New Integrable Coset Sigma Models

Gleb Arutyunov
II. Institute for Theoretical Physics
Hamburg University

Recent Advances on Mathematical Physics Armenian-Georgian mini-workshop, 5.12.2020

Affine Gaudin models

Many classical integrable field theories can be viewed as specific realizations of dihedral affine Gaudin models associated to an untwisted affine Kac-Moody algebra supplied with an action of the dihedral group

Vicedo, 2017

Examples

- Principle Chiral Model
- Deformations of the Principle Chiral Model
- Affine Toda field theories

Idea: Use affine Gaudin models to construct new integrable field theories

Ountutinne

- New coset integrable sigma models - Lagrangian
- Integrable sigma models on $T^{1,1}$

Derivation

- Canonical fields on $T^{*} G$
- Affine Gaudin models and their realization
- Lagrangian formulation

Future directions
with Cristian Bassi \& Sylvain Lacroix, 2010.05573 [hep-th]

Results

G is a real semi-simple Lie group, \mathfrak{g} is the Lie algebra
κ is a non-degenerate ad-invariant bilinear form on \mathfrak{g}, opposite of the Killing form
σ is an automorphism of order T of G and $G^{(0)} \subset G$ is a subgroup of fixed points

$$
\mathfrak{g}=\oplus_{k=0}^{T-1} \mathfrak{g}^{(k)}, \quad \mathfrak{g}^{(k)}=\pi^{(k)} \mathfrak{g}
$$

Classical r-matrix

$$
\mathcal{R}_{\underline{\mathbf{1 2}}}^{0}(w, z)=\sum_{k=0}^{T-1} \frac{w^{k} z^{T-1-k}}{z^{T}-w^{T}} \pi_{\underline{\mathbf{1}}}^{(k)} C_{\underline{\mathbf{1 2}}}
$$

Coset space

$$
G^{N} / G_{\text {diag }}^{(0)}=\overbrace{G \times G \times \ldots \times G}^{N} / G_{\text {diag }}^{(0)}
$$

The coset is formed by acting on $\left(g_{1}, \cdots, g_{N}\right) \in G^{N}$ by right translation of the diagonal subgroup

$$
G_{\mathrm{diag}}^{(0)}=\left\{(h, \cdots, h), h \in G^{(0)}\right\}
$$

$$
S=\sum_{r=1}^{N} S_{\mathrm{WZW}, \ell_{r}}\left[g_{r}\right]-\frac{K T^{3}}{2} \iint \mathrm{~d} x \mathrm{~d} t \sum_{r, s=1}^{N} \operatorname{res}_{w=z_{s}} \operatorname{res}_{z=z_{r}} \underline{\kappa_{\underline{\mathbf{1 2}}}}\left(\mathcal{R}_{\underline{\mathbf{1 2}}}^{0}(w, z) \varphi_{+}(z) \varphi_{-}(w), j_{+, r \underline{\mathbf{1}}} j_{-, s \underline{\mathbf{2}}}\right)
$$

Wess - Zumino action $\quad S_{\mathrm{WZW}, \kappa}[g]=\frac{\hbar}{2} \iint \mathrm{~d} x \mathrm{~d} t \kappa\left(g^{-1} \partial_{+} g, g^{-1} \partial_{-} g\right)+\kappa I_{\mathrm{WZ}}[g]$

Currents $\quad j_{ \pm, r}(x)=g_{r}^{-1}(x) \partial_{ \pm} g_{r}(x) \quad r=1, \ldots, N$

Functions containing parameters

$$
\begin{gathered}
\varphi_{+}(z)=\frac{\prod_{i=N}^{2 N-2}\left(z^{T}-\zeta_{i}^{T}\right)}{\prod_{r=1}^{N}\left(z^{T}-z_{r}^{T}\right)} \quad \text { and } \quad \varphi_{-}(z)=\frac{z^{T-1} \prod_{i=1}^{N-1}\left(z^{T}-\zeta_{i}^{T}\right)}{\prod_{r=1}^{N}\left(z^{T}-z_{r}^{T}\right)} \\
\varphi(z)=T K \varphi_{+}(z) \varphi_{-}(z) \longleftarrow \text { twist function } \\
\kappa_{r}=-\frac{T}{2} \operatorname{res}_{z=z_{r}} \varphi(z) \mathrm{d} z
\end{gathered}
$$

The model depends on $3 N-2$ continuous free parameters ($2 N-2 \zeta^{\prime} s, N-1 z^{\prime} s$ and K)

For $N=1$ one gets the well-known gauge sigma model on $G / G^{(0)}$ with the Wess-Zumino term
$N=2$

$$
\begin{aligned}
& z_{2}=\frac{1}{\alpha}, \quad K=\frac{\lambda_{2}^{2}}{\alpha^{2}}, \quad \zeta_{+}=\frac{\lambda_{1}}{\lambda}, \quad \zeta_{-}=\frac{\lambda}{\lambda_{2} \alpha}, \quad \alpha \rightarrow 0 \quad \lambda_{1}, \lambda_{2} \text { and } \lambda \text { fixed } \\
& S\left[g_{1}, g_{2}\right]=\iint \mathrm{d} x \mathrm{~d} t \sum_{r=1}^{2}\left(\frac{\lambda^{2}}{2} \kappa\left(j_{+, r}^{(0)}, j_{-, r}^{(0)}\right)+\frac{\lambda_{r}^{2}}{2} \kappa\left(j_{+, r}^{(1)}, j_{-, r}^{(1)}\right)\right)-\lambda^{2} \kappa\left(j_{+, 2}^{(0)}, j_{-, 1}^{(0)}\right) \\
& +\lambda^{2} I_{\mathrm{WZ}}\left[g_{1}\right]-\lambda^{2} I_{\mathrm{WZ}}\left[g_{2}\right] .
\end{aligned}
$$

