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Kähler Manifolds

The symplectic manifold (M, ω) is the even-dimensional manifold equipped
with closed non-degenerate two-form

ω =
1

2
ωij(x)dx i ∧ dx j : dω = 0, detωij 6= 0. (1)

This two-form defines the non-degenerate Poisson brackets

{f , g} = ωij(x)
∂f

∂x i
∂g

∂x j
, with ωijωjk = δik . (2)

Kähler manifold is the manifold with Hermitian metrics ds2 = gab̄dz
adz̄b

whose imaginary part defines the symplectic structure

ωM = ıgab̄dz
a∧dz̄b, dωM = 0 ⇒ gab̄dz

adz̄b =
∂2K

∂za∂z̄b
dzadz̄b, (3)

where K(z , z̄) is a real function (Kähler potential) defined up to
holomorphic and antiholomorphic functions:
K(z , z̄)→ K(z , z̄) + U(z) + Ū(z̄).
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Kähler Manifolds

Hence, Kähler manifold can be equipped with the Poisson brackets

{f , g}M = ıg āb
( ∂f
∂z̄a

∂g

∂zb
− ∂g

∂z̄a
∂f

∂zb

)
, g ābgbc̄ = δāc̄ . (4)

Therefore, the isometries of Kähler structure should preserve both complex
and symplectic structures, i.e. they are defined by the holomorphic
Hamiltonian vector fields,

Vµ = {hµ, }M = V a
µ (z)

∂

∂za
+ V̄ ā

µ (z̄)
∂

∂z̄a
, V a

µ = ıg b̄a∂b̄hµ(z , z̄) . (5)

The real function hµ(z , z̄) (sometimes called Killing potential) obeys the
equation

∂2hµ
∂za∂zb

− Γc
ab

∂hµ
∂zc

= 0, (6)

with Γc
ab = g cd̄∂agbd̄ being the non-vanishing components of the

Christoffel symbols.
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CPN/C̃P
N

N-dimensional complex projective space CPN

its non-compact analog C̃P
N

.

They can be equipped with the su(N + 1)-invariant (for the compact case)
and the su(N.1) invariant (for the non-compact case) Kähler metrics,
known as the Fubini-Study ones.

Metrics and respective Kähler potentials

gab̄dz
adz̄b =

gdzdz̄

1± zz̄
∓ g(z̄dz)(zdz̄)

(1± zz̄)2
, K = ±g log(1± zz̄), g > 0.

(7)

with the upper sign corresponding to CPN , and the lower sign to C̃P
N

Notice: In the non-compact case the range of validity of the coordinates
za is as follows

|za| < 1,
N∑

a=1

zaz̄a < 1 (8)
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CPN/C̃P
N

The inverse metrics defining Poisson brackets is given by the expression

g āb =
1

g
(1± zz̄)(δāb ± z̄azb). (9)

Killing potentials: hab̄ = g
z̄azb∓δab̄

1±zz̄ , ha = g 2z̄a

1±zz̄ , hā = g 2za

1±zz̄ .

These generators form the su(N + 1) algebra for the upper sign, and the
su(N.1) for the lower one(the generators hab̄ form u(N) algebra):

{ha, hb} = 0, {ha, hb̄} = −4ıhab̄, (10)

{ha, hbc̄} = ±ı (δac̄hb + δbc̄ha) , (11)

{hab̄, hcd̄} = ±ı(δad̄hcb̄ − δb̄chad̄). (12)
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N-dimensional Klain model

Noncompact complex projective space: Fubini-Study structure of C̃P
N

gab̄dz
adz̄b =

gdzdz̄

1− zz̄
+

g(z̄dz)(zdz̄)

(1− zz̄)2
, K = −g log(1− zz̄) (13)

To construct N-dimensional analog of the Klein model we perform the
transformation

zN =
1− ıw
1 + ıw

, zα =
√

2
z̃α

1 + ıw
, (14)

*here and further instead of z̃α we use the former notation zα.
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N-dimensional Klain model

