(X̄+X̄ ), Tr(X̂X+X̄ X̂ ), ... . In effective potential: infinite
polynomial of invariants scaled by powers of ΛG .

▶ 2) Explicitly flavor-breaking terms, break anomalous U(1)A, leave
invariant anomaly-free subgroup Z2NF

. Operators:

ϵi1... iNF ϵj̄1... j̄NF X̂i1 j̄1
... X̂iNF

j̄NF
.

▶ Effective potential invariant under symmetry group SU(NF )×
SU(NF )× U(1)V × Z2NF

, spontaneously broken by condensate.



Backup – Gravitational Wave Propagation

▶ Non-dynamical Chern-Simons modification of GR, proposed in [16]

▶ Angle θG assumed to be time-dependent, non-dynamical quantity

▶ Deformation of equations of motion of GR: Gµν +Cµν = −8πGTµν ,

where DµC
µν = 1

8
√
−g

vνRR̃, vν ≡ ∂µθG , and vν = (1/µ, 0)

▶ Diffeomorphism breaking (DµC
µν ̸= 0) dynamically suppressed,

Schwarzschild solution persists, gravitational waves travel at c

▶ Radiated power P per unit angle Ω for different polarizations:

dP±

dΩ
∝

(
1± k

µ

)−2

[16] Jackiw and Pi (2003).



Backup – The CP Problem of QCD

Strong CP problem [1]:
LQCD ⊃ θGG̃ , θ̄ < 10−10.

Possible solutions: mu = 0
or Peccei-Quinn symmetry.

Electroweak-scale PQ axion ruled out, need invisible axion.

New species problem:
Scalar plus Higgs or quark.

Naturalness problem:
ΛEW ≪ ΛPQ ≪ ΛGUT.

Gravity problem: threat
from gravitational anomaly.

Viable axion model
without new species?

Natural PQ scale from
IR instead of UV sector?

Any intrinsic protection
mechanism against gravity?

[1] Recent review: Kim (2016).
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Backup – Generation of Light Fermion Masses

▶ Neutrino [2] and up quark [3] mass generation through
non-perturbative coupling to neutrino condensate.

▶ Coupling analogous to ’t Hooft vertex in QCD [4].

▶ No new scale or additional tuning: mu ∼ ξ⟨ν̄ν⟩, high-
multiplicity parameter ξ ∼ 107 replaces Yu ∼ 10−5 [3].

νµ

νµ

ντ

ντ

νe

νe

[2] Dvali, LF (2016a). [3] Dvali, LF (2016b).

[4] ’t Hooft (1986).
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Backup – Infrared “Domestic Axion”

Neutrino and up-quark
masses generated by IR
⟨ν̄ν⟩ ≡ “second Higgs”.

U(1)Aν and U(1)Au mix
to U(1)PQ and U(1)G .

U(1)PQ and U(1)G spont.
broken by ⟨ūu⟩ and ⟨ν̄ν⟩.

Pseudo-Goldstones:
axion aPQ = η′ + ϵ3ην and
gravi-axion aG = ην + ϵ3η′.

“Domestic axion” has
SM fermion composition:
no new species or scales.

aG protects shift symmetry
of axion against gravity.

Flavor-violation by infrared
“Higgs boson” suppressed.
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