Define $U=g_{1}$ and $V=g_{2}^{-1}$, and use $I_{\mathrm{WZ}}\left[g^{-1}\right]=-I_{\mathrm{WZ}}[g]$
In the case $\lambda_{1}=\lambda_{2}=\lambda$ the action can be rewritten as

$$
S[U, V]=S_{\mathrm{WZW}, \lambda^{2}}[U]+S_{\mathrm{WZW}, \lambda^{2}}[V]+\lambda^{2} \iint \mathrm{~d} x \mathrm{~d} t \kappa\left(\left(\partial_{+} V V^{-1}\right)^{(0)},\left(U^{-1} \partial_{-} U\right)^{(0)}\right)
$$

Guadagnini - Martellini - Mintchev model (GMM)

$$
\begin{array}{ll}
\partial_{+} \mathcal{L}_{-}(z)-\partial_{-} \mathcal{L}_{+}(z)+\left[\mathcal{L}_{+}(z), \mathcal{L}_{-}(z)\right]=0, & \mathcal{L}_{+}(z)=j_{+, 2}^{(0)}, \quad \mathcal{L}_{-}(z)=j_{-, 1}^{(0)}+\frac{j_{-, 1}^{(1)}}{z}, \\
\partial_{+} \tilde{\mathcal{L}}_{-}(z)-\partial_{-} \tilde{\mathcal{L}}_{+}(z)+\left[\tilde{\mathcal{L}}_{+}(z), \tilde{\mathcal{L}}_{-}(z)\right]=0 & \tilde{\mathcal{L}}_{+}(z)=j_{+, 2}^{(0)}+z j_{+, 2}^{(1)}, \quad \tilde{\mathcal{L}}_{-}(z)=j_{-, 1}^{(0)} .
\end{array} \leftarrow \text { Lax connection }
$$

$G=S U(2)$ with $\mathfrak{g}=\mathfrak{s u}(2)$ generated by $I_{a}=i \sigma_{a} / 2$, where σ_{a} is the a-th Pauli matrix

$$
\begin{gathered}
\sigma: \quad \sigma\left(I_{1}\right)=-I_{1}, \sigma\left(I_{2}\right)=-I_{2} \text { and } \sigma\left(I_{3}\right)=I_{3} \\
\mathfrak{g}^{(0)}=\mathfrak{u}(1)=\operatorname{span}\left\{I_{3}\right\} \\
G^{(0)}=U(1)=\exp \left(\mathbb{R} I_{3}\right)
\end{gathered}
$$

Pick the following parametrisation for the fields $\left(g_{1}, g_{2}\right) \in S U(2) \times S U(2)$

$$
\begin{aligned}
& g_{1}=\exp \left(\phi_{1} I_{3}\right) \exp \left(\theta_{1} I_{2}\right) \exp \left(\psi I_{3}\right) \\
& g_{2}=\exp \left(-\phi_{2} I_{3}\right) \exp \left(-\theta_{2} I_{2}\right) \exp \left(-\tilde{\psi} I_{3}\right)
\end{aligned}
$$

Action

$$
\begin{aligned}
S=\frac{1}{4} \int & \int \mathrm{~d} x \mathrm{~d} t\left(\left(\lambda^{2}+\lambda_{1}^{2}+\left(\lambda^{2}-\lambda_{1}^{2}\right) \cos \left(2 \theta_{1}\right)\right) \partial_{-} \phi_{1} \partial_{+} \phi_{1}+2 \lambda_{1}^{2} \partial_{-} \theta_{1} \partial_{+} \theta_{1}+2 \lambda^{2} \partial_{-} \psi \partial_{+} \psi+4 \lambda^{2} \partial_{-} \phi_{1} \partial_{+} \psi \cos \theta_{1}\right. \\
& +\left(\lambda^{2}+\lambda_{2}^{2}+\left(\lambda^{2}-\lambda_{2}^{2}\right) \cos \left(2 \theta_{2}\right)\right) \partial_{-} \phi_{2} \partial_{+} \phi_{2}+2 \lambda_{2}^{2} \partial_{-} \theta_{2} \partial_{+} \theta_{2}+2 \lambda^{2} \partial_{-} \tilde{\psi} \partial_{+} \tilde{\psi}+4 \lambda^{2} \partial_{-} \tilde{\psi} \partial_{+} \phi_{2} \cos \theta_{2} \\
& \left.+4 \lambda^{2}\left(\cos \theta_{1} \partial_{-} \phi_{1}+\partial_{-} \psi\right)\left(\cos \theta_{2} \partial_{+} \phi_{2}+\partial_{+} \tilde{\psi}\right)\right)
\end{aligned}
$$

Gauge symmetry

$$
g_{r} \mapsto g_{r} h, h \in U(1) \quad \Rightarrow \quad(\psi, \tilde{\psi}) \mapsto(\psi+\eta, \tilde{\psi}-\eta) \quad \Rightarrow \quad \text { set } \tilde{\psi}=0
$$

$$
S=\frac{1}{2} \iint \mathrm{~d} x \mathrm{~d} t\left(G_{i j}+B_{i j}\right) \partial_{-} y^{i} \partial_{+} y^{j}
$$