This yields the following expressions for the Kähler structure and potential

ds2 =
g [dw + ız̄αdzα][dw̄ − ızβdz̄β)]

[ı(w − w̄)− zγ z̄γ ]2
+

gdzαdz̄α

ı(w − w̄)− zγ z̄γ
, (15)

K = −g log [ı(w − w̄)− zγ z̄γ ] , α, β, γ = 1, . . .N − 1, (16)

with the following range of validity of the coordinates w , zα

Im w < 0,
N−1∑
α=1

zαz̄α < −2 Im w . (17)

The respective Poisson brackets are defined by the relations

{w , w̄} = −A(w − w̄), {w , z̄α} = Az̄α, {zα, z̄β} = ıAδβ̄α, (18)

where

A :=
ı(w − w̄)− zγ z̄γ

g
. (19)
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N-dimensional Klain model: Killing potentials

The Killing potentials of the Kähler structure above are defined by

hNN̄ =
ww̄ + 1

A
, hαN̄ =

1√
2

z̄α(1− ıw)

A
, (20)

hαβ̄ =
z̄αzβ + 1

2δαβ̄(1 + ıw)(1− ıw̄)

A
, (21)

hN =
(1 + ıw)(1 + ıw̄)

A
, hα =

√
2
z̄α(1 + ıw)

A
(22)

These potentials form su(N.1) algebra, which reads the same

{ha, hb} = 0, {ha, hb̄} = −4ıhab̄,

{ha, hbc̄} = −ı (δac̄hb + δbc̄ha) ,

{hab̄, hcd̄} = −ı(δad̄hcb̄ − δb̄chad̄).

a, b, c, d = N, α

α = 1, ...,N − 1.
(23)
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Conformal mechanics

For our purposes, instead of Killing potentials above, it is more convenient
to use the following ones

H =
ww̄

A
, K =

1

A
, D =

w + w̄

A
, (24)

HαN̄ =
z̄αw

A
, Hα =

z̄α

A
, Hαβ̄ =

z̄αzβ

A
. (25)

Remember:

A :=
ı(w − w̄)− zγ z̄γ

g
. (26)

Certainly, these functions are not independent, for there are many obvious
relations between them, e.g.

H =
1

2

N−1∑
α=1

HαN̄H̄Nᾱ

Hαᾱ
, Hαβ̄ =

HαHβ̄
K

, etc. (27)
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Conformal mechanics

In these terms the su(1.N) algebra relations read

{H,K} = −D, {H,D} = −2H, {K ,D} = 2K , (28)

{H,Hα} = −HαN̄ , {H,HαN̄} = {H,Hαβ̄} = 0, (29)

{K ,HαN̄} = Hα, {K ,Hα} = {K ,Hαβ̄} = 0, (30)

{D,Hα} = −Hα, {D,HαN̄} = HαN̄ , {D,Hαβ̄} = 0, (31)

{Hα,Hβ} = {HαN̄ ,HβN̄} = {Hα,HβN̄} = 0, (32)

{Hα,Hβ̄} = −ıKδαβ̄, {HαN̄ ,HNβ̄} = −ıHδαβ̄, (33)

{Hαβ̄,Hγδ̄} = ı(Hαδ̄δγβ̄ − Hγβ̄δαδ̄), (34)

{Hα,HNβ̄} = Hαβ̄ + 1
2

(
g +

∑
γ Hγγ̄ − ıD

)
δαβ̄, (35)

{Hα,Hβγ̄} = −ıHβδαγ̄ , {HαN̄ ,Hβγ̄} = −ıHβN̄δαγ̄ . (36)

The generators H,K ,D define the conformal algebra su(1.1) = so(1.2),
and the generators Hαβ̄ define the algebra u(N − 1).
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Conformal mechanics

