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Kahler Manifolds

The symplectic manifold (M,w) is the even-dimensional manifold equipped
with closed non-degenerate two-form

1 . .
w= Ew,-j(x)dx' Ndx) :dw=0, detwj#0. (1)
This two-form defines the non-degenerate Poisson brackets
iicy Of Og . if i
{f.g} = wJ(X)ax"ﬁ , with  w/wj = dj. (2)
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Kahler Manifolds

The symplectic manifold (M,w) is the even-dimensional manifold equipped
with closed non-degenerate two-form

1 . .
w= Ew,-j(x)dx' Ndx) :dw=0, detwj#0. (1)
This two-form defines the non-degenerate Poisson brackets
iicy Of Og . if i
{f.g} = wJ(X)ax"@ , with  w/wj = dj. (2)

Kahler manifold is the manifold with Hermitian metrics ds® = ga,;dzadfb
whose imaginary part defines the symplectic structure
a zb aysb *K asb
wMm =18,5dz° NdZ°, dwy =0 = g;dz°dz° = 527935 dz?dz", (3)
where K(z, Z) is a real function (K&hler potential) defined up to
holomorphic and antiholomorp_hic functions:
K(z,z) = K(z,z) + U(z) + U(2).
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Kahler Manifolds

Hence, Kahler manifold can be equipped with the Poisson brackets

o 05 08 oF
0za9zb  9z2 9zb

{f.etu =1g"( ). elee=0%.  (4)
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Kahler Manifolds

Hence, Kahler manifold can be equipped with the Poisson brackets

s/ Of 0g  Og Of 5 3
{f.gtm =18 b(aza@— 823@)’ g bng:(;E' (4)

Therefore, the isometries of Kahler structure should preserve both complex
and symplectic structures, i.e. they are defined by the holomorphic
Hamiltonian vector fields,

R 0 0 R Ba _
Vi = b = V@) o + ViE) o Vi = 8P0shu(2,2). (5)

= GESED] RDP Online Workshop on Mathematical Physics



Kahler Manifolds

Hence, Kahler manifold can be equipped with the Poisson brackets

s/ Of 0g  Og Of 5 3
{f.gtm =18 b(@zaﬁ_ 82‘9@)’ g bng:(;E' (4)

Therefore, the isometries of Kahler structure should preserve both complex
and symplectic structures, i.e. they are defined by the holomorphic
Hamiltonian vector fields,

R 0 0 R Ba _
Vi = (b b = Vi) 5 + Vi@ Vi = 18%05hu(2,2) . (5)

The real function h,(z,Z) (sometimes called Killing potential) obeys the
equation
d%hy, e Ohy
dz20zb P oze
with ['§, = g“’@agbg being the non-vanishing components of the
Christoffel symbols.

=0, (6)
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N-dimensional complex projective space CPV
_ ~N
its non-compact analog CP

They can be equipped with the su(/N + 1)-invariant (for the compact case)
and the su(N.1) invariant (for the non-compact case) Kahler metrics,
known as the Fubini-Study ones.
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cPN/CP"

N-dimensional complex projective space CPV
. ~—N
its non-compact analog CP .

They can be equipped with the su(/N + 1)-invariant (for the compact case)
and the su(N.1) invariant (for the non-compact case) Kahler metrics,
known as the Fubini-Study ones.

Metrics and respective Kahler potentials
- dzdz _ g(zdz)(zdZz)
sdz2dz? = &
S (1+2z2)2

K = +glog(1l £ zz), g > 0.
(7)

~— N
with the upper sign corresponding to CPV, and the lower sign to CP
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cPV/cp"

N-dimensional complex projective space CPV
. ~—N
its non-compact analog CP .

They can be equipped with the su(/N + 1)-invariant (for the compact case)
and the su(N.1) invariant (for the non-compact case) Kahler metrics,
known as the Fubini-Study ones.

Metrics and respective Kahler potentials
_ gdzdz _ g(zdz)(zdz)

T 1427 (1£22)2 K = +glog(1+ zz), g > 0.