Topologically $\quad S U(2) \times S U(2) / U(1)$

$$
\left.\begin{array}{c}
d s^{2}=G_{i j} \mathrm{~d} y^{i} \mathrm{~d} y^{j}=\lambda_{1}^{2}\left(\mathrm{~d} \theta_{1}^{2}+\sin ^{2} \theta_{1} \mathrm{~d} \phi_{1}^{2}\right)+\lambda_{2}^{2}\left(\mathrm{~d} \theta_{2}^{2}+\sin ^{2} \theta_{2} \mathrm{~d} \phi_{2}^{2}\right)+\lambda^{2}\left(\mathrm{~d} \psi+\cos \theta_{1} \mathrm{~d} \phi_{1}+\cos \theta_{2} \mathrm{~d} \phi_{2}\right)^{2} . \\
B
\end{array}\right)=\frac{1}{2} B_{i j} \mathrm{~d} y^{i} \wedge \mathrm{~d} y^{j}=\lambda^{2}\left(\cos \theta_{1} \mathrm{~d} \phi_{1}+\mathrm{d} \psi\right) \wedge\left(\cos \theta_{2} \mathrm{~d} \phi_{2}+\mathrm{d} \psi\right) . .
$$

$$
\lambda_{1}^{2}=\lambda_{2}^{2}=3 \lambda^{2} / 2 \leftarrow \text { Einstein manifold }
$$

$$
\lambda_{1}=\lambda_{2}=\lambda \quad \leftarrow \text { conformal GMM model }
$$

Explicit form of the Lax connection in terms of

$$
\begin{gathered}
\left(\theta_{1}, \theta_{2}, \phi_{1}, \phi_{2}, \psi\right) \\
\widehat{\mathcal{L}}_{ \pm}=\widehat{\mathcal{L}}_{ \pm}^{a} I_{a} \quad \widetilde{\mathcal{L}}_{ \pm}=\widetilde{\mathcal{L}}_{ \pm}^{a} I_{a} \\
\partial_{+} \hat{\mathcal{L}}_{-}(z)-\partial_{-} \hat{\mathcal{L}}_{+}(z)+\left[\hat{\mathcal{L}}_{+}(z), \hat{\mathcal{L}}_{-}(z)\right]=0 \\
\partial_{+} \tilde{\mathcal{L}}_{-}(z)-\partial_{-} \tilde{\mathcal{L}}_{+}(z)+\left[\tilde{\mathcal{L}}_{+}(z), \tilde{\mathcal{L}}_{-}(z)\right]=0
\end{gathered}
$$

$$
\begin{gathered}
\widehat{\mathcal{L}}_{+}^{1}=\frac{\left(\lambda^{2}-\lambda_{1}^{2}\right) z}{\lambda^{2} z^{2}-\lambda_{1}^{2}} \sin \theta_{1} \partial_{+} \phi_{1}, \quad \widehat{\mathcal{L}}_{+}^{2}=\frac{\left(\lambda^{2}-\lambda_{1}^{2}\right) z}{\lambda^{2} z^{2}-\lambda_{1}^{2}} \partial_{+} \theta_{1}, \\
\widehat{\mathcal{L}}_{+}^{3}=\frac{1}{\lambda^{2} z^{2}-\lambda_{1}^{2}}\left(\left(\lambda^{2}-\lambda_{1}^{2}\right) \cos \theta_{1} \partial_{+} \phi_{1}-\lambda^{2}\left(z^{2}-1\right)\left(\cos \theta_{2} \partial_{+} \phi_{2}+\partial_{+} \psi\right)\right), \\
\widehat{\mathcal{L}}_{-}^{1}=\frac{\sin \theta_{1} \partial_{-} \phi_{1}}{z}, \quad \widehat{\mathcal{L}}_{-}^{2}=\frac{\partial_{-} \theta_{1}}{z}, \quad \widehat{\mathcal{L}}_{-}^{3}=\cos \theta_{1} \partial_{-} \phi_{1}
\end{gathered}
$$

$$
\begin{gathered}
\widetilde{\mathcal{L}}_{+}^{1}=z \sin \theta_{2} \partial_{+} \phi_{2}, \quad \widetilde{\mathcal{L}}_{+}^{2}=-z \partial_{+} \theta_{2}, \quad \widetilde{\mathcal{L}}_{+}^{3}=-\cos \theta_{2} \partial_{+} \phi_{2}, \\
\widetilde{\mathcal{L}}_{-}^{1}=-\frac{\left(\lambda^{2}-\lambda_{2}^{2}\right) z}{\lambda_{2}^{2} z^{2}-\lambda^{2}} \sin \theta_{2} \partial_{-} \phi_{2}, \quad \widetilde{\mathcal{L}}_{-}^{2}=\frac{\left(\lambda^{2}-\lambda_{2}^{2}\right) z}{\lambda_{2}^{2} z^{2}-\lambda^{2}} \partial_{-} \theta_{2}, \\
\widetilde{\mathcal{L}}_{-}^{3}=\frac{1}{\lambda_{2}^{2} z^{2}-\lambda^{2}}\left(\left(\lambda^{2}-\lambda_{2}^{2}\right) z^{2} \cos \theta_{2} \partial_{-} \phi_{2}+\lambda^{2}\left(z^{2}-1\right)\left(\cos \theta_{1} \partial_{-} \phi_{1}+\partial_{-} \psi\right)\right)
\end{gathered}
$$

```
\(B=k\left(\cos \theta_{1} \mathrm{~d} \phi_{1}+\mathrm{d} \psi\right) \wedge\left(\cos \theta_{2} \mathrm{~d} \phi_{2}+\mathrm{d} \psi\right)\)
    arbitrary
\(k=0\) embeds into \(\mathrm{AdS}_{5} \times \mathrm{T}^{1,1}\)
near-horizon limit of the Klebanov-Witten setup
```


Spinning string ansatz

$$
\theta_{i}=\theta_{i}(x), \quad \phi_{i}=\omega_{i} t+\widetilde{\phi}_{i}(x), \quad \psi=\psi(x)
$$