It is seen that

the Hamiltonian H has two sets of constants of motion HNα and Hαβ̄.
Therefore it defines superintegrable system;

the Hamiltonian K has two sets of constants of motion as well, Hα
and Hαβ̄. Thus, it defines the superintegrable system as well;

the triples (H,HNα,Hαβ̄) and (K ,Hα,Hαβ̄) transform into each other
within discrete transformation

(w , zα)→ (− 1

w
,
zα

w
)⇒


D → −D,

(H,HNα,Hαβ̄)→ (K ,−Hα,Hαβ),

(K ,Hα,Hαβ)→ (H,HNα,Hαβ̄)

Adding to the Hamiltonian H the appropriate function of K , we get the
superintegrable oscillator- and Coulomb-like systems.
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superintegrable oscillator- and Coulomb-like systems.
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Oscillator-like Hamiltonian

We define the oscillator-like Hamiltonian by the expression

Hosc = H + ω2K (37)

and introduce the following generators

Aα = HαN̄ + ıωHα, Bα = HαN̄ − ıωHα :

{
{Hosc ,Aα} = −ıωAα
{Hosc ,Bα} = ıωBα

(38)

These generators and their complex conjugates form the following algebra

{Aα, Āβ} = −ı
(
Hosc − ω(g +

∑N−1
γ=1 Hγγ̄)

)
δαβ̄ + 2ıωHαβ̄, (39)

{Bα, B̄β} = −ı
(
Hosc + ω(g +

∑N−1
γ=1 Hγγ̄)

)
δαβ̄ − 2ıωHαβ̄, (40)

{Aα, B̄β} = −ıδαβ̄
(
Hosc − 2ω2K + ıωD

)
, (41)

with their Poisson brackets with Hαβ̄ reading

{Aα,Hβγ̄} = −ıδαγ̄Aβ, {Bα,Hβγ̄} = −ıδαγ̄Bβ (42)
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Oscillator-like Hamiltonian

Then we immediately deduce that the Hamiltonian besides Hαβ̄, has the
additional constants of motion which provide the system by the maximal
superintegrability property

Mαβ = AαBβ : {Hosc ,Mαβ} = 0. (43)

Mαβ = HαN̄HβN̄ + ω2HαHβ + ıω(HαHβN̄ − HαN̄Hβ) = z̄αz̄β

A2 (w2 + ω2)

These constants of motion are functionally dependent, so that among
them one can choose the N − 1 integrals which guarantee
superintegrability of the system.

These generators and the Hαβ form the following symmetry algebra

{Hαβ̄,Mγδ} = ıδβ̄γMαδ + ıδβ̄δMγα, {Mαβ,Mγδ} = 0, (44)

{Mαβ,Mγδ} = 4ı

((
g +

∑N−1
σ=1 Hσσ̄

)
Hαγ̄Hβδ̄ −

MαβM̄γδ∑N−1
σ=1 Hσσ̄

)
. (45)
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Coulomb-like Hamiltonian

We define the Coulomb-like Hamiltonian with the additional constants of
motion which provide the system by the maximal superinetgrability
property as follows

HCoul = H − γ√
2K

, Rα = HαN̄ + ıγ
Hα

(g +
∑N−1

γ=1 Hγγ̄)
√

2K
: (46)

{HCoul ,Rα} = {HCoul ,Hαβ̄} = 0. (47)

The whole symmetry algebra is as follows

{Rα,Rβ̄} = −ıδαβ̄

(
HCoul − ıγ2

2(g+
∑N−1
γ=1 Hγγ̄)2

)
+

ıγ2Hαβ̄

2(g+
∑N−1
γ=1 Hγγ̄)3

,

{Rα,Rβ} = 0, {Rα,Hβγ̄} = −ıδαγ̄Rβ.
(48)

To clarify the origin of these models it is convenient to transit to the
canonical coordinates.
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Canonical coordinates

We parameterize the complex coordinates w , zα by real pr , r , πα, φα ones,
using convention {r , pr} = 1, {φα, πβ} = δαβ in yhe following way

w =
pr
r
− ıπ + g

r2
, zα =

√
2πα
r

eıϕα , with
πα ≥ 0, ϕα ∈ [0, 2π),

r > 0.
(49)

and A = ı(w̄−w)−zγ z̄γ

g = 2
r2 .

