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1 Introduction

The remarkable recent progress in applying integrability techniques to the models of the gauge-string
correspondence has given further impetus to the study of possible origins and general properties of
integrable field theories. In particular, it was shown in [1] that many classical integrable field theories
can be viewed as specific realisations of dihedral a�ne Gaudin models, associated with an untwisted
a�ne Kac-Moody algebra supplied with an action of the dihedral group. A characteristic feature of
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1 Construction of the models in the Hamiltonian formulation

T ⇤G

The sum over k 2 {0, 1} and the factors (�1)k encodes the T = 2 dihedrality of the model

g(0) = {x 2 g : �(x) = x} and g(1) = {x 2 g : �(x) = �x}.

i) N sites at {z1, . . . , zr, . . . z
N

} , z
r

2 R

⇤

ii) Each site has multiplicity two :

to each site two levels (real numbers) are associated `
r,0 2 R and `

r,0 2 R

⇤

G is a real semi-simple Lie group, g is the Lie algebra
 is a non-degenerate ad-invariant bilinear form on g, opposite of the Killing form
� is an involutive automorphism of G and G(0) ⇢ G is the subgroup of fixed-points of �
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N

} , z
r

2 R
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ii) Each site has multiplicity two :

to each site two levels (real numbers) are associated `
r,0 2 R and `

r,0 2 R

⇤

G is a real semi-simple Lie group, g is the Lie algebra
 is a non-degenerate ad-invariant bilinear form on g, opposite of the Killing form

Let G be a connected semi-simple real Lie group, � an involutive automorphism of G and G(0)

the subgroup of fixed-points of �. Our goal in this section is to construct integrable �-models on

GN/G(0)
diag, where N is a positive integer and G(0)

diag = {(h, · · · , h), h 2 G(0)}. As we shall see, they

will be more precisely obtained as models on GN with a G(0)
diag gauge symmetry. For N = 1, the

1
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D2T = hs, t|sT = t2 = (st)2 = 1i

1 Construction of the models in the Hamiltonian formulation

g = �T�1
k=0 g

(k)

@+L�(z)� @�L+(z) + [L+(z),L�(z)] = 0,

@+L̃�(z)� @�L̃+(z) + [L̃+(z), L̃�(z)] = 0

Integrable coset sigma models based on supergroups.
Interesting case G = PSU(1, 1|2)

Integrable sigma model on Lorentzian spaces W4,2 = SL(2,R)⇥ SL(2,R)/U(1)?
Prove the conjecture on the Lagrangian for generic (N,T )-models
Study RG flow. Is integrable T 1,1 flows to the GMM fixed point?

New integrable models on GN/G(0)
diag from a�ne Gaudin models

 Einstein manifold
 conformal GMM model

SU(2)⇥ SU(2)
.

U(1)

Action

S =
1

4

ZZ

dx dt
⇣

�

�2+�21+
�

�2��21
�

cos(2✓1)
�

@��1@+�1+2�21 @�✓1@+✓1+2�2 @� @+ +4�2 @��1@+ cos ✓1

+
�

�2+�22+
�

�2��22
�

cos(2✓2)
�

@��2@+�2+2�22 @�✓2@+✓2+2�2 @� ̃@+ ̃+4�2 @� ̃@+�2 cos ✓2

+4�2
�

cos ✓1 @��1+@� 
��

cos ✓2 @+�2+@+ ̃
�

⌘

Gauge symmetry
G = SU(2) with g = su(2) generated by I

a

= i�
a

/2, where �
a

is the a-th Pauli matrix
� : �(I1) = �I1, �(I2) = �I2 and �(I3) = I3
Let us consider the model with two copies described in the previous section for the choice G = SU(2),

with Lie algebra g = su(2) generated by I
a

= i�
a

/2, where �
a

is the a-th Pauli matrix. We take � to be the
Z2-automorphism of su(2) defined by the following action on the generators: �(I1) = �I1, �(I2) = �I2 and
�(I3) = I3, so that g(0) = u(1) = span{I3} and correspondingly G(0) = U(1) = exp(RI3). Let us finally pick
the following parametrisation for the fields (g1, g2) 2 SU(2)⇥ SU(2) of the model:

G(0) = U(1) = exp(RI3)
Pick the following parametrisation for the fields (g1, g2) 2 SU(2)⇥ SU(2)

L± =

✓

L± 0
0 L̃±

◆

 Lax connection
In the case �1 = �2 = � the action can be rewritten as
Define U = g1 and V = g�1

2 , and use IWZ

⇥

g�1
⇤

= �IWZ

⇥

g
⇤

Checked for all cases for with N  3 and T  3!
where
3N � 2 = 3⇥ 2� 2 = 4 parameters z2 ⌘ x, ⇣+ ⌘ ⇣1, ⇣� ⌘ ⇣2 and K

j0,r = g�1
r

{H
T

, g
r

} =
2

X

s=1

1
X

k=0

b(k)
rs

j(k)
s

+ 2c(k)
rs

Y (k)
s

+ µ

Y (0)
1 + Y (0)

2 = �`1,0
2

j(0)1 � `2,0
2

j(0)2 .

1
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New integrable models on GN/G(0)
diag from a�ne Gaudin models

 Einstein manifold

1

,

In particular, note that the reformulation (3.14) of the action does not involve an explicit sum over
the grading index k = 0, 1 as in the original expression (3.6). As explained in the appendix B, this
graded structure, and thus the choice of automorphism �, is accounted for in the R-matrix R0

12.

Conjectured generalisations. Having derived Equation (3.14), it is natural to formulate conjec-
tures about generalisations of the models considered here. For instance, we expect a similar expression
to hold for the models on GN/G(0)

diag with arbitrary N constructed in the Hamiltonian formalism in

section 2. More generally, we conjecture that it also holds for models on GN/G(0)
diag with arbitrary

N and where the subalgebra g(0) is the grading zero subspace of a Z

T

-gradation with arbitrary T ,
generalising the case T = 2 considered here.

Let us be more precise about this conjecture. For N = 1, the model on the Z

T

-coset G/G(0) for
arbitrary T was constructed in [22] and was identified with a realisation of D2T -dihedral a�ne Gaudin
model in [1], based on the Hamiltonian analysis carried out in [23]. Although the generalisations of
this �-model on cosets GN/G(0)

diag with arbitrary N have not been considered before in the literature,
we expect the procedure of section 2 to readily generalise to the construction of such models, using a
D2T -dihedral a�ne Gaudin model [1] instead of a D4-dihedral model. In this case, the twist function
of the model would read8

'(z) = KT
zT�1

Q2N�2
i=1 (zT � ⇣T

i

)
Q

N

r=1(z
T � zT

r

)2
, (3.13)

in terms of its zeroes ⇣1, · · · , ⇣2N�2 and poles z1, · · · , zN . One can then factorise this twist function9

as '(z) = TK'+(z)'�(z), similarly to Equation (B.1) for T = 2, with

'+(z) =

Q2N�2
i=N

�
zT � ⇣T

i

�
Q

N

r=1 (z
T � zT

r

)
and '�(z) =

zT�1
Q

N�1
i=1

�
zT � ⇣T

i

�
Q

N

r=1 (z
T � zT

r

)
.

We then conjecture that the action of the model is given by

S =
NX

r=1

SWZW,kr [gr]�
KT 3

2

¨
dx dt

NX

r,s=1

res
w=zs

res
z=zr

12

⇣
R0

12(w, z)'+(z)'�(w), j+,r1 j�,s2

⌘
, (3.14)

where k
r

= �T

2 res
z=zr '(z)dz and R0 now denotes the Z

T

-graded R-matrix which underlies the
integrable structure of D2T -dihedral a�ne Gaudin models [1], namely

R0
12(w, z) =

T�1X

k=0

wkzT�1�k

zT � wT

⇡(k)
1 C12,

with ⇡(k), k 2 {0, · · · , T � 1}, the projections along the grading g =
L

T�1
k=0 g(k).

As mentioned above, for N = 1 and arbitrary T , the corresponding integrable model on the Z

T

-
coset G/G(0) has been constructed in [22]: we have checked that the action of this model can indeed
be reformulated as in (3.14). Moreover, for the case of arbitrary N and T = 1, the results of [9] show
that the action of the model is also given by (3.14), with R0

12(z, w) the standard non-twisted R-matrix
C12/(w� z). Finally, we have checked this conjecture by direct computation for all cases with N  3
and T  3.

8The equivariance condition (2.18) is then replaced by '(!z) = !�1'(z), where ! = exp(2i⇡/T ).
9As for the case T = 2 treated in section 2, we expect such a separation of the zeroes of '(z) in two sets

{0, ⇣1, · · · , ⇣N�1} and {⇣N , · · · , ⇣2N�2,1} to come naturally from the relativistic invariance of the model, which requires
the coe�cients ✏i, i 2 {0, 1, · · · , 2N � 2,1}, in the Hamiltonian of the model to be equal to either �1 or +1.
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The Hamiltonian of the model involves the zeroes {0,1, ⇣1, · · · , ⇣2N�2} of the twist function
The constraint C(x) = 0 eliminates the corresponding superfluous conjugate momentum fields

The “physical” coordinate fields of the model are fields on the quotient GN/G(0)
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Lagrangian model is defined on GN/G(0)
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Initial phase space
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The coset is formed by acting on (g1, · · · , gN ) 2 GN by right translation of the diagonal subgroup
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The models we are interested in are defined on a reduced phase space, obtained from canonical fields on
T ⇤GN by imposing

Lagrangian multiplier
N G-valued fields g1(x), · · · , gN (x)
N g-valued fields X1(x), · · · , XN

(x)
Dihedrality condition � � ⌧ = ⌧ � �
⌧ : gC ! gC is an antilinear involutive automorphism,
defined such that the real form g is the subalgebra of fixed points of ⌧

2) Z2 : z 7! z̄, Z 7! ⌧(Z), Z 2 g
R0

12 satisfies the classical Yang-Baxter equation
Extend the space-time D⇥ R to a 3-dimensional manifold B with boundary @B = D⇥ R

(Ia)
a2{1,...,n} is the dual of this basis with respect to 

Consider fields on D with values in T ⇤G ' G⇥ g 3 (g,X)

g(x), X(x), where x 2 D

The sum over k 2 {0, 1} and the factors (�1)k encodes the T = 2 dihedrality of the model

g(0) = {x 2 g : �(x) = x} and g(1) = {x 2 g : �(x) = �x}.

i) N sites at {z1, . . . , zr, . . . zN} , z
r

2 R

⇤

ii) Each site has multiplicity two :

to each site two levels (real numbers) are associated `
r,0 2 R and `

r,0 2 R

⇤

G is a real semi-simple Lie group, g is the Lie algebra
 is a non-degenerate ad-invariant bilinear form on g, opposite of the Killing form
� is an involutive automorphism of G and G(0) ⇢ G is the subgroup of fixed-points of �

3



New integrable gauge coset sigma models

In particular, note that the reformulation (3.14) of the action does not involve an explicit sum over
the grading index k = 0, 1 as in the original expression (3.6). As explained in the appendix B, this
graded structure, and thus the choice of automorphism �, is accounted for in the R-matrix R0

12.

Conjectured generalisations. Having derived Equation (3.14), it is natural to formulate conjec-
tures about generalisations of the models considered here. For instance, we expect a similar expression
to hold for the models on GN/G(0)

diag with arbitrary N constructed in the Hamiltonian formalism in

section 2. More generally, we conjecture that it also holds for models on GN/G(0)
diag with arbitrary

N and where the subalgebra g(0) is the grading zero subspace of a Z

T

-gradation with arbitrary T ,
generalising the case T = 2 considered here.

Let us be more precise about this conjecture. For N = 1, the model on the Z

T

-coset G/G(0) for
arbitrary T was constructed in [22] and was identified with a realisation of D2T -dihedral a�ne Gaudin
model in [1], based on the Hamiltonian analysis carried out in [23]. Although the generalisations of
this �-model on cosets GN/G(0)

diag with arbitrary N have not been considered before in the literature,
we expect the procedure of section 2 to readily generalise to the construction of such models, using a
D2T -dihedral a�ne Gaudin model [1] instead of a D4-dihedral model. In this case, the twist function
of the model would read8

'(z) = KT
zT�1

Q2N�2
i=1 (zT � ⇣T

i

)
Q

N

r=1(z
T � zT

r

)2
, (3.13)

in terms of its zeroes ⇣1, · · · , ⇣2N�2 and poles z1, · · · , zN . One can then factorise this twist function9

as '(z) = TK'+(z)'�(z), similarly to Equation (B.1) for T = 2, with

'+(z) =

Q2N�2
i=N

�
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i

�
Q
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r=1 (z
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r

)
and '�(z) =

zT�1
Q

N�1
i=1

�
zT � ⇣T

i

�
Q

N

r=1 (z
T � zT

r

)
.

We then conjecture that the action of the model is given by

S =
NX

r=1

SWZW,kr [gr]�
KT 3

2

¨
dx dt

NX

r,s=1

res
w=zs

res
z=zr

12

⇣
R0

12(w, z)'+(z)'�(w), j+,r1 j�,s2

⌘
, (3.14)

where k
r

= �T

2 res
z=zr '(z)dz and R0 now denotes the Z

T

-graded R-matrix which underlies the
integrable structure of D2T -dihedral a�ne Gaudin models [1], namely

R0
12(w, z) =

T�1X

k=0

wkzT�1�k

zT � wT

⇡(k)
1 C12,

with ⇡(k), k 2 {0, · · · , T � 1}, the projections along the grading g =
L

T�1
k=0 g(k).

As mentioned above, for N = 1 and arbitrary T , the corresponding integrable model on the Z

T

-
coset G/G(0) has been constructed in [22]: we have checked that the action of this model can indeed
be reformulated as in (3.14). Moreover, for the case of arbitrary N and T = 1, the results of [9] show
that the action of the model is also given by (3.14), with R0

12(z, w) the standard non-twisted R-matrix
C12/(w� z). Finally, we have checked this conjecture by direct computation for all cases with N  3
and T  3.

8The equivariance condition (2.18) is then replaced by '(!z) = !�1'(z), where ! = exp(2i⇡/T ).
9As for the case T = 2 treated in section 2, we expect such a separation of the zeroes of '(z) in two sets

{0, ⇣1, · · · , ⇣N�1} and {⇣N , · · · , ⇣2N�2,1} to come naturally from the relativistic invariance of the model, which requires
the coe�cients ✏i, i 2 {0, 1, · · · , 2N � 2,1}, in the Hamiltonian of the model to be equal to either �1 or +1.
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, (3.14)

where k
r

= �T

2 res
z=zr '(z)dz and R0 now denotes the Z

T

-graded R-matrix which underlies the
integrable structure of D2T -dihedral a�ne Gaudin models [1], namely

R0
12(w, z) =

T�1X

k=0

wkzT�1�k

zT � wT

⇡(k)
1 C12,

with ⇡(k), k 2 {0, · · · , T � 1}, the projections along the grading g =
L

T�1
k=0 g(k).

As mentioned above, for N = 1 and arbitrary T , the corresponding integrable model on the Z

T

-
coset G/G(0) has been constructed in [22]: we have checked that the action of this model can indeed
be reformulated as in (3.14). Moreover, for the case of arbitrary N and T = 1, the results of [9] show
that the action of the model is also given by (3.14), with R0

12(z, w) the standard non-twisted R-matrix
C12/(w� z). Finally, we have checked this conjecture by direct computation for all cases with N  3
and T  3.

8The equivariance condition (2.18) is then replaced by '(!z) = !�1'(z), where ! = exp(2i⇡/T ).
9As for the case T = 2 treated in section 2, we expect such a separation of the zeroes of '(z) in two sets

{0, ⇣1, · · · , ⇣N�1} and {⇣N , · · · , ⇣2N�2,1} to come naturally from the relativistic invariance of the model, which requires
the coe�cients ✏i, i 2 {0, 1, · · · , 2N � 2,1}, in the Hamiltonian of the model to be equal to either �1 or +1.
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In particular, note that the reformulation (3.14) of the action does not involve an explicit sum over
the grading index k = 0, 1 as in the original expression (3.6). As explained in the appendix B, this
graded structure, and thus the choice of automorphism �, is accounted for in the R-matrix R0

12.
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T
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T
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'(z) = KT
zT�1

Q2N�2
i=1 (zT � ⇣T

i

)
Q

N

r=1(z
T � zT

r

)2
, (3.13)

in terms of its zeroes ⇣1, · · · , ⇣2N�2 and poles z1, · · · , zN . One can then factorise this twist function9
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'+(z) =

Q2N�2
i=N

�
zT � ⇣T

i

�
Q

N

r=1 (z
T � zT

r

)
and '�(z) =

zT�1
Q

N�1
i=1

�
zT � ⇣T

i

�
Q

N

r=1 (z
T � zT

r

)
.
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�

�2+�21+
�

�2��21
�
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�

@��1@+�1+2�21 @�✓1@+✓1+2�2 @� @+ +4�2 @��1@+ cos ✓1

+
�
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�

�2��22
�
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�
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�
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��
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�

⌘

Gauge symmetry
G = SU(2) with g = su(2) generated by I

a

= i�
a

/2, where �
a

is the a-th Pauli matrix
� : �(I1) = �I1, �(I2) = �I2 and �(I3) = I3
Let us consider the model with two copies described in the previous section for the choice G = SU(2),

with Lie algebra g = su(2) generated by I
a

= i�
a

/2, where �
a

is the a-th Pauli matrix. We take � to be the
Z2-automorphism of su(2) defined by the following action on the generators: �(I1) = �I1, �(I2) = �I2 and
�(I3) = I3, so that g(0) = u(1) = span{I3} and correspondingly G(0) = U(1) = exp(RI3). Let us finally pick
the following parametrisation for the fields (g1, g2) 2 SU(2)⇥ SU(2) of the model:

G(0) = U(1) = exp(RI3)
Pick the following parametrisation for the fields (g1, g2) 2 SU(2)⇥ SU(2)
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1 Construction of the models in the Hamiltonian formulation

The model depends on 3N � 2 continuous free parameters

• the positions z2, · · · , zN of the sites (fixing z1 = 1) ;

• the constant term K in the twist function;

• the zeroes ⇣1, · · · , ⇣2N�2 of the twist function and the corresponding coe�cients ✏
i

2 {+1,�1} ;

• the coe�cients ✏0 and ✏1 in {+1,�1}.

The Hamiltonian of the model involves the zeroes {0,1, ⇣1, · · · , ⇣2N�2} of the twist function
The constraint C(x) = 0 eliminates the corresponding superfluous conjugate momentum fields

The “physical” coordinate fields of the model are fields on the quotient GN/G(0)
diag

Lagrangian model is defined on GN/G(0)
diag

with symmetry G(0)
diag, gauge

Initial phase space

P = T ⇤GN

1

(2N � 2 ⇣ 0s,N � 1 z0s and K)

Moreover, the light-cone components of the Maurer-Cartan currents transform as:

j(0)±,r

7! h�1
�
j(0)±,r

+ (@±h)h
�1

�
h,

j(1)±,r

7! h�1j(1)±,r

h.

In an action of the form (3.6) with general coe�cients ⇢(k)
rs

, it is then clear that the terms of grading
one are invariant under this gauge transformation. The variation of the action thus only contains terms
in the grading zero, coming from the variation of the factors 

�
j(0)+,r

, j(0)�,s

�
and of the Wess-Zumino

terms. Computing explicitly this variation, one finds that gauge invariance is verified if and only if
the following conditions are satisfied:

⇢(0)11 + ⇢(0)12 � k
2

= ⇢(0)12 + ⇢(0)22 � k
2

= ⇢(0)21 + ⇢(0)22 +
k
2

= ⇢(0)11 + ⇢(0)21 +
k
2

= 0. (3.8)

The above relations are indeed all identically satisfied for the choice of coe�cients (3.7).

Global symmetries. Let us briefly discuss the global symmetries of the model (3.6), which are
given by the left (G⇥G)-translations on g1 and g2:

(g1, g2) 7�! (f1g1, f2g2), (f1, f2) 2 G⇥G. (3.9)

Indeed, these translations leave the Maurer-Cartan currents j±,r

= g�1
r

@±gr invariant and also preserve
the Wess-Zumino terms IWZ

⇥
g
r

⇤
. Thus, they define global symmetries of the action (3.6). Making use

of Equation (3.8), the conserved Noether currents associated to these symmetries read

K+,r

=
2X

s=1

g
r

⇣
⇢(0)
sr

�
1� �

sr

�
j(0)+,s

+
�
⇢(1)
sr

� ⇢(0)
sr

�
sr

�
j(1)+,s

⌘
g�1
r

,

K�,r

=
2X

s=1

g
r

⇣
⇢(0)
rs

�
1� �

rs

�
j(0)�,s

+
�
⇢(1)
rs

� ⇢(0)
rs

�
rs

�
j(1)�,s

⌘
g�1
r

.

These currents satisfy the conservation equation @+K�,r

+@�K+,r

= 0. Let us also note that they are

gauge-invariant under the G(0)
diag gauge symmetry g

r

(x, t) 7! g
r

(x, t)h(x, t) of the model.

Reformulation of the action. As detailed in Appendix B, the coe�cients ⇢(k)
rs

and k
r

defined in
Equation (3.7) can be re-expressed as residues of well-chosen functions (for the non-dihedral �-models
on GN defined in [2, 3], a similar result was pointed out in [9]). This allows us to reformulate the
action (3.6) in the following remarkably simple way:

S =
2X

r=1

SWZW,kr [gr]� 4K

¨
dx dt

2X

r,s=1

res
w=zs

res
z=zr

12

⇣
R0

12(w, z)'+(z)'�(w), j+,r1 j�,s2

⌘
,

where R0
12 is the R-matrix (2.16) underlying the integrable structure of the model, SWZW,k[g] is the

Wess-Zumino-Witten action

SWZW,k[g] =
k
2

¨
dx dt 

�
g�1@+g, g

�1@�g
�
+ k IWZ

⇥
g
⇤

(3.11)

and '±(z) are functions defined as

'+(z) =
z2 � ⇣2+

(z2 � z21)(z
2 � z22)

and '�(z) =
z(z2 � ⇣2�)

(z2 � z21)(z
2 � z22)

. (3.12)
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1 Construction of the models in the Hamiltonian formulation

For N = 1 one gets the well-known gauge sigma model on G/G(0) with the Wess-Zumino term

j±,r

(x) = g�1
r

(x)@±gr(x)

r = 1, . . . , N

g = �T�1
k=0 g

(k)

g(k) = ⇡(k)g

GN

.

G(0)
diag

= G⇥G⇥ . . .⇥G
.

G(0)
diag

Classical r-matrix
� is an automorphism of order T of G and G(0) ⇢ G is a subgroup of fixed points
Coset space

1



Limiting case

3.3 Lax connection in the Lagrangian formulation

From the equations (2.62) and (2.69), the Lax connection can be written in terms of the fields j
r

, Y
r

and µ. Moreover, from Equation (3.3), we have:

µ ⇡ j0,r �
2X

s=1

b(0)
rs

j(0)
s

+ 2c(0)
rs

Y (0)
s

.

We can then express the Lax connection solely in terms of the fields j
r

and Y
r

. Inserting Equations
(3.4) and (3.5), we finally get the Lagrangian expression of the Lax connection. In terms of the
light-cone currents j±,r

, it reads:

L±(z) =
2X

r=1

1X

k=0

⌘(k)±,r

(z)j(k)±,r

, (3.15)

where

⌘(0)±,1(z) =

�
z2 � x2

� �
1� ⇣2±

�
�
z2 � ⇣2±

�
(1� x2)

, ⌘(1)±,1(z) = z±1 ⌘(0)±,1(z), (3.16)

⌘(0)±,2(z) =

�
z2 � 1

� �
x2 � ⇣2±

�
�
z2 � ⇣2±

�
(x2 � 1)

, ⌘(1)±,2(z) =
⇣ z
x

⌘±1
⌘(0)±,2(z). (3.17)

In particular, we note as an observation that ⌘(k)±,s

(z
r

) = �
rs

(where we recall that z1 = 1 and z2 = x)
and therefore

L±(zr) = j±,r

. (3.18)

3.4 A limit of the model

Definition of the limit. Let us recall that the model with two copies introduced above depends on
the four continuous real parameters x, K, ⇣+ and ⇣�. In this subsection, we will describe the simple
form that this model assumes after taking a particular limit of these parameters. In particular, this
limit will be our starting point in section 4. We start by considering the following reparametrisation
of x, K, ⇣+ and ⇣� in terms of four new parameters ↵, �1, �2 and �:

x =
1

↵
, K =

�2
2

↵2
, ⇣+ =

�1

�
, ⇣� =

�

�2↵
. (3.19)

We then define the limit we will be interested in by taking ↵ ! 0 while keeping the other parameters
�1, �2 and � fixed.

Action. Let us look at how the action of the model simplifies in this limit. From their expression
(3.7), we obtain that the coe�cients ⇢(k)

rs

and k simply become:

⇢(0)11 = ⇢(0)22 =
�2

2
, ⇢(0)12 = ⇢(1)12 = ⇢(1)21 = 0, ⇢(0)21 = �k = ��2, ⇢(1)11 =

�2
1

2
, ⇢(1)22 =

�2
2

2
.

Writing the action explicitly, we thus have

S[g1, g2] =

¨
dx dt

2X

r=1

✓
�2

2

⇣
j(0)+,r

, j(0)�,r

⌘
+

�2
r

2

⇣
j(1)+,r

, j(1)�,r

⌘◆
� �2 

⇣
j(0)+,2, j

(0)
�,1

⌘
(3.20)

+ �2 IWZ

⇥
g1
⇤
� �2 IWZ

⇥
g2
⇤
.
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1 Construction of the models in the Hamiltonian formulation

Define U = g1 and V = g�1
2 , and use IWZ

⇥

g�1
⇤

= �IWZ
⇥

g
⇤

Checked for all cases for with N  3 and T  3!
where
3N � 2 = 3⇥ 2� 2 = 4 parameters z2 ⌘ x, ⇣+ ⌘ ⇣1, ⇣� ⌘ ⇣2 and K

j0,r = g�1
r

{H
T

, g
r

} =
2

X

s=1

1
X

k=0

b(k)
rs

j(k)
s

+ 2c(k)
rs

Y (k)
s

+ µ

Y (0)
1 + Y (0)

2 = �`1,0
2

j(0)1 � `2,0
2

j(0)2 .

Y1 = Y (0)
1 + Y (1)

1

Y2 = Y (0)
2 + Y (1)

2
are solved in terms of j0,r = g�1@

t

g and j
r

= g�1@
x

g
The passage to the Lagrangian formulation is done by means of the inverse Legendre transform
✏0 = �1, ✏1 = �1, ✏2 = +1, ✏1 = +1. Motivated by this choice and for future convenience, we will

rename ⇣1 as ⇣� and ⇣2 as ⇣+.

1

Lax connection. Let us now turn to the Lax connection. Taking the limit on the coe�cients ⌘±(z)
defined in (3.16) and reinserting in the expression (3.15) of the Lax connection, we get:

L+(z) =
1

�2z2 � �2
1

⇣�
�2 � �2

1

� ⇣
j(0)+,1 + z j(1)+,1

⌘
+ �2

�
z2 � 1

�
j(0)+,2

⌘
, L�(z) = j(0)�,1 +

j(1)�,1

z
. (3.21)

One can check that the zero curvature equation for this Lax connection actually does not encode all
the equations of motion of the model. To circumvent this di�culty, let us also consider the limit
of L±(z/↵), which we will denote as eL±(z) (by construction, eL±(z) also satisfies a zero curvature
equation). A direct computation shows that

eL+(z) = j(0)+,2 + z j(1)+,2, eL�(z) =
1

z2�2
2 � �2

⇣
�2

�
z2 � 1

�
j(0)�,1 +

�
�2
2 � �2

� ⇣
z2j(0)�,2 + z j(1)�,2

⌘⌘
.