(7)

g.pdz?dz’

~—N
with the upper sign corresponding to CPV, and the lower sign to CP

Notice: In the non-compact case the range of validity of the coordinates
z? is as follows

N
|27 < 1, Zz"fa <1 (8)
a=1
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cPN/CP"

The inverse metrics defining Poisson brackets is given by the expression

P ;_(1 + 22)(6% + 777, (9)
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The inverse metrics defining Poisson brackets is given by the expression

L1 .
g’ = Z(1+22)(6%° + z72°). (9)
g
. . sa b 5. 5. a
Killing potentials:  h,; = g%f;b, hy = g%7 hs = 713;5 .
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cPN/CP"

The inverse metrics defining Poisson brackets is given by the expression

- 1 =
g = —(1+22)(0%° £ 277°). 9)
g
. . sab S sa a
Killing potentials:  h,; = g- 12;;", hy = g%, hs = g‘lizzz :

These generators form the su(N + 1) algebra for the upper sign, and the
su(N.1) for the lower one(the generators h_; form u(N) algebra):

{haa hb} = Oa {haa hE} = _4ZhaEa (10)
{haahbf} = iz(éafhb+5b6ha)7 (11)
{hal_)’ hcg} = iz(éaﬂhci_) - 55cha3)' (12)
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N-dimensional Klain model

~—N
Noncompact complex projective space: Fubini-Study structure of CP

ag-b  8dzdZ  g(zdz)(zdZ) L .
g,5dz°dz”° = 1—ZZ+ (12772 K=—glog(l—zZ2) (13)
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N-dimensional Klain model

~—N
Noncompact complex projective space: Fubini-Study structure of CP

g.pdzdzb — gdzdz . g(zdz)(zdz)

1—2zZ (1—z2)2 K= —glog(l - z2) (13)

To construct N-dimensional analog of the Klein model we perform the

transformation

1—ww z¢

N o

= =2 14
z 14w’ z fl—{—zw’ (14)
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N-dimensional Klain model

~—N
Noncompact complex projective space: Fubini-Study structure of CP

ag-b  8dzdZ  g(zdz)(zdZ) L .
g,5dz°dz”° = 1—ZZ+ (12772 K=—glog(l—zZ2) (13)

To construct N-dimensional analog of the Klein model we perform the
transformation ) o
N — 1w @ 4
= =2 14
1+wm’ ° \[1 +aw’ (14)

V4

*here and further instead of 2% we use the former notation z%.
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N-dimensional Klain model

This yields the following expressions for the Kahler structure and potential

»  gldw +12%dz][dW — 128 dzP)] gdz“dz®
ds® = — — — =~ (15)
[(w —w) — z7Z7]? (w —w) —z7Z7
K=—glogy(w—w)—27Z"], a,B,y=1,...N—1, (16)
with the following range of validity of the coordinates w, z¢
N-1
Imw <0, Z z%Z% < -2Im w. (17)
a=1
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N-dimensional Klain model

This yields the following expressions for the Kahler structure and potential

»  gldw +12%dz][dW — 128 dzP)] gdz“dz®
ds® = — — — =~ (15)
[(w —w) — z7Z7]? (w —w) —z7Z7
K=—glogy(w—w)—27Z"], a,B,y=1,...N—1, (16)
with the following range of validity of the coordinates w, z¢
N-1
Imw <0, Z z%Z% < -2Im w. (17)
a=1

The respective Poisson brackets are defined by the relations
{w, W} = —A(w — W), {w,2°} = A2%  {z4,25} =1A57,  (18)

where

(w—w) — 2727

g

A= (19)
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N-dimensional Klain model: Killing potentials

The Killing potentials of the Kahler structure above are defined by

ww + 1 1 z%1—ww)
hyig = hyg= - 2
NA A MeRT 5T A (20)
7928 4 15 (1 +w)(1 —w
hag = 2opll + )17 0), (21)
A
hy = (1+zw)(1+zw)’ b — /22 (1+2w) (22)

A A
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N-dimensional Klain model: Killing potentials

The Killing potentials of the Kahler structure above are defined by

ww + 1 1 z%1—ww)
hyig = hyg= - 2
NA A MeRT 5T A (20)
7928 4 15 (1 +w)(1 —w
hag = 2opll + )17 0), (21)
A
hy = (1+zw)}§1+zw)’ b — /22 (IZZW) (22)