In these terms the generators of conformal algebra take the form of
conformal mechanics with separated ”radial” and ”angular” parts

H =
p2
r

2
+
I
r2
, K =

r2

2
, D = pr r , (50)

where the angular part of Hamiltonian is given by the expression

I =
1

2

(
N−1∑
α=1

πα + g

)2

. (51)
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Canonical coordinates

The rest generators of su(1.N) algebra read

HαN̄ =
√

2πα

(
pr
2
− ıπ + g

2r

)
e−ıϕα , Hα = r

√
πα
2
e−ıϕα , (52)

Hαβ̄ =
√
παπβe

−ı(ϕα−ϕβ), (53)

In these coordinates the oscillator- and Coulomb-like Hamiltonians take
the form,

Hosc =
p2
r

2
+
I
r2

+
ω2r2

2
, HCoul =

p2
r

2
+
I
r2
− γ

r
, (54)

with angular part I given as above I = 1
2

(∑N−1
α=1 πα + g

)2
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Superintegrable Systems

In accordance with Liouville theorem, the integrability of the system with
2N-dimensional phase space means the existence N functionally
independent involutive integrals F1 = H, . . . ,FN : {Fa,Fb} = 0. This
yields the existence of the so-called action-angle variables (Ia(F ),Φa):

H = H(I ), {Ia,Φb} = δab, {Ia, Ib} = {Φa,Φb} = 0, Φa ∈ [0, 2π), a, b = 1, . . . ,N.
(55)

The system becomes maximally superintegrable when the Hamiltonian is
expressed via action variables as follows

H = H

(
N∑

a=1

naIa

)
, na ∈ N (56)

where na are integers (or rational numbers). Indeed, in that case the
system possesses the additional (non-involutive) integrals
Iab = cos(naΦb − nbΦa), among them N − 1 integrals are functionally
independent.
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Superintegrable Systems

Now, let us suppose that πα, ϕα are related with the action-angle variables
(Iα,Φα) of some (N − 1)-dimensional angular mechanics by the relations

πα = nαIα, ϕα =
Φα

nα
, where nα ∈ N . (57)

Upon this identification the angular Hamiltonian takes a form

I =
1

2

(
N−1∑
α=1

nαIα + g

)2

, with nα ∈ N , (58)

This is precisely the class of angular Hamiltonians which provides the
superintegrable generalizations of the conformal mechanics, and of the
oscillator and Coulomb systems on the N-dimensional Euclidian spaces!

T. Hakobyan, O. Lechtenfeld and A. Nersessian, Superintegrability of
generalized Calogero models with oscillator or Coulomb potential, Phys.
Rev. D 90 (2014)
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Superintegrable Systems

Though the algebraic relations hold upon this identification, the generators
Hα,HαN̄ ,Hαβ̄ become locally defined, ϕα ∈ [0, 2π/mα), so they fail to be
constants of motion. However, taking their relevant powers we get the
globally defined generators which form the nonlinear algebra

H̃α := (Hα)nα = dα(I )rnαe−ıΦα , (59)

H̃αN̄ := (HαN̄)nα = dαN̄(I )

(
pr − ı

∑N−1
γ=1 nγ Iγ + g

r

)nα

e−ıΦα ,(60)

H̃αβ̄ := (Hαβ̄)nαnβ = dαβ̄(I )e−ı(nβΦα−nαΦβ), (61)

where

dα(I ) =
(
nαIα

2

)nα/2
, dαN̄(I ) =

(
nαIα

2

)nα/2
, (62)

dαβ̄(I ) = (nαnβIαIβ)nαnβ/2. (63)
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Superintegrable Systems

Thus, we get

{H, H̃αN̄} = {H, H̃αβ} = 0, {K , H̃α} = {K , H̃αβ} = 0, (64)