(3.22)
The combined zero curvature equations of L±(z) and eL±(z) are equivalent to all the equations of
motion of the model.

Additional symmetry. For this paragraph, we will suppose that the pair
�
G,G(0)

�
characterising

the model is such that G(0) possesses a center Z. There are many examples of such pairs, which include
for instance

�
SU(p+q), S

�
U(p)⇥U(q)

��
,
�
SL(p+q), S

�
GL(p)⇥GL(q)

��
and

�
SO(2n), U(N)

�
. As we

will now show, in this case, the model (3.20) then possesses an additional global Z-symmetry, which
acts on the fields g1, g2 2 G as

(g1, g2) 7�! (g1k, g2), k 2 Z. (3.23)

Note that we could also have considered the action (g1, g2) 7! (g1, g2k), which is equivalent to the
one above via the G(0)

diag gauge symmetry. Under the action (3.23), the graded components j(k)±,r

of the
Maurer-Cartan currents transform as

j(0)±,1 7�! j(0)±,1, j(1)±,1 7�! k�1j(1)±,1k, j(0)±,2 7�! j(0)±,2 and j(1)±,2 7�! j(1)±,2, (3.24)

where we have used the fact that k is central in G(0) and thus that k�1j(0)±,1k = j(0)±,1. Noting also that
the Wess-Zumino term of g1 is invariant under the transformation (3.23), i.e. IWZ

⇥
g1k

⇤
= IWZ

⇥
g1
⇤
, it

is direct to check that this transformation defines a symmetry of the action (3.20), as claimed.

Guadagnini-Martellini-Mintchev model. Let us now define U = g1 and V = g�1
2 . We recall

that the Wess-Zumino term satisfies the following relation:

IWZ

⇥
g�1

⇤
= �IWZ

⇥
g
⇤
.

Then, in the case in which �1 = �2 = �, the action (3.20) can be rewritten as

S[U, V ] = SWZW,�

2 [U ] + SWZW,�

2 [V ] + �2

¨
dx dt 

⇣�
@+V V �1

�(0)
,
�
U�1@�U

�(0)⌘
, (3.25)

where SWZW,k denotes the Wess-Zumino-Witten action with level k as defined in (3.11). The action
(3.25) coincides with the one of the Guadagnini-Martellini-Mintchev model introduced in [4] as a
theory on (G ⇥ G0)/H, when considered in the special case G0 = G and H = G(0). This model was
shown to preserve scale invariance at the quantum level at one loop in [4] and at two loops in [24]. This
thus shows that the integrable �-model considered in this subsection is a two-dimensional conformal
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1 Construction of the models in the Hamiltonian formulation
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Define U = g1 and V = g�1

2 , and use IWZ
⇥

g�1
⇤

= �IWZ
⇥

g
⇤

Checked for all cases for with N  3 and T  3!
where
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are solved in terms of j0,r = g�1@
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g and j
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= g�1@
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The passage to the Lagrangian formulation is done by means of the inverse Legendre transform
✏0 = �1, ✏1 = �1, ✏2 = +1, ✏1 = +1. Motivated by this choice and for future convenience, we will

rename ⇣1 as ⇣� and ⇣2 as ⇣+.
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1 Construction of the models in the Hamiltonian formulation

2dim CFT
In the case �1 = �2 = � the action can be rewritten as
Define U = g1 and V = g�1

2 , and use IWZ
⇥

g�1
⇤

= �IWZ
⇥

g
⇤

Checked for all cases for with N  3 and T  3!
where
3N � 2 = 3⇥ 2� 2 = 4 parameters z2 ⌘ x, ⇣+ ⌘ ⇣1, ⇣� ⌘ ⇣2 and K
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2
are solved in terms of j0,r = g�1@

t

g and j
r

= g�1@
x

g
The passage to the Lagrangian formulation is done by means of the inverse Legendre transform

1

field theory for the specific choice �1 = �2 = � of its defining parameters. The Kac-Moody current
algebras of this conformal model have been studied in [25].

Let us finally note that in the case under consideration, the Lax connections L±(z) and L̃±(z),
given in (3.21) and (3.22) respectively, assume the following simple form:

L+(z) = j(0)+,2, L�(z) = j(0)�,1 +
j(1)�,1

z
,

L̃+(z) = j(0)+,2 + z j(1)+,2, L̃�(z) = j(0)�,1.

4 Integrable �-models on T

1,1 manifolds

4.1 The models

Action. Let us consider the model with two copies described in the previous section for the choice
G = SU(2), with Lie algebra g = su(2) generated by I

a

= i�
a

/2, where �
a

is the a-th Pauli matrix.
We take � to be the Z2-automorphism of su(2) defined by the following action on the generators:
�(I1) = �I1, �(I2) = �I2 and �(I3) = I3, so that g(0) = u(1) = span{I3} and correspondingly
G(0) = U(1) = exp(RI3). Let us finally pick the following parametrisation for the fields (g1, g2) 2
SU(2)⇥ SU(2) of the model:

g1 = exp (�1I3) exp (✓1I2) exp ( I3), (4.1a)

g2 = exp (��2I3) exp (�✓2I2) exp (� ̃I3). (4.1b)

Inserting this parametrisation in the action (3.20), one finds:

S =
1
4

¨
dx dt

⇣�
�2+�2

1+
�
�2��2

1

�
cos(2✓1)

�
@��1@+�1+2�2

1 @�✓1@+✓1+2�2 @� @+ +4�2 @��1@+ cos ✓1

+
�
�2+�2

2+
�
�2��2

2

�
cos(2✓2)

�
@��2@+�2+2�2

2 @�✓2@+✓2+2�2 @� ̃@+ ̃+4�2 @� ̃@+�2 cos ✓2

+4�2�cos ✓1 @��1+@� 
��
cos ✓2 @+�2+@+ ̃

�⌘
. (4.2)

Gauge fixing and background. Recall that the model we are considering is invariant under the
gauge transformation g

r

7! g
r

h, h 2 U(1). In the parametrisation (4.1) used above, this gauge
symmetry simply becomes the translation ( ,  ̃) 7! ( + ⌘,  ̃ � ⌘) with local parameter ⌘ 2 R. We
now use this freedom to set  ̃ = 0. Having fixed the gauge, we can then rewrite the action (4.2) as a
�-model on the coset SU(2)⇥ SU(2)/U(1), with coordinate fields y = (✓1, ✓2,�1,�2, ). This defines
the background metric G

ij

and background B-field B
ij

, in terms of which the action reads

S =
1

2

¨
dx dt

�
G

ij

+B
ij

�
@�y

i@+y
j . (4.3)

Setting  ̃ = 0 in (4.2), we read for the metric:

ds2 = G
ij

dyidyj = �21(d✓
2
1+sin2 ✓1 d�

2
1)+�

2
2(d✓

2
2+sin2 ✓2 d�

2
2)+�

2(d +cos ✓1 d�1+cos ✓2 d�2)
2, (4.4)

while the B-field is given by

B =
1

2
B

ij

dyi ^ dyj = �2(cos ✓1 d�1 + d ) ^ (cos ✓2 d�2 + d ). (4.5)

We recognise (4.4) as the metric of the so-called T 1,1 manifolds [26–28]. More precisely, it defines
a family of metrics, which depend on the three parameters �1, �2 and �. Let us note that certain
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1 Construction of the models in the Hamiltonian formulation

@+L�(z)� @�L+(z) + [L+(z),L�(z)] = 0,

@+L̃�(z)� @�L̃+(z) + [L̃+(z), L̃�(z)] = 0

Integrable coset sigma models based on supergroups.
Interesting case G = PSU(1, 1|2)

Integrable sigma model on Lorentzian spaces W4,2 = SL(2,R)⇥ SL(2,R)/U(1)?
Prove the conjecture on the Lagrangian for generic (N,T )-models
Study RG flow. Is integrable T 1,1 flows to the GMM fixed point?

New integrable models on GN/G(0)
diag from a�ne Gaudin models

 Einstein manifold
 conformal GMM model

SU(2)⇥ SU(2)
.

U(1)
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N = 2

3.3 Lax connection in the Lagrangian formulation

From the equations (2.62) and (2.69), the Lax connection can be written in terms of the fields j
r

, Y
r

and µ. Moreover, from Equation (3.3), we have:

µ ⇡ j0,r �
2X

s=1

b(0)
rs

j(0)
s

+ 2c(0)
rs

Y (0)
s

.

We can then express the Lax connection solely in terms of the fields j
r

and Y
r

. Inserting Equations
(3.4) and (3.5), we finally get the Lagrangian expression of the Lax connection. In terms of the
light-cone currents j±,r

, it reads:

L±(z) =
2X

r=1

1X

k=0

⌘(k)±,r

(z)j(k)±,r

, (3.15)

where

⌘(0)±,1(z) =

�
z2 � x2

� �
1� ⇣2±

�
�
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�
(1� x2)
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�
z2 � 1

� �
x2 � ⇣2±

�
�
z2 � ⇣2±

�
(x2 � 1)

, ⌘(1)±,2(z) =
⇣ z
x

⌘±1
⌘(0)±,2(z). (3.17)

In particular, we note as an observation that ⌘(k)±,s

(z
r

) = �
rs

(where we recall that z1 = 1 and z2 = x)
and therefore

L±(zr) = j±,r

. (3.18)

3.4 A limit of the model

Definition of the limit. Let us recall that the model with two copies introduced above depends on
the four continuous real parameters x, K, ⇣+ and ⇣�. In this subsection, we will describe the simple
form that this model assumes after taking a particular limit of these parameters. In particular, this
limit will be our starting point in section 4. We start by considering the following reparametrisation
of x, K, ⇣+ and ⇣� in terms of four new parameters ↵, �1, �2 and �:

x =
1

↵
, K =

�2
2

↵2
, ⇣+ =

�1

�
, ⇣� =

�

�2↵
. (3.19)

We then define the limit we will be interested in by taking ↵ ! 0 while keeping the other parameters
�1, �2 and � fixed.

Action. Let us look at how the action of the model simplifies in this limit. From their expression
(3.7), we obtain that the coe�cients ⇢(k)

rs

and k simply become:

⇢(0)11 = ⇢(0)22 =
�2

2
, ⇢(0)12 = ⇢(1)12 = ⇢(1)21 = 0, ⇢(0)21 = �k = ��2, ⇢(1)11 =

�2
1

2
, ⇢(1)22 =

�2
2

2
.

Writing the action explicitly, we thus have

S[g1, g2] =

¨
dx dt

2X

r=1

✓
�2

2

⇣
j(0)+,r

, j(0)�,r

⌘
+

�2
r

2

⇣
j(1)+,r

, j(1)�,r

⌘◆
� �2 

⇣
j(0)+,2, j

(0)
�,1

⌘
(3.20)

+ �2 IWZ

⇥
g1
⇤
� �2 IWZ

⇥
g2
⇤
.
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1 Construction of the models in the Hamiltonian formulation

G = SU(2) with g = su(2) generated by I
a

= i�
a

/2, where �
a

is the a-th Pauli matrix
Let us consider the model with two copies described in the previous section for the choice G =

SU(2), with Lie algebra g = su(2) generated by I
a

= i�
a

/2, where �
a

is the a-th Pauli matrix. We take
� to be the Z2-automorphism of su(2) defined by the following action on the generators: �(I1) = �I1,
�(I2) = �I2 and �(I3) = I3, so that g(0) = u(1) = span{I3} and correspondingly G(0) = U(1) =
exp(RI3). Let us finally pick the following parametrisation for the fields (g1, g2) 2 SU(2)⇥ SU(2) of
the model:

L± =

✓

L± 0
0 L̃±

◆

 Lax connection
In the case �1 = �2 = � the action can be rewritten as
Define U = g1 and V = g�1

2 , and use IWZ
⇥

g�1
⇤

= �IWZ
⇥

g
⇤

Checked for all cases for with N  3 and T  3!
where
3N � 2 = 3⇥ 2� 2 = 4 parameters z2 ⌘ x, ⇣+ ⌘ ⇣1, ⇣� ⌘ ⇣2 and K
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�(I2) = �I2 and �(I3) = I3, so that g(0) = u(1) = span{I3} and correspondingly G(0) = U(1) =
exp(RI3). Let us finally pick the following parametrisation for the fields (g1, g2) 2 SU(2)⇥ SU(2) of
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In the case �1 = �2 = � the action can be rewritten as
Define U = g1 and V = g�1

2 , and use IWZ
⇥

g�1
⇤

= �IWZ
⇥

g
⇤

Checked for all cases for with N  3 and T  3!
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field theory for the specific choice �1 = �2 = � of its defining parameters. The Kac-Moody current
algebras of this conformal model have been studied in [25].

Let us finally note that in the case under consideration, the Lax connections L±(z) and L̃±(z),
given in (3.21) and (3.22) respectively, assume the following simple form:

L+(z) = j(0)+,2, L�(z) = j(0)�,1 +
j(1)�,1

z
,

L̃+(z) = j(0)+,2 + z j(1)+,2, L̃�(z) = j(0)�,1.
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Action. Let us consider the model with two copies described in the previous section for the choice
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/2, where �
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We take � to be the Z2-automorphism of su(2) defined by the following action on the generators:
�(I1) = �I1, �(I2) = �I2 and �(I3) = I3, so that g(0) = u(1) = span{I3} and correspondingly
G(0) = U(1) = exp(RI3). Let us finally pick the following parametrisation for the fields (g1, g2) 2
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g1 = exp (�1I3) exp (✓1I2) exp ( I3), (4.1a)

g2 = exp (��2I3) exp (�✓2I2) exp (� ̃I3). (4.1b)

Inserting this parametrisation in the action (3.20), one finds:
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Gauge fixing and background. Recall that the model we are considering is invariant under the
gauge transformation g

r

7! g
r

h, h 2 U(1). In the parametrisation (4.1) used above, this gauge
symmetry simply becomes the translation ( ,  ̃) 7! ( + ⌘,  ̃ � ⌘) with local parameter ⌘ 2 R. We
now use this freedom to set  ̃ = 0. Having fixed the gauge, we can then rewrite the action (4.2) as a
�-model on the coset SU(2)⇥ SU(2)/U(1), with coordinate fields y = (✓1, ✓2,�1,�2, ). This defines
the background metric G

ij

and background B-field B
ij

, in terms of which the action reads

S =
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¨
dx dt
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+B
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�
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j . (4.3)

Setting  ̃ = 0 in (4.2), we read for the metric:

ds2 = G
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2
1+sin2 ✓1 d�

2
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2, (4.4)

while the B-field is given by

B =
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2
B

ij

dyi ^ dyj = �2(cos ✓1 d�1 + d ) ^ (cos ✓2 d�2 + d ). (4.5)

We recognise (4.4) as the metric of the so-called T 1,1 manifolds [26–28]. More precisely, it defines
a family of metrics, which depend on the three parameters �1, �2 and �. Let us note that certain
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field theory for the specific choice �1 = �2 = � of its defining parameters. The Kac-Moody current
algebras of this conformal model have been studied in [25].

Let us finally note that in the case under consideration, the Lax connections L±(z) and L̃±(z),
given in (3.21) and (3.22) respectively, assume the following simple form:

L+(z) = j(0)+,2, L�(z) = j(0)�,1 +
j(1)�,1

z
,

L̃+(z) = j(0)+,2 + z j(1)+,2, L̃�(z) = j(0)�,1.
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a family of metrics, which depend on the three parameters �1, �2 and �. Let us note that certain
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which one of the four parameters decouples leaving behind a three-parameter (�,�1,�2) family of
integrable models. We then observe that at the particular point �1 = �2 = � the corresponding action
coincides with the one of the Guadagnini-Martellini-Mintchev model [4] on the homogeneous space
G ⇥ G/G(0)

diag. This model defines a two-dimensional conformal field theory. We then show that the
general Lax connection specified to this model acquires a very simple form.

Finally, in the above N = 2 three-parameter model we specify G = SU(2) and G(0) = U(1) and
obtain a gauged sigma model on the coset SU(2)⇥ SU(2)/U(1). Fixing the gauge by putting one of
the Cartan angles to zero, we obtain the gauge-fixed action from which we read o↵ the sigma-model
metric and the B-field. The metric turns out to coincide with the three-parameter family of metrics
on the T 1,1 manifolds
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Particularly interesting configurations of parameters correspond to �21 = �22 = 3�2/2 and �1 = �2 = �.
In the first case, we get a sigma model on an Einstein manifold, in the second case we obtain the
already mentioned conformal model which, in particular, was used in [5] to construct pure NS-NS
supergravity solutions. What follows from our consideration is that the sigma model on a generic
three-parameter T 1,1 is integrable and we present the corresponding Lax connection. For integrability
to hold the presence of the B-field

B = �2(cos ✓1 d�1 + d ) ^ (cos ✓2 d�2 + d ) .

is crucial. In particular, changing the overall coe�cient �2 to any other value destroys integrability.
To support this claim, we consider an isometry-preserving setting where the B-field is allowed with
an arbitrary coe�cient. In order to probe (non-)integrable properties of this generalised model, we
reduce the sigma-model equations to a mechanical system by plugging in them the so-called spinning
string ansatz, in the spirit of [6–8] where spinning (or wrapped) strings on T 1,1 were studied. At the
end we obtain a coupled system of di↵erential equations for the two angle coordinates ✓1 and ✓2. We
then observe that only when the coe�cient of the B-field is �2, the equations for ✓1 and ✓2 decouple
(separate) and can be integrated by quadrature. In any other case there is no decoupling and most
probably the corresponding dynamical system exhibits a chaotic behaviour, similar to what has been
found in [8].

The paper is organised as follows. In the next section we construct the coset models in the
Hamiltonian formulation. In section 3 we derive the action of the coset sigma model for N = 2,
rewrite this action in a new form involving the classical R-matrix and discuss further generalisations
for arbitrary N . We also consider a limiting case where one of the parameters is scaled away and at a
special point in the parameter space we find the match of the corresponding model with the conformal
model of Guadagnini, Martellini and Mintchev. Section 4 is devoted to integrable sigma models on
T 1,1 manifolds. We relegate some technical details to 3 appendices.

2 Construction of the models in the Hamiltonian formulation

Let G be a connected semi-simple real Lie group, � an involutive automorphism of G and G(0) the
subgroup of fixed-points of �. Our goal in this section is to construct integrable �-models on GN/G(0)

diag,

where N is a positive integer and G(0)
diag = {(h, · · · , h), h 2 G(0)}. As we shall see, they will be more

precisely obtained as models on GN with a G(0)
diag gauge symmetry. For N = 1, the construction will

yield the standard �-model on the symmetric space G/G(0), which is well known to be integrable.
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Explicit	form	of	the	Lax	connection	in	terms	of	

members of this family possess additional interesting geometrical properties. For instance, the choice
�21 = �22 = 3�2/2 yields an Einstein metric, which has well-known applications in supergravity. As
explained for a general group G in the paragraph 3.4, the case �1 = �2 = � yields the conformal model
of [4], which for the group SU(2) considered here has been studied in [5], where it has been used to
construct a pure NS-NS supergravity solution.

By construction, the model considered in this subsection is integrable for any metric in this family,
i.e. for all values of the parameters �1, �2 and �. However, let us stress that this integrability also
requires the presence of a B-field in the model, namely the B-field (4.5) whose global prefactor �2 is
then fixed by the choice of the metric (for other choices of this prefactor, the model is non-integrable,
see subsections 4.2 and 4.3).

Lax connection. As proven in subsection 3.4, the model under consideration possesses two inde-
pendent Lax connections L± and eL±, which characterise its integrability. Let us discuss their explicit
expressions in terms of the coordinate fields (✓1, ✓2,�1,�2, ). As it turns out, instead of L±(z), it will
be simpler to describe its gauge transformation bL±(z) = h�1L±(z)h+ h�1@±h with h = exp(� I3).
Let us then write these Lax connections in terms of their components in the decompositions bL± = bLa
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4.2 Modification of the background, isometries and equations of motion

Isometries-preserving modification of the model. Let us now consider a modification of the
model described in the previous subsection (this will allow us to pinpoint the requirements for the
integrability of the model and to make connections with other works in the next subsection). More
precisely, let us take again an action of the form (4.3), with y = (✓1, ✓2,�1,�2, ) and metric given by
(4.4), but with the following B-field (k 2 R):

B = k (cos ✓1 d�1 + d ) ^ (cos ✓2 d�2 + d ), (4.8)

obtained from (4.5) by substituting the overall multiplication parameter �2 with k. For arbitrary values
of k, this modification will break the integrability of the theory, while retaining the same isometries as
the original model. In particular, as one can see from Equations (4.4), (4.5) and (4.8), the coordinate
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4.2 Modification of the background, isometries and equations of motion

Isometries-preserving modification of the model. Let us now consider a modification of the
model described in the previous subsection (this will allow us to pinpoint the requirements for the
integrability of the model and to make connections with other works in the next subsection). More
precisely, let us take again an action of the form (4.3), with y = (✓1, ✓2,�1,�2, ) and metric given by
(4.4), but with the following B-field (k 2 R):

B = k (cos ✓1 d�1 + d ) ^ (cos ✓2 d�2 + d ), (4.8)

obtained from (4.5) by substituting the overall multiplication parameter �2 with k. For arbitrary values
of k, this modification will break the integrability of the theory, while retaining the same isometries as
the original model. In particular, as one can see from Equations (4.4), (4.5) and (4.8), the coordinate
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                                     Spinning strings on T 1,1

4.3 Spinning string solutions

In this subsection, we describe a certain class of solutions of the equations of motion of the model with
modified B-field (4.8), obtained by a spinning string ansatz [29, 30]. Note that spinning strings in
T 1,1 manifolds (or closely related wrapped strings) have already been studied in [6–8] in specific cases.
In particular, the non-integrability of these solutions have been discussed in [8]: we will compare our
results with the ones of [8] at the end of this subsection.

Spinning string ansatz. We follow the procedure described in Appendix C, where we discuss the
spinning string ansatz for a general �-model with B-field. Since the model we are considering possesses
three commuting isometries, in the coordinates �1, �2 and  , one can then search for spinning string
solutions of the form:

✓
i

= ✓
i

(x), �
i

= !
i

t+ e�
i

(x),  =  (x), (4.13)

with i 2 {1, 2} and !1 and !2 constant parameters (more generally, one could also add a term !t in
the expression of  as it is also an isometric coordinate: for simplicity, we will not consider this more
general case here). The functions e�1(x) and e�2(x) and  (x) are the equivalent of the functions �j(x) in
Appendix C.2. As explained in this appendix, these functions are necessary to ensure the consistency of
the ansatz. As we shall now see, they (or more precisely their derivatives) can be determined explicitly,
which in the end will allow us to obtain ordinary di↵erential equations governing the functions ✓1(x)
and ✓2(x).

Equations of motion for the isometric coordinates. As explained in Appendix C.2, in the
spinning string ansatz (4.13), the spatial and temporal components of the Noether currents (4.10) do
not depend on time, and therefore their conservation equations simply become
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. The above equations have solutions ⇧x
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= 0 if we choose the

integration constant to be zero for simplicity. Using this, the derivatives of the functions e�1(x), e�2(x)
and  (x), which we denote with a dot as in Appendix C, can be solved for in terms of the functions
✓1(x) and ✓2(x). More precisely, applying the equation (C.7) in the present case, we get
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Equations of motion for the non-isometric coordinates and integrability. Inserting the
spinning string ansatz (4.13) and the expressions (4.14) in the equations of motion (4.12a) and (4.12b)
for the non-isometric coordinates, we get the following:
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As justified for a general �-model in Appendix C.2, these are ordinary di↵erential equations which
involve only the functions ✓1(x) and ✓2(x) corresponding to the non-isometric directions of the back-
ground. For generic values of the parameters, these equations are coupled and we expect them to

– 32 –

4.3 Spinning string solutions

In this subsection, we describe a certain class of solutions of the equations of motion of the model with
modified B-field (4.8), obtained by a spinning string ansatz [29, 30]. Note that spinning strings in
T 1,1 manifolds (or closely related wrapped strings) have already been studied in [6–8] in specific cases.
In particular, the non-integrability of these solutions have been discussed in [8]: we will compare our
results with the ones of [8] at the end of this subsection.

Spinning string ansatz. We follow the procedure described in Appendix C, where we discuss the
spinning string ansatz for a general �-model with B-field. Since the model we are considering possesses
three commuting isometries, in the coordinates �1, �2 and  , one can then search for spinning string
solutions of the form:

✓
i

= ✓
i

(x), �
i

= !
i

t+ e�
i

(x),  =  (x), (4.13)

with i 2 {1, 2} and !1 and !2 constant parameters (more generally, one could also add a term !t in
the expression of  as it is also an isometric coordinate: for simplicity, we will not consider this more
general case here). The functions e�1(x) and e�2(x) and  (x) are the equivalent of the functions �j(x) in
Appendix C.2. As explained in this appendix, these functions are necessary to ensure the consistency of
the ansatz. As we shall now see, they (or more precisely their derivatives) can be determined explicitly,
which in the end will allow us to obtain ordinary di↵erential equations governing the functions ✓1(x)
and ✓2(x).

Equations of motion for the isometric coordinates. As explained in Appendix C.2, in the
spinning string ansatz (4.13), the spatial and temporal components of the Noether currents (4.10) do
not depend on time, and therefore their conservation equations simply become

@
x

⇧x

�1
= @

x

⇧x

�2
= @

x

⇧x

 

= 0,

where ⇧x

i

= ⇧+
i

� ⇧�
i

. The above equations have solutions ⇧x

�1
= ⇧x

�2
= ⇧x

 

= 0 if we choose the

integration constant to be zero for simplicity. Using this, the derivatives of the functions e�1(x), e�2(x)
and  (x), which we denote with a dot as in Appendix C, can be solved for in terms of the functions
✓1(x) and ✓2(x). More precisely, applying the equation (C.7) in the present case, we get

ė�1 = � k

�21
!1 cot

2 ✓1, ė�2 = +
k

�22
!2 cot

2 ✓2, (4.14a)

 ̇ = +
k

�2
!1 cos ✓1

✓
1 +

�2

�21
cot2 ✓1

◆
� k

�2
!2 cos ✓2

✓
1 +

�2

�22
cot2 ✓2

◆
. (4.14b)

Equations of motion for the non-isometric coordinates and integrability. Inserting the
spinning string ansatz (4.13) and the expressions (4.14) in the equations of motion (4.12a) and (4.12b)
for the non-isometric coordinates, we get the following:

✓̈1 = !1 sin ✓1

✓
!1

✓✓
�2

�21
� 1

◆
+

k2

�2�21

✓✓
1� �2

�21

◆
+

�21
sin4 ✓1

◆◆
cos ✓1 � !2

k2 � �4

�2�21
cos ✓2

◆
, (4.15a)

✓̈2 = !2 sin ✓2

✓
!2

✓✓
�2

�22
� 1

◆
+

k2

�2�22

✓✓
1� �2

�22

◆
+

�22
sin4 ✓2

◆◆
cos ✓2 � !1

k2 � �4

�2�22
cos ✓1

◆
. (4.15b)

As justified for a general �-model in Appendix C.2, these are ordinary di↵erential equations which
involve only the functions ✓1(x) and ✓2(x) corresponding to the non-isometric directions of the back-
ground. For generic values of the parameters, these equations are coupled and we expect them to
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diag from a�ne Gaudin models
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SU(2)⇥ SU(2)
.