These potentials form su(N.1) algebra, which reads the same

{hayhp} =0,  {ha, hg} = —duhj, Cbed Na
{hohoc) = =1 (Bucho+dscha), 2700 Y (2
{haEn hcg} = _Z(éaJhCE - 5Echac7)' Y
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Conformal mechanics

For our purposes, instead of Killing potentials above, it is more convenient

to use the following ones
H g = Zi\w, He = %, Hyj5 = ZaAzﬁ. (25)

Remember:
A z(w—vT/g)—zWZW (26)

RDP Online Workshop on Mathematical Physics 10 / 25
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Conformal mechanics

For our purposes, instead of Killing potentials above, it is more convenient

to use the following ones
w+ w (24)

=a_fB
zz (25)

Remember:
(26)

A (w —w)—2z727 '
g

Certainly, these functions are not independent, for there are many obvious

relations between them, e.g.

N-1 x
1 —~ H,qHna HaHj
H=2) —N22 0 Hs= t 27
2 Ha& ) af K ete ( )

a=1
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Conformal mechanics

In these terms the su(1.N) algebra relations read
{H,K}=-D, {H,D}=-2H, {K,D}=2K, (28)
{H:Ho} = —Ha,  {H Homt = {H, Hop) =0, (29)
{K,Hoi} = Ha,  {K,Ha} = {K,H,3} =0, (30)
{D,Ha} = —Ha, {D,H,5} =Hun, {D;H,5t =0, (31)
{Ha, Hs} = {Hom: Hpi} = {Ho Hsii} = 0, (32)
{Has Hz} = —1K8,5.  {Hags Hyzt = —1Hb,5, (33)
{Ha5: Ho5t = o(H,50.5 — H 50,5), (34)
{Ho Hyst = Ho + 3 (8+ 5, Hys — D) 6,5, (35)
{Ha, Has} = —1Hgbay, {H.q, Hav} = —1Hggdas- (36)
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Conformal mechanics

In these terms the su(1.N) algebra relations read

{H,K} =-D, {H,D}=-2H, {K,D}=2K,
{H,Ho} = —H, {H, HaN} = {H, HaB} =0,

{K,H,} =Ha, {K,Hs} =A{K, HQB}:O, 30
{D,H,} = —H., {D,H,3}=H,5 {D, Hag} =0, 31

(28)
(29)
(30)
(31)
{Ha, Hﬁ} = {Han HBI\_I} = {Ha, HﬁN} =0, (32)
(33)
(34)
(35)
(36)

29

{Ha, Hz} = —1K0,5, {Hu5 Hyz} = —tHO, 5, 33
{H.5, H.5} = (Ha50,5 — Hy3005), 34

{Hos gt = Hop + 3 (6452, Hys —1D) 6,5,
{Ha, Ha3} = —tHgbos,  {H,x, Hss} = —1Hgdas.

35
36

The generators H, K, D define the conformal algebra su(1.1) = so(1.2),
and the generators H, 7 define the algebra u(N —1).
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Conformal mechanics

It is seen that
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Conformal mechanics

It is seen that

@ the Hamiltonian H has two sets of constants of motion Hy, and H,z.
Therefore it defines superintegrable system;
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Conformal mechanics

It is seen that

@ the Hamiltonian H has two sets of constants of motion Hy, and H,z.
Therefore it defines superintegrable system;

o the Hamiltonian K has two sets of constants of motion as well, H,
and H, 5. Thus, it defines the superintegrable system as well;
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Conformal mechanics

It is seen that

@ the Hamiltonian H has two sets of constants of motion Hy, and H,z.
Therefore it defines superintegrable system;

o the Hamiltonian K has two sets of constants of motion as well, H,
and H, 5. Thus, it defines the superintegrable system as well;

o the triples (H, Hya, H,3) and (K, Ha, H,3) transform into each other
within discrete transformation

D— —D,

(W7Za) - (_ ’ ) = (H7 Hna, Haﬁ) - (Kv —Ha, Ha,@)a

(K, Has Hap) — (H, Hna, H,5)

1 z¢
w w
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Conformal mechanics