In a similar way we construct the constants of motion of the oscillator- and
Coulomb-like systems, respectively.
For the oscillator-like system the integrals take the form

M̃αβ :=(AαBβ)
nαnβ= 1

2
dαβ̄(I )e

−ı(nβΦα−nαΦβ)
(ıpr+

∑N−1
γ=1

nγ Iγ+g

r

)2

−ω2r2

nαnβ

,

(65)
For the Coulomb-like system the integrals take the form

R̃α=(Rα)nα=dα(I )e−ıΦα

(
pr+ ıγ∑N−1

γ=1
nγ Iγ+g

−
ı(

∑N−1
γ=1

nγ Iγ+g)
r

)n1

(66)

Erik Khastyan RDP Online Workshop on Mathematical Physics 21 / 25



Superintegrable Systems

Thus, we get

{H, H̃αN̄} = {H, H̃αβ} = 0, {K , H̃α} = {K , H̃αβ} = 0, (64)

In a similar way we construct the constants of motion of the oscillator- and
Coulomb-like systems, respectively.
For the oscillator-like system the integrals take the form

M̃αβ :=(AαBβ)
nαnβ= 1

2
dαβ̄(I )e

−ı(nβΦα−nαΦβ)
(ıpr+

∑N−1
γ=1

nγ Iγ+g

r

)2

−ω2r2

nαnβ

,

(65)
For the Coulomb-like system the integrals take the form

R̃α=(Rα)nα=dα(I )e−ıΦα

(
pr+ ıγ∑N−1

γ=1
nγ Iγ+g

−
ı(

∑N−1
γ=1

nγ Iγ+g)
r

)n1

(66)

Erik Khastyan RDP Online Workshop on Mathematical Physics 21 / 25



Conclusion

In this paper we have shown that the superintegrable generalizations of
conformal mechanics, oscillator and Coulomb systems can be naturally
described in terms of the noncompact complex projective space considered
as a phase space.

This observation yields some interesting directions for further studies,
among them.

the construction of the N = 2k superconformal mechanics associated
with su(1.N|k) superalgebra. For this purpose one should consider
phase superspace equipped with the Kähler structure with the
potential

K = −g log(ı(w − w̄)− zαz̄α − ıηAη̄A), A = 1, . . . k, (67)

where ηA are Grassmann variables.This should be the direct
generalization of the one-dimensional system considered in
T. Hakobyan and A. Nersessian, Lobachevsky geometry of
(super)conformal mechanics, Phys. Lett. A 373 (2009)
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Conclusion

We expect that it will be possible to construct, in a similar way, the
N = 2k supersymmetric extensions of the considered oscillator- and
(repulsive) Coulomb-like systems as well, in particular, the
superextension of Smorodinsky-Winternitz system.

Performing the transformation to the higher-dimensional Poincare
model, we expect to present the considered models in the
Ruijsenaars-Schneider-like form and in this way to find, some
superinegrable cases of the Ruijsenaars-Schneider systems, as well as
their supersymmetric/superconformal extensions
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Conclusion

describing the superintegrable deformations of the free particle on the
spheres/hyperboloids, and the spherical/hyperbolic oscillators, in a
similar way. For this purpose we expect to consider the
”κ-deformation” of the Kähler structure of the Klein model, in the
spirit of the so-called “κ-deformation approach” developed in
M. F. Ranada, The Tremblay-Turbiner-Winternitz system on spherical
and hyperbolic spaces: Superintegrability, curvature- dependent
formalism and complex factorization, J. Phys. A 47 (2014)
A new approach to the higher order superintegrability of the
Tremblay-Turbiner-Winternitz system, J. Phys. A 45 (2012)
Higher order superintegrability of separable potentials with a new
approach to the Post-Winternitz system, J. Phys. A 46 (2013)

constructing spin-extensions of the above models, choosing the
noncompact analogs of complex Grassmanians as phase spaces.
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The End

Thank You!
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