U(1)

1

members of this family possess additional interesting geometrical properties. For instance, the choice
�21 = �22 = 3�2/2 yields an Einstein metric, which has well-known applications in supergravity. As
explained for a general group G in the paragraph 3.4, the case �1 = �2 = � yields the conformal model
of [4], which for the group SU(2) considered here has been studied in [5], where it has been used to
construct a pure NS-NS supergravity solution.

By construction, the model considered in this subsection is integrable for any metric in this family,
i.e. for all values of the parameters �1, �2 and �. However, let us stress that this integrability also
requires the presence of a B-field in the model, namely the B-field (4.5) whose global prefactor �2 is
then fixed by the choice of the metric (for other choices of this prefactor, the model is non-integrable,
see subsections 4.2 and 4.3).

Lax connection. As proven in subsection 3.4, the model under consideration possesses two inde-
pendent Lax connections L± and eL±, which characterise its integrability. Let us discuss their explicit
expressions in terms of the coordinate fields (✓1, ✓2,�1,�2, ). As it turns out, instead of L±(z), it will
be simpler to describe its gauge transformation bL±(z) = h�1L±(z)h+ h�1@±h with h = exp(� I3).
Let us then write these Lax connections in terms of their components in the decompositions bL± = bLa

±Ia
and eL± = eLa

±Ia along the basis I
a

= i�
a

/2 of su(2). From (3.21), using the parametrisation (4.1), we
get for bL±:

bL1
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�
�2 � �21

�
z
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�
�2 � �21

�
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bL3
+ =

1

�2z2 � �21

��
�2 � �21

�
cos ✓1 @+�1 � �2(z2 � 1)(cos ✓2 @+�2 + @+ )

�
,

together with

bL1
� =

sin ✓1 @��1
z

, bL2
� =

@�✓1
z

, bL3
� = cos ✓1 @��1.

Similarly, for eL± we get from (3.22):

eL1
+ = z sin ✓2 @+�2, eL2

+ = �z @+✓2, eL3
+ = � cos ✓2 @+�2,

as well as

eL1
� = �

�
�2 � �22

�
z

�22z
2 � �2

sin ✓2 @��2, eL2
� =

�
�2 � �22

�
z

�22z
2 � �2

@�✓2,

eL3
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1

�22z
2 � �2

��
�2 � �22

�
z2 cos ✓2 @��2 + �2(z2 � 1)(cos ✓1 @��1 + @� )

�
.

4.2 Modification of the background, isometries and equations of motion

Isometries-preserving modification of the model. Let us now consider a modification of the
model described in the previous subsection (this will allow us to pinpoint the requirements for the
integrability of the model and to make connections with other works in the next subsection). More
precisely, let us take again an action of the form (4.3), with y = (✓1, ✓2,�1,�2, ) and metric given by
(4.4), but with the following B-field (k 2 R):

B = k (cos ✓1 d�1 + d ) ^ (cos ✓2 d�2 + d ), (4.8)

obtained from (4.5) by substituting the overall multiplication parameter �2 with k. For arbitrary values
of k, this modification will break the integrability of the theory, while retaining the same isometries as
the original model. In particular, as one can see from Equations (4.4), (4.5) and (4.8), the coordinate
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New integrable models on GN/G(0)
diag from a�ne Gaudin models

 Einstein manifold
 conformal GMM model

SU(2)⇥ SU(2)
.

U(1)
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1 Construction of the models in the Hamiltonian formulation

D is either the real line R or the circle S1

The sum over k 2 {0, 1} and the factors (�1)k encodes the T = 2 dihedrality of the model

g(0) = {x 2 g : �(x) = x} and g(1) = {x 2 g : �(x) = �x}.

i) N sites at {z1, . . . , zr, . . . z
N

} , z
r

2 R

⇤

ii) Each site has multiplicity two :

to each site two levels (real numbers) are associated `
r,0 2 R and `

r,0 2 R

⇤

G is a real semi-simple Lie group, g is the Lie algebra
 is a non-degenerate ad-invariant bilinear form on g, opposite of the Killing form
� is an involutive automorphism of G and G(0) ⇢ G is the subgroup of fixed-points of �
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Consider fields on D with values in T ⇤G ' G⇥ g
The sum over k 2 {0, 1} and the factors (�1)k encodes the T = 2 dihedrality of the model

g(0) = {x 2 g : �(x) = x} and g(1) = {x 2 g : �(x) = �x}.

i) N sites at {z1, . . . , zr, . . . z
N

} , z
r

2 R

⇤

ii) Each site has multiplicity two :

to each site two levels (real numbers) are associated `
r,0 2 R and `

r,0 2 R

⇤

G is a real semi-simple Lie group, g is the Lie algebra
 is a non-degenerate ad-invariant bilinear form on g, opposite of the Killing form
� is an involutive automorphism of G and G(0) ⇢ G is the subgroup of fixed-points of �

Let G be a connected semi-simple real Lie group, � an involutive automorphism of G and G(0)

the subgroup of fixed-points of �. Our goal in this section is to construct integrable �-models on

GN/G(0)
diag, where N is a positive integer and G(0)

diag = {(h, · · · , h), h 2 G(0)}. As we shall see, they

will be more precisely obtained as models on GN with a G(0)
diag gauge symmetry. For N = 1, the

construction will yield the standard �-model on the symmetric space G/G(0), which is well known to
be integrable.

The formalism we will use to construct these integrable field theories is the one of dihedral a�ne
Gaudin models, introduced in [?], which is naturally defined in the Hamiltonian formulation of classical
field theories. In this context, the phase space of the models will consist of canonical fields on the

cotangent bundle T ⇤GN , together with a first-class constraint encoding the G(0)
diag gauge symmetry.

The approach followed in this section is reminiscnent of the one developped in [?, ?] to construct
integrable �-models on GN , without taking quotients by a subgroup. A reformulation of these models
on the quotient GN+1/Gdiag, closer to the approach used here, was proposed in [?].

We will start by reviewing the phase space of canonical fields on one copy of T ⇤G in Subsection
??. We will then proceed to define the structure of the models as dihedral a�ne Gaudin models in
Subsection ??. In Subsection ??, we will define the Hamiltonian of these field theories as well as

the constraint corresponding to their G(0)
diag gauge symmetry. Subsection ?? will concern space-time

symmetries of the models and in particular the determination of a simple condition ensuring their
relativistic invariance. In Subsection ??, we will prove that these models are integrable. Finally,
in Subsection ??, we describe the panorama of models obtained through this construction and in
particular discuss their defining parameters.

1.1 Phase space of canonical fields on T

⇤
G

Conventions and notation. Let us consider the Lie algebra g of the group G. We denote by  the
opposite of the Killing form of g: it defines a non-degenerate ad-invariant bilinear form on g, which
is definite positive if G is compact. Let us also fix a basis of g, which we will denote by (I

a

)
a2{1,...,n}.

1
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1 Construction of the models in the Hamiltonian formulation

Consider fields on D with values in T ⇤G ' G⇥ g 3 (g,X)

g(x), X(x), where x 2 D

The sum over k 2 {0, 1} and the factors (�1)k encodes the T = 2 dihedrality of the model

g(0) = {x 2 g : �(x) = x} and g(1) = {x 2 g : �(x) = �x}.

i) N sites at {z1, . . . , zr, . . . z
N

} , z
r

2 R

⇤

ii) Each site has multiplicity two :

to each site two levels (real numbers) are associated `
r,0 2 R and `

r,0 2 R

⇤

G is a real semi-simple Lie group, g is the Lie algebra
 is a non-degenerate ad-invariant bilinear form on g, opposite of the Killing form

1

It is a standard result that the automorphism � preserves the bilinear form . Hence, g(0) and g(1)

are orthogonal with respect to the bilinear form , or, in other words, 
�
g(0), g(1)

�
= 0. Moreover,

the split quadratic Casimir (2.1) satisfies

�1�2C12 = C12.

For i 2 {0, 1}, we define the projection C(ii)
12 = ⇡(i)

1 ⇡(i)
2 C12 of the split quadratic Casimir on g(i)⌦g(i).

Let us note that the orthogonality of g(0) and g(1) implies that ⇡(i)
1 ⇡(j)

2 C12 = �
ij

C(ii)
12 , for i, j 2 {0, 1}.

Moreover, we have

2

�
C(ii)

12 , X2

�
= X(i), 8X 2 g. (2.2)

Canonical fields on T

⇤
G. Let us consider canonical fields depending on a single space coordinate

x 2 D and taking values in the cotangent bundle T ⇤G. In this paper we fix D to be either the real line
R or the circle S1 and choose boundary conditions for the fields accordingly.

Since T ⇤G ' G ⇥ g, these fields can be described by a pair of fields (g,X) : D ! G ⇥ g, which
encode the coordinate and momentum fields respectively. Being a cotangent bundle, T ⇤G has a natural
Poisson bracket. Therefore, fields with values in T ⇤G form the phase space of an Hamiltonian field
theory. In terms of the fields g and X, the Poisson bracket is given by:

{g1(x), g2(y)} = 0, (2.3a)

{X1(x), g2(y)} = g2(x)C12�xy, (2.3b)

{X1(x), X2(y)} = [C12, X1(x)]�xy, (2.3c)

where C12 is the split quadratic Casimir (2.1) of g and �
xy

= �(x� y) is the Dirac delta-distribution.

Current j(x) and momentum. Let us define the following g-valued current:

j(x) = g�1(x)@
x

g(x),

From (2.3), it satisfies the Poisson brackets

{g1(x), j2(y)} = 0, (2.4a)

{j1(x), j2(y)} = 0, (2.4b)

{X1(x), j2(y)} = [C12, j1(x)]�xy � C12�
0
xy

, (2.4c)

where �0
xy

= @
x

�(x� y) is the derivative of the Dirac delta-distribution with respect to x.

Let us also consider the quantity

P
G

=

ˆ
D
dx (j(x), X(x)). (2.5)

From (2.3) and (2.4), one can check that its Hamiltonian flow generates the spatial derivatives on both
g(x) and X(x):

{P
G

, g(x)} = @
x

g(x) and {P
G

, X(x)} = @
x

X(x).

Hence, it is the momentum of the phase space.

– 5 –
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1 Construction of the models in the Hamiltonian formulation

(I
a

)
a2{1,...,n} is a basis of g
(Ia)

a2{1,...,n} is the dual of this basis with respect to 
Consider fields on D with values in T ⇤G ' G⇥ g 3 (g,X)

g(x), X(x), where x 2 D

The sum over k 2 {0, 1} and the factors (�1)k encodes the T = 2 dihedrality of the model

g(0) = {x 2 g : �(x) = x} and g(1) = {x 2 g : �(x) = �x}.

i) N sites at {z1, . . . , zr, . . . z
N

} , z
r

2 R
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ii) Each site has multiplicity two :

to each site two levels (real numbers) are associated `
r,0 2 R and `

r,0 2 R

⇤

1

G is a real semi-simple Lie group, g is the Lie algebra
 is a non-degenerate ad-invariant bilinear form on g, opposite of the Killing form
� is an involutive automorphism of G and G(0) ⇢ G is the subgroup of fixed-points of �

Let G be a connected semi-simple real Lie group, � an involutive automorphism of G and G(0)

the subgroup of fixed-points of �. Our goal in this section is to construct integrable �-models on

GN/G(0)
diag, where N is a positive integer and G(0)

diag = {(h, · · · , h), h 2 G(0)}. As we shall see, they

will be more precisely obtained as models on GN with a G(0)
diag gauge symmetry. For N = 1, the

construction will yield the standard �-model on the symmetric space G/G(0), which is well known to
be integrable.

The formalism we will use to construct these integrable field theories is the one of dihedral a�ne
Gaudin models, introduced in [7], which is naturally defined in the Hamiltonian formulation of classical
field theories. In this context, the phase space of the models will consist of canonical fields on the

cotangent bundle T ⇤GN , together with a first-class constraint encoding the G(0)
diag gauge symmetry.

The approach followed in this section is reminiscnent of the one developped in [1, 2] to construct
integrable �-models on GN , without taking quotients by a subgroup. A reformulation of these models
on the quotient GN+1/Gdiag, closer to the approach used here, was proposed in [3].

We will start by reviewing the phase space of canonical fields on one copy of T ⇤G in Subsection
1.1. We will then proceed to define the structure of the models as dihedral a�ne Gaudin models in
Subsection 1.2. In Subsection 1.3, we will define the Hamiltonian of these field theories as well as

the constraint corresponding to their G(0)
diag gauge symmetry. Subsection 1.4 will concern space-time

symmetries of the models and in particular the determination of a simple condition ensuring their
relativistic invariance. In Subsection 1.5, we will prove that these models are integrable. Finally,
in Subsection 1.6, we describe the panorama of models obtained through this construction and in
particular discuss their defining parameters.

1.1 Phase space of canonical fields on T

⇤
G

Conventions and notation. Let us consider the Lie algebra g of the group G. We denote by  the
opposite of the Killing form of g: it defines a non-degenerate ad-invariant bilinear form on g, which
is definite positive if G is compact. Let us also fix a basis of g, which we will denote by (I

a

)
a2{1,...,n}.

We will indicate the dual of this basis with respect to  by (Ia)
a2{1,...,n}. In the following we will often

make use of the so called split quadratic Casimir of g, which is defined as the following element:

C12 = I
a

⌦ Ia 2 g⌦ g (1.2)

in g⌦g and which is independent of the choice of basis (here and in the following, we use the standard
tensorial notations i). From the definition of C12 and the ad-invariance of the bilinear form , one
checks that

2
�
C12, X2

�
= X and

⇥
C12, X1 +X2

⇤
= 0

for all X,Y 2 g.

Let � be an involutive automorphism of G and G(0) ⇢ G be the subgroup of fixed-points of �. It
induces an involutive automorphism of the Lie algebra g, which we also call � by a slight abuse of
notation. As � is of order two, it has eigenvalues +1 and �1. We define the corresponding eigenspaces

g(0) = {x 2 g : �(x) = x}, and g(1) = {x 2 g : �(x) = �x}.

These eigenspaces form a Z2-gradation of g (Z2 = Z/2Z is the cyclic group of order two): g = g(0)�g(1),
with

[g(0), g(0)] ⇢ g(0), [g(0), g(1)] ⇢ g(1) and [g(1), g(1)] ⇢ g(0).

The opposite is also true, i.e. given a Z2-gradation of g, there is a unique automorphism � which
leaves g(0) invariant and acts on g(1) as multiplication by �1. In particular, g(0) is a subalgebra of g,
which is the Lie subalgebra corresponding to the subgroup G(0) in G.
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1 Construction of the models in the Hamiltonian formulation

The sum over k 2 {0, 1} and the factors (�1)k encodes the T = 2 dihedrality of the model

i) N sites at {z1, . . . , zr, . . . zN} , z
r

2 R

⇤

ii) Each site has multiplicity two :

to each site two levels (real numbers) are associated `
r,0 2 R and `

r,0 2 R

⇤

( split Casimir

Let G be a connected semi-simple real Lie group, � an involutive automorphism of G and G(0)

the subgroup of fixed-points of �. Our goal in this section is to construct integrable �-models on

GN/G(0)
diag, where N is a positive integer and G(0)

diag = {(h, · · · , h), h 2 G(0)}. As we shall see, they

will be more precisely obtained as models on GN with a G(0)
diag gauge symmetry. For N = 1, the

construction will yield the standard �-model on the symmetric space G/G(0), which is well known to
be integrable.

1

In the following we will use the notation X(i) to indicate the component of an element X 2 g in
g(i), i 2 {0, 1}. More precisely, if we call ⇡(0) = (Id + �)/2 and ⇡(1) = (Id � �)/2 the projectors on
g(0) and g(1) respectively, we then have X(i) = ⇡(i)X, for X = X(0) +X(1) a generic element of g.

It is a standard result that the automorphism � preserves the bilinear form . Hence, g(0) and g(1)

are orthogonal with respect to the bilinear form , or, in other words, 
�
g(0), g(1)

�
= 0. Moreover,

the split quadratic Casimir (1.2) satisfies

�1�2C12 = C12.

For i 2 {0, 1}, we define the projection C(ii)
12 = ⇡(i)

1 ⇡(i)
2 C12 of the split quadratic Casimir on g(i) ⌦ g(i).

Let us note that the orthogonality of g(0) and g(1) implies that ⇡(i)
1 ⇡(j)

2 C12 = �
ij

C(ii)
12 , for i, j 2 {0, 1}.

Moreover, we have

2
�
C(ii)
12 , X2

�
= X(i), 8X 2 g. (1.3)

Canonical fields on T

⇤
G. Let us consider canonical fields depending on a single space coordinate

x 2 D and taking values in the cotangent bundle T ⇤G. In this paper we fix D to be either the real line
R or the circle S1 and choose boundary conditions for the fields accordingly.

By the following argument, these fields can be described by a pair of fields (g,X) : D ! G ⇥ g,
which encode the coordinate and momentum fields respectively. Indeed, we note that the cotangent
space T ⇤

p

G at a point p 2 G can always be sent to the cotangent space T ⇤
IdG = g⇤ (the dual of the

Lie algebra g) at the identity by translating through multiplication by p�1. As we supposed g to be
semi-simple, we have a canonical isomorphism between g⇤ and g through the bilinear form . This
further implies that T ⇤G and G⇥ g are isomorphic to each other, hence we can describe fields taking
values in T ⇤G as indicated above.

Being a cotangent bundle, T ⇤G has a natural Poisson bracket. Therefore, fields with values in
T ⇤G form the phase space of an Hamiltonian field theory. In terms of the fields g and X, the Poisson
bracket is given by:

{g1(x), g2(y)} = 0, (1.4a)

{X1(x), g2(y)} = g2(x)C12�xy, (1.4b)

{X1(x), X2(y)} = [C12, X1(x)]�xy, (1.4c)

where C12 is the split quadratic Casimir (1.2) of g and �
xy

= �(x� y) is the Dirac delta-distribution.

Current j(x) and momentum. Let us define the following g-valued current:

j(x) = g�1(x)@
x

g(x),

From (1.4), it satisfies the Poisson brackets

{g1(x), j2(y)} = 0, (1.5a)

{j1(x), j2(y)} = 0, (1.5b)

{X1(x), j2(y)} = [C12, j1(x)]�xy � C12�
0
xy

, (1.5c)

where �0
xy

= @
x

�(x� y) is the derivative of the Dirac delta-distribution with respect to x.
Let us also consider the quantity

P
G

=

Z

D

dx (j(x), X(x)). (1.6)

From (1.4) and (1.5), one can check that its Hamiltonian flow generates the spatial derivatives on both
g(x) and X(x):

{P
G

, g(x)} = @
x

g(x) and {P
G

, X(x)} = @
x

X(x).

Hence, it is the momentum of the phase space.
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T ⇤G form the phase space of an Hamiltonian field theory. In terms of the fields g and X, the Poisson
bracket is given by:

{g1(x), g2(y)} = 0, (1.4a)

{X1(x), g2(y)} = g2(x)C12�xy, (1.4b)

{X1(x), X2(y)} = [C12, X1(x)]�xy, (1.4c)

where C12 is the split quadratic Casimir (1.2) of g and �
xy

= �(x� y) is the Dirac delta-distribution.

Current j(x) and momentum. Define the following g-valued current:

j(x) = g�1(x)@
x

g(x),

It satisfies the Poisson brackets
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P
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g(x) and {P
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x
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In the following we will use the notation X(i) to indicate the component of an element X 2 g in
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⇤
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1 Construction of the models in the Hamiltonian formulation

Momentum
(Ia)

a2{1,...,n} is the dual of this basis with respect to 
Consider fields on D with values in T ⇤G ' G⇥ g 3 (g,X)

g(x), X(x), where x 2 D

The sum over k 2 {0, 1} and the factors (�1)k encodes the T = 2 dihedrality of the model

g(0) = {x 2 g : �(x) = x} and g(1) = {x 2 g : �(x) = �x}.

i) N sites at {z1, . . . , zr, . . . z
N

} , z
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2 R

⇤

ii) Each site has multiplicity two :

to each site two levels (real numbers) are associated `
r,0 2 R and `

r,0 2 R

⇤
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In the following we will use the notation X(i) to indicate the component of an element X 2 g in
g(i), i 2 {0, 1}. More precisely, if we call ⇡(0) = (Id + �)/2 and ⇡(1) = (Id � �)/2 the projectors on
g(0) and g(1) respectively, we then have X(i) = ⇡(i)X, for X = X(0) +X(1) a generic element of g.

It is a standard result that the automorphism � preserves the bilinear form . Hence, g(0) and g(1)

are orthogonal with respect to the bilinear form , or, in other words, 
�
g(0), g(1)

�
= 0. Moreover,

the split quadratic Casimir (1.2) satisfies

�1�2C12 = C12.

For i 2 {0, 1}, we define the projection C(ii)
12 = ⇡(i)

1 ⇡(i)
2 C12 of the split quadratic Casimir on g(i) ⌦ g(i).

Let us note that the orthogonality of g(0) and g(1) implies that ⇡(i)
1 ⇡(j)

2 C12 = �
ij

C(ii)
12 , for i, j 2 {0, 1}.

Moreover, we have

2
�
C(ii)
12 , X2

�
= X(i), 8X 2 g. (1.3)

Canonical fields on T

⇤
G. Let us consider canonical fields depending on a single space coordinate

x 2 D and taking values in the cotangent bundle T ⇤G. In this paper we fix D to be either the real line
R or the circle S1 and choose boundary conditions for the fields accordingly.

By the following argument, these fields can be described by a pair of fields (g,X) : D ! G ⇥ g,
which encode the coordinate and momentum fields respectively. Indeed, we note that the cotangent
space T ⇤

p

G at a point p 2 G can always be sent to the cotangent space T ⇤
IdG = g⇤ (the dual of the

Lie algebra g) at the identity by translating through multiplication by p�1. As we supposed g to be
semi-simple, we have a canonical isomorphism between g⇤ and g through the bilinear form . This
further implies that T ⇤G and G⇥ g are isomorphic to each other, hence we can describe fields taking
values in T ⇤G as indicated above.

Being a cotangent bundle, T ⇤G has a natural Poisson bracket. Therefore, fields with values in
T ⇤G form the phase space of an Hamiltonian field theory. In terms of the fields g and X, the Poisson
bracket is given by:

{g1(x), g2(y)} = 0, (1.4a)

{X1(x), g2(y)} = g2(x)C12�xy, (1.4b)

{X1(x), X2(y)} = [C12, X1(x)]�xy, (1.4c)

where C12 is the split quadratic Casimir (1.2) of g and �
xy

= �(x� y) is the Dirac delta-distribution.

Current j(x) and momentum. Define the following g-valued current:

j(x) = g�1(x)@
x

g(x),

It satisfies the Poisson brackets

{g1(x), j2(y)} = 0, (1.5a)

{j1(x), j2(y)} = 0, (1.5b)

{X1(x), j2(y)} = [C12, j1(x)]�xy � C12�
0
xy

, (1.5c)

where �0
xy

= @
x

�(x� y) is the derivative of the Dirac delta-distribution with respect to x.
Let us also consider the quantity

P
G

=

Z

D

dx (j(x), X(x)). (1.6)

From (1.4) and (1.5), one can check that its Hamiltonian flow generates the spatial derivatives on both
g(x) and X(x):

{P
G

, g(x)} = @
x

g(x) and {P
G

, X(x)} = @
x

X(x).

Hence, it is the momentum of the phase space.
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1 Construction of the models in the Hamiltonian formulation

Wess-Zumino term and current W (x)
(Ia)

a2{1,...,n} is the dual of this basis with respect to 
Consider fields on D with values in T ⇤G ' G⇥ g 3 (g,X)

g(x), X(x), where x 2 D

The sum over k 2 {0, 1} and the factors (�1)k encodes the T = 2 dihedrality of the model

g(0) = {x 2 g : �(x) = x} and g(1) = {x 2 g : �(x) = �x}.

i) N sites at {z1, . . . , zr, . . . z
N

} , z
r

2 R

⇤

ii) Each site has multiplicity two :

to each site two levels (real numbers) are associated `
r,0 2 R and `

r,0 2 R

⇤

1

Wess-Zumino term and current W (x). For this paragraph, let us consider the field g to also
depend explicitly on a time coordinate t 2 R (in the Hamiltonian formulation, this time dependence
is implicitly defined by the choice of a Hamiltonian). Let us further extend the space-time D ⇥ R

(with coordinates (x, t)) to a 3-dimensional manifold B with boundary @B = D⇥ R (parametrised by
coordinates (x, t, ⇠)) and let us consider an extension of the field g to B (which restricts to the initial
field g on @B). The Wess-Zumino term of g is then defined as [10–12]

IWZ[g] =

˚
B
dx dt d⇠ 

⇣⇥
g�1@

x

g, g�1@
t

g
⇤
, g�1@

⇠

g
⌘
. (2.6)

Up to the addition of a constant term, it does not depend on the choice of extension of g from D⇥R to

B. It is a standard result that the 3-form 
⇣⇥

g�1@
x

g, g�1@
t

g
⇤
, g�1@

⇠

g
⌘
dx^ dt^ d⇠ is closed and thus

locally exact. Therefore, the Wess-Zumino term can be rewritten, at least locally, as a 2-dimensional
integral on @B = D⇥ R, which takes the form

IWZ[g] =

¨
D⇥R

dx dt (W, g�1@
t

g), (2.7)

where W is a g-valued current depending on the coordinate fields in g and their spatial derivatives.
We will not need here the precise definition of W and refer for instance to [3] for more details.

In the Hamiltonian formalism, this current can be seen as a g-valued local observable W (x) on
the phase space of canonical fields on T ⇤G. One can then show that it satisfies the following Poisson
bracket with the fields g, X and j introduced above:

{g1(x),W2(y)} = 0, {j1(x),W2(y)} = 0 (2.8a)

and

{X1(x),W2(y)}+ {W1(x), X2(y)} = [C12,W1(x)� j1(x)]�xy. (2.8b)

Moreover, let us note that it satisfies the following orthogonality property:


�
j(x),W (x)

�
= 0. (2.9)

2.2 Definition of the models as realisations of a�ne Gaudin models

In this section, we define the models that we will consider in this article as realisations of dihedral a�ne
Gaudin models (AGM), following [1]. We will not review here the complete construction of dihedral
AGM and will instead restrict ourselves to the definition and description of the main ingredients that
are useful to construct these models: their sites, their twist function and their Gaudin Lax matrix.