It is seen that

@ the Hamiltonian H has two sets of constants of motion Hy, and H,z.
Therefore it defines superintegrable system;

o the Hamiltonian K has two sets of constants of motion as well, H,
and H, 5. Thus, it defines the superintegrable system as well;

o the triples (H, Hya, H,3) and (K, Ha, H,3) transform into each other
within discrete transformation

D— —D,
):> (H7 HNOUHO[B)—>(K7_HOUH0¢ﬁ)’

(K, Has Hap) — (H, Hna, H,5)

Z¢
,—
w

(w,2%) = (-

Adding to the Hamiltonian H the appropriate function of K, we get the
superintegrable oscillator- and Coulomb-like systems.
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Oscillator-like Hamiltonian

We define the oscillator-like Hamiltonian by the expression

Hose = H + w?K (37)
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Oscillator-like Hamiltonian

We define the oscillator-like Hamiltonian by the expression

Hose = H + w?K (37)

and introduce the following generators

{Hosz:7Aa} = —wAq

{Hosa Ba} = ZWBa (38)

Ao = H g +wH,, By =H, 5—wH, : {
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Oscillator-like Hamiltonian

We define the oscillator-like Hamiltonian by the expression
Hose = H + w?K (37)

and introduce the following generators

{Hosz:7Aa} = —wAq

Ao = Hyy+wHa, Ba=H,y—wH, - { {Hosc, Boa} = 1wBq

(38)

These generators and their complex conjugates form the following algebra

{Aa, Ag} = —1(Hose — w(g + Y01 Hi5))6,5 + 2wH,5,  (39)
{Ba, éﬁ} = —Z(Hosc + W(g =+ ZN 1 H ))(5 2ZWH(XB7 (40)
{Aa, Eg} = —Z5a5(Hosc — 2w?K + zwD), (41)

with their Poisson brackets with H, 3 reading
{Aa, Hg,—y} = —10,5A3, {Ba, Hg,;,} = —1045B3 (42)
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Oscillator-like Hamiltonian

Then we immediately deduce that the Hamiltonian besides H, 3, has the

additional constants of motion which provide the system by the maximal
superintegrability property

Mag = AaBs . {Hose, Mag} = 0. (43)

Maﬁ = Hal\_IHBN +W2HaH,B + ZW(HOéHﬂN o HaNH/B) - ZZEB

(w? +w?)

Erik Khastyan RDP Online Workshop on Mathematical Physics 14 / 25



Oscillator-like Hamiltonian

Then we immediately deduce that the Hamiltonian besides H, 3, has the
additional constants of motion which provide the system by the maximal
superintegrability property

Mag = AaBs . {Hose, Mag} = 0. (43)

Mag = H,gHg + w?HaHs + w(HoHy — HaHs) = 22 (W + w?)

These constants of motion are functionally dependent, so that among
them one can choose the N — 1 integrals which guarantee
superintegrability of the system.
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Oscillator-like Hamiltonian

Then we immediately deduce that the Hamiltonian besides H, 3, has the
additional constants of motion which provide the system by the maximal
superintegrability property

Mag = AaBs . {Hose, Mag} = 0. (43)

Mag = H,gHg + w?HaHs + w(HoHy — HaHs) = 22 (W + w?)

These constants of motion are functionally dependent, so that among
them one can choose the N — 1 integrals which guarantee
superintegrability of the system.

These generators and the H,g form the following symmetry algebra
{Haﬁ’ M,y(g} = Z(SBWMO“S + Z(SB(SMWQ, {Mag, M,y(;} =0, (44)

_ _ MM
{Map, M5} = 4 <<g +y) Ha&) HozHgs — M) - (49)
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Coulomb-like Hamiltonian

We define the Coulomb-like Hamiltonian with the additional constants of

motion which provide the system by the maximal superinetgrability
property as follows

Y Ha
HCoul =H- s Ra = Ha/\_/ + vy _ : (46)
V2K (g+ZQ’:11 H,5)v2K
{HCouh Roz} - {HCoula HQB} =0. (47)
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Coulomb-like Hamiltonian

We define the Coulomb-like Hamiltonian with the additional constants of

motion which provide the system by the maximal superinetgrability
property as follows