Evolution equations for non-isometric coordinates

$$
\begin{aligned}
& \ddot{\theta}_{1}=\omega_{1} \sin \theta_{1}\left(\omega_{1}\left(\left(\frac{\lambda^{2}}{\lambda_{1}^{2}}-1\right)+\frac{k^{2}}{\lambda^{2} \lambda_{1}^{2}}\left(\left(1-\frac{\lambda^{2}}{\lambda_{1}^{2}}\right)+\frac{\lambda_{1}^{2}}{\sin ^{4} \theta_{1}}\right)\right) \cos \theta_{1}-\omega_{2} \frac{k^{2}-\lambda^{4}}{\lambda^{2} \lambda_{1}^{2}} \cos \theta_{2}\right), \\
& \ddot{\theta}_{2}=\omega_{2} \sin \theta_{2}\left(\omega_{2}\left(\left(\frac{\lambda^{2}}{\lambda_{2}^{2}}-1\right)+\frac{k^{2}}{\lambda^{2} \lambda_{2}^{2}}\left(\left(1-\frac{\lambda^{2}}{\lambda_{2}^{2}}\right)+\frac{\lambda_{2}^{2}}{\sin ^{4} \theta_{2}}\right)\right) \cos \theta_{2}-\omega_{1} \frac{k^{2}-\lambda^{4}}{\lambda^{2} \lambda_{2}^{2}} \cos \theta_{1}\right) .
\end{aligned}
$$

For $k=\lambda^{2}$ equations separate

Derivation

\mathbb{D} is either the real line \mathbb{R} or the circle S^{1}
Consider fields on \mathbb{D} with values in $T^{*} G \simeq G \times \mathfrak{g}$

$$
g(x), X(x), \quad \text { where } \quad x \in \mathbb{D}
$$

Canonical Poisson bracket

$$
\{\underbrace{g_{i j}}_{\underline{\underline{1}}}(x), \underbrace{\underline{k l}}_{\underline{\underline{2}}}(y)\}
$$

$$
\begin{aligned}
\left\{g_{\underline{\mathbf{1}}}(x), g_{\underline{\mathbf{2}}}(y)\right\} & =0 \\
\left\{X_{\underline{\mathbf{1}}}(x), g_{\underline{\mathbf{2}}}(y)\right\} & =g_{\underline{\mathbf{2}}}(x) C_{\underline{\mathbf{1}}} \delta_{x y} \\
\left\{X_{\underline{\mathbf{1}}}(x), X_{\underline{\mathbf{2}}}(y)\right\} & =\left[C_{\underline{\mathbf{1 2}}}, X_{\underline{\mathbf{1}}}(x)\right] \delta_{x y}
\end{aligned}
$$

$$
\delta_{x y}=\delta(x-y)
$$

$\left(I_{a}\right)_{a \in\{1, \ldots, n\}}$ is a basis of \mathfrak{g}
$\left(I^{a}\right)_{a \in\{1, \ldots, n\}}$ is the dual of this basis with respect to κ

$$
C_{\underline{\mathbf{1 2}}}=I_{a} \otimes I^{a} \in \mathfrak{g} \otimes \mathfrak{g} \Leftarrow \text { split Casimir }
$$

Canonical fields on $T^{*} G \simeq G \times \mathfrak{g}$

Define the following \mathfrak{g}-valued current:

$$
j(x)=g^{-1}(x) \partial_{x} g(x)
$$

It satisfies the Poisson brackets

$$
\begin{aligned}
\left\{g_{\underline{1}}(x), j_{\underline{\mathbf{2}}}(y)\right\} & =0 \\
\left\{j_{\underline{\mathbf{1}}}(x), j_{\underline{\mathbf{g}_{2}}}(y)\right\} & =0 \\
\left\{X_{\underline{1}}(x), j_{\underline{\mathbf{2}}}(y)\right\} & =\left[C_{\underline{\mathbf{1 2}}}, j_{\underline{\mathbf{1}}}(x)\right] \delta_{x y}-C_{\underline{\mathbf{1}}} \delta_{x y}^{\prime}
\end{aligned}
$$

Momentum

$$
\mathcal{P}_{G}=\int_{\mathbb{D}} \mathrm{d} x \kappa(j(x), X(x))
$$

generates the spatial derivatives of the fields g and X

$$
\left\{\mathcal{P}_{G}, g(x)\right\}=\partial_{x} g(x) \quad \text { and } \quad\left\{\mathcal{P}_{G}, X(x)\right\}=\partial_{x} X(x)
$$

Wess-Zumino term and current $W(x)$

Extend the space-time $\mathbb{D} \times \mathbb{R}$ to a 3-dimensional manifold \mathbb{B} with boundary $\partial \mathbb{B}=\mathbb{D} \times \mathbb{R}$

$$
I_{\mathrm{WZ}}[g]=\iint_{\mathbb{D} \times \mathbb{R}} \mathrm{d} x \mathrm{~d} t \kappa\left(W, g^{-1} \partial_{t} g\right)
$$

W is a \mathfrak{g}-valued current depending g and its spatial derivatives

$$
\begin{aligned}
& \left\{g_{\underline{\mathbf{1}}}(x), W_{\underline{\mathbf{2}}}(y)\right\}=0, \quad\left\{j_{\underline{\mathbf{1}}}(x), W_{\underline{\mathbf{2}}}(y)\right\}=0 \\
& \left\{X_{\underline{\mathbf{1}}}(x), W_{\underline{\mathbf{2}}}(y)\right\}+\left\{W_{\underline{\mathbf{1}}}(x), X_{\underline{\mathbf{2}}}(y)\right\}=\left[C_{\underline{\mathbf{1}}}, W_{\underline{\mathbf{1}}}(x)-j_{\underline{\mathbf{1}}}(x)\right] \delta_{x y} \\
& \kappa(j(x), W(x))=0
\end{aligned}
$$