The adjective dihedral used above refers to certain equivariance properties under an action of the
dihedral group D2T (T 2 Z�1) which are satisfied by the twist function and the Gaudin Lax matrix
of the models [1]. These properties have to do with reality conditions and with the choice of a Z

T

-
grading of the Lie algebra g. For the models that we are considering in this article, we have T = 2.
The corresponding choice of Z2-grading g(0) � g(1) of g is then given by the choice of an involutive
automorphism �, as described in the previous section. We will come back to the equivariance properties
encoding the dihedrality at the end of this subsection.
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1 Construction of the models in the Hamiltonian formulation

Extend the space-time D⇥ R to a 3-dimensional manifold B with boundary @B = D⇥ R

(Ia)
a2{1,...,n} is the dual of this basis with respect to 

Consider fields on D with values in T ⇤G ' G⇥ g 3 (g,X)

g(x), X(x), where x 2 D

The sum over k 2 {0, 1} and the factors (�1)k encodes the T = 2 dihedrality of the model

g(0) = {x 2 g : �(x) = x} and g(1) = {x 2 g : �(x) = �x}.

i) N sites at {z1, . . . , zr, . . . z
N

} , z
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2 R

⇤

ii) Each site has multiplicity two :

to each site two levels (real numbers) are associated `
r,0 2 R and `
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⇤

1

Wess-Zumino term and current W (x). For this paragraph, let us consider the field g to also
depend explicitly on a time coordinate t 2 R (in the Hamiltonian formulation, this time dependence
is implicitly defined by the choice of a Hamiltonian). Let us further extend the space-time D ⇥ R

(with coordinates (x, t)) to a 3-dimensional manifold B with boundary @B = D⇥ R (parametrised by
coordinates (x, t, ⇠)) and let us consider an extension of the field g to B (which restricts to the initial
field g on @B). The Wess-Zumino term of g is then defined as [10–12]

IWZ[g] =

˚
B
dx dt d⇠ 

⇣⇥
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x

g, g�1@
t

g
⇤
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⇠

g
⌘
. (2.6)

Up to the addition of a constant term, it does not depend on the choice of extension of g from D⇥R to

B. It is a standard result that the 3-form 
⇣⇥

g�1@
x

g, g�1@
t

g
⇤
, g�1@

⇠

g
⌘
dx^ dt^ d⇠ is closed and thus

locally exact. Therefore, the Wess-Zumino term can be rewritten, at least locally, as a 2-dimensional
integral on @B = D⇥ R, which takes the form

IWZ[g] =

¨
D⇥R

dx dt (W, g�1@
t

g), (2.7)

where W is a g-valued current depending on the coordinate fields in g and their spatial derivatives.
We will not need here the precise definition of W and refer for instance to [3] for more details.

In the Hamiltonian formalism, this current can be seen as a g-valued local observable W (x) on
the phase space of canonical fields on T ⇤G. One can then show that it satisfies the following Poisson
bracket with the fields g, X and j introduced above:

{g1(x),W2(y)} = 0, {j1(x),W2(y)} = 0 (2.8a)

and

{X1(x),W2(y)}+ {W1(x), X2(y)} = [C12,W1(x)� j1(x)]�xy. (2.8b)

Moreover, let us note that it satisfies the following orthogonality property:


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j(x),W (x)

�
= 0. (2.9)

2.2 Definition of the models as realisations of a�ne Gaudin models

In this section, we define the models that we will consider in this article as realisations of dihedral a�ne
Gaudin models (AGM), following [1]. We will not review here the complete construction of dihedral
AGM and will instead restrict ourselves to the definition and description of the main ingredients that
are useful to construct these models: their sites, their twist function and their Gaudin Lax matrix.

The adjective dihedral used above refers to certain equivariance properties under an action of the
dihedral group D2T (T 2 Z�1) which are satisfied by the twist function and the Gaudin Lax matrix
of the models [1]. These properties have to do with reality conditions and with the choice of a Z

T

-
grading of the Lie algebra g. For the models that we are considering in this article, we have T = 2.
The corresponding choice of Z2-grading g(0) � g(1) of g is then given by the choice of an involutive
automorphism �, as described in the previous section. We will come back to the equivariance properties
encoding the dihedrality at the end of this subsection.
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1 Construction of the models in the Hamiltonian formulation

W is a g-valued current depending g and its spatial derivatives
Extend the space-time D⇥ R to a 3-dimensional manifold B with boundary @B = D⇥ R
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The sum over k 2 {0, 1} and the factors (�1)k encodes the T = 2 dihedrality of the model

g(0) = {x 2 g : �(x) = x} and g(1) = {x 2 g : �(x) = �x}.
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ii) Each site has multiplicity two :

to each site two levels (real numbers) are associated `
r,0 2 R and `

r,0 2 R
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1

Wess-Zumino term and current W (x). For this paragraph, let us consider the field g to also
depend explicitly on a time coordinate t 2 R (in the Hamiltonian formulation, this time dependence
is implicitly defined by the choice of a Hamiltonian). Let us further extend the space-time D ⇥ R

(with coordinates (x, t)) to a 3-dimensional manifold B with boundary @B = D⇥ R (parametrised by
coordinates (x, t, ⇠)) and let us consider an extension of the field g to B (which restricts to the initial
field g on @B). The Wess-Zumino term of g is then defined as [10–12]

IWZ[g] =

˚
B
dx dt d⇠ 

⇣⇥
g�1@

x

g, g�1@
t

g
⇤
, g�1@

⇠

g
⌘
. (2.6)

Up to the addition of a constant term, it does not depend on the choice of extension of g from D⇥R to

B. It is a standard result that the 3-form 
⇣⇥

g�1@
x

g, g�1@
t

g
⇤
, g�1@

⇠

g
⌘
dx^ dt^ d⇠ is closed and thus

locally exact. Therefore, the Wess-Zumino term can be rewritten, at least locally, as a 2-dimensional
integral on @B = D⇥ R, which takes the form

IWZ[g] =

¨
D⇥R

dx dt (W, g�1@
t

g), (2.7)

where W is a g-valued current depending on the coordinate fields in g and their spatial derivatives.
We will not need here the precise definition of W and refer for instance to [3] for more details.

In the Hamiltonian formalism, this current can be seen as a g-valued local observable W (x) on
the phase space of canonical fields on T ⇤G. One can then show that it satisfies the following Poisson
bracket with the fields g, X and j introduced above:

{g1(x),W2(y)} = 0, {j1(x),W2(y)} = 0 (2.8a)

and

{X1(x),W2(y)}+ {W1(x), X2(y)} = [C12,W1(x)� j1(x)]�xy. (2.8b)

Moreover, let us note that it satisfies the following orthogonality property:


�
j(x),W (x)

�
= 0. (2.9)

2.2 Definition of the models as realisations of a�ne Gaudin models

In this section, we define the models that we will consider in this article as realisations of dihedral a�ne
Gaudin models (AGM), following [1]. We will not review here the complete construction of dihedral
AGM and will instead restrict ourselves to the definition and description of the main ingredients that
are useful to construct these models: their sites, their twist function and their Gaudin Lax matrix.

The adjective dihedral used above refers to certain equivariance properties under an action of the
dihedral group D2T (T 2 Z�1) which are satisfied by the twist function and the Gaudin Lax matrix
of the models [1]. These properties have to do with reality conditions and with the choice of a Z

T

-
grading of the Lie algebra g. For the models that we are considering in this article, we have T = 2.
The corresponding choice of Z2-grading g(0) � g(1) of g is then given by the choice of an involutive
automorphism �, as described in the previous section. We will come back to the equivariance properties
encoding the dihedrality at the end of this subsection.
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C⇥ ⇥ ⇥ ⇥
z1 z2 zr zN

·
·

·

·
·
·

·

·
`1,0

`1,1

`2,1

`2,0

`r,0

`r,1

`N,1

`N,0

Data

Data	are	encoded	in	the	twist	function	

Sites, levels and twist function. Following the formalism and terminology of [1], let us consider
an AGM with N 2 Z�1 real sites of multiplicity two, whose positions will be denoted by z

r

with
r 2 {1, . . . , N} and will be supposed to be non zero (z

r

2 R

⇤). Since each site z
r

is of multiplicity two,
it is associated with two constant numbers `

r,0 2 R and `
r,1 2 R

⇤, called the levels. Altogether this
data specifies the twist function '(z) of the model, which depends on an auxiliary complex parameter
z 2 C, called the spectral parameter. This function takes the following form [1]:

'(z) =
1

2

NX

r=1

1X

p=0

1X

k=0

(�1)k`
r,p

((�1)kz � z
r

)p+1
. (2.10)

The sum over p 2 {0, 1} in this expression and thus the presence of double poles at z
r

reflects the fact
that the sites of the model are of multiplicity two. Moreover, the sum over k 2 {0, 1} and the factors
(�1)k encodes the T = 2 dihedrality of the model.

In the rest of this article, we will suppose that the levels `
r,0 satisfy the following additional

hypothesis, which for reasons to be explained later we call the first-class condition:

NX

r=1

`
r,0 = 0. (2.11)

As we shall see in subsection 2.3, this condition will be necessary to ensure that the models that we
construct possess a gauge symmetry.

Taki↵ currents and phase space. To each site z
r

, r 2 {1, · · · , N}, of the model is attached two
g-valued fields J

r,[0](x) and J
r,[1](x), called Taki↵ currents . These are observables on the phase space

of the model, which satisfy the following Poisson bracket, determined by the choice of levels `
r,p

:

{J
r,[0]1(x),Js,[0]2(y)} = �

rs

�
[C12,J

r,[0]1(x)]�xy � `
r,0C12�

0
xy

�
, (2.12a)

{J
r,[0]1(x),Js,[1]2(y)} = �

rs

�
[C12,J

r,[1]1(x)]�xy � `
r,1C12�

0
xy

�
, (2.12b)

{J
r,[1]1(x),Js,[1]2(y)} = 0. (2.12c)

So far, we did not specify what is the phase space of the model: this requires discussing the distinction
between a formal AGM and its realisations. The phase space of the formal AGM underlying the
present construction simply consists of configurations of the Taki↵ currents J

r,[p](x) (r 2 {1, · · · , N}
and p 2 {0, 1}), equipped with the Poisson bracket (2.12). Taking a realisation of this AGM consists of
considering a more general phase space, describing configurations of fields y

i

(x) with a certain Poisson
bracket, such that there exist well-chosen combinations J

r,[p](x) of the fields y
i

(x) that satisfy the
Taki↵ brackets (2.12). The construction of the formal AGM can then be completly transfered to this
new phase space, thus yielding an integable field theory with observables on this space.

In the present case, we will consider a particular realisation of this AGM, whose phase space
consists of canonical fields on the cotangent bundle T ⇤GN . We described the phase space of canonical
fields on one copy of T ⇤G in subsection 2.1: we will use the notations and conventions introduced
in this subsection to describe the fields on T ⇤GN . In particular, these fields can be encoded into N
G-valued fields g1(x), · · · , gN (x) and N g-valued fields X1(x), · · · , XN

(x), which are the equivalents
of the fields g(x) and X(x) introduced in subsection 2.1 for one copy of T ⇤G and which then satisfy
N independent copies of the Poisson bracket (2.3). Similarly, we introduce currents j

r

(x) and W
r

(x),

– 7 –

Draft

Contents

1 Construction of the models in the Hamiltonian formulation 1
1.1 Phase space of canonical fields on T ⇤G . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Definition of the models as realisations of a�ne Gaudin models . . . . . . . . . . . . . 4
1.3 Hamiltonian, constraint and gauge symmetry . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Space-time symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 The panorama of the models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Lagrangian formulation of the models with two copies 18
2.1 Lagrangian expression of the momentum fields . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Action of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Lax connection in the Lagrangian formulation . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 A limit of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Integrable �-models on T 1,1 manifolds 24
3.1 The models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Modification of the background, isometries and equations of motion . . . . . . . . . . 26
3.3 Spinning string solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Appendices 28

A Coe�cients in the form (2.1) of the Hamiltonian 28

B Reformulation of the action 28

C Spinning string ansatz for a �-model with B-field 29
C.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
C.2 Spinning string ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
C.3 Integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1 Construction of the models in the Hamiltonian formulation

The sum over k 2 {0, 1} and the factors (�1)k encodes the T = 2 dihedrality of the model

Let G be a connected semi-simple real Lie group, � an involutive automorphism of G and G(0)

the subgroup of fixed-points of �. Our goal in this section is to construct integrable �-models on

GN/G(0)
diag, where N is a positive integer and G(0)

diag = {(h, · · · , h), h 2 G(0)}. As we shall see, they

will be more precisely obtained as models on GN with a G(0)
diag gauge symmetry. For N = 1, the

construction will yield the standard �-model on the symmetric space G/G(0), which is well known to
be integrable.

The formalism we will use to construct these integrable field theories is the one of dihedral a�ne
Gaudin models, introduced in [7], which is naturally defined in the Hamiltonian formulation of classical
field theories. In this context, the phase space of the models will consist of canonical fields on the

cotangent bundle T ⇤GN , together with a first-class constraint encoding the G(0)
diag gauge symmetry.

The approach followed in this section is reminiscnent of the one developped in [1, 2] to construct
integrable �-models on GN , without taking quotients by a subgroup. A reformulation of these models
on the quotient GN+1/Gdiag, closer to the approach used here, was proposed in [3].

We will start by reviewing the phase space of canonical fields on one copy of T ⇤G in Subsection
1.1. We will then proceed to define the structure of the models as dihedral a�ne Gaudin models in

1
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:

{J
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{J
r,[1]1(x),Js,[1]2(y)} = 0. (2.12c)

So far, we did not specify what is the phase space of the model: this requires discussing the distinction
between a formal AGM and its realisations. The phase space of the formal AGM underlying the
present construction simply consists of configurations of the Taki↵ currents J

r,[p](x) (r 2 {1, · · · , N}
and p 2 {0, 1}), equipped with the Poisson bracket (2.12). Taking a realisation of this AGM consists of
considering a more general phase space, describing configurations of fields y

i

(x) with a certain Poisson
bracket, such that there exist well-chosen combinations J

r,[p](x) of the fields y
i

(x) that satisfy the
Taki↵ brackets (2.12). The construction of the formal AGM can then be completly transfered to this
new phase space, thus yielding an integable field theory with observables on this space.

In the present case, we will consider a particular realisation of this AGM, whose phase space
consists of canonical fields on the cotangent bundle T ⇤GN . We described the phase space of canonical
fields on one copy of T ⇤G in subsection 2.1: we will use the notations and conventions introduced
in this subsection to describe the fields on T ⇤GN . In particular, these fields can be encoded into N
G-valued fields g1(x), · · · , gN (x) and N g-valued fields X1(x), · · · , XN

(x), which are the equivalents
of the fields g(x) and X(x) introduced in subsection 2.1 for one copy of T ⇤G and which then satisfy
N independent copies of the Poisson bracket (2.3). Similarly, we introduce currents j

r

(x) and W
r

(x),
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Let G be a connected semi-simple real Lie group, � an involutive automorphism of G and G(0)

the subgroup of fixed-points of �. Our goal in this section is to construct integrable �-models on

GN/G(0)
diag, where N is a positive integer and G(0)

diag = {(h, · · · , h), h 2 G(0)}. As we shall see, they

will be more precisely obtained as models on GN with a G(0)
diag gauge symmetry. For N = 1, the

construction will yield the standard �-model on the symmetric space G/G(0), which is well known to
be integrable.
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Let G be a connected semi-simple real Lie group, � an involutive automorphism of G and G(0)
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diag, where N is a positive integer and G(0)

diag = {(h, · · · , h), h 2 G(0)}. As we shall see, they

will be more precisely obtained as models on GN with a G(0)
diag gauge symmetry. For N = 1, the

construction will yield the standard �-model on the symmetric space G/G(0), which is well known to
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2
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1X
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1X
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r

)p+1
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In the rest of this article, we will suppose that the levels `
r,0 satisfy the following additional

hypothesis, which for reasons to be explained later we call the first-class condition:
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:
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So far, we did not specify what is the phase space of the model: this requires discussing the distinction
between a formal AGM and its realisations. The phase space of the formal AGM underlying the
present construction simply consists of configurations of the Taki↵ currents J

r,[p](x) (r 2 {1, · · · , N}
and p 2 {0, 1}), equipped with the Poisson bracket (2.12). Taking a realisation of this AGM consists of
considering a more general phase space, describing configurations of fields y
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(x) with a certain Poisson
bracket, such that there exist well-chosen combinations J

r,[p](x) of the fields y
i

(x) that satisfy the
Taki↵ brackets (2.12). The construction of the formal AGM can then be completly transfered to this
new phase space, thus yielding an integable field theory with observables on this space.

In the present case, we will consider a particular realisation of this AGM, whose phase space
consists of canonical fields on the cotangent bundle T ⇤GN . We described the phase space of canonical
fields on one copy of T ⇤G in subsection 2.1: we will use the notations and conventions introduced
in this subsection to describe the fields on T ⇤GN . In particular, these fields can be encoded into N
G-valued fields g1(x), · · · , gN (x) and N g-valued fields X1(x), · · · , XN

(x), which are the equivalents
of the fields g(x) and X(x) introduced in subsection 2.1 for one copy of T ⇤G and which then satisfy
N independent copies of the Poisson bracket (2.3). Similarly, we introduce currents j
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(x) and W
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1 Construction of the models in the Hamiltonian formulation

Impose the first-class condition
Extend the space-time D⇥ R to a 3-dimensional manifold B with boundary @B = D⇥ R

(Ia)
a2{1,...,n} is the dual of this basis with respect to 

Consider fields on D with values in T ⇤G ' G⇥ g 3 (g,X)

g(x), X(x), where x 2 D

The sum over k 2 {0, 1} and the factors (�1)k encodes the T = 2 dihedrality of the model

g(0) = {x 2 g : �(x) = x} and g(1) = {x 2 g : �(x) = �x}.

i) N sites at {z1, . . . , zr, . . . z
N

} , z
r

2 R

⇤

ii) Each site has multiplicity two :

to each site two levels (real numbers) are associated `
r,0 2 R and `

r,0 2 R

⇤

1



Affine Gaudin models

Gaudin	Lax	matrix		

r 2 {1, · · · , N}, as the equivalent of the currents j(x) and W (x) of subsection 2.1. Let us then define

J
r,[0](x) = X

r

(x) +
`
r,0

2
j
r

(x) +
`
r,0

2
W

r

(x), (2.13a)

J
r,[1](x) = `

r,1 jr(x). (2.13b)

It is a standard result (see for instance [3]) that these satisfy the Taki↵ brackets (2.12), as can be
checked directly from the brackets (2.3), (2.4) and (2.8). Thus, one can construct a realisation of the
AGM considered above in the phase space of canonical fields on T ⇤GN .

Gaudin Lax matrix. Let gC denote the complexification of g. The other fundamental piece needed
for the construction of the model is the so-called Gaudin Lax matrix. It is defined as the following
gC-valued field [1]:

�(z, x) =
1

2

NX

r=1

1X

p=0

1X

k=0

(�1)k�kJ
r,[p](x)

((�1)kz � z
r

)p+1
. (2.14)

In this expression, the T = 2 dihedrality of the model is encoded in the sum over k 2 {0, 1} and the
presence of the involutive automorphism �. This is how the choice of � and thus the choice of the
subgroup G(0) enters the definition of the model as AGM. From (2.12), one can compute the Poisson
bracket of the Gaudin Lax matrix:

{�1(z, x),�2(w, y)} = [R0
12(z, w),�1(z, x)]�xy � [R0

21(w, z),�2(w, x)]�xy

�
⇣
R0

12(z, w)'(z) +R0
21(w, z)'(w)

⌘
�0
xy

, (2.15)

with R0
12 given by

R0
12(z, w) =

1

2

1X

k=0

�k

1C12

w � (�1)kz
, (2.16)

where we recognise the standard R-matrix twisted by the automorphism �. In particular, it satisfies
the classical Yang-Baxter equation:

[R0
12(z1, z2),R0

13(z1, z3)] + [R0
12(z1, z2),R0

23(z2, z3)] + [R0
32(z3, z2),R0

13(z1, z3)] = 0. (2.17)

Dihedrality. As mentioned at the beginning of this subsection, the AGM that we are considering
here possesses certain equivariance properties under the dihedral group D4. Let us now discuss these
properties.

The general dihedral group D2T contains the cyclic group Z

T

as a subgroup. Recall that for
the models considered in this article, we have T = 2: the corresponding cyclic group Z2 acts on the
complex plane by multiplication by �1 and on the Lie algebra g by the involutive automorphism �,
which we extend to the complexification gC by C-linearity. One checks from their expressions (2.10)
and (2.14) that the twist function and the Gaudin Lax matrix are equivariant 1-forms with respect to
these actions, i.e. that

�(�(z, x)) = ��(�z, x) and '(z) = �'(�z). (2.18)

Let us note that the sums over k 2 {0, 1} and the presence of the factors (�1)k and �k in Equations
(2.10) and (2.14) are crucial for the above conditions to hold.
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1 Construction of the models in the Hamiltonian formulation

R0
12 satisfies the classical Yang-Baxter equation
Extend the space-time D⇥ R to a 3-dimensional manifold B with boundary @B = D⇥ R

(Ia)
a2{1,...,n} is the dual of this basis with respect to 

Consider fields on D with values in T ⇤G ' G⇥ g 3 (g,X)

g(x), X(x), where x 2 D

The sum over k 2 {0, 1} and the factors (�1)k encodes the T = 2 dihedrality of the model

g(0) = {x 2 g : �(x) = x} and g(1) = {x 2 g : �(x) = �x}.

i) N sites at {z1, . . . , zr, . . . z
N

} , z
r

2 R

⇤

ii) Each site has multiplicity two :

to each site two levels (real numbers) are associated `
r,0 2 R and `

r,0 2 R

⇤

1

r 2 {1, · · · , N}, as the equivalent of the currents j(x) and W (x) of subsection 2.1. Let us then define

J
r,[0](x) = X

r

(x) +
`
r,0

2
j
r

(x) +
`
r,0

2
W

r

(x), (2.13a)

J
r,[1](x) = `

r,1 jr(x). (2.13b)

It is a standard result (see for instance [3]) that these satisfy the Taki↵ brackets (2.12), as can be
checked directly from the brackets (2.3), (2.4) and (2.8). Thus, one can construct a realisation of the
AGM considered above in the phase space of canonical fields on T ⇤GN .

Gaudin Lax matrix. Let gC denote the complexification of g. The other fundamental piece needed
for the construction of the model is the so-called Gaudin Lax matrix. It is defined as the following
gC-valued field [1]:

�(z, x) =
1

2

NX

r=1

1X

p=0

1X

k=0

(�1)k�kJ
r,[p](x)

((�1)kz � z
r

)p+1
. (2.14)

In this expression, the T = 2 dihedrality of the model is encoded in the sum over k 2 {0, 1} and the
presence of the involutive automorphism �. This is how the choice of � and thus the choice of the
subgroup G(0) enters the definition of the model as AGM. From (2.12), one can compute the Poisson
bracket of the Gaudin Lax matrix:

{�1(z, x),�2(w, y)} = [R0
12(z, w),�1(z, x)]�xy � [R0

21(w, z),�2(w, x)]�xy

�
⇣
R0

12(z, w)'(z) +R0
21(w, z)'(w)

⌘
�0
xy

, (2.15)

with R0
12 given by

R0
12(z, w) =

1

2

1X

k=0

�k

1C12

w � (�1)kz
, (2.16)

where we recognise the standard R-matrix twisted by the automorphism �. In particular, it satisfies
the classical Yang-Baxter equation:

[R0
12(z1, z2),R0

13(z1, z3)] + [R0
12(z1, z2),R0

23(z2, z3)] + [R0
32(z3, z2),R0

13(z1, z3)] = 0. (2.17)

Dihedrality. As mentioned at the beginning of this subsection, the AGM that we are considering
here possesses certain equivariance properties under the dihedral group D4. Let us now discuss these
properties.

The general dihedral group D2T contains the cyclic group Z

T

as a subgroup. Recall that for
the models considered in this article, we have T = 2: the corresponding cyclic group Z2 acts on the
complex plane by multiplication by �1 and on the Lie algebra g by the involutive automorphism �,
which we extend to the complexification gC by C-linearity. One checks from their expressions (2.10)
and (2.14) that the twist function and the Gaudin Lax matrix are equivariant 1-forms with respect to
these actions, i.e. that

�(�(z, x)) = ��(�z, x) and '(z) = �'(�z). (2.18)

Let us note that the sums over k 2 {0, 1} and the presence of the factors (�1)k and �k in Equations
(2.10) and (2.14) are crucial for the above conditions to hold.
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1 Construction of the models in the Hamiltonian formulation

Taki↵ brackets are satisfied
N G-valued fields g1(x), · · · , g

N

(x)
N g-valued fields X1(x), · · · , X

N

(x)
Dihedrality condition � � ⌧ = ⌧ � �
⌧ : gC ! gC is an antilinear involutive automorphism,
defined such that the real form g is the subalgebra of fixed points of ⌧

2) Z2 : z 7! z̄, Z 7! ⌧(Z), Z 2 g
R0

12 satisfies the classical Yang-Baxter equation
Extend the space-time D⇥ R to a 3-dimensional manifold B with boundary @B = D⇥ R

(Ia)
a2{1,...,n} is the dual of this basis with respect to 

Consider fields on D with values in T ⇤G ' G⇥ g 3 (g,X)

g(x), X(x), where x 2 D

The sum over k 2 {0, 1} and the factors (�1)k encodes the T = 2 dihedrality of the model

g(0) = {x 2 g : �(x) = x} and g(1) = {x 2 g : �(x) = �x}.

1



In addition to the cyclic group Z

T

, the dihedral group D2T contains an order two cyclic group
Z2 (which is not to be confused with the Z2 group discussed above, which arises since we have T = 2
in the case considered in this article). The equivariance properties corresponding to this Z2 subgroup
encode the reality conditions of the model. It acts on the complex plane by conjugation z 7! z̄ and
on the complexified Lie algebra gC by the antilinear involutive automorphism ⌧ , defined such that the
real form g is the subalgebra of fixed points of ⌧ . One checks that the automorphisms � and ⌧ of gC

satisfy the dihedrality confition � � ⌧ = ⌧ � �: the group generated by � and ⌧ is thus isomorphic to
the direct product Z2 ⇥Z2, which is the dihedral group1 D4. Using this dihedrality condition and the
facts that the Taki↵ currents J

r,[p] are valued in the real form g and the positions z
r

and levels `
r,p

are real numbers, one checks that the twist function (2.10) and the Gaudin Lax matrix (2.14) satisfy
the reality conditions

⌧(�(z, x)) = �(z̄, x) and '(z) = '(z̄),

which can be seen as equivariance conditions under the aforementioned action of Z2. Combining these
with the conditions (2.18), we then get that �(z, x) and '(z) are equivariant under the action of the
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2.3 Hamiltonian, constraint and gauge symmetry

Zeroes of the twist function. Let us begin by studying the zeroes of the twist function (2.10).
Firstly, we note that z = 0 is always a zero of '(z). We will suppose that this zero is simple, i.e.
that '0(0) 6= 0. Moreover, the behaviour of '(z) at z = 1 is described by the following asymptotic
expansion:

'

✓
1

u

◆
= 2Ku3 +O(u5), where K =

1

2

NX

r=1

z
r

(z
r

`
r,0 + 2 `

r,1) . (2.19)

Let us make a few comments on this expansion. From the equivariance property (2.18) of '(z), it
is clear that only odd powers of u can appear in the expansion of '(u�1) around u = 0. Moreover,
in general, the function '(z) as defined in Equation (2.10) also possesses a term of order O(u) in
its expansion at infinity, which is proportional to the sum

P
N

r=1 `r,0: as we supposed that this sum
vanishes (see the first-class condition (2.11)), the first term in the expansion is then of order u3. Let
us now consider the 1-form '(z)dz. To study its behaviour at infinity, let us consider the change of
coordinate z = u�1. We then have

'(z)dz = �(u)du, with �(u) = � 1

u2
'

✓
1

u

◆
. (2.20)

According to the asymptotic expansion (2.19), the 1-form '(z)dz thus has a zero at infinity. Moreover,
the derivative of this 1-form at z = 1 is given by �0(0) = �2K. We will suppose that this zero at
infinity is simple, i.e. that K 6= 0.