Y Ha,
Heow =H—- —, Ra=H,j+vy — : (46)
V2K (g+ZQI:11 H,5)V2K
{HCouh Roz} - {HCoula HQB} =0. (47)
The whole symmetry algebra is as follows
IR S _ v? w2 Hag
{Ra Ra b= Waf <HC°”l 2(g+X2021 Hys)? * 20g+2000 Hys)3? (48)
{Ra, Rﬂ} == 0, {RO“ Hﬁ&} = *’L&aryRﬂ.
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Coulomb-like Hamiltonian

We define the Coulomb-like Hamiltonian with the additional constants of

motion which provide the system by the maximal superinetgrability
property as follows

Y Ha,
Heow =H—- —, Ra=H,j+vy — : (46)
V2K (g+ZQI:11 H,5)V2K
{HCouh Roz} - {HCoula HQB} =0. (47)
The whole symmetry algebra is as follows
IR S _ v? w2 Hag
{Ra Ra b= Waf <HC°”l 2(g+X2021 Hys)? * 20g+2000 Hys)3? (48)
{Ra, Rﬂ} == 0, {RO“ Hﬁ&} = *’L&aryRﬂ.

To clarify the origin of these models it is convenient to transit to the
canonical coordinates.
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Canonical coordinates

We parameterize the complex coordinates w, z% by real p,, r, m,, ¢o Ones,

using convention {r,p,} =1, {¢a, 73} = dup in yhe following way

pr T+g o V2T, ou
w=—-—1—75—, Z°=-"—"—¢
r r r

with @ >0, ¢o €][0,27),
r>0.

(49)
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Canonical coordinates

We parameterize the complex coordinates w, z% by real p,, r, m,, ¢o Ones,

using convention {r,p,} =1, {¢a, 73} = dup in yhe following way

w:&—szLg zo‘—727raew°‘,

_ with @ >0, ¢o €][0,27),
r 2’ r r>0.
(49)
and A— z(v‘vfwg)fz“YZW _ r22
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Canonical coordinates

We parameterize the complex coordinates w, z% by real p,, r, m,, ¢o Ones,
using convention {r,p,} =1, {¢a, 73} = dup in yhe following way

7TO¢ Z 07 9006 6 [0727T))

pr T+g o V2T, e

e TV 2T with r>0.
(49)
_ (w—w)—2z"Z" _ 2
In these terms the generators of conformal algebra take the form of
conformal mechanics with separated "radial” and "angular” parts
2 2
1z _r _
H—7+r7, K-E; D_prr7 (50)

where the angular part of Hamiltonian is given by the expression

VLR 2
I:2<Z7ra+g> . (51)
a=1
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Canonical coordinates

The rest generators of su(1.N) algebra read

H,ii = V27 <'L;r — zL; g> e W Hy=r %e*w“, (52)
r \

H,5 = \/Wawﬁeﬂ(%*“"ﬁ), (53)
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Canonical coordinates

The rest generators of su(1.N) algebra read

H,y= V27, <'L;r — zﬂg_g> e H,=r %e*w“, (52)
r \

H,5 = ,/Waw/geﬂ(@‘r“"ﬁ), (53)

In these coordinates the oscillator- and Coulomb-like Hamiltonians take
the form,

o = 0 L &0 T 0
T g2 2’ 2 2y

2
with angular part Z given as above I=1% (ZN__ll To —I—g)
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Superintegrable Systems

In accordance with Liouville theorem, the integrability of the system with
2N-dimensional phase space means the existence N functionally
independent involutive integrals F1 = H,..., Fy : {Fa, Fp} = 0. This
yields the existence of the so-called action-angle variables (/,(F), ®,):

H= H(I)v {Iavq)b} = ab, {/a7 /b} = {(Da, ¢b} =0, (OJFS [0,27‘(),
(55)
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Superintegrable Systems

In accordance with Liouville theorem, the integrability of the system with
2N-dimensional phase space means the existence N functionally
independent involutive integrals F1 = H,..., Fy : {Fa, Fp} = 0. This
yields the existence of the so-called action-angle variables (/,(F), ®,):

