COMPUTATION ON THE CONFORMAL MODULUS OF QUADRILATERALS

IOANE SHENGELIA (MS)
TSU - FUNDAMENTAL PHYSICS

Supervisor Dr. Prof. G. Giorgadze
RDP Online Workshop on Mathematical Physics, 06.12.2020

MOTIVATION (Physical interpretation)

z plane

w plane

$$
V=\mu I
$$

The plan of the presentation

1. Conformal equivalence relation

2. Conformal classification of Quadrilaterals 3. Conformal modulus of Quadrilaterals 4. The new method of calculation 5. The particular case 6. The relation to AMG functions 7. Summary

CONFORMAL MAPPING on COMPLEX PLANE

CONDITION 1: HOLOMORPHISM

CONDITION 2:
 LOCAL BIJECTION

$$
\frac{\partial f(z)}{\partial \bar{z}}=0
$$

$$
\frac{\partial f(z)}{\partial z} \neq 0
$$

Conformal Equivalence Relation

Identity - Reflection: $\quad f(z)=z$ is conformal
Inverse - Symmetry:
If f is conf. so is f^{-1}
Composition - Transition: If f and g are conf. so is $g \circ f$

Riemann Mapping Theorem

The Jordan Curve Theorem

Caratheodory Extension Theorem

$$
f:[A, B, C] \quad \rightarrow \quad\left[A^{*}, B^{*}, C^{*}\right]
$$

$f:[A, B, C, D] \quad \rightarrow \quad\left[A^{*}, B^{*}, C^{*}, D^{*}\right]$

Definition: Suppose M is some set. It is called the set of conformal invariants if there exists bijection

$$
M \cong_{b i j}\{Q / C\}
$$

Example: ξ is a conformal invariant

$\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \rightarrow\{0,1, \xi, \infty\}$

$$
\xi=\frac{x_{3}-x_{1}}{x_{3}-x_{4}} \frac{x_{2}-x_{4}}{x_{2}-x_{1}}>1
$$

Proof: ξ is the same for conformally equivalent quadrilaterals

$$
\begin{aligned}
& Q\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\} \simeq_{\text {conf }} H\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \\
& Q^{\prime}\left\{q_{1}^{\prime}, q_{2}^{\prime}, q_{3}^{\prime}, q_{4}^{\prime}\right\} \simeq_{\text {conf }} H\left\{x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}, x_{4}^{\prime}\right\}
\end{aligned} \quad H\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \simeq_{\text {conf }} H\left\{x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}, x_{4}^{\prime}\right\}
$$

$$
\text { Automorphism }[H]=: f(z)=\frac{a z+b}{c z+d}
$$

but ξ is invariant under bilinear maps. Thus