As '(z)dz possesses 4N poles (counted with multiplicities), it possesses 4N � 2 zeroes in the
Riemann sphere: in addition to the one at the origin z = 0 and the one at infinity z = 1, it thus
possesses 4(N �1) zeroes in C\{0}. From the equivariance property (2.18), one sees that these zeroes
come as pairs ⇣

i

and ⇣�i

= �⇣
i

, with i 2 {1, · · · , 2N � 2}. We will suppose that the ⇣
i

’s are pair-wise

1For a general T (i.e. when we have � of order T ), the dihedrality condition reads � � ⌧ = ⌧ � ��1 and the dihedral
group D2T has the structure of a semi-direct product ZT oZ2 instead of a direct product. For T = 2, we have ��1 = �,
so that the dihedrality condition becomes the commutation of � and ⌧ .
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distinct and are thus simple zeroes of '(z), hence '0(⇣
i

) 6= 0. In terms of the z
r

’s and the ⇣
i

’s, the
twist function can then be rewritten as

'(z) = 2K
z
Q2N�2

i=1 (z2 � ⇣2
i

)
Q

N

r=1(z
2 � z2

r

)2
. (2.21)

Hamiltonian. Let us consider the following quantity:

Q(z) = � 1

2'(z)

ˆ
D
dx (�(z, x),�(z, x)), (2.22)

which depends on the spectral parameter z 2 C. We define:

Q±i

= res
z=±⇣i

Q(z)dz, i = 1, . . . , 2N � 2, (2.23a)

Q0 = res
z=0

Q(z)dz and Q1 = res
z=1

Q(z)dz. (2.23b)

These quantities are local charges quadratic in the currents J
r,[p]. It is straightforward to show

that Q
i

= Q�i

, from the equivariance property (2.18) of the Gaudin Lax matrix and twist function.
Moreover, from (2.15), one can prove that they are also in involution i.e. they mutually Poisson
commute. Given a collection of real numbers {✏0, ✏i, ✏1}, i = 1, . . . , 2N � 2, we define the naive

Hamiltonian of the model (the term naive will be explained later in this section) as the following sum
over the charges introduced above:

H = ✏0Q0 + 2
2N�2X

i=1

✏
i

Q
i

+ ✏1Q1, (2.24)

where we introduce the factor of 2 for future convenience. Due to the reality conditions introduced in
the previous subsection, H can be shown to be real [3].

Constraint. In this paragraph, we introduce a constraint on the phase space of canonical fields on
T ⇤GN and show its consistency with the choice of Hamiltonian made in the previous paragraph. We
will use the Dirac theory of constraints in Hamiltonian systems: we refer to [13, 14] for reviews of this
formalism. Following the general construction of [1], we define the constraint as

C(x) = � res
z=1

�(z, x)dz = lim
u!0

1

u
�

✓
1

u
, x

◆
. (2.25)

Using the expression (2.14) of the Gaudin Lax matrix �(z, x) and the fact that 1
2 (Id + �) is the

projector on the grading g(0) of g, one checks that the constraint explicitly reads

C(x) =
NX

r=1

J (0)
r,[0](x). (2.26)

In particular, it is a g(0)-valued field. The models we are interested in are then defined on a reduced
phase space, obtained from canonical fields on T ⇤GN by imposing

C(x) ⇡ 0.

In this equation, and in the rest of this article, we use the notation ⇡ to denote weak equalities,
i.e. equalities that are true when the constraint is imposed. The standard equality sign = will then
indicate strong equalities, which are true even without imposing the constraint.

– 10 –

distinct and are thus simple zeroes of '(z), hence '0(⇣
i

) 6= 0. In terms of the z
r

’s and the ⇣
i

’s, the
twist function can then be rewritten as

'(z) = 2K
z
Q2N�2

i=1 (z2 � ⇣2
i

)
Q

N

r=1(z
2 � z2

r

)2
. (2.21)

Hamiltonian. Let us consider the following quantity:

Q(z) = � 1

2'(z)

ˆ
D
dx (�(z, x),�(z, x)), (2.22)

which depends on the spectral parameter z 2 C. We define:

Q±i

= res
z=±⇣i

Q(z)dz, i = 1, . . . , 2N � 2, (2.23a)

Q0 = res
z=0

Q(z)dz and Q1 = res
z=1

Q(z)dz. (2.23b)

These quantities are local charges quadratic in the currents J
r,[p]. It is straightforward to show

that Q
i

= Q�i

, from the equivariance property (2.18) of the Gaudin Lax matrix and twist function.
Moreover, from (2.15), one can prove that they are also in involution i.e. they mutually Poisson
commute. Given a collection of real numbers {✏0, ✏i, ✏1}, i = 1, . . . , 2N � 2, we define the naive

Hamiltonian of the model (the term naive will be explained later in this section) as the following sum
over the charges introduced above:

H = ✏0Q0 + 2
2N�2X

i=1

✏
i

Q
i

+ ✏1Q1, (2.24)

where we introduce the factor of 2 for future convenience. Due to the reality conditions introduced in
the previous subsection, H can be shown to be real [3].

Constraint. In this paragraph, we introduce a constraint on the phase space of canonical fields on
T ⇤GN and show its consistency with the choice of Hamiltonian made in the previous paragraph. We
will use the Dirac theory of constraints in Hamiltonian systems: we refer to [13, 14] for reviews of this
formalism. Following the general construction of [1], we define the constraint as

C(x) = � res
z=1

�(z, x)dz = lim
u!0

1

u
�

✓
1

u
, x

◆
. (2.25)

Using the expression (2.14) of the Gaudin Lax matrix �(z, x) and the fact that 1
2 (Id + �) is the

projector on the grading g(0) of g, one checks that the constraint explicitly reads

C(x) =
NX

r=1

J (0)
r,[0](x). (2.26)

In particular, it is a g(0)-valued field. The models we are interested in are then defined on a reduced
phase space, obtained from canonical fields on T ⇤GN by imposing

C(x) ⇡ 0.

In this equation, and in the rest of this article, we use the notation ⇡ to denote weak equalities,
i.e. equalities that are true when the constraint is imposed. The standard equality sign = will then
indicate strong equalities, which are true even without imposing the constraint.

– 10 –

distinct and are thus simple zeroes of '(z), hence '0(⇣
i

) 6= 0. In terms of the z
r

’s and the ⇣
i

’s, the
twist function can then be rewritten as

'(z) = 2K
z
Q2N�2

i=1 (z2 � ⇣2
i

)
Q

N

r=1(z
2 � z2

r

)2
. (2.21)

Hamiltonian. Let us consider the following quantity:

Q(z) = � 1

2'(z)

ˆ
D
dx (�(z, x),�(z, x)), (2.22)

which depends on the spectral parameter z 2 C. We define:

Q±i

= res
z=±⇣i

Q(z)dz, i = 1, . . . , 2N � 2, (2.23a)

Q0 = res
z=0

Q(z)dz and Q1 = res
z=1

Q(z)dz. (2.23b)

These quantities are local charges quadratic in the currents J
r,[p]. It is straightforward to show

that Q
i

= Q�i

, from the equivariance property (2.18) of the Gaudin Lax matrix and twist function.
Moreover, from (2.15), one can prove that they are also in involution i.e. they mutually Poisson
commute. Given a collection of real numbers {✏0, ✏i, ✏1}, i = 1, . . . , 2N � 2, we define the naive

Hamiltonian of the model (the term naive will be explained later in this section) as the following sum
over the charges introduced above:

H = ✏0Q0 + 2
2N�2X

i=1

✏
i

Q
i

+ ✏1Q1, (2.24)

where we introduce the factor of 2 for future convenience. Due to the reality conditions introduced in
the previous subsection, H can be shown to be real [3].

Constraint. In this paragraph, we introduce a constraint on the phase space of canonical fields on
T ⇤GN and show its consistency with the choice of Hamiltonian made in the previous paragraph. We
will use the Dirac theory of constraints in Hamiltonian systems: we refer to [13, 14] for reviews of this
formalism. Following the general construction of [1], we define the constraint as

C(x) = � res
z=1

�(z, x)dz = lim
u!0

1

u
�

✓
1

u
, x

◆
. (2.25)

Using the expression (2.14) of the Gaudin Lax matrix �(z, x) and the fact that 1
2 (Id + �) is the

projector on the grading g(0) of g, one checks that the constraint explicitly reads

C(x) =
NX

r=1

J (0)
r,[0](x). (2.26)

In particular, it is a g(0)-valued field. The models we are interested in are then defined on a reduced
phase space, obtained from canonical fields on T ⇤GN by imposing

C(x) ⇡ 0.

In this equation, and in the rest of this article, we use the notation ⇡ to denote weak equalities,
i.e. equalities that are true when the constraint is imposed. The standard equality sign = will then
indicate strong equalities, which are true even without imposing the constraint.

– 10 –

distinct and are thus simple zeroes of '(z), hence '0(⇣
i

) 6= 0. In terms of the z
r

’s and the ⇣
i

’s, the
twist function can then be rewritten as

'(z) = 2K
z
Q2N�2

i=1 (z2 � ⇣2
i

)
Q

N

r=1(z
2 � z2

r

)2
. (2.21)

Hamiltonian. Let us consider the following quantity:

Q(z) = � 1

2'(z)

ˆ
D
dx (�(z, x),�(z, x)), (2.22)

which depends on the spectral parameter z 2 C. We define:

Q±i

= res
z=±⇣i

Q(z)dz, i = 1, . . . , 2N � 2, (2.23a)

Q0 = res
z=0

Q(z)dz and Q1 = res
z=1

Q(z)dz. (2.23b)

These quantities are local charges quadratic in the currents J
r,[p]. It is straightforward to show

that Q
i

= Q�i

, from the equivariance property (2.18) of the Gaudin Lax matrix and twist function.
Moreover, from (2.15), one can prove that they are also in involution i.e. they mutually Poisson
commute. Given a collection of real numbers {✏0, ✏i, ✏1}, i = 1, . . . , 2N � 2, we define the naive

Hamiltonian of the model (the term naive will be explained later in this section) as the following sum
over the charges introduced above:

H = ✏0Q0 + 2
2N�2X

i=1

✏
i

Q
i

+ ✏1Q1, (2.24)

where we introduce the factor of 2 for future convenience. Due to the reality conditions introduced in
the previous subsection, H can be shown to be real [3].

Constraint. In this paragraph, we introduce a constraint on the phase space of canonical fields on
T ⇤GN and show its consistency with the choice of Hamiltonian made in the previous paragraph. We
will use the Dirac theory of constraints in Hamiltonian systems: we refer to [13, 14] for reviews of this
formalism. Following the general construction of [1], we define the constraint as

C(x) = � res
z=1

�(z, x)dz = lim
u!0

1

u
�

✓
1

u
, x

◆
. (2.25)

Using the expression (2.14) of the Gaudin Lax matrix �(z, x) and the fact that 1
2 (Id + �) is the

projector on the grading g(0) of g, one checks that the constraint explicitly reads

C(x) =
NX

r=1

J (0)
r,[0](x). (2.26)

In particular, it is a g(0)-valued field. The models we are interested in are then defined on a reduced
phase space, obtained from canonical fields on T ⇤GN by imposing

C(x) ⇡ 0.

In this equation, and in the rest of this article, we use the notation ⇡ to denote weak equalities,
i.e. equalities that are true when the constraint is imposed. The standard equality sign = will then
indicate strong equalities, which are true even without imposing the constraint.

– 10 –

distinct and are thus simple zeroes of '(z), hence '0(⇣
i

) 6= 0. In terms of the z
r

’s and the ⇣
i

’s, the
twist function can then be rewritten as

'(z) = 2K
z
Q2N�2

i=1 (z2 � ⇣2
i

)
Q

N

r=1(z
2 � z2

r

)2
. (2.21)

Hamiltonian. Let us consider the following quantity:

Q(z) = � 1

2'(z)

ˆ
D
dx (�(z, x),�(z, x)), (2.22)

which depends on the spectral parameter z 2 C. We define:

Q±i

= res
z=±⇣i

Q(z)dz, i = 1, . . . , 2N � 2, (2.23a)

Q0 = res
z=0

Q(z)dz and Q1 = res
z=1

Q(z)dz. (2.23b)

These quantities are local charges quadratic in the currents J
r,[p]. It is straightforward to show

that Q
i

= Q�i

, from the equivariance property (2.18) of the Gaudin Lax matrix and twist function.
Moreover, from (2.15), one can prove that they are also in involution i.e. they mutually Poisson
commute. Given a collection of real numbers {✏0, ✏i, ✏1}, i = 1, . . . , 2N � 2, we define the naive

Hamiltonian of the model (the term naive will be explained later in this section) as the following sum
over the charges introduced above:

H = ✏0Q0 + 2
2N�2X

i=1

✏
i

Q
i

+ ✏1Q1, (2.24)

where we introduce the factor of 2 for future convenience. Due to the reality conditions introduced in
the previous subsection, H can be shown to be real [3].

Constraint. In this paragraph, we introduce a constraint on the phase space of canonical fields on
T ⇤GN and show its consistency with the choice of Hamiltonian made in the previous paragraph. We
will use the Dirac theory of constraints in Hamiltonian systems: we refer to [13, 14] for reviews of this
formalism. Following the general construction of [1], we define the constraint as

C(x) = � res
z=1

�(z, x)dz = lim
u!0

1

u
�

✓
1

u
, x

◆
. (2.25)

Using the expression (2.14) of the Gaudin Lax matrix �(z, x) and the fact that 1
2 (Id + �) is the

projector on the grading g(0) of g, one checks that the constraint explicitly reads

C(x) =
NX

r=1

J (0)
r,[0](x). (2.26)

In particular, it is a g(0)-valued field. The models we are interested in are then defined on a reduced
phase space, obtained from canonical fields on T ⇤GN by imposing

C(x) ⇡ 0.

In this equation, and in the rest of this article, we use the notation ⇡ to denote weak equalities,
i.e. equalities that are true when the constraint is imposed. The standard equality sign = will then
indicate strong equalities, which are true even without imposing the constraint.

– 10 –

(
Local charges

in involution

Naive	Hamiltonian

distinct and are thus simple zeroes of '(z), hence '0(⇣
i

) 6= 0. In terms of the z
r

’s and the ⇣
i

’s, the
twist function can then be rewritten as

'(z) = 2K
z
Q2N�2

i=1 (z2 � ⇣2
i

)
Q

N

r=1(z
2 � z2

r

)2
. (2.21)

Hamiltonian. Let us consider the following quantity:

Q(z) = � 1

2'(z)

ˆ
D
dx (�(z, x),�(z, x)), (2.22)

which depends on the spectral parameter z 2 C. We define:

Q±i

= res
z=±⇣i

Q(z)dz, i = 1, . . . , 2N � 2, (2.23a)

Q0 = res
z=0

Q(z)dz and Q1 = res
z=1

Q(z)dz. (2.23b)

These quantities are local charges quadratic in the currents J
r,[p]. It is straightforward to show

that Q
i

= Q�i

, from the equivariance property (2.18) of the Gaudin Lax matrix and twist function.
Moreover, from (2.15), one can prove that they are also in involution i.e. they mutually Poisson
commute. Given a collection of real numbers {✏0, ✏i, ✏1}, i = 1, . . . , 2N � 2, we define the naive

Hamiltonian of the model (the term naive will be explained later in this section) as the following sum
over the charges introduced above:

H = ✏0Q0 + 2
2N�2X

i=1

✏
i

Q
i

+ ✏1Q1, (2.24)

where we introduce the factor of 2 for future convenience. Due to the reality conditions introduced in
the previous subsection, H can be shown to be real [3].

Constraint. In this paragraph, we introduce a constraint on the phase space of canonical fields on
T ⇤GN and show its consistency with the choice of Hamiltonian made in the previous paragraph. We
will use the Dirac theory of constraints in Hamiltonian systems: we refer to [13, 14] for reviews of this
formalism. Following the general construction of [1], we define the constraint as

C(x) = � res
z=1

�(z, x)dz = lim
u!0

1

u
�

✓
1

u
, x

◆
. (2.25)

Using the expression (2.14) of the Gaudin Lax matrix �(z, x) and the fact that 1
2 (Id + �) is the

projector on the grading g(0) of g, one checks that the constraint explicitly reads

C(x) =
NX

r=1

J (0)
r,[0](x). (2.26)

In particular, it is a g(0)-valued field. The models we are interested in are then defined on a reduced
phase space, obtained from canonical fields on T ⇤GN by imposing

C(x) ⇡ 0.

In this equation, and in the rest of this article, we use the notation ⇡ to denote weak equalities,
i.e. equalities that are true when the constraint is imposed. The standard equality sign = will then
indicate strong equalities, which are true even without imposing the constraint.

– 10 –

Draft

Contents

1 Construction of the models in the Hamiltonian formulation 1
1.1 Phase space of canonical fields on T ⇤G . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Definition of the models as realisations of a�ne Gaudin models . . . . . . . . . . . . . 4
1.3 Hamiltonian, constraint and gauge symmetry . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Space-time symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 The panorama of the models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Lagrangian formulation of the models with two copies 18
2.1 Lagrangian expression of the momentum fields . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Action of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Lax connection in the Lagrangian formulation . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 A limit of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Integrable �-models on T 1,1 manifolds 25
3.1 The models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Modification of the background, isometries and equations of motion . . . . . . . . . . 26
3.3 Spinning string solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Appendices 29

A Coe�cients in the form (2.1) of the Hamiltonian 29

B Reformulation of the action 29

C Spinning string ansatz for a �-model with B-field 30
C.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
C.2 Spinning string ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
C.3 Integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1 Construction of the models in the Hamiltonian formulation

 real
N G-valued fields g1(x), · · · , g

N

(x)
N g-valued fields X1(x), · · · , X

N

(x)
Dihedrality condition � � ⌧ = ⌧ � �
⌧ : gC ! gC is an antilinear involutive automorphism,
defined such that the real form g is the subalgebra of fixed points of ⌧

2) Z2 : z 7! z̄, Z 7! ⌧(Z), Z 2 g
R0

12 satisfies the classical Yang-Baxter equation
Extend the space-time D⇥ R to a 3-dimensional manifold B with boundary @B = D⇥ R

(Ia)
a2{1,...,n} is the dual of this basis with respect to 

Consider fields on D with values in T ⇤G ' G⇥ g 3 (g,X)

g(x), X(x), where x 2 D

The sum over k 2 {0, 1} and the factors (�1)k encodes the T = 2 dihedrality of the model

g(0) = {x 2 g : �(x) = x} and g(1) = {x 2 g : �(x) = �x}.

1

Hamiltonian formulation

Sites, levels and twist function. Following the formalism and terminology of [1], let us consider
an AGM with N 2 Z�1 real sites of multiplicity two, whose positions will be denoted by z

r

with
r 2 {1, . . . , N} and will be supposed to be non zero (z

r

2 R

⇤). Since each site z
r

is of multiplicity two,
it is associated with two constant numbers `

r,0 2 R and `
r,1 2 R

⇤, called the levels. Altogether this
data specifies the twist function '(z) of the model, which depends on an auxiliary complex parameter
z 2 C, called the spectral parameter. This function takes the following form [1]:

'(z) =
1

2

NX

r=1

1X

p=0

1X

k=0

(�1)k`
r,p

((�1)kz � z
r

)p+1
. (2.10)

The sum over p 2 {0, 1} in this expression and thus the presence of double poles at z
r

reflects the fact
that the sites of the model are of multiplicity two. Moreover, the sum over k 2 {0, 1} and the factors
(�1)k encodes the T = 2 dihedrality of the model.

In the rest of this article, we will suppose that the levels `
r,0 satisfy the following additional

hypothesis, which for reasons to be explained later we call the first-class condition:

NX

r=1

`
r,0 = 0. (2.11)

As we shall see in subsection 2.3, this condition will be necessary to ensure that the models that we
construct possess a gauge symmetry.

Taki↵ currents and phase space. To each site z
r

, r 2 {1, · · · , N}, of the model is attached two
g-valued fields J

r,[0](x) and J
r,[1](x), called Taki↵ currents . These are observables on the phase space

of the model, which satisfy the following Poisson bracket, determined by the choice of levels `
r,p

:

{J
r,[0]1(x),Js,[0]2(y)} = �

rs

�
[C12,J

r,[0]1(x)]�xy � `
r,0C12�

0
xy

�
, (2.12a)

{J
r,[0]1(x),Js,[1]2(y)} = �

rs

�
[C12,J

r,[1]1(x)]�xy � `
r,1C12�

0
xy

�
, (2.12b)

{J
r,[1]1(x),Js,[1]2(y)} = 0. (2.12c)

So far, we did not specify what is the phase space of the model: this requires discussing the distinction
between a formal AGM and its realisations. The phase space of the formal AGM underlying the
present construction simply consists of configurations of the Taki↵ currents J

r,[p](x) (r 2 {1, · · · , N}
and p 2 {0, 1}), equipped with the Poisson bracket (2.12). Taking a realisation of this AGM consists of
considering a more general phase space, describing configurations of fields y

i

(x) with a certain Poisson
bracket, such that there exist well-chosen combinations J

r,[p](x) of the fields y
i

(x) that satisfy the
Taki↵ brackets (2.12). The construction of the formal AGM can then be completly transfered to this
new phase space, thus yielding an integable field theory with observables on this space.

In the present case, we will consider a particular realisation of this AGM, whose phase space
consists of canonical fields on the cotangent bundle T ⇤GN . We described the phase space of canonical
fields on one copy of T ⇤G in subsection 2.1: we will use the notations and conventions introduced
in this subsection to describe the fields on T ⇤GN . In particular, these fields can be encoded into N
G-valued fields g1(x), · · · , gN (x) and N g-valued fields X1(x), · · · , XN

(x), which are the equivalents
of the fields g(x) and X(x) introduced in subsection 2.1 for one copy of T ⇤G and which then satisfy
N independent copies of the Poisson bracket (2.3). Similarly, we introduce currents j

r

(x) and W
r

(x),
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Action

S =
1

4

ZZ

dx dt
⇣

�

�2+�21+
�

�2��21
�

cos(2✓1)
�

@��1@+�1+2�21 @�✓1@+✓1+2�2 @� @+ +4�2 @��1@+ cos ✓1

+
�

�2+�22+
�

�2��22
�

cos(2✓2)
�

@��2@+�2+2�22 @�✓2@+✓2+2�2 @� ̃@+ ̃+4�2 @� ̃@+�2 cos ✓2

+4�2
�

cos ✓1 @��1+@� 
��

cos ✓2 @+�2+@+ ̃
�

⌘

Gauge symmetry
G = SU(2) with g = su(2) generated by I

a

= i�
a

/2, where �
a

is the a-th Pauli matrix
� : �(I1) = �I1, �(I2) = �I2 and �(I3) = I3
Let us consider the model with two copies described in the previous section for the choice G = SU(2),

with Lie algebra g = su(2) generated by I
a

= i�
a

/2, where �
a

is the a-th Pauli matrix. We take � to be the
Z2-automorphism of su(2) defined by the following action on the generators: �(I1) = �I1, �(I2) = �I2 and
�(I3) = I3, so that g(0) = u(1) = span{I3} and correspondingly G(0) = U(1) = exp(RI3). Let us finally pick
the following parametrisation for the fields (g1, g2) 2 SU(2)⇥ SU(2) of the model:

G(0) = U(1) = exp(RI3)
Pick the following parametrisation for the fields (g1, g2) 2 SU(2)⇥ SU(2)

L± =

✓

L± 0
0 L̃±

◆

 Lax connection
In the case �1 = �2 = � the action can be rewritten as
Define U = g1 and V = g�1

2 , and use IWZ

⇥

g�1
⇤

= �IWZ

⇥

g
⇤

Checked for all cases for with N  3 and T  3!
where
3N � 2 = 3⇥ 2� 2 = 4 parameters z2 ⌘ x, ⇣+ ⌘ ⇣1, ⇣� ⌘ ⇣2 and K

j0,r = g�1
r

{H
T

, g
r

} =
2

X

s=1

1
X

k=0

b(k)
rs

j(k)
s

+ 2c(k)
rs

Y (k)
s

+ µ

Y (0)
1 + Y (0)

2 = �`1,0
2

j(0)1 � `2,0
2

j(0)2 .

Y1 = Y (0)
1 + Y (1)

1

Y2 = Y (0)
2 + Y (1)

2

1

| {z }
{⇣i,�⇣i}, i = 1, . . . , 2N � 2
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SU(2)⇥ SU(2)
.
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1

distinct and are thus simple zeroes of '(z), hence '0(⇣
i

) 6= 0. In terms of the z
r

’s and the ⇣
i

’s, the
twist function can then be rewritten as

'(z) = 2K
z
Q2N�2

i=1 (z2 � ⇣2
i

)
Q

N

r=1(z
2 � z2

r

)2
. (2.21)

Hamiltonian. Let us consider the following quantity:

Q(z) = � 1

2'(z)

ˆ
D
dx (�(z, x),�(z, x)), (2.22)

which depends on the spectral parameter z 2 C. We define:

Q±i

= res
z=±⇣i

Q(z)dz, i = 1, . . . , 2N � 2, (2.23a)

Q0 = res
z=0

Q(z)dz and Q1 = res
z=1

Q(z)dz. (2.23b)

These quantities are local charges quadratic in the currents J
r,[p]. It is straightforward to show

that Q
i

= Q�i

, from the equivariance property (2.18) of the Gaudin Lax matrix and twist function.
Moreover, from (2.15), one can prove that they are also in involution i.e. they mutually Poisson
commute. Given a collection of real numbers {✏0, ✏i, ✏1}, i = 1, . . . , 2N � 2, we define the naive

Hamiltonian of the model (the term naive will be explained later in this section) as the following sum
over the charges introduced above:

H = ✏0Q0 + 2
2N�2X

i=1

✏
i

Q
i

+ ✏1Q1, (2.24)

where we introduce the factor of 2 for future convenience. Due to the reality conditions introduced in
the previous subsection, H can be shown to be real [3].

Constraint. In this paragraph, we introduce a constraint on the phase space of canonical fields on
T ⇤GN and show its consistency with the choice of Hamiltonian made in the previous paragraph. We
will use the Dirac theory of constraints in Hamiltonian systems: we refer to [13, 14] for reviews of this
formalism. Following the general construction of [1], we define the constraint as

C(x) = � res
z=1

�(z, x)dz = lim
u!0

1

u
�

✓
1

u
, x

◆
. (2.25)

Using the expression (2.14) of the Gaudin Lax matrix �(z, x) and the fact that 1
2 (Id + �) is the

projector on the grading g(0) of g, one checks that the constraint explicitly reads

C(x) =
NX

r=1

J (0)
r,[0](x). (2.26)

In particular, it is a g(0)-valued field. The models we are interested in are then defined on a reduced
phase space, obtained from canonical fields on T ⇤GN by imposing

C(x) ⇡ 0.

In this equation, and in the rest of this article, we use the notation ⇡ to denote weak equalities,
i.e. equalities that are true when the constraint is imposed. The standard equality sign = will then
indicate strong equalities, which are true even without imposing the constraint.
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1 Construction of the models in the Hamiltonian formulation

2 g(0)

N G-valued fields g1(x), · · · , g
N

(x)
N g-valued fields X1(x), · · · , X

N

(x)
Dihedrality condition � � ⌧ = ⌧ � �
⌧ : gC ! gC is an antilinear involutive automorphism,
defined such that the real form g is the subalgebra of fixed points of ⌧

2) Z2 : z 7! z̄, Z 7! ⌧(Z), Z 2 g
R0

12 satisfies the classical Yang-Baxter equation
Extend the space-time D⇥ R to a 3-dimensional manifold B with boundary @B = D⇥ R

(Ia)
a2{1,...,n} is the dual of this basis with respect to 

Consider fields on D with values in T ⇤G ' G⇥ g 3 (g,X)

g(x), X(x), where x 2 D

The sum over k 2 {0, 1} and the factors (�1)k encodes the T = 2 dihedrality of the model

g(0) = {x 2 g : �(x) = x} and g(1) = {x 2 g : �(x) = �x}.