H= H(I)v {Iaaq)b} :6ab7 {/avlb} = {¢a,¢b}=O, q)a S [0,271'),

(55)
The system becomes maximally superintegrable when the Hamiltonian is
expressed via action variables as follows

N
H=H <Z nala> , nEN (56)

a=1

where n, are integers (or rational numbers). Indeed, in that case the
system possesses the additional (non-involutive) integrals
l,p = cos(ny®p — np®d,), among them N — 1 integrals are functionally

independent.
Erik Khastyan RDP Online Workshop on Mathematical Physics 18 / 25



Superintegrable Systems

Now, let us suppose that 7, o, are related with the action-angle variables
(I, @) of some (N — 1)-dimensional angular mechanics by the relations
®q
To = Naloy Qo = —, where n, € N. (57)

Ne
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Superintegrable Systems

Now, let us suppose that 7, o, are related with the action-angle variables

(I, @) of some (N — 1)-dimensional angular mechanics by the relations
®q
To = Naloy Qo = —, where n, € N. (57)

Ne

Upon this identification the angular Hamiltonian takes a form

N-1 2
1 .
I= 5 ( E ‘ Nalo +g> ) with  n, € N’ (58)
a=
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Superintegrable Systems

Now, let us suppose that 7, o, are related with the action-angle variables
(I, @) of some (N — 1)-dimensional angular mechanics by the relations

(O]
Ta = Nala,  Po = —, where n, € N. (57)

Ne

Upon this identification the angular Hamiltonian takes a form

N-1 2
1 .
I= 5 ( E ‘ Nalo +g> ) with  n, € N’ (58)
a=

This is precisely the class of angular Hamiltonians which provides the
superintegrable generalizations of the conformal mechanics, and of the
oscillator and Coulomb systems on the N-dimensional Euclidian spaces!
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Superintegrable Systems

Now, let us suppose that 7, o, are related with the action-angle variables
(I, @) of some (N — 1)-dimensional angular mechanics by the relations
®q
To = Naloy Qo = —, where n, € N. (57)

Ne

Upon this identification the angular Hamiltonian takes a form

N-1 2
1 .
I= 5 ( E ‘ Nalo +g> ) with  n, € N’ (58)
a=

This is precisely the class of angular Hamiltonians which provides the
superintegrable generalizations of the conformal mechanics, and of the
oscillator and Coulomb systems on the N-dimensional Euclidian spaces!

T. Hakobyan, O. Lechtenfeld and A. Nersessian, Superintegrability of
generalized Calogero models with oscillator or Coulomb potential, Phys.
Rev. D 90 (2014)
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Superintegrable Systems

Though the algebraic relations hold upon this identification, the generators
Ha, Hyf, H, 5 become locally defined, v, € [0,27/m,), so they fail to be
constants of motion. However, taking their relevant powers we get the
globally defined generators which form the nonlinear algebra

Ho = (Ho)™ = do(1)r"e ", (59)
N—-1 Ne
- o nyl,+
Ao = (Ho)™ = (1) (,,, - M) e~ (60)
Ho = (H,5)"™" = dag(/)e_’(”ﬂ¢“_”“¢5)7 (61)
where
el \ Mo 2 _ (gl \ N 2
dall) = ("5=)""%, d (1) = (me) ™2, (62)
do5(1) = (nanglals)"="s/2. (63)
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Superintegrable Systems

Thus, we get

{Hv Flal\_l}:{H7 ﬁaﬁ}:()? {K7 ﬁa}:{K7 ﬁaﬂ}zov (64)
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Superintegrable Systems

Thus, we get
{H.Hogy = {H.Hap} =0, {K.Ha} = {K,Hap} =0, (64)
In a similar way we construct the constants of motion of the oscillator- and

Coulomb-like systems, respectively.
For the oscillator-like system the integrals take the form

r

nang
_ N=1, 1 ie)\?
Map:=(AaBg) "8 =1d,5(I)e” H(r5eamots) ((ZP’JFZW_I TOTE ) e ,

(65)
For the Coulomb-like system the integrals take the form
N—-1 n
Ro=(Ra)" =da(I)e~ % [ py+ —y— _(Eiimbre) (66)
Z'y*l nyly+g r
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Conclusion

In this paper we have shown that the superintegrable generalizations of
conformal mechanics, oscillator and Coulomb systems can be naturally
described in terms of the noncompact complex projective space considered
as a phase space.
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In this paper we have shown that the superintegrable generalizations of
conformal mechanics, oscillator and Coulomb systems can be naturally
described in terms of the noncompact complex projective space considered
as a phase space.