Data

i) N sites at $\left\{z_{1}, \ldots, z_{r}, \ldots z_{N}\right\}, \quad z_{r} \in \mathbb{R}^{*}$
ii) Each site has multiplicity two :
to each site two levels (real numbers) are associated $\ell_{r, 0} \in \mathbb{R}$ and $\ell_{r, 1} \in \mathbb{R}^{*}$

Data are encoded in the twist function

$$
\varphi(z)=\frac{1}{2} \sum_{r=1}^{N} \sum_{p=0}^{1} \sum_{k=0}^{1} \frac{(-1)^{k} \ell_{r, p}}{\left((-1)^{k} z-z_{r}\right)^{p+1}}
$$

The sum over $k \in\{0,1\}$ and the factors $(-1)^{k}$ encodes the $T=2$ dihedrality of the model

Takiff currents and phase space

Two each site one associates two \mathfrak{g}-valued fields $\mathcal{J}_{r,[0]}(x)$ and $\mathcal{J}_{r,[1]}(x)$, called Takiff currents

$$
\begin{aligned}
& \left\{\mathcal{J}_{r,[0] \underline{\mathbf{1}}}(x), \mathcal{J}_{s,[0] \underline{\mathbf{2}}}(y)\right\}=\delta_{r s}\left(\left[C_{\underline{\mathbf{1 2}}}, \mathcal{J}_{r,[0] \underline{\mathbf{1}}}(x)\right] \delta_{x y}-\ell_{r, 0} C_{\underline{\mathbf{1 2}}} \delta_{x y}^{\prime}\right) \\
& \left\{\mathcal{J}_{r,[0] \underline{\mathbf{1}}}(x), \mathcal{J}_{s,[1] \underline{\mathbf{2}}}(y)\right\}=\delta_{r s}\left(\left[C_{\underline{\mathbf{1 2}}}, \mathcal{J}_{r,[1] \underline{\mathbf{1}}}(x)\right] \delta_{x y}-\ell_{r, 1} C_{\underline{\mathbf{1 2}}} \delta_{x y}^{\prime}\right) \\
& \left\{\mathcal{J}_{r,[1] \underline{\mathbf{1}}}(x), \mathcal{J}_{s,[1] \underline{\mathbf{2}}}(y)\right\}=0 .
\end{aligned}
$$

Impose the first-class condition

$$
\sum_{r=1}^{N} \ell_{r, 0}=0
$$

Gaudin Lax matrix

$$
\Gamma(z, x)=\frac{1}{2} \sum_{r=1}^{N} \sum_{p=0}^{1} \sum_{k=0}^{1} \frac{(-1)^{k} \sigma^{k} \mathcal{J}_{r,[p]}(x)}{\left((-1)^{k} z-z_{r}\right)^{p+1}}
$$

$$
\begin{aligned}
&\left\{\Gamma_{\underline{\mathbf{1}}}(z, x), \Gamma_{\underline{\mathbf{2}}}(w, y)\right\}=\left[\mathcal{R}_{\underline{\mathbf{1}}}^{0}(z, w), \Gamma_{\underline{\mathbf{1}}}(z, x)\right] \delta_{x y}- {\left[\mathcal{R}_{\underline{\mathbf{2}} \underline{1}}^{0}(w, z), \Gamma_{\underline{\mathbf{2}}}(w, x)\right] \delta_{x y} } \\
&-\left(\mathcal{R}_{\underline{\mathbf{1 2}}}^{0}(z, w) \varphi(z)+\mathcal{R}_{\underline{\mathbf{2}}}^{0}(w, z) \varphi(w)\right) \delta_{x y}^{\prime} \\
& \mathcal{R}_{\underline{\mathbf{1}}}^{0}(z, w)=\frac{1}{2} \sum_{k=0}^{1} \frac{\sigma_{\underline{\mathbf{1}}}^{k} C_{\underline{\mathbf{1}}}}{w-(-1)^{k} z}
\end{aligned}
$$

$\mathcal{R}_{\underline{\mathbf{1 2}}}^{0}$ satisfies the classical Yang-Baxter equation

$$
\left[\mathcal{R}_{\underline{\mathbf{1 2}}}^{0}\left(z_{1}, z_{2}\right), \mathcal{R}_{\underline{\mathbf{1 3}}}^{0}\left(z_{1}, z_{3}\right)\right]+\left[\mathcal{R}_{\underline{\mathbf{1 2}}}^{0}\left(z_{1}, z_{2}\right), \mathcal{R}_{\underline{\mathbf{2}}}^{0}\left(z_{2}, z_{3}\right)\right]+\left[\mathcal{R}_{\underline{\mathbf{3}}}^{0}\left(z_{3}, z_{2}\right), \mathcal{R}_{\underline{\mathbf{1 3}}}^{0}\left(z_{1}, z_{3}\right)\right]=0
$$

Realization of AGM

$$
\begin{gathered}
T^{*} G^{N}:\left\{\begin{array}{l}
N G \text {-valued fields } g_{1}(x), \cdots, g_{N}(x) \\
N \mathfrak{g} \text {-valued fields } X_{1}(x), \cdots, X_{N}(x)
\end{array}\right. \\
\mathcal{J}_{r,[0]}(x)=X_{r}(x)+\frac{\ell_{r, 0}}{2} j_{r}(x)+\frac{\ell_{r, 0}}{2} W_{r}(x) \\
\mathcal{J}_{r,[1]}(x)=\ell_{r, 1} j_{r}(x)
\end{gathered}
$$