1

distinct and are thus simple zeroes of '(z), hence '0(⇣
i

) 6= 0. In terms of the z
r

’s and the ⇣
i

’s, the
twist function can then be rewritten as

'(z) = 2K
z
Q2N�2

i=1 (z2 � ⇣2
i

)
Q

N

r=1(z
2 � z2

r

)2
. (2.21)

Hamiltonian. Let us consider the following quantity:

Q(z) = � 1

2'(z)

ˆ
D
dx (�(z, x),�(z, x)), (2.22)

which depends on the spectral parameter z 2 C. We define:

Q±i

= res
z=±⇣i

Q(z)dz, i = 1, . . . , 2N � 2, (2.23a)

Q0 = res
z=0

Q(z)dz and Q1 = res
z=1

Q(z)dz. (2.23b)

These quantities are local charges quadratic in the currents J
r,[p]. It is straightforward to show

that Q
i

= Q�i

, from the equivariance property (2.18) of the Gaudin Lax matrix and twist function.
Moreover, from (2.15), one can prove that they are also in involution i.e. they mutually Poisson
commute. Given a collection of real numbers {✏0, ✏i, ✏1}, i = 1, . . . , 2N � 2, we define the naive

Hamiltonian of the model (the term naive will be explained later in this section) as the following sum
over the charges introduced above:

H = ✏0Q0 + 2
2N�2X

i=1

✏
i

Q
i

+ ✏1Q1, (2.24)

where we introduce the factor of 2 for future convenience. Due to the reality conditions introduced in
the previous subsection, H can be shown to be real [3].

Constraint. In this paragraph, we introduce a constraint on the phase space of canonical fields on
T ⇤GN and show its consistency with the choice of Hamiltonian made in the previous paragraph. We
will use the Dirac theory of constraints in Hamiltonian systems: we refer to [13, 14] for reviews of this
formalism. Following the general construction of [1], we define the constraint as

C(x) = � res
z=1

�(z, x)dz = lim
u!0

1

u
�

✓
1

u
, x

◆
. (2.25)

Using the expression (2.14) of the Gaudin Lax matrix �(z, x) and the fact that 1
2 (Id + �) is the

projector on the grading g(0) of g, one checks that the constraint explicitly reads

C(x) =
NX

r=1

J (0)
r,[0](x). (2.26)

In particular, it is a g(0)-valued field. The models we are interested in are then defined on a reduced
phase space, obtained from canonical fields on T ⇤GN by imposing

C(x) ⇡ 0.

In this equation, and in the rest of this article, we use the notation ⇡ to denote weak equalities,
i.e. equalities that are true when the constraint is imposed. The standard equality sign = will then
indicate strong equalities, which are true even without imposing the constraint.
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1 Construction of the models in the Hamiltonian formulation

The models we are interested in are defined on a reduced phase space, obtained from canonical fields
on T ⇤GN by imposing

N G-valued fields g1(x), · · · , g
N

(x)
N g-valued fields X1(x), · · · , X

N

(x)
Dihedrality condition � � ⌧ = ⌧ � �
⌧ : gC ! gC is an antilinear involutive automorphism,
defined such that the real form g is the subalgebra of fixed points of ⌧

2) Z2 : z 7! z̄, Z 7! ⌧(Z), Z 2 g
R0

12 satisfies the classical Yang-Baxter equation
Extend the space-time D⇥ R to a 3-dimensional manifold B with boundary @B = D⇥ R

(Ia)
a2{1,...,n} is the dual of this basis with respect to 

Consider fields on D with values in T ⇤G ' G⇥ g 3 (g,X)

g(x), X(x), where x 2 D

The sum over k 2 {0, 1} and the factors (�1)k encodes the T = 2 dihedrality of the model

1

Poisson bracket of the constraint with the naive Hamiltonian. From the Poisson bracket
(2.15) of the Gaudin Lax matrix with itself, one checks that the local charge Q(z), defined in Equation
(2.22), satisfies the following Poisson bracket with the constraint:

{Q(z), C(x)} = �@
x

�(z, x)(0).

In particular, as �(z, x) is regular at z = 0 and z = ⇣
i

for i = 1, · · · , 2N � 2, one has

{Q
i

, C(x)} = 0, 8 i 2 {0, · · · , 2N � 2}, (2.27)

for the charges Q
i

introduced in Equation (2.23). Moreover, the residue of �(z, x)(0)dz at z = 1 is
equal to �C(x). Thus we also have

{Q1, C(x)} = @
x

C(x). (2.28)

Recall that the naive Hamiltonian of the modelH is defined in terms of the chargesQ
i

, i 2 {0, · · · , 2N�
2,1}, by Equation (2.24). Thus, we get

{H, C(x)} = ✏1@
x

C(x).

In particular, we see that the naive Hamiltonian weakly Poisson commutes with C(x):

{H, C(x)} ⇡ 0. (2.29)

This ensures that the Hamiltonian flow of H preserves the constraint C(x) ⇡ 0.

First-class property. The Poisson bracket of the constraint with itself can be obtained from its
definition (2.25) and the Poisson bracket (2.15) of the Gaudin Lax matrix (or equivalently from its
expression (2.26) and the Poisson bracket (2.12) of the currents J

r,[0]). It reads

�
C1(x), C2(y)

 
=
⇥
C(00)

12 , C1(x)
⇤
�
xy

, (2.30)

where C(00)
12 2 g(0) ⌦ g(0) is the split Casimir of g(0). In fact, this bracket also contains in general

a non-ultralocal term �
⇣P

N

r=1 `r,0
⌘
C(00)

12 �0
xy

: as we supposed in Equation (2.11) that the levels `
r,0

sum to zero, this term vanishes. In particular, this shows that the Poisson bracket of the constraint
with itself weakly vanishes: �

C1(x), C2(y)
 
⇡ 0. (2.31)

Thus, the constraint C(x) ⇡ 0 is first-class (see for instance [13, 14]). This justifies a posteriori the
name of first-class condition for the assumption (2.11) that we made: indeed, without this assumption,
the bracket of the constraint would contain a non-ultralocal term which would not vanish weakly and
the constraint would then not be first-class.

Total Hamiltonian and Lagrange multiplier. In the beginning of this subsection, we defined
the naive Hamiltonian H through Equation (2.24). As we are considering models subject to the
constraint C(x) ⇡ 0, we have to define the total Hamiltonian of the system as the sum of the naive
Hamiltonian and a generic term proportional to the constraint, so that it coincides weakly with the
naive Hamiltonian. It thus takes the form

H
T

= H+

ˆ
D
dx 

�
µ(x), C(x)

�
, (2.32)
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1 Construction of the models in the Hamiltonian formulation

The models we are interested in are defined on a reduced phase space, obtained from canonical fields
on T ⇤GN by imposing

We have
N G-valued fields g1(x), · · · , g

N

(x)
N g-valued fields X1(x), · · · , X

N

(x)
Dihedrality condition � � ⌧ = ⌧ � �
⌧ : gC ! gC is an antilinear involutive automorphism,
defined such that the real form g is the subalgebra of fixed points of ⌧

2) Z2 : z 7! z̄, Z 7! ⌧(Z), Z 2 g
R0

12 satisfies the classical Yang-Baxter equation
Extend the space-time D⇥ R to a 3-dimensional manifold B with boundary @B = D⇥ R

(Ia)
a2{1,...,n} is the dual of this basis with respect to 

Consider fields on D with values in T ⇤G ' G⇥ g 3 (g,X)

g(x), X(x), where x 2 D

The sum over k 2 {0, 1} and the factors (�1)k encodes the T = 2 dihedrality of the model

1

Poisson bracket of the constraint with the naive Hamiltonian. From the Poisson bracket
(2.15) of the Gaudin Lax matrix with itself, one checks that the local charge Q(z), defined in Equation
(2.22), satisfies the following Poisson bracket with the constraint:

{Q(z), C(x)} = �@
x

�(z, x)(0).

In particular, as �(z, x) is regular at z = 0 and z = ⇣
i

for i = 1, · · · , 2N � 2, one has

{Q
i

, C(x)} = 0, 8 i 2 {0, · · · , 2N � 2}, (2.27)

for the charges Q
i

introduced in Equation (2.23). Moreover, the residue of �(z, x)(0)dz at z = 1 is
equal to �C(x). Thus we also have

{Q1, C(x)} = @
x

C(x). (2.28)

Recall that the naive Hamiltonian of the modelH is defined in terms of the chargesQ
i

, i 2 {0, · · · , 2N�
2,1}, by Equation (2.24). Thus, we get

{H, C(x)} = ✏1@
x

C(x).

In particular, we see that the naive Hamiltonian weakly Poisson commutes with C(x):

{H, C(x)} ⇡ 0. (2.29)

This ensures that the Hamiltonian flow of H preserves the constraint C(x) ⇡ 0.

First-class property. The Poisson bracket of the constraint with itself can be obtained from its
definition (2.25) and the Poisson bracket (2.15) of the Gaudin Lax matrix (or equivalently from its
expression (2.26) and the Poisson bracket (2.12) of the currents J

r,[0]). It reads

�
C1(x), C2(y)

 
=
⇥
C(00)

12 , C1(x)
⇤
�
xy

, (2.30)

where C(00)
12 2 g(0) ⌦ g(0) is the split Casimir of g(0). In fact, this bracket also contains in general

a non-ultralocal term �
⇣P

N

r=1 `r,0
⌘
C(00)

12 �0
xy

: as we supposed in Equation (2.11) that the levels `
r,0

sum to zero, this term vanishes. In particular, this shows that the Poisson bracket of the constraint
with itself weakly vanishes: �

C1(x), C2(y)
 
⇡ 0. (2.31)

Thus, the constraint C(x) ⇡ 0 is first-class (see for instance [13, 14]). This justifies a posteriori the
name of first-class condition for the assumption (2.11) that we made: indeed, without this assumption,
the bracket of the constraint would contain a non-ultralocal term which would not vanish weakly and
the constraint would then not be first-class.

Total Hamiltonian and Lagrange multiplier. In the beginning of this subsection, we defined
the naive Hamiltonian H through Equation (2.24). As we are considering models subject to the
constraint C(x) ⇡ 0, we have to define the total Hamiltonian of the system as the sum of the naive
Hamiltonian and a generic term proportional to the constraint, so that it coincides weakly with the
naive Hamiltonian. It thus takes the form

H
T

= H+

ˆ
D
dx 

�
µ(x), C(x)

�
, (2.32)
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Poisson bracket of the constraint with the naive Hamiltonian. From the Poisson bracket
(2.15) of the Gaudin Lax matrix with itself, one checks that the local charge Q(z), defined in Equation
(2.22), satisfies the following Poisson bracket with the constraint:

{Q(z), C(x)} = �@
x

�(z, x)(0).

In particular, as �(z, x) is regular at z = 0 and z = ⇣
i

for i = 1, · · · , 2N � 2, one has

{Q
i

, C(x)} = 0, 8 i 2 {0, · · · , 2N � 2}, (2.27)

for the charges Q
i

introduced in Equation (2.23). Moreover, the residue of �(z, x)(0)dz at z = 1 is
equal to �C(x). Thus we also have

{Q1, C(x)} = @
x

C(x). (2.28)

Recall that the naive Hamiltonian of the modelH is defined in terms of the chargesQ
i

, i 2 {0, · · · , 2N�
2,1}, by Equation (2.24). Thus, we get

{H, C(x)} = ✏1@
x

C(x).

In particular, we see that the naive Hamiltonian weakly Poisson commutes with C(x):

{H, C(x)} ⇡ 0. (2.29)

This ensures that the Hamiltonian flow of H preserves the constraint C(x) ⇡ 0.

First-class property. The Poisson bracket of the constraint with itself can be obtained from its
definition (2.25) and the Poisson bracket (2.15) of the Gaudin Lax matrix (or equivalently from its
expression (2.26) and the Poisson bracket (2.12) of the currents J

r,[0]). It reads

�
C1(x), C2(y)

 
=
⇥
C(00)

12 , C1(x)
⇤
�
xy

, (2.30)

where C(00)
12 2 g(0) ⌦ g(0) is the split Casimir of g(0). In fact, this bracket also contains in general

a non-ultralocal term �
⇣P

N

r=1 `r,0
⌘
C(00)

12 �0
xy

: as we supposed in Equation (2.11) that the levels `
r,0

sum to zero, this term vanishes. In particular, this shows that the Poisson bracket of the constraint
with itself weakly vanishes: �

C1(x), C2(y)
 
⇡ 0. (2.31)

Thus, the constraint C(x) ⇡ 0 is first-class (see for instance [13, 14]). This justifies a posteriori the
name of first-class condition for the assumption (2.11) that we made: indeed, without this assumption,
the bracket of the constraint would contain a non-ultralocal term which would not vanish weakly and
the constraint would then not be first-class.

Total Hamiltonian and Lagrange multiplier. In the beginning of this subsection, we defined
the naive Hamiltonian H through Equation (2.24). As we are considering models subject to the
constraint C(x) ⇡ 0, we have to define the total Hamiltonian of the system as the sum of the naive
Hamiltonian and a generic term proportional to the constraint, so that it coincides weakly with the
naive Hamiltonian. It thus takes the form

H
T

= H+

ˆ
D
dx 

�
µ(x), C(x)

�
, (2.32)
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(2.22), satisfies the following Poisson bracket with the constraint:

{Q(z), C(x)} = �@
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�(z, x)(0).

In particular, as �(z, x) is regular at z = 0 and z = ⇣
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equal to �C(x). Thus we also have

{Q1, C(x)} = @
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C(x). (2.28)

Recall that the naive Hamiltonian of the modelH is defined in terms of the chargesQ
i

, i 2 {0, · · · , 2N�
2,1}, by Equation (2.24). Thus, we get

{H, C(x)} = ✏1@
x

C(x).

In particular, we see that the naive Hamiltonian weakly Poisson commutes with C(x):

{H, C(x)} ⇡ 0. (2.29)

This ensures that the Hamiltonian flow of H preserves the constraint C(x) ⇡ 0.

First-class property. The Poisson bracket of the constraint with itself can be obtained from its
definition (2.25) and the Poisson bracket (2.15) of the Gaudin Lax matrix (or equivalently from its
expression (2.26) and the Poisson bracket (2.12) of the currents J

r,[0]). It reads
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C1(x), C2(y)

 
=
⇥
C(00)
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⇤
�
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, (2.30)

where C(00)
12 2 g(0) ⌦ g(0) is the split Casimir of g(0). In fact, this bracket also contains in general

a non-ultralocal term �
⇣P

N

r=1 `r,0
⌘
C(00)

12 �0
xy

: as we supposed in Equation (2.11) that the levels `
r,0

sum to zero, this term vanishes. In particular, this shows that the Poisson bracket of the constraint
with itself weakly vanishes: �

C1(x), C2(y)
 
⇡ 0. (2.31)

Thus, the constraint C(x) ⇡ 0 is first-class (see for instance [13, 14]). This justifies a posteriori the
name of first-class condition for the assumption (2.11) that we made: indeed, without this assumption,
the bracket of the constraint would contain a non-ultralocal term which would not vanish weakly and
the constraint would then not be first-class.

Total Hamiltonian and Lagrange multiplier. In the beginning of this subsection, we defined
the naive Hamiltonian H through Equation (2.24). As we are considering models subject to the
constraint C(x) ⇡ 0, we have to define the total Hamiltonian of the system as the sum of the naive
Hamiltonian and a generic term proportional to the constraint, so that it coincides weakly with the
naive Hamiltonian. It thus takes the form

H
T

= H+

ˆ
D
dx 
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µ(x), C(x)

�
, (2.32)
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Poisson bracket of the constraint with the naive Hamiltonian. From the Poisson bracket
(2.15) of the Gaudin Lax matrix with itself, one checks that the local charge Q(z), defined in Equation
(2.22), satisfies the following Poisson bracket with the constraint:

{Q(z), C(x)} = �@
x

�(z, x)(0).

In particular, as �(z, x) is regular at z = 0 and z = ⇣
i

for i = 1, · · · , 2N � 2, one has

{Q
i

, C(x)} = 0, 8 i 2 {0, · · · , 2N � 2}, (2.27)

for the charges Q
i

introduced in Equation (2.23). Moreover, the residue of �(z, x)(0)dz at z = 1 is
equal to �C(x). Thus we also have

{Q1, C(x)} = @
x

C(x). (2.28)

Recall that the naive Hamiltonian of the modelH is defined in terms of the chargesQ
i

, i 2 {0, · · · , 2N�
2,1}, by Equation (2.24). Thus, we get

{H, C(x)} = ✏1@
x

C(x).

In particular, we see that the naive Hamiltonian weakly Poisson commutes with C(x):

{H, C(x)} ⇡ 0. (2.29)

This ensures that the Hamiltonian flow of H preserves the constraint C(x) ⇡ 0.

First-class property. The Poisson bracket of the constraint with itself can be obtained from its
definition (2.25) and the Poisson bracket (2.15) of the Gaudin Lax matrix (or equivalently from its
expression (2.26) and the Poisson bracket (2.12) of the currents J

r,[0]). It reads

�
C1(x), C2(y)

 
=
⇥
C(00)

12 , C1(x)
⇤
�
xy

, (2.30)

where C(00)
12 2 g(0) ⌦ g(0) is the split Casimir of g(0). In fact, this bracket also contains in general

a non-ultralocal term �
⇣P

N
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with itself weakly vanishes: �

C1(x), C2(y)
 
⇡ 0. (2.31)
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1 Construction of the models in the Hamiltonian formulation

The models we are interested in are defined on a reduced phase space, obtained from canonical fields
on T ⇤GN by imposing

! 0
N G-valued fields g1(x), · · · , g

N

(x)
N g-valued fields X1(x), · · · , X

N

(x)
Dihedrality condition � � ⌧ = ⌧ � �
⌧ : gC ! gC is an antilinear involutive automorphism,
defined such that the real form g is the subalgebra of fixed points of ⌧

2) Z2 : z 7! z̄, Z 7! ⌧(Z), Z 2 g
R0

12 satisfies the classical Yang-Baxter equation
Extend the space-time D⇥ R to a 3-dimensional manifold B with boundary @B = D⇥ R

(Ia)
a2{1,...,n} is the dual of this basis with respect to 

Consider fields on D with values in T ⇤G ' G⇥ g 3 (g,X)

g(x), X(x), where x 2 D

The sum over k 2 {0, 1} and the factors (�1)k encodes the T = 2 dihedrality of the model
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Poisson bracket of the constraint with the naive Hamiltonian. From the Poisson bracket
(2.15) of the Gaudin Lax matrix with itself, one checks that the local charge Q(z), defined in Equation
(2.22), satisfies the following Poisson bracket with the constraint:

{Q(z), C(x)} = �@
x

�(z, x)(0).

In particular, as �(z, x) is regular at z = 0 and z = ⇣
i

for i = 1, · · · , 2N � 2, one has

{Q
i

, C(x)} = 0, 8 i 2 {0, · · · , 2N � 2}, (2.27)

for the charges Q
i

introduced in Equation (2.23). Moreover, the residue of �(z, x)(0)dz at z = 1 is
equal to �C(x). Thus we also have

{Q1, C(x)} = @
x

C(x). (2.28)

Recall that the naive Hamiltonian of the modelH is defined in terms of the chargesQ
i

, i 2 {0, · · · , 2N�
2,1}, by Equation (2.24). Thus, we get

{H, C(x)} = ✏1@
x

C(x).

In particular, we see that the naive Hamiltonian weakly Poisson commutes with C(x):

{H, C(x)} ⇡ 0. (2.29)

This ensures that the Hamiltonian flow of H preserves the constraint C(x) ⇡ 0.

First-class property. The Poisson bracket of the constraint with itself can be obtained from its
definition (2.25) and the Poisson bracket (2.15) of the Gaudin Lax matrix (or equivalently from its
expression (2.26) and the Poisson bracket (2.12) of the currents J

r,[0]). It reads

�
C1(x), C2(y)

 
=
⇥
C(00)

12 , C1(x)
⇤
�
xy

, (2.30)

where C(00)
12 2 g(0) ⌦ g(0) is the split Casimir of g(0). In fact, this bracket also contains in general

a non-ultralocal term �
⇣P

N

r=1 `r,0
⌘
C(00)

12 �0
xy

: as we supposed in Equation (2.11) that the levels `
r,0

sum to zero, this term vanishes. In particular, this shows that the Poisson bracket of the constraint
with itself weakly vanishes: �

C1(x), C2(y)
 
⇡ 0. (2.31)

Thus, the constraint C(x) ⇡ 0 is first-class (see for instance [13, 14]). This justifies a posteriori the
name of first-class condition for the assumption (2.11) that we made: indeed, without this assumption,
the bracket of the constraint would contain a non-ultralocal term which would not vanish weakly and
the constraint would then not be first-class.

Total Hamiltonian and Lagrange multiplier. In the beginning of this subsection, we defined
the naive Hamiltonian H through Equation (2.24). As we are considering models subject to the
constraint C(x) ⇡ 0, we have to define the total Hamiltonian of the system as the sum of the naive
Hamiltonian and a generic term proportional to the constraint, so that it coincides weakly with the
naive Hamiltonian. It thus takes the form

H
T

= H+

ˆ
D
dx 

�
µ(x), C(x)

�
, (2.32)
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1 Construction of the models in the Hamiltonian formulation

The models we are interested in are defined on a reduced phase space, obtained from canonical fields
on T ⇤GN by imposing

Lagrangian multiplier
N G-valued fields g1(x), · · · , g

N

(x)
N g-valued fields X1(x), · · · , X

N

(x)
Dihedrality condition � � ⌧ = ⌧ � �
⌧ : gC ! gC is an antilinear involutive automorphism,
defined such that the real form g is the subalgebra of fixed points of ⌧
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12 satisfies the classical Yang-Baxter equation
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1 Construction of the models in the Hamiltonian formulation

�
✏

O =

⇢Z

D

dx 
�
✏(x, t), C(x)

�
,O

�
=

Z

D

dx 
�
✏(x, t), {C(x),O}

�
. (1.1)

The models we are interested in are defined on a reduced phase space, obtained from canonical
fields on T ⇤GN by imposing

Lagrangian multiplier
N G-valued fields g1(x), · · · , gN (x)
N g-valued fields X1(x), · · · , XN

(x)
Dihedrality condition � � ⌧ = ⌧ � �
⌧ : gC ! gC is an antilinear involutive automorphism,
defined such that the real form g is the subalgebra of fixed points of ⌧

2) Z2 : z 7! z̄, Z 7! ⌧(Z), Z 2 g
R0

12 satisfies the classical Yang-Baxter equation
Extend the space-time D⇥ R to a 3-dimensional manifold B with boundary @B = D⇥ R

(Ia)
a2{1,...,n} is the dual of this basis with respect to 

Consider fields on D with values in T ⇤G ' G⇥ g 3 (g,X)

g(x), X(x), where x 2 D

1

where µ is a g(0)-valued field, called the Lagrange multiplier. It is a new dynamical field, independent
of the canonical fields on T ⇤GN . As we shall see in the next paragraph, the existence of this Lagrange
multiplier reflects the presence of a gauge symmetry in the model.

The dynamic of the model is defined by the Hamiltonian flow of H
T

, i.e. the time evolution of
any observable O is given by

@
t

O ⇡ {H
T

,O} ⇡ {H,O}+
ˆ
D
dx 

�
µ(x), {C(x),O}

�
. (2.33)

The facts that the naive Hamiltonian Poisson commutes with the constraint (see Equation (2.29)) and
that the constraint is first-class (see Equation (2.31)) ensure that the constraint C(x) ⇡ 0 is conserved
under time evolution:

@
t

C(x) ⇡ 0. (2.34)

Gauge symmetry. It is a standard result that the presence of first-class constraints in Hamiltonian
systems implies the existence of gauge (local) symmetries (see for instance [13, 14]). The infinitesimal
action of this gauge symmetry on the observables of the model is given by the Hamiltonian flow
generated by the constraint. In the case at hand, the constraint satisfies the bracket (2.30), which
is a copy of the Kirillov-Kostant bracket of the Lie algebra g(0) for every point x 2 D. Thus, the
gauge symmetry takes the form of a local action of the group G(0). The corresponding infinitesimal
transformation of an observable O, with gauge parameter ✏(x, t) 2 g(0), is given by

�1
✏

O ⇡
⇢ˆ

D
dx 

�
✏(x, t), C(x)

�
,O

�
⇡
ˆ
D
dx 

�
✏(x, t), {C(x),O}

�
. (2.35)

One can then observe that the terms involving the Lagrange multiplier µ in the total Hamiltonian
(2.32) and the dynamic (2.33) of the model correspond to a gauge transformation and thus account
for the freedom of performing such a transformation in the time evolution of the system.

Let us study in more details the action of the gauge symmetry on the canonical fields on T ⇤GN .
For that, recall the expression (2.26) of the constraint C(x) in terms of the Kac-Moody current J

r,[0].
It is clear from the definition (2.13a) of the latter and the Poisson brackets (2.3), (2.4) and (2.8a) that

�
C1(x), gr2(y)

 
= g

r2(x)C
(00)
12 �

xy

. (2.36)

Thus, using Equation (2.35), one finds that the infinitesimal gauge transformation of the field g
r

(x)
is given by:

�1
✏

g
r

(x) = g
r

(x)✏(x, t). (2.37)

Similarly, one can determine the gauge transformation of the fields X
r

. It is in fact more convenient
to consider the gauge transformation of the field Y

r

= X
r

+ `
r,0Wr

/2, which reads

�1
✏

Y
r

(x) = [Y
r

(x), ✏(x, t)] +
`
r,0

2
@
x

✏(x, t). (2.38)

The transformations (2.37) and (2.38) are infinitesimal actions with local parameter ✏(x, t) valued in
g(0). They can be lifted to an action of the group G(0), depending on a local parameter h(x, t) in G(0),
which takes the form:

g
r

7�! g
r

h and Y
r

7�! h�1Y
r

h+
`
r,0

2
h�1@

x

h. (2.39)
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The models we are interested in are defined on a reduced phase space, obtained from canonical
fields on T ⇤GN by imposing

Lagrangian multiplier
N G-valued fields g1(x), · · · , gN (x)
N g-valued fields X1(x), · · · , XN

(x)
Dihedrality condition � � ⌧ = ⌧ � �
⌧ : gC ! gC is an antilinear involutive automorphism,
defined such that the real form g is the subalgebra of fixed points of ⌧

2) Z2 : z 7! z̄, Z 7! ⌧(Z), Z 2 g
R0

12 satisfies the classical Yang-Baxter equation
Extend the space-time D⇥ R to a 3-dimensional manifold B with boundary @B = D⇥ R

(Ia)
a2{1,...,n} is the dual of this basis with respect to 

1

where µ is a g(0)-valued field, called the Lagrange multiplier. It is a new dynamical field, independent
of the canonical fields on T ⇤GN . As we shall see in the next paragraph, the existence of this Lagrange
multiplier reflects the presence of a gauge symmetry in the model.