This observation yields some interesting directions for further studies,
among them.
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Conclusion

In this paper we have shown that the superintegrable generalizations of
conformal mechanics, oscillator and Coulomb systems can be naturally
described in terms of the noncompact complex projective space considered
as a phase space.

This observation yields some interesting directions for further studies,
among them.

@ the construction of the NV = 2k superconformal mechanics associated
with su(1.N|k) superalgebra. For this purpose one should consider
phase superspace equipped with the Kahler structure with the
potential

K =—glog(x(w — w) — z92% —wnaija), A=1,...k, (67)

where 1 are Grassmann variables.
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Conclusion

In this paper we have shown that the superintegrable generalizations of
conformal mechanics, oscillator and Coulomb systems can be naturally
described in terms of the noncompact complex projective space considered
as a phase space.

This observation yields some interesting directions for further studies,
among them.

@ the construction of the NV = 2k superconformal mechanics associated
with su(1.N|k) superalgebra. For this purpose one should consider
phase superspace equipped with the Kahler structure with the
potential

K =—glog(x(w — w) — z92% —wnaija), A=1,...k, (67)
where 1 are Grassmann variables. This should be the direct
generalization of the one-dimensional system considered in

T. Hakobyan and A. Nersessian, Lobachevsky geometry of
(super)conformal mechanics, Phys. Lett. A 373 (2009)

Erik Khastyan RDP Online Workshop on Mathematical Physics 22 /25



Conclusion

@ We expect that it will be possible to construct, in a similar way, the
N = 2k supersymmetric extensions of the considered oscillator- and
(repulsive) Coulomb-like systems as well, in particular, the
superextension of Smorodinsky-Winternitz system.
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Conclusion

@ We expect that it will be possible to construct, in a similar way, the
N = 2k supersymmetric extensions of the considered oscillator- and
(repulsive) Coulomb-like systems as well, in particular, the
superextension of Smorodinsky-Winternitz system.

@ Performing the transformation to the higher-dimensional Poincare
model, we expect to present the considered models in the
Ruijsenaars-Schneider-like form and in this way to find, some
superinegrable cases of the Ruijsenaars-Schneider systems, as well as
their supersymmetric/superconformal extensions
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Conclusion

@ describing the superintegrable deformations of the free particle on the
spheres/hyperboloids, and the spherical /hyperbolic oscillators, in a
similar way. For this purpose we expect to consider the
" k-deformation” of the Kahler structure of the Klein model, in the
spirit of the so-called “k-deformation approach” developed in
M. F. Ranada, The Tremblay-Turbiner-Winternitz system on spherical
and hyperbolic spaces: Superintegrability, curvature- dependent
formalism and complex factorization, J. Phys. A 47 (2014)

A new approach to the higher order superintegrability of the
Tremblay-Turbiner-Winternitz system, J. Phys. A 45 (2012)
Higher order superintegrability of separable potentials with a new
approach to the Post-Winternitz system, J. Phys. A 46 (2013)
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Conclusion

@ describing the superintegrable deformations of the free particle on the
spheres/hyperboloids, and the spherical /hyperbolic oscillators, in a
similar way. For this purpose we expect to consider the
" k-deformation” of the Kahler structure of the Klein model, in the
spirit of the so-called “k-deformation approach” developed in
M. F. Ranada, The Tremblay-Turbiner-Winternitz system on spherical
and hyperbolic spaces: Superintegrability, curvature- dependent
formalism and complex factorization, J. Phys. A 47 (2014)

A new approach to the higher order superintegrability of the
Tremblay-Turbiner-Winternitz system, J. Phys. A 45 (2012)
Higher order superintegrability of separable potentials with a new
approach to the Post-Winternitz system, J. Phys. A 46 (2013)

@ constructing spin-extensions of the above models, choosing the
noncompact analogs of complex Grassmanians as phase spaces.
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The End

Thank You!
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