Takiff brackets are satisfied
$\varphi(z) \mathrm{d} z$ has zeroes at zero and infinity and it has $4 N$ poles
By Riemann-Hurwitz \#zeros - \#poles $=2 g-2=-2 \longrightarrow$ \#zeros $=4 N-2=\underbrace{4(N-1)}_{\left\{\zeta_{i},-\zeta_{i}\right\}, \quad i=1, \ldots, 2 N-2}+2$

$$
\varphi(z)=2 K \frac{z \prod_{i=1}^{2 N-2}\left(z^{2}-\zeta_{i}^{2}\right)}{\prod_{r=1}^{N}\left(z^{2}-z_{r}^{2}\right)^{2}} \quad K=\frac{1}{2} \sum_{r=1}^{N} z_{r}\left(z_{r} \ell_{r, 0}+2 \ell_{r, 1}\right)
$$

$$
\mathcal{Q}(z)=-\frac{1}{2 \varphi(z)} \int_{\mathbb{D}} \mathrm{d} x \kappa(\Gamma(z, x), \Gamma(z, x)) \quad \leftarrow \quad \text { quadratic in currents }
$$

Naive Hamiltonian

$$
\mathcal{H}=\epsilon_{0} \mathcal{Q}_{0}+2 \sum_{i=1}^{2 N-2} \epsilon_{i} \mathcal{Q}_{i}+\epsilon_{\infty} \mathcal{Q}_{\infty}
$$

\leftarrow real
$\epsilon_{i}, \epsilon_{\infty}=\{ \pm 1\} \longrightarrow$ relativistic invariance

Constraint

$$
\begin{gathered}
\mathcal{C}(x)=-\operatorname{res}_{z=\infty} \Gamma(z, x) \mathrm{d} z=\lim _{u \rightarrow 0} \frac{1}{u} \Gamma\left(\frac{1}{u}, x\right) \\
\mathcal{C}(x)=\sum_{r=1}^{N} \mathcal{J}_{r,[0]}^{(0)}(x) \in \mathfrak{g}^{(0)}
\end{gathered}
$$

The models we are interested in are defined on a reduced phase space, obtained from canonical fields on $T^{*} G^{N}$ by imposing

$$
\mathcal{C}(x) \approx 0
$$

We have

$$
\begin{array}{rlr}
\left\{\mathcal{Q}_{i}, \mathcal{C}(x)\right\}=0, \quad \forall i \in\{0, \cdots, 2 N-2\} & \left\{\mathcal{Q}_{\infty}, \mathcal{C}(x)\right\}=\partial_{x} \mathcal{C}(x) \\
\{\mathcal{H}, \mathcal{C}(x)\}=\epsilon_{\infty} \partial_{x} \mathcal{C}(x) & \Rightarrow \quad\{\mathcal{H}, \mathcal{C}(x)\} \approx 0
\end{array}
$$

1st class

$$
\begin{aligned}
& \left\{\mathcal{C}_{\underline{\mathbf{1}}}(x), \mathcal{C}_{\underline{\mathbf{2}}}(y)\right\}=\left[C_{\underline{\mathbf{1 2}}}^{(00)}, \mathcal{C}_{\underline{\mathbf{1}}}(x)\right] \delta_{x y}: \quad C_{\underline{\underline{12}}}^{(00)} \in \mathfrak{g}^{(0)} \otimes \mathfrak{g}^{(0)} \\
-\left(\sum_{r=1}^{N} \ell_{r, 0}\right) C_{\underline{\underline{12}}}^{(00)} \delta_{x y}^{\prime} & \rightarrow 0
\end{aligned}
$$

Hamiltonian

$$
\mathcal{H}_{T}=\mathcal{H}+\int_{\mathbb{D}} d x \kappa(\mu(x), \mathcal{C}(x))
$$

Gauge symmetry

$$
\delta_{\epsilon} \mathcal{O}=\left\{\int_{\mathbb{D}} d x \kappa(\epsilon(x, t), \mathcal{C}(x)), \mathcal{O}\right\}=\int_{\mathbb{D}} d x \kappa(\epsilon(x, t),\{\mathcal{C}(x), \mathcal{O}\}) \quad \epsilon(x, t) \in \mathfrak{g}^{(0)}
$$

Infinitesimal: $\left\{\begin{array}{l}\delta_{\epsilon} g_{r}(x)=g_{r}(x) \epsilon(x, t) \\ \delta_{\epsilon} Y_{r}(x)=\left[Y_{r}(x), \epsilon(x, t)\right]+\frac{\ell_{r, 0}}{2} \partial_{x} \epsilon(x, t) \quad Y_{r}=X_{r}+\ell_{r, 0} W_{r} / 2\end{array}\right.$

Global: $\quad g_{r} \longmapsto g_{r} h \quad$ and $\quad Y_{r} \longmapsto h^{-1} Y_{r} h+\frac{\ell_{r, 0}}{2} h^{-1} \partial_{x} h \quad h(x, t) \in G^{(0)}$

The gauge symmetry acts on $\left(g_{1}, \cdots, g_{N}\right) \in G^{N}$ by right translation of the diagonal subgroup

$$
G_{\text {diag }}^{(0)}=\left\{(h, \cdots, h), h \in G^{(0)}\right\}
$$

Hamiltonian reduction

- Initial phase space $\mathcal{P}=T^{*} G^{N} \quad$ with symmetry $G_{\text {diag, gauge }}^{(0)}$
- Moment map $\mathcal{C}(x)$
- Reduced phase space

$$
\mathcal{P}_{r}=\left\{T^{*} G^{N}, \mathcal{C}(x)=0\right\} / G_{\text {diag, gauge }}^{(0)}
$$