The dynamic of the model is defined by the Hamiltonian flow of H
T

, i.e. the time evolution of
any observable O is given by

@
t

O ⇡ {H
T

,O} ⇡ {H,O}+
ˆ
D
dx 

�
µ(x), {C(x),O}

�
. (2.33)

The facts that the naive Hamiltonian Poisson commutes with the constraint (see Equation (2.29)) and
that the constraint is first-class (see Equation (2.31)) ensure that the constraint C(x) ⇡ 0 is conserved
under time evolution:

@
t

C(x) ⇡ 0. (2.34)

Gauge symmetry. It is a standard result that the presence of first-class constraints in Hamiltonian
systems implies the existence of gauge (local) symmetries (see for instance [13, 14]). The infinitesimal
action of this gauge symmetry on the observables of the model is given by the Hamiltonian flow
generated by the constraint. In the case at hand, the constraint satisfies the bracket (2.30), which
is a copy of the Kirillov-Kostant bracket of the Lie algebra g(0) for every point x 2 D. Thus, the
gauge symmetry takes the form of a local action of the group G(0). The corresponding infinitesimal
transformation of an observable O, with gauge parameter ✏(x, t) 2 g(0), is given by

�1
✏

O ⇡
⇢ˆ

D
dx 

�
✏(x, t), C(x)
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ˆ
D
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✏(x, t), {C(x),O}

�
. (2.35)

One can then observe that the terms involving the Lagrange multiplier µ in the total Hamiltonian
(2.32) and the dynamic (2.33) of the model correspond to a gauge transformation and thus account
for the freedom of performing such a transformation in the time evolution of the system.

Let us study in more details the action of the gauge symmetry on the canonical fields on T ⇤GN .
For that, recall the expression (2.26) of the constraint C(x) in terms of the Kac-Moody current J

r,[0].
It is clear from the definition (2.13a) of the latter and the Poisson brackets (2.3), (2.4) and (2.8a) that

�
C1(x), gr2(y)

 
= g

r2(x)C
(00)
12 �

xy

. (2.36)

Thus, using Equation (2.35), one finds that the infinitesimal gauge transformation of the field g
r

(x)
is given by:

�1
✏

g
r

(x) = g
r

(x)✏(x, t). (2.37)

Similarly, one can determine the gauge transformation of the fields X
r

. It is in fact more convenient
to consider the gauge transformation of the field Y

r

= X
r

+ `
r,0Wr

/2, which reads

�1
✏

Y
r

(x) = [Y
r

(x), ✏(x, t)] +
`
r,0

2
@
x

✏(x, t). (2.38)

The transformations (2.37) and (2.38) are infinitesimal actions with local parameter ✏(x, t) valued in
g(0). They can be lifted to an action of the group G(0), depending on a local parameter h(x, t) in G(0),
which takes the form:

g
r

7�! g
r

h and Y
r

7�! h�1Y
r

h+
`
r,0

2
h�1@

x

h. (2.39)
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Hamiltonian formulation

Lax	connection	and	Maillet	bracket

Relativistic invariance. Let us introduce the two-dimensional Minkowski metric ⌘
µ⌫

, defined by
⌘00 = �⌘11 = 1 and ⌘01 = ⌘10 = 0, and the tensor T

µ⌫

= ⌘
µ⇢

T ⇢

⇢⌫

obtained by lowering one of the index
of the energy-momentum tensor. From Equations (2.52) and (2.55), we get

T01 = q0 + 2
2N�2X

i=1

q
i

+ q1 and T10 = ✏20 q0 + 2
2N�2X

i=1

✏2
i

q
i

+ ✏21 q1. (2.56)

It is a standard result of field theory that the model is invariant under Lorentz symmetries (preserving
the metric ⌘

µ⌫

) if the tensor T
µ⌫

is symmetric and thus if T01 = T10. It is clear from the above equation
that this is the case if and only if the coe�cients ✏

i

all square to 1, i.e.

✏
i

= ±1, 8 i 2 {0, · · · , 2N � 2,1}. (2.57)

This gives a particularly simple condition ensuring the relativistic invariance of the model3.

2.5 Integrability

Lax matrix. Following [1], we define the Lax matrix of the model as the following gC-valued field:

L(z, x) = �(z, x)

'(z)
. (2.58)

To give an explicit description of this Lax matrix, let us determine its partial fraction decomposition.
As �(z) and '(z) have the same poles (at the points z

i

and �z
i

), of the same order, L(z) has poles
at the zeroes of the twist function '(z), i.e. at z = 0, z = ±⇣

i

for i 2 {1, · · · , 2N � 1} and z = 1.
One easily checks that the residues of L(z) at z = 0 and ⇣

i

are respectively equal to �(0)/'0(0) and
�(⇣

i

)/'0(⇣
i

). Moreover, using the equivariance properties (2.18), one finds that the residue of L(z) at
z = �⇣

i

is equal to �(�⇣
i

)/'0(�⇣
i

) = ��
�
�(⇣

i

)
�
/'0(⇣

i

). This fixes the non-polynomial part of the
partial fraction decomposition of L(z). To determine the polynomial part, let us study the behaviour
of L(z) around z = 1. The asymptotic expansion of the Gaudin Lax matrix �(z, x) around infinity
reads

�

✓
1

u
, x

◆
= u C(x)� u2B(x)� u3B1(x) +O(u4) ⇡ �u2B(x)� u3B1(x) +O(u4), (2.59)

where B(x) and B1(x) are the following g-valued currents:

B(x) = �
NX

r=1

⇣
z
r

J (1)
r,[0] + J (1)

r,[1]

⌘
, (2.60a)

B1(x) = �
NX

r=1

z
r

⇣
z
r

J (0)
r,[0] + 2J (0)

r,[1]

⌘
. (2.60b)

Moreover, using the expression (2.21) of the twist function, we get

1

'(1/u)
=

1

u3

✓
1

2K
+O(u2)

◆
. (2.61)

3Let us briefly discuss the converse of this result. In general, the su�cient and necessary condition for relativistic
invariance of the model is that the energy-momentum tensor is symmetric up to a total derivative. In the present case,
this is equivalent to T01 � T10 = 2(1 � ✏20)q0 +

P2N�2
i=1 (1 � ✏2i )qi + 2(1 � ✏21)q1 being a total derivative. From the

definition of the densities qi, there is no apparent choice of ✏i’s which would make this combination a total derivative,
expect for taking all coe�cients 1� ✏2i equal to 0. Thus, we expect the condition (2.57) to also be a necessary condition
for the relativistic invariance of the model.
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1 Construction of the models in the Hamiltonian formulation

Define
The constraint C(x) = 0 eliminates the corresponding superfluous conjugate momentum fields

The “physical” coordinate fields of the model are fields on the quotient GN/G(0)
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Lagrangian model is defined on GN/G(0)
diag

with symmetry G(0)
diag, gauge

Initial phase space

P = T ⇤GN

P
r

=
n

T ⇤GN , C(x) = 0
o

.

G(0)
diag, gauge

The gauge symmetry acts on (g1, · · · , g
N

) 2 GN by right translation of the diagonal subgroup

G(0)
diag =

�

(h, · · · , h), h 2 G(0)
 

.

P
r

= T ⇤(GN/G(0)
diag)

1

Using the asymptotic expansions (2.59) and (2.61), one can then express the O(u�1) and O(u0)-terms
in the expansion of L(1/u) around u = 0, which correspond to the linear and constant terms in the
polynomial part of the partial fraction decomposition of L(z). In the end, we then get

L(z, x) ⇡ 1

'0(0)

�(0, x)

z
+

2N�2X

i=1

1X

k=0

1

'0(⇣
i

)

(�1)k�k

�
�(⇣

i

, x)
�

z � (�1)k⇣
i

� B1(x)

2K
� B(x)

2K
z. (2.62)

Lax connection and zero curvature equation. Together with another gC-valued field M(z, x),
L(z, x) forms the Lax connection of the model, i.e. the equations of motion of the model can be recast
as the zero curvature equation

@
t

L(z, x)� @
x

M(z, x) + [M(z, x),L(z, x)] = 0. (2.63)

This was proven for general a�ne Gaudin models in [1]. Let us briefly re-derive it in the present
case and show the explicit expression of M(z, x). For that, we have to study the dynamic of the Lax
matrix L(z), which is induced by the Hamiltonian flow (2.33) of the total Hamiltonian H

T

. From the
Poisson bracket (2.15), one finds that the Poisson bracket of the charge Q(w) (defined in Equation
(2.22)) with the Lax matrix L(z, x) is given by

�
Q(w),L(z, x)

 
=
⇥
L(z, x),M(w ; z, x)

⇤
+ @

x

M(w ; z, x)� @
x

✓
1

'(z)
2

⇣
R0

21(w, z),�2(w, x)
⌘◆

,

(2.64)
where we defined

M(w ; z, x) = � 1

'(w)
2

⇣
R0

12(z, w),�2(w, x)
⌘
. (2.65)

Let us note that the Hamiltonian flow (2.64) induced by Q(w) on L(z, x) almost takes the form of a
zero curvature equation, up to the last term. To deduce the Hamiltonian flow induced by the charges
Q

i

, i 2 {0, · · · , 2N � 2,1}, defining the Hamiltonian, one has to take residues of the bracket (2.64)
at w = ⇣

i

, where for uniformity we introduce the notation ⇣0 = 0 and ⇣1 = 1. Let us note that
R21(w, z) and �(w, x) are regular at w = ⇣

i

if ⇣
i

is finite, i.e. if i 2 {0, 1, · · · , 2N � 2}: thus, in this
case, the last term in the bracket (2.64) does not possess a residue at w = ⇣

i

. A similar statement
holds for the residue at infinity: �(1/u, x) and R21(1/u, z) are both of order O(u) around u = 0, so
that the last term in the bracket (2.64) for w = 1/u is of order O(u2) and thus defines a regular 1-form
at w = 1. We then get that the Hamiltonian flow of Q

i

, i 2 {0, · · · , 2N � 2,1}, on L(z, x) takes the
form of a zero curvature equation:

{Q
i

,L(z, x)}� @
x

M
i

(z, x) +
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M

i

(z, x),L(z, x)
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= 0, with M

i

(z, x) = res
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M(w; z, x)dw.
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i
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�
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i

.

From the equivariance property (2.18), one finds that �
�
�(0, x)

�
= ��(0, x). Thus, we get in particular

that M0(z, x) = �(0)/z'0(0). To compute M1(z, x), we use the asymptotic expansions (2.59) and
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R0
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✓
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1

u

◆
= uC(00)

12 + u2z C(11)
12 +O(u3). (2.66)
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After a short computation, we get:
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2K

. (2.67)

To complete the derivation of the temporal part M(z, x) of the Lax connection, we finally need to
compute the contribution of the Lagrange multiplier µ to the dynamics of L(z, x). From the Poisson
bracket (2.15), the definition (2.25) of the constraint and the expansion (2.66) we get
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�
xy
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xy
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x

µ(x).

Combining all the results above, we find that the dynamics of L(z, x) follows the zero curvature
equation (2.63), for M(z, x) given by
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2K

z + µ(x). (2.69)

Maillet bracket and integrability. Since the equations of motion of the model take the form of a
zero curvature equation, one can extract an infinite number of conserved charges from the monodromy
of the Lax matrix L(z, x). The integrability of the model is a consequence of the fact that these
charges are in involution. In order to show this, one starts from the bracket of the Lax matrix. In our
case it is simply computed from the Poisson bracket (2.15) of the Gaudin Lax matrix with itself and
reads:

{L1(z, x),L2(w, y)} = [R12(z, w),L1(z, x)]�xy � [R21(w, z),L2(w, x)]�xy

� (R12(z, w) +R21(w, z))�
0
xy

, (2.70)

where R12(z, w) = R0
12(z, w)'(w)

�1 and R0 is the twisted standard R-matrix (2.16). The bracket
(2.70) is an example of a Maillet non-ultralocal bracket [15, 16]. It satisfies the Jacobi identity due to
the fact that the R-matrix is a solution of the classical Yang-Baxter equation:

[R12(z1, z2),R13(z1, z3)] + [R12(z1, z2),R23(z2, z3)] + [R32(z3, z2),R13(z1, z3)] = 0,

which is a consequence of the fact that R0 is also a solution (see Equation (2.17)). It is a standard
result that the Maillet bracket implies the involution of the charges extracted from the monodromy of
the Lax matrix L(z, x).

Integrable local hierarchies. Let us consider the charges Q
i

, i 2 {0, · · · , 2N � 2,1} defined in
Equation (2.23). For i 6= 1, a direct computation shows that

Q
i

= � 1

2'0(⇣
i

)

ˆ
D
dx 

�
�(⇣

i

, x),�(⇣
i

, x)
�
. (2.71)

Similarly, one shows that the charge Q1 admits the following weak expression:

Q1 ⇡ � 1

2�0(0)

ˆ
D
dx 

�
B(x),B(x)

�
. (2.72)
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Relativistic invariance. Let us introduce the two-dimensional Minkowski metric ⌘
µ⌫

, defined by
⌘00 = �⌘11 = 1 and ⌘01 = ⌘10 = 0, and the tensor T

µ⌫

= ⌘
µ⇢

T ⇢

⇢⌫

obtained by lowering one of the index
of the energy-momentum tensor. From Equations (2.52) and (2.55), we get

T01 = q0 + 2
2N�2X

i=1

q
i

+ q1 and T10 = ✏20 q0 + 2
2N�2X

i=1

✏2
i

q
i

+ ✏21 q1. (2.56)

It is a standard result of field theory that the model is invariant under Lorentz symmetries (preserving
the metric ⌘

µ⌫

) if the tensor T
µ⌫

is symmetric and thus if T01 = T10. It is clear from the above equation
that this is the case if and only if the coe�cients ✏

i

all square to 1, i.e.

✏
i

= ±1, 8 i 2 {0, · · · , 2N � 2,1}. (2.57)

This gives a particularly simple condition ensuring the relativistic invariance of the model3.

2.5 Integrability

Lax matrix. Following [1], we define the Lax matrix of the model as the following gC-valued field:

L(z, x) = �(z, x)

'(z)
. (2.58)

To give an explicit description of this Lax matrix, let us determine its partial fraction decomposition.
As �(z) and '(z) have the same poles (at the points z

i

and �z
i

), of the same order, L(z) has poles
at the zeroes of the twist function '(z), i.e. at z = 0, z = ±⇣

i

for i 2 {1, · · · , 2N � 1} and z = 1.
One easily checks that the residues of L(z) at z = 0 and ⇣

i

are respectively equal to �(0)/'0(0) and
�(⇣

i

)/'0(⇣
i

). Moreover, using the equivariance properties (2.18), one finds that the residue of L(z) at
z = �⇣

i

is equal to �(�⇣
i

)/'0(�⇣
i

) = ��
�
�(⇣

i

)
�
/'0(⇣

i

). This fixes the non-polynomial part of the
partial fraction decomposition of L(z). To determine the polynomial part, let us study the behaviour
of L(z) around z = 1. The asymptotic expansion of the Gaudin Lax matrix �(z, x) around infinity
reads

�

✓
1

u
, x

◆
= u C(x)� u2B(x)� u3B1(x) +O(u4) ⇡ �u2B(x)� u3B1(x) +O(u4), (2.59)

where B(x) and B1(x) are the following g-valued currents:

B(x) = �
NX

r=1

⇣
z
r

J (1)
r,[0] + J (1)

r,[1]

⌘
, (2.60a)

B1(x) = �
NX

r=1

z
r

⇣
z
r

J (0)
r,[0] + 2J (0)

r,[1]

⌘
. (2.60b)

Moreover, using the expression (2.21) of the twist function, we get

1

'(1/u)
=

1

u3

✓
1

2K
+O(u2)

◆
. (2.61)

3Let us briefly discuss the converse of this result. In general, the su�cient and necessary condition for relativistic
invariance of the model is that the energy-momentum tensor is symmetric up to a total derivative. In the present case,
this is equivalent to T01 � T10 = 2(1 � ✏20)q0 +

P2N�2
i=1 (1 � ✏2i )qi + 2(1 � ✏21)q1 being a total derivative. From the

definition of the densities qi, there is no apparent choice of ✏i’s which would make this combination a total derivative,
expect for taking all coe�cients 1� ✏2i equal to 0. Thus, we expect the condition (2.57) to also be a necessary condition
for the relativistic invariance of the model.
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After a short computation, we get:

M1(z, x) ⇡ �B1(x) + z B(x)
2K

. (2.67)

To complete the derivation of the temporal part M(z, x) of the Lax connection, we finally need to
compute the contribution of the Lagrange multiplier µ to the dynamics of L(z, x). From the Poisson
bracket (2.15), the definition (2.25) of the constraint and the expansion (2.66) we get

�
C2(y),L1(z, x)

 
= �

⇥
C(00)

12 ,L1(z, x)
⇤
�
xy

+ C(00)
12 �0

xy

. (2.68)

Thus, ˆ
D
dy 2

�
µ2(y), {C2(y),L1(z, x)}

�
= �

⇥
µ(x),L(z, x)

⇤
+ @

x

µ(x).

Combining all the results above, we find that the dynamics of L(z, x) follows the zero curvature
equation (2.63), for M(z, x) given by

M(z, x) ⇡ ✏0
'0(0)

�(0, x)

z
+

2N�2X

i=1

1X

k=0

✏
i

'0(⇣
i

)

(�1)k�k

�
�(⇣

i

, x)
�

z � (�1)k⇣
i

� ✏1
B1(x)

2K
� ✏1

B(x)
2K

z + µ(x). (2.69)

Maillet bracket and integrability. Since the equations of motion of the model take the form of a
zero curvature equation, one can extract an infinite number of conserved charges from the monodromy
of the Lax matrix L(z, x). The integrability of the model is a consequence of the fact that these
charges are in involution. In order to show this, one starts from the bracket of the Lax matrix. In our
case it is simply computed from the Poisson bracket (2.15) of the Gaudin Lax matrix with itself and
reads:

{L1(z, x),L2(w, y)} = [R12(z, w),L1(z, x)]�xy � [R21(w, z),L2(w, x)]�xy

� (R12(z, w) +R21(w, z))�
0
xy

, (2.70)

where R12(z, w) = R0
12(z, w)'(w)

�1 and R0 is the twisted standard R-matrix (2.16). The bracket
(2.70) is an example of a Maillet non-ultralocal bracket [15, 16]. It satisfies the Jacobi identity due to
the fact that the R-matrix is a solution of the classical Yang-Baxter equation:

[R12(z1, z2),R13(z1, z3)] + [R12(z1, z2),R23(z2, z3)] + [R32(z3, z2),R13(z1, z3)] = 0,

which is a consequence of the fact that R0 is also a solution (see Equation (2.17)). It is a standard
result that the Maillet bracket implies the involution of the charges extracted from the monodromy of
the Lax matrix L(z, x).

Integrable local hierarchies. Let us consider the charges Q
i

, i 2 {0, · · · , 2N � 2,1} defined in
Equation (2.23). For i 6= 1, a direct computation shows that

Q
i

= � 1

2'0(⇣
i

)

ˆ
D
dx 

�
�(⇣

i

, x),�(⇣
i

, x)
�
. (2.71)

Similarly, one shows that the charge Q1 admits the following weak expression:

Q1 ⇡ � 1

2�0(0)

ˆ
D
dx 

�
B(x),B(x)

�
. (2.72)
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1 Construction of the models in the Hamiltonian formulation

G⇥G
.

G(0)
diag

The model depends on 3N � 2 continuous free parameters

• the positions z2, · · · , z
N

of the sites (fixing z1 = 1) ;

• the constant term K in the twist function;

• the zeroes ⇣1, · · · , ⇣2N�2 of the twist function and the corresponding coe�cients ✏
i

2 {+1,�1} ;

• the coe�cients ✏0 and ✏1 in {+1,�1}.

The Hamiltonian of the model involves the zeroes {0,1, ⇣1, · · · , ⇣2N�2} of the twist function
The constraint C(x) = 0 eliminates the corresponding superfluous conjugate momentum fields

The “physical” coordinate fields of the model are fields on the quotient GN/G(0)
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diag
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1 Construction of the models in the Hamiltonian formulation

✏0 = �1, ✏1 = �1, ✏2 = +1, ✏1 = +1. Motivated by this choice and for future convenience, we will
rename ⇣1 as ⇣� and ⇣2 as ⇣+.

G⇥G
.

G(0)
diag

The model depends on 3N � 2 continuous free parameters

• the positions z2, · · · , z
N

of the sites (fixing z1 = 1) ;

• the constant term K in the twist function;

• the zeroes ⇣1, · · · , ⇣2N�2 of the twist function and the corresponding coe�cients ✏
i

2 {+1,�1} ;

• the coe�cients ✏0 and ✏1 in {+1,�1}.

The Hamiltonian of the model involves the zeroes {0,1, ⇣1, · · · , ⇣2N�2} of the twist function
The constraint C(x) = 0 eliminates the corresponding superfluous conjugate momentum fields

The “physical” coordinate fields of the model are fields on the quotient GN/G(0)
diag

Lagrangian model is defined on GN/G(0)
diag

with symmetry G(0)
diag, gauge

1

3.2 Action of the model

Inverse Legendre transform. Using the definition of X
r

in terms of the canonical fields (see for
instance [3] for more details), one shows that the action of the model is given by the following inverse
Legendre transform7:

S[g1, g2] =
2X

r=1

¨
dx dt  (X

r

, j0,r)�
ˆ

dt H.

In terms of the fields Y
r

introduced in the previous subsection, we can rewrite the above equation as

S[g1, g2] =
2X

r=1

¨
dx dt  (Y

r

, j0,r)�
ˆ

dt H�
2X

r=1

`
r,0

2
IWZ

⇥
g
r

⇤
,

where the Wess-Zumino terms of g
r

have now appeared, using Equation (2.7). To obtain the explicit
expression of the action, we now have to replace the Hamiltonian fields Y

r

by their Lagrangian expres-
sion, given by equations (3.4) and (3.5), including in the Hamiltonian H, using its expression (3.1).
Let us introduce the light-cone components of the Maurer-Cartan currents j±,r

= g�1
r

@±gr = j0,r±j
r

.
After some manipulations, one finds

S[g1, g2] =
2X

r,s=1

¨
dx dt

⇣
⇢(0)
rs


⇣
j(0)+,r

, j(0)�,s

⌘
+ ⇢(1)

rs


⇣
j(1)+,r

, j(1)�,s

⌘⌘
+ k IWZ

⇥
g1
⇤
� k IWZ

⇥
g2
⇤
. (3.6)

In terms of the defining parameters of the model K, x, ⇣+ and ⇣�, the coe�cients corresponding to
the grading zero in this action are given by

⇢(0)11 = ⇢(0)22 =
K

2

⇣2� � ⇣2+
(1� x2)2

, ⇢(0)12 = K

�
1� ⇣2+

� �
x2 � ⇣2�

�

(1� x2)3
, ⇢(0)21 = �K

�
1� ⇣2�

� �
x2 � ⇣2+

�

(1� x2)3
,

(3.7a)
while the ones corresponding to the grading one are

⇢(1)11 =
K

2

�
1� 2⇣2+ + ⇣2�⇣

2
+

�

(1� x2)2
, ⇢(1)12 = K

x
�
1� ⇣2+

� �
x2 � ⇣2�

�

(1� x2)3
,

⇢(1)21 = �K

�
1� ⇣2�

� �
x2 � ⇣2+

�

x (1� x2)3
, ⇢(1)22 =

K

2

�
x4 � 2⇣2+x

2 + ⇣2�⇣
2
+

�

x2 (1� x2)2
. (3.7b)

Finally, the Wess-Zumino coe�cient k is defined as k = �`1,0/2 = `2,0/2 and explicitly reads

k = K
2x2 + 2⇣2�⇣

2
+ � (1 + x2)(⇣2� + ⇣2+)

(1� x2)3
. (3.7c)

Gauge symmetry. Let us check explicitly that the action (3.6) is invariant under the gauge trans-
formation g

r

(x, t) 7! g
r

(x, t)h(x, t) with h(x, t) 2 G(0), as expected from the Hamiltonian construction.
Under this transformation, the Wess-Zumino terms change according to the Polyakov-Wiegmann for-
mula [21]:

IWZ

⇥
g
r

h
⇤
= IWZ

⇥
g
r

⇤
+ IWZ

⇥
h
⇤
� 1

2

¨
dx dt

h

⇣
j(0)+,r

, (@�h)h
�1

⌘
� 

⇣
j(0)�,r

, (@+h)h
�1

⌘i
.

7As we are now working in the Lagrangian formulation, in which the constraint always holds, we drop the distinction
between weak and strong equalities. In particular, one can use the naive Hamiltonian (and not the total one) to compute
the inverse Legendre transform.
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1 Construction of the models in the Hamiltonian formulation

The passage to the Lagrangian formulation is done by means of the inverse Legendre transform
✏0 = �1, ✏1 = �1, ✏2 = +1, ✏1 = +1. Motivated by this choice and for future convenience, we will

rename ⇣1 as ⇣� and ⇣2 as ⇣+.
G⇥G

.

G(0)
diag

The model depends on 3N � 2 continuous free parameters

• the positions z2, · · · , z
N

of the sites (fixing z1 = 1) ;

• the constant term K in the twist function;

• the zeroes ⇣1, · · · , ⇣2N�2 of the twist function and the corresponding coe�cients ✏
i

2 {+1,�1} ;

• the coe�cients ✏0 and ✏1 in {+1,�1}.

The Hamiltonian of the model involves the zeroes {0,1, ⇣1, · · · , ⇣2N�2} of the twist function
The constraint C(x) = 0 eliminates the corresponding superfluous conjugate momentum fields

The “physical” coordinate fields of the model are fields on the quotient GN/G(0)
diag

Lagrangian model is defined on GN/G(0)
diag

1

where j = g�1@
x

g as above. As expected, this coincides with the Hamiltonian of the symmetric space
�-model on G/G(0), formulated as a model on G with a G(0) gauge symmetry. In the present case,
the constraint associated with this gauge symmetry simply reads X(0) ⇡ 0.

3 Lagrangian formulation of the models with two copies

The Lagrangian formulation of the models we are concerned with in this article consists of field theories
with fundamental fields g

r

(x, t), r 2 {1, · · · , N}, taking values in G. We will obtain these Lagrangian
theories by performing an inverse Legendre transform of the models constructed in section 2 in the
Hamiltonian formulation. In order to make the computation of the inverse Legendre transform more
explicit, we will restrict to the case of two copies, i.e. we will fix N = 2.

Before that, let us briefly describe, as a simple illustration, the model with only one copy. The
model is described in its Lagrangian formulation by a unique G-valued field g(x, t). Performing the
inverse Legendre transform of the Hamiltonian (2.77), one finds that its action takes the form:

S
N=1[g] =

K

2

¨
D⇥R

dx dt 
�
j(1)+ , j(1)�

�
,

where j± = g�1@±g. As expected, this is the action of the standard symmetric space �-model on
G/G(0) in its gauged formulation. One easily checks that this action is invariant under the gauge
transformation g(x, t) 7! g(x, t)h(x, t) for h(x, t) 2 G(0).

Let us return to the models with N = 2. Before proceeding to the computation of the inverse
Legendre transform, let us describe the parameters of these models. From the discussion in subsection
2.6, they depend on four continuous parameters: the position z2 of the second site (having fixed the
position of the first site to z1 = 1), the global factor in the twist function K, and the zeroes ⇣1 and
⇣2. In the following we will rename z2 = x to avoid unnecessary indices, although we will sometimes
use the notation z1 and z2 so that some formulae assume a more compact form. In addition to
these continuous parameters, the models are characterised by the choice of four discrete coe�cients
(✏0, ✏1, ✏2, ✏1) in {�1,+1}. We will fix these coe�cients to the values6 ✏0 = �1, ✏1 = �1, ✏2 = +1 and
✏1 = +1. Motivated by this choice and for future convenience, we will rename ⇣1 as ⇣� and ⇣2 as ⇣+.