The "physical" coordinate fields of the model are fields on the quotient $G^{N} / G_{\text {diag }}^{(0)}$
The constraint $\mathcal{C}(x)=0$ eliminates the corresponding superfluous conjugate momentum fields

$$
\mathcal{P}_{r}=T^{*}\left(G^{N} / G_{\mathrm{diag}}^{(0)}\right)
$$

Lagrangian model is defined on $G^{N} / G_{\text {diag }}^{(0)}$

Lax connection and Maillet bracket

$$
\begin{aligned}
& \text { Define } \quad \mathcal{L}(z, x)=\frac{\Gamma(z, x)}{\varphi(z)} \\
& \partial_{t} \mathcal{L}(z, x)-\partial_{x} \mathcal{M}(z, x)+[\mathcal{M}(z, x), \mathcal{L}(z, x)]=0 .
\end{aligned}
$$

$$
\mathcal{M}(z, x) \approx \frac{\epsilon_{0}}{\varphi^{\prime}(0)} \frac{\Gamma(0, x)}{z}+\sum_{i=1}^{2 N-2} \sum_{k=0}^{1} \frac{\epsilon_{i}}{\varphi^{\prime}\left(\zeta_{i}\right)} \frac{(-1)^{k} \sigma^{k}\left(\Gamma\left(\zeta_{i}, x\right)\right)}{z-(-1)^{k} \zeta_{i}}-\epsilon_{\infty} \frac{\mathcal{B}_{1}(x)}{2 K}-\epsilon_{\infty} \frac{\mathcal{B}(x)}{2 K} z+\mu(x)
$$

$$
\mathcal{B}(x)=-\sum_{r=1}^{N}\left(z_{r} \mathcal{J}_{r,[0]}^{(1)}+\mathcal{J}_{r,[1]}^{(1)}\right)
$$

$$
\mathcal{B}_{1}(x)=-\sum_{r=1}^{N} z_{r}\left(z_{r} \mathcal{J}_{r,[0]}^{(0)}+2 \mathcal{J}_{r,[1]}^{(0)}\right)
$$

$$
\begin{gathered}
\left\{\mathcal{L}_{\underline{\mathbf{1}}}(z, x), \mathcal{L}_{\underline{\mathbf{2}}}(w, y)\right\}=\left[\mathcal{R}_{\underline{\mathbf{1 2}}}(z, w), \mathcal{L}_{\underline{\mathbf{1}}}(z, x)\right] \delta_{x y}-\left[\mathcal{R}_{\underline{\mathbf{2}}}(w, z), \mathcal{L}_{\underline{\mathbf{2}}}(w, x)\right] \delta_{x y} \\
-\left(\mathcal{R}_{\underline{\mathbf{1 2}}}(z, w)+\mathcal{R}_{\underline{\mathbf{2}}}(w, z)\right) \delta_{x y}^{\prime},
\end{gathered}
$$

$$
\mathcal{R}_{\underline{\mathbf{1 2}}}(z, w)=\mathcal{R}_{\underline{\mathbf{1 2}}}^{0}(z, w) \varphi(w)^{-1}
$$

$$
\left[\mathcal{R}_{\underline{\mathbf{1 2}}}\left(z_{1}, z_{2}\right), \mathcal{R}_{\underline{\mathbf{1 3}}}\left(z_{1}, z_{3}\right)\right]+\left[\mathcal{R}_{\underline{\mathbf{1 2}}}\left(z_{1}, z_{2}\right), \mathcal{R}_{\underline{\mathbf{2}}}\left(z_{2}, z_{3}\right)\right]+\left[\mathcal{R}_{\underline{\mathbf{3}}}\left(z_{3}, z_{2}\right), \mathcal{R}_{\underline{\mathbf{1 3}}}\left(z_{1}, z_{3}\right)\right]=0
$$

$$
\underline{\mathrm{N}=2:} \quad G \times G / G_{\text {diag }}^{(0)} \quad \epsilon_{0}=-1, \epsilon_{1}=-1, \epsilon_{2}=+1, \epsilon_{\infty}=+1
$$

The passage to the Lagrangian formulation is done by means of the inverse Legendre transform

$$
\begin{gathered}
S\left[g_{1}, g_{2}\right]=\sum_{r=1}^{2} \iint \mathrm{~d} x \mathrm{~d} t \kappa\left(X_{r}, j_{0, r}\right)-\int \mathrm{d} t \mathcal{H} \\
S\left[g_{1}, g_{2}\right]=\sum_{r=1}^{2} \iint \mathrm{~d} x \mathrm{~d} t \kappa\left(Y_{r}, j_{0, r}\right)-\int \mathrm{d} t \mathcal{H}-\sum_{r=1}^{2} \frac{\ell_{r, 0}}{2} I_{\mathrm{WZ}}\left[g_{r}\right] \\
j_{0, r}=g_{r}^{-1} \partial_{t} g_{r} \\
j_{0, r}^{-1}\left\{\mathcal{H}_{T}, g_{r}\right\}=\sum_{s=1}^{2} \sum_{k=0}^{1} b_{r s}^{(k)} j_{s}^{(k)}+2 c_{r s}^{(k)} Y_{s}^{(k)}+\mu \\
Y_{1}^{(0)}+Y_{2}^{(0)}=-\frac{\ell_{1,0}}{2} j_{1}^{(0)}-\frac{\ell_{2,0}}{2} j_{2}^{(0)} \leftarrow \text { constraint } \\
\begin{array}{l}
\left.Y_{1}=Y_{1}^{(0)}+Y_{1}^{(1)}\right\} \text { are solved in terms of } j_{0, r}=g^{-1} \partial_{t} g \text { and } j_{r}=g^{-1} \partial_{x} g \\
\left.Y_{2}=Y_{2}^{(0)}+Y_{2}^{(1)}\right\} \text { ar }
\end{array}
\end{gathered}
$$

$$
S\left[g_{1}, g_{2}\right]=\sum_{r, s=1}^{2} \iint \mathrm{~d} x \mathrm{~d} t\left(\rho_{r s}^{(0)} \kappa\left(j_{+, r}^{(0)}, j_{-, s}^{(0)}\right)+\rho_{r s}^{(1)} \kappa\left(j_{+, r}^{(1)}, j_{-, s}^{(1)}\right)\right)+\kappa I_{\mathrm{WZ}}\left[g_{1}\right]-\kappa I_{\mathrm{WZ}}\left[g_{2}\right]
$$

$$
\left.\left.\begin{array}{c}
\rho_{11}^{(0)}=\rho_{22}^{(0)}=\frac{K}{2} \frac{\zeta_{-}^{2}-\zeta_{+}^{2}}{\left(1-x^{2}\right)^{2}}, \quad \rho_{12}^{(0)}=K \frac{\left(1-\zeta_{+}^{2}\right)\left(x^{2}-\zeta_{-}^{2}\right)}{\left(1-x^{2}\right)^{3}}, \quad \rho_{21}^{(0)}=-K \frac{\left(1-\zeta_{-}^{2}\right)\left(x^{2}-\zeta_{+}^{2}\right)}{\left(1-x^{2}\right)^{3}} \\
\rho_{11}^{(1)}=\frac{K}{2} \frac{\left(1-2 \zeta_{+}^{2}+\zeta_{-}^{2} \zeta_{+}^{2}\right)}{\left(1-x^{2}\right)^{2}}, \quad \rho_{12}^{(1)}=K \frac{x\left(1-\zeta_{+}^{2}\right)\left(x^{2}-\zeta_{-}^{2}\right)}{\left(1-x^{2}\right)^{3}} \\
\rho_{21}^{(1)}=-K \frac{\left(1-\zeta_{-}^{2}\right)\left(x^{2}-\zeta_{+}^{2}\right)}{x\left(1-x^{2}\right)^{3}}, \quad \rho_{22}^{(1)}=\frac{K}{2} \frac{\left(x^{4}-2 \zeta_{+}^{2} x^{2}+\zeta_{-}^{2} \zeta_{+}^{2}\right)}{x^{2}\left(1-x^{2}\right)^{2}} \\
\ell
\end{array}\right) K \frac{2 x^{2}+2 \zeta_{-}^{2} \zeta_{+}^{2}-\left(1+x^{2}\right)\left(\zeta_{-}^{2}+\zeta_{+}^{2}\right)}{\left(1-x^{2}\right)^{3}}=-\ell_{1,0} / 2=\ell_{2,0} / 2\right]
$$

$$
3 N-2=3 \times 2-2=4 \text { parameters } z_{2} \equiv x, \zeta_{+} \equiv \zeta_{1}, \zeta_{-} \equiv \zeta_{2} \text { and } K
$$

The action has the gauge symmetry $\quad g_{r}(x, t) \mapsto g_{r}(x, t) h(x, t)$ with $h(x, t) \in G^{(0)}$

Polyakov \& Wiegmann

$$
I_{\mathrm{WZ}}\left[g_{r} h\right]=I_{\mathrm{WZ}}\left[g_{r}\right]+I_{\mathrm{WZ}}[h]-\frac{1}{2} \iint \mathrm{~d} x \mathrm{~d} t\left[\kappa\left(j_{+, r}^{(0)},\left(\partial_{-} h\right) h^{-1}\right)-\kappa\left(j_{-, r}^{(0)},\left(\partial_{+} h\right) h^{-1}\right)\right]
$$

Reformulation

$$
S=\sum_{r=1}^{2} S_{\mathrm{WZW}, \kappa_{r}}\left[g_{r}\right]-4 K \iint \mathrm{~d} x \mathrm{~d} t \sum_{r, s=1}^{2} \underset{w=z_{s}}{\operatorname{res}} \operatorname{res}_{z=z_{r}} \kappa_{\underline{\mathbf{1 2}}}\left(\mathcal{R}_{\underline{\mathbf{1}} \underline{2}}^{0}(w, z) \varphi_{+}(z) \varphi_{-}(w), j_{+, r \underline{\mathbf{1}}} j_{-, s \underline{\mathbf{2}}}\right)
$$

where

$$
S_{\mathrm{WZW}, \kappa}[g]=\frac{\kappa}{2} \iint \mathrm{~d} x \mathrm{~d} t \kappa\left(g^{-1} \partial_{+} g, g^{-1} \partial_{-} g\right)+\hbar I_{\mathrm{WZ}}[g]
$$

and $\varphi_{ \pm}(z)$ are functions defined as

$$
\varphi_{+}(z)=\frac{z^{2}-\zeta_{+}^{2}}{\left(z^{2}-z_{1}^{2}\right)\left(z^{2}-z_{2}^{2}\right)} \quad \text { and } \quad \varphi_{-}(z)=\frac{z\left(z^{2}-\zeta_{-}^{2}\right)}{\left(z^{2}-z_{1}^{2}\right)\left(z^{2}-z_{2}^{2}\right)}
$$

Future Directions

New integrable models on $G^{N} / G_{\text {diag }}^{(0)}$ from affine Gaudin models

$$
S=\sum_{r=1}^{N} S_{\mathrm{WZW}, \boldsymbol{R}_{r}}\left[g_{r}\right]-\frac{K T^{3}}{2} \iint \mathrm{~d} x \mathrm{~d} t \sum_{r, s=1}^{N} \underset{w=z_{s}}{\text { res }} \underset{z=z_{r}}{\operatorname{res}} \kappa_{\underline{\mathbf{1 2}}}\left(\mathcal{R}_{\underline{\mathbf{1 2}}}^{0}(w, z) \varphi_{+}(z) \varphi_{-}(w), j_{+, r \underline{1}} j_{-, s \underline{s}}\right)
$$

* Study RG flow. Is integrable $T^{1,1}$ flows to the GMM fixed point?

Integrable sigma model on Lorentzian spaces $W_{4,2}=S L(2, \mathbb{R}) \times S L(2, \mathbb{R}) / U(1)$?

Integrable coset sigma models based on supergroups
Interesting case $G=\operatorname{PSU}(1,1 \mid 2)$