3.1 Lagrangian expression of the momentum fields

In order to perform the inverse Legendre transform of the models, we first need to express their
momentum fields, encoded in the fields X

r

introduced in the previous section, in terms of the time
derivatives of the coordinate fields g

r

, encoded in the temporal Maurer-Cartan current j0,r = g�1
r

@
t

g
r

.
For that, let us calculate the dynamics of the fields g

r

, given by the Poisson bracket of g
r

with
the total Hamiltonian introduced in subsection 2.3. We start by seeking a more explicit expression of
the naive Hamiltonian (2.24) in terms of the fields j

r

and

Y
r

= X
r

+
`
r,0

2
W

r

,

which we introduce for future convenience. After a few manipulations, one rewrites it in the form

H =
2X

r,s=1

1X

k=0

a(k)
rs

ˆ
D
dx 

⇣
j(k)
r

, j(k)
s

⌘
+ b(k)

rs

ˆ
D
dx 

⇣
Y (k)
r

, j(k)
s

⌘
+ c(k)

rs

ˆ
D
dx 

⇣
Y (k)
r

, Y (k)
s

⌘
, (3.1)

6Other choices would give either equivalent models, up to a redefinition of the parameters, or models for which the
inverse Legendre transform is singular and thus which do not possess a Lagrangian formulation.
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where j = g�1@
x

g as above. As expected, this coincides with the Hamiltonian of the symmetric space
�-model on G/G(0), formulated as a model on G with a G(0) gauge symmetry. In the present case,
the constraint associated with this gauge symmetry simply reads X(0) ⇡ 0.

3 Lagrangian formulation of the models with two copies

The Lagrangian formulation of the models we are concerned with in this article consists of field theories
with fundamental fields g

r

(x, t), r 2 {1, · · · , N}, taking values in G. We will obtain these Lagrangian
theories by performing an inverse Legendre transform of the models constructed in section 2 in the
Hamiltonian formulation. In order to make the computation of the inverse Legendre transform more
explicit, we will restrict to the case of two copies, i.e. we will fix N = 2.

Before that, let us briefly describe, as a simple illustration, the model with only one copy. The
model is described in its Lagrangian formulation by a unique G-valued field g(x, t). Performing the
inverse Legendre transform of the Hamiltonian (2.77), one finds that its action takes the form:

S
N=1[g] =

K

2

¨
D⇥R

dx dt 
�
j(1)+ , j(1)�

�
,

where j± = g�1@±g. As expected, this is the action of the standard symmetric space �-model on
G/G(0) in its gauged formulation. One easily checks that this action is invariant under the gauge
transformation g(x, t) 7! g(x, t)h(x, t) for h(x, t) 2 G(0).

Let us return to the models with N = 2. Before proceeding to the computation of the inverse
Legendre transform, let us describe the parameters of these models. From the discussion in subsection
2.6, they depend on four continuous parameters: the position z2 of the second site (having fixed the
position of the first site to z1 = 1), the global factor in the twist function K, and the zeroes ⇣1 and
⇣2. In the following we will rename z2 = x to avoid unnecessary indices, although we will sometimes
use the notation z1 and z2 so that some formulae assume a more compact form. In addition to
these continuous parameters, the models are characterised by the choice of four discrete coe�cients
(✏0, ✏1, ✏2, ✏1) in {�1,+1}. We will fix these coe�cients to the values6 ✏0 = �1, ✏1 = �1, ✏2 = +1 and
✏1 = +1. Motivated by this choice and for future convenience, we will rename ⇣1 as ⇣� and ⇣2 as ⇣+.

3.1 Lagrangian expression of the momentum fields

In order to perform the inverse Legendre transform of the models, we first need to express their
momentum fields, encoded in the fields X

r

introduced in the previous section, in terms of the time
derivatives of the coordinate fields g

r

, encoded in the temporal Maurer-Cartan current j0,r = g�1
r

@
t

g
r

.
For that, let us calculate the dynamics of the fields g

r

, given by the Poisson bracket of g
r

with
the total Hamiltonian introduced in subsection 2.3. We start by seeking a more explicit expression of
the naive Hamiltonian (2.24) in terms of the fields j

r

and

Y
r

= X
r

+
`
r,0

2
W

r

,

which we introduce for future convenience. After a few manipulations, one rewrites it in the form

H =
2X

r,s=1

1X

k=0

a(k)
rs

ˆ
D
dx 

⇣
j(k)
r

, j(k)
s

⌘
+ b(k)

rs

ˆ
D
dx 

⇣
Y (k)
r

, j(k)
s

⌘
+ c(k)

rs

ˆ
D
dx 

⇣
Y (k)
r

, Y (k)
s

⌘
, (3.1)

6Other choices would give either equivalent models, up to a redefinition of the parameters, or models for which the
inverse Legendre transform is singular and thus which do not possess a Lagrangian formulation.
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3.2 Action of the model

Inverse Legendre transform. Using the definition of X
r

in terms of the canonical fields (see for
instance [3] for more details), one shows that the action of the model is given by the following inverse
Legendre transform7:

S[g1, g2] =
2X

r=1

¨
dx dt  (X

r

, j0,r)�
ˆ

dt H.

In terms of the fields Y
r

introduced in the previous subsection, we can rewrite the above equation as

S[g1, g2] =
2X

r=1

¨
dx dt  (Y

r

, j0,r)�
ˆ

dt H�
2X

r=1

`
r,0

2
IWZ

⇥
g
r

⇤
,

where the Wess-Zumino terms of g
r

have now appeared, using Equation (2.7). To obtain the explicit
expression of the action, we now have to replace the Hamiltonian fields Y

r

by their Lagrangian expres-
sion, given by equations (3.4) and (3.5), including in the Hamiltonian H, using its expression (3.1).
Let us introduce the light-cone components of the Maurer-Cartan currents j±,r

= g�1
r

@±gr = j0,r±j
r

.
After some manipulations, one finds

S[g1, g2] =
2X

r,s=1

¨
dx dt

⇣
⇢(0)
rs


⇣
j(0)+,r

, j(0)�,s

⌘
+ ⇢(1)

rs


⇣
j(1)+,r

, j(1)�,s

⌘⌘
+ k IWZ

⇥
g1
⇤
� k IWZ

⇥
g2
⇤
. (3.6)

In terms of the defining parameters of the model K, x, ⇣+ and ⇣�, the coe�cients corresponding to
the grading zero in this action are given by

⇢(0)11 = ⇢(0)22 =
K

2

⇣2� � ⇣2+
(1� x2)2

, ⇢(0)12 = K

�
1� ⇣2+

� �
x2 � ⇣2�

�

(1� x2)3
, ⇢(0)21 = �K

�
1� ⇣2�

� �
x2 � ⇣2+

�

(1� x2)3
,

(3.7a)
while the ones corresponding to the grading one are

⇢(1)11 =
K

2

�
1� 2⇣2+ + ⇣2�⇣

2
+

�

(1� x2)2
, ⇢(1)12 = K

x
�
1� ⇣2+

� �
x2 � ⇣2�

�

(1� x2)3
,

⇢(1)21 = �K

�
1� ⇣2�

� �
x2 � ⇣2+

�

x (1� x2)3
, ⇢(1)22 =

K

2

�
x4 � 2⇣2+x

2 + ⇣2�⇣
2
+

�

x2 (1� x2)2
. (3.7b)

Finally, the Wess-Zumino coe�cient k is defined as k = �`1,0/2 = `2,0/2 and explicitly reads

k = K
2x2 + 2⇣2�⇣

2
+ � (1 + x2)(⇣2� + ⇣2+)

(1� x2)3
. (3.7c)

Gauge symmetry. Let us check explicitly that the action (3.6) is invariant under the gauge trans-
formation g

r

(x, t) 7! g
r

(x, t)h(x, t) with h(x, t) 2 G(0), as expected from the Hamiltonian construction.
Under this transformation, the Wess-Zumino terms change according to the Polyakov-Wiegmann for-
mula [21]:

IWZ

⇥
g
r

h
⇤
= IWZ

⇥
g
r

⇤
+ IWZ

⇥
h
⇤
� 1

2

¨
dx dt

h

⇣
j(0)+,r

, (@�h)h
�1

⌘
� 

⇣
j(0)�,r

, (@+h)h
�1

⌘i
.

7As we are now working in the Lagrangian formulation, in which the constraint always holds, we drop the distinction
between weak and strong equalities. In particular, one can use the naive Hamiltonian (and not the total one) to compute
the inverse Legendre transform.
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3.2 Action of the model

Inverse Legendre transform. Using the definition of X
r

in terms of the canonical fields (see for
instance [3] for more details), one shows that the action of the model is given by the following inverse
Legendre transform7:
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where the Wess-Zumino terms of g
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have now appeared, using Equation (2.7). To obtain the explicit
expression of the action, we now have to replace the Hamiltonian fields Y
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by their Lagrangian expres-
sion, given by equations (3.4) and (3.5), including in the Hamiltonian H, using its expression (3.1).
Let us introduce the light-cone components of the Maurer-Cartan currents j±,r
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In terms of the defining parameters of the model K, x, ⇣+ and ⇣�, the coe�cients corresponding to
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Finally, the Wess-Zumino coe�cient k is defined as k = �`1,0/2 = `2,0/2 and explicitly reads
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Gauge symmetry. Let us check explicitly that the action (3.6) is invariant under the gauge trans-
formation g

r

(x, t) 7! g
r

(x, t)h(x, t) with h(x, t) 2 G(0), as expected from the Hamiltonian construction.
Under this transformation, the Wess-Zumino terms change according to the Polyakov-Wiegmann for-
mula [21]:
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7As we are now working in the Lagrangian formulation, in which the constraint always holds, we drop the distinction
between weak and strong equalities. In particular, one can use the naive Hamiltonian (and not the total one) to compute
the inverse Legendre transform.
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7As we are now working in the Lagrangian formulation, in which the constraint always holds, we drop the distinction
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between weak and strong equalities. In particular, one can use the naive Hamiltonian (and not the total one) to compute
the inverse Legendre transform.

– 24 –

Polyakov & Wiegmann

The action has the gauge symmetry

3.2 Action of the model

Inverse Legendre transform. Using the definition of X
r

in terms of the canonical fields (see for
instance [3] for more details), one shows that the action of the model is given by the following inverse
Legendre transform7:

S[g1, g2] =
2X

r=1

¨
dx dt  (X

r

, j0,r)�
ˆ

dt H.

In terms of the fields Y
r

introduced in the previous subsection, we can rewrite the above equation as

S[g1, g2] =
2X

r=1

¨
dx dt  (Y

r

, j0,r)�
ˆ

dt H�
2X

r=1

`
r,0

2
IWZ

⇥
g
r

⇤
,

where the Wess-Zumino terms of g
r

have now appeared, using Equation (2.7). To obtain the explicit
expression of the action, we now have to replace the Hamiltonian fields Y

r

by their Lagrangian expres-
sion, given by equations (3.4) and (3.5), including in the Hamiltonian H, using its expression (3.1).
Let us introduce the light-cone components of the Maurer-Cartan currents j±,r

= g�1
r

@±gr = j0,r±j
r

.
After some manipulations, one finds

S[g1, g2] =
2X

r,s=1

¨
dx dt

⇣
⇢(0)
rs


⇣
j(0)+,r

, j(0)�,s

⌘
+ ⇢(1)

rs


⇣
j(1)+,r

, j(1)�,s

⌘⌘
+ k IWZ

⇥
g1
⇤
� k IWZ

⇥
g2
⇤
. (3.6)

In terms of the defining parameters of the model K, x, ⇣+ and ⇣�, the coe�cients corresponding to
the grading zero in this action are given by

⇢(0)11 = ⇢(0)22 =
K

2

⇣2� � ⇣2+
(1� x2)2

, ⇢(0)12 = K

�
1� ⇣2+

� �
x2 � ⇣2�

�

(1� x2)3
, ⇢(0)21 = �K

�
1� ⇣2�

� �
x2 � ⇣2+

�

(1� x2)3
,

(3.7a)
while the ones corresponding to the grading one are

⇢(1)11 =
K

2

�
1� 2⇣2+ + ⇣2�⇣

2
+

�

(1� x2)2
, ⇢(1)12 = K

x
�
1� ⇣2+

� �
x2 � ⇣2�

�

(1� x2)3
,

⇢(1)21 = �K

�
1� ⇣2�

� �
x2 � ⇣2+

�

x (1� x2)3
, ⇢(1)22 =

K

2

�
x4 � 2⇣2+x

2 + ⇣2�⇣
2
+

�

x2 (1� x2)2
. (3.7b)

Finally, the Wess-Zumino coe�cient k is defined as k = �`1,0/2 = `2,0/2 and explicitly reads

k = K
2x2 + 2⇣2�⇣

2
+ � (1 + x2)(⇣2� + ⇣2+)

(1� x2)3
. (3.7c)

Gauge symmetry. Let us check explicitly that the action (3.6) is invariant under the gauge trans-
formation g

r

(x, t) 7! g
r

(x, t)h(x, t) with h(x, t) 2 G(0), as expected from the Hamiltonian construction.
Under this transformation, the Wess-Zumino terms change according to the Polyakov-Wiegmann for-
mula [21]:

IWZ

⇥
g
r

h
⇤
= IWZ

⇥
g
r

⇤
+ IWZ

⇥
h
⇤
� 1

2

¨
dx dt

h

⇣
j(0)+,r

, (@�h)h
�1

⌘
� 

⇣
j(0)�,r

, (@+h)h
�1

⌘i
.

7As we are now working in the Lagrangian formulation, in which the constraint always holds, we drop the distinction
between weak and strong equalities. In particular, one can use the naive Hamiltonian (and not the total one) to compute
the inverse Legendre transform.

– 24 –

Altogether, the solution for the grading zero is given by:
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⇣

c(0)
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� c(0)
r̄r̄

⌘⌘

j(0)
s

!

. (2.4)

For the grading one, one has the following equations:

j(1)0,r ⇡
2
X

s=1

b(1)
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j(1)
s

+ 2c(1)
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Y (1)
s

.

If we rename the components of the inverse matrix of (c(1))
rs

= c(1)
rs

as c̄(1)
rs

= (c(1))�1
rs

, the solution then reads:

Y (1)
r

⇡ 1

2

2
X
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c̄(1)
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j(1)0,s �
2
X
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b(1)
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j(1)
t

!

. (2.5)

2.2 Action of the model

Inverse Legendre transform. Using the definition of X
r

in terms of the canonical fields (see for instance
[2] for more details), one shows that the action of the model is given by the following inverse Legendre transform7:

S[g1, g2] =
2
X

r=1

ZZ

dx dt  (X
r

, j0,r)�
Z

dt H.

In terms of the fields Y
r

introduced in the previous subsection, we can rewrite the above equation as

S[g1, g2] =
2
X

r=1

ZZ

dx dt  (Y
r

, j0,r)�
Z

dt H�
2
X

r=1

`
r,0

2
IWZ

⇥

g
r

⇤

,

where the Wess-Zumino terms of g
r

have now appeared, using Equation (1.11). To obtain the explicit expression
of the action, we now have to replace the Hamiltonian fields Y

r

by their Lagrangian expression, given by
equations (2.4) and (2.5), including in the Hamiltonian H, using its expression (2.1). Let us introduce the
light-cone components of the Maurer-Cartan currents j±,r

= g�1
r

@±gr = j0,r ± j
r

. After some manipulations,
one finds

S[g1, g2] =
2
X
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dx dt
⇣

⇢(0)
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
⇣

j(0)+,r

, j(0)�,s

⌘

+ ⇢(1)
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
⇣

j(1)+,r

, j(1)�,s

⌘⌘

+ k IWZ

⇥

g1
⇤

� k IWZ

⇥

g2
⇤

. (2.6)

In terms of the defining parameters of the model K, x, ⇣+ and ⇣�, the coe�cients corresponding to the grading
zero in this action are given by

⇢(0)11 = ⇢(0)22 =
K

2

⇣2� � ⇣2+
(1� x2)2

, ⇢(0)12 = K

�

1� ⇣2+
� �

x2 � ⇣2�
�

(1� x2)3
, ⇢(0)21 = �K

�

1� ⇣2�
� �

x2 � ⇣2+
�

(1� x2)3
, (2.7a)

while the ones corresponding to the grading one are

⇢(1)11 =
K

2

�

1� 2⇣2+ + ⇣2�⇣
2
+

�

(1� x2)2
, ⇢(1)12 = K

x
�

1� ⇣2+
� �

x2 � ⇣2�
�

(1� x2)3
,

⇢(1)21 = �K

�

1� ⇣2�
� �
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�

x (1� x2)3
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K

2

�

x4 � 2⇣2+x
2 + ⇣2�⇣

2
+

�

x2 (1� x2)2
. (2.7b)

Finally, the Wess-Zumino coe�cient k is defined as k = �`1,0/2 = `2,0/2 and explicitly reads

k = K
2x2 + 2⇣2�⇣

2
+ � (1 + x2)(⇣2� + ⇣2+)

(1� x2)3
. (2.7c)

7As we are now working in the Lagrangian formulation, in which the constraint always holds, we drop the distinction
between weak and strong equalities. In particular, one can use the naive Hamiltonian (and not the total one) to compute
the inverse Legendre transform.
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Lagrangian formulation

Reformulation		

Moreover, the light-cone components of the Maurer-Cartan currents transform as:
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�
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+ (@±h)h
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�
h,

j(1)±,r

7! h�1j(1)±,r

h.

In an action of the form (3.6) with general coe�cients ⇢(k)
rs

, it is then clear that the terms of grading
one are invariant under this gauge transformation. The variation of the action thus only contains terms
in the grading zero, coming from the variation of the factors 
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�
and of the Wess-Zumino

terms. Computing explicitly this variation, one finds that gauge invariance is verified if and only if
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2

= ⇢(0)11 + ⇢(0)21 +
k
2

= 0. (3.8)

The above relations are indeed all identically satisfied for the choice of coe�cients (3.7).

Global symmetries. Let us briefly discuss the global symmetries of the model (3.6), which are
given by the left (G⇥G)-translations on g1 and g2:

(g1, g2) 7�! (f1g1, f2g2), (f1, f2) 2 G⇥G. (3.9)

Indeed, these translations leave the Maurer-Cartan currents j±,r

= g�1
r

@±gr invariant and also preserve
the Wess-Zumino terms IWZ

⇥
g
r

⇤
. Thus, they define global symmetries of the action (3.6). Making use

of Equation (3.8), the conserved Noether currents associated to these symmetries read
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These currents satisfy the conservation equation @+K�,r

+@�K+,r

= 0. Let us also note that they are

gauge-invariant under the G(0)
diag gauge symmetry g

r

(x, t) 7! g
r

(x, t)h(x, t) of the model.

Reformulation of the action. As detailed in Appendix B, the coe�cients ⇢(k)
rs

and k
r

defined in
Equation (3.7) can be re-expressed as residues of well-chosen functions (for the non-dihedral �-models
on GN defined in [2, 3], a similar result was pointed out in [9]). This allows us to reformulate the
action (3.6) in the following remarkably simple way:

S =
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¨
dx dt

2X

r,s=1

res
w=zs

res
z=zr

12

⇣
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where R0
12 is the R-matrix (2.16) underlying the integrable structure of the model, SWZW,k[g] is the

Wess-Zumino-Witten action
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k
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�
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(3.11)

and '±(z) are functions defined as

'+(z) =
z2 � ⇣2+

(z2 � z21)(z
2 � z22)

and '�(z) =
z(z2 � ⇣2�)

(z2 � z21)(z
2 � z22)

. (3.12)
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1 Construction of the models in the Hamiltonian formulation

where
3N � 2 = 3⇥ 2� 2 = 4 parameters z2 ⌘ x, ⇣+ ⌘ ⇣1, ⇣� ⌘ ⇣2 and K

j0,r = g�1
r

{H
T

, g
r

} =
2

X

s=1

1
X

k=0

b(k)
rs

j(k)
s

+ 2c(k)
rs

Y (k)
s

+ µ

Y (0)
1 + Y (0)

2 = �`1,0
2

j(0)1 � `2,0
2

j(0)2 .

Y1 = Y (0)
1 + Y (1)

1

Y2 = Y (0)
2 + Y (1)

2
are solved in terms of j0,r = g�1@

t

g and j
r

= g�1@
x

g
The passage to the Lagrangian formulation is done by means of the inverse Legendre transform
✏0 = �1, ✏1 = �1, ✏2 = +1, ✏1 = +1. Motivated by this choice and for future convenience, we will

rename ⇣1 as ⇣� and ⇣2 as ⇣+.
G⇥G

.

G(0)
diag

The model depends on 3N � 2 continuous free parameters

1

Moreover, the light-cone components of the Maurer-Cartan currents transform as:

j(0)±,r

7! h�1
�
j(0)±,r

+ (@±h)h
�1

�
h,

j(1)±,r

7! h�1j(1)±,r

h.

In an action of the form (3.6) with general coe�cients ⇢(k)
rs

, it is then clear that the terms of grading
one are invariant under this gauge transformation. The variation of the action thus only contains terms
in the grading zero, coming from the variation of the factors 

�
j(0)+,r

, j(0)�,s

�
and of the Wess-Zumino

terms. Computing explicitly this variation, one finds that gauge invariance is verified if and only if
the following conditions are satisfied:

⇢(0)11 + ⇢(0)12 � k
2

= ⇢(0)12 + ⇢(0)22 � k
2

= ⇢(0)21 + ⇢(0)22 +
k
2

= ⇢(0)11 + ⇢(0)21 +
k
2

= 0. (3.8)

The above relations are indeed all identically satisfied for the choice of coe�cients (3.7).

Global symmetries. Let us briefly discuss the global symmetries of the model (3.6), which are
given by the left (G⇥G)-translations on g1 and g2:

(g1, g2) 7�! (f1g1, f2g2), (f1, f2) 2 G⇥G. (3.9)

Indeed, these translations leave the Maurer-Cartan currents j±,r

= g�1
r

@±gr invariant and also preserve
the Wess-Zumino terms IWZ

⇥
g
r

⇤
. Thus, they define global symmetries of the action (3.6). Making use

of Equation (3.8), the conserved Noether currents associated to these symmetries read

K+,r

=
2X

s=1

g
r

⇣
⇢(0)
sr

�
1� �

sr

�
j(0)+,s

+
�
⇢(1)
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� ⇢(0)
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�
sr

�
j(1)+,s

⌘
g�1
r

,

K�,r

=
2X
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g
r

⇣
⇢(0)
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�
1� �
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�
j(0)�,s

+
�
⇢(1)
rs

� ⇢(0)
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�
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�
j(1)�,s

⌘
g�1
r

.

These currents satisfy the conservation equation @+K�,r

+@�K+,r

= 0. Let us also note that they are

gauge-invariant under the G(0)
diag gauge symmetry g

r

(x, t) 7! g
r

(x, t)h(x, t) of the model.

Reformulation of the action. As detailed in Appendix B, the coe�cients ⇢(k)
rs

and k
r

defined in
Equation (3.7) can be re-expressed as residues of well-chosen functions (for the non-dihedral �-models
on GN defined in [2, 3], a similar result was pointed out in [9]). This allows us to reformulate the
action (3.6) in the following remarkably simple way:

S =
2X

r=1

SWZW,kr [gr]� 4K

¨
dx dt

2X

r,s=1

res
w=zs

res
z=zr

12

⇣
R0

12(w, z)'+(z)'�(w), j+,r1 j�,s2

⌘
,

where R0
12 is the R-matrix (2.16) underlying the integrable structure of the model, SWZW,k[g] is the

Wess-Zumino-Witten action

SWZW,k[g] =
k
2

¨
dx dt 

�
g�1@+g, g

�1@�g
�
+ k IWZ

⇥
g
⇤

(3.11)

and '±(z) are functions defined as

'+(z) =
z2 � ⇣2+

(z2 � z21)(z
2 � z22)

and '�(z) =
z(z2 � ⇣2�)

(z2 � z21)(z
2 � z22)

. (3.12)
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1 Construction of the models in the Hamiltonian formulation
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1

In particular, note that the reformulation (3.14) of the action does not involve an explicit sum over
the grading index k = 0, 1 as in the original expression (3.6). As explained in the appendix B, this
graded structure, and thus the choice of automorphism �, is accounted for in the R-matrix R0

12.

Conjectured generalisations. Having derived Equation (3.14), it is natural to formulate conjec-
tures about generalisations of the models considered here. For instance, we expect a similar expression
to hold for the models on GN/G(0)

diag with arbitrary N constructed in the Hamiltonian formalism in

section 2. More generally, we conjecture that it also holds for models on GN/G(0)
diag with arbitrary

N and where the subalgebra g(0) is the grading zero subspace of a Z

T

-gradation with arbitrary T ,
generalising the case T = 2 considered here.

Let us be more precise about this conjecture. For N = 1, the model on the Z

T

-coset G/G(0) for
arbitrary T was constructed in [22] and was identified with a realisation of D2T -dihedral a�ne Gaudin
model in [1], based on the Hamiltonian analysis carried out in [23]. Although the generalisations of
this �-model on cosets GN/G(0)

diag with arbitrary N have not been considered before in the literature,
we expect the procedure of section 2 to readily generalise to the construction of such models, using a
D2T -dihedral a�ne Gaudin model [1] instead of a D4-dihedral model. In this case, the twist function
of the model would read8

'(z) = KT
zT�1

Q2N�2
i=1 (zT � ⇣T

i

)
Q

N

r=1(z
T � zT

r

)2
, (3.13)

in terms of its zeroes ⇣1, · · · , ⇣2N�2 and poles z1, · · · , zN . One can then factorise this twist function9

as '(z) = TK'+(z)'�(z), similarly to Equation (B.1) for T = 2, with

'+(z) =

Q2N�2
i=N

�
zT � ⇣T

i

�
Q

N

r=1 (z
T � zT

r

)
and '�(z) =

zT�1
Q

N�1
i=1

�
zT � ⇣T

i

�
Q

N

r=1 (z
T � zT

r

)
.

We then conjecture that the action of the model is given by

S =
NX

r=1

SWZW,kr [gr]�
KT 3

2

¨
dx dt

NX

r,s=1

res
w=zs

res
z=zr

12

⇣
R0

12(w, z)'+(z)'�(w), j+,r1 j�,s2

⌘
, (3.14)

where k
r

= �T

2 res
z=zr '(z)dz and R0 now denotes the Z

T

-graded R-matrix which underlies the
integrable structure of D2T -dihedral a�ne Gaudin models [1], namely

R0
12(w, z) =

T�1X

k=0

wkzT�1�k

zT � wT

⇡(k)
1 C12,

with ⇡(k), k 2 {0, · · · , T � 1}, the projections along the grading g =
L

T�1
k=0 g(k).

As mentioned above, for N = 1 and arbitrary T , the corresponding integrable model on the Z

T

-
coset G/G(0) has been constructed in [22]: we have checked that the action of this model can indeed
be reformulated as in (3.14). Moreover, for the case of arbitrary N and T = 1, the results of [9] show
that the action of the model is also given by (3.14), with R0

12(z, w) the standard non-twisted R-matrix
C12/(w� z). Finally, we have checked this conjecture by direct computation for all cases with N  3
and T  3.

8The equivariance condition (2.18) is then replaced by '(!z) = !�1'(z), where ! = exp(2i⇡/T ).
9As for the case T = 2 treated in section 2, we expect such a separation of the zeroes of '(z) in two sets

{0, ⇣1, · · · , ⇣N�1} and {⇣N , · · · , ⇣2N�2,1} to come naturally from the relativistic invariance of the model, which requires
the coe�cients ✏i, i 2 {0, 1, · · · , 2N � 2,1}, in the Hamiltonian of the model to be equal to either �1 or +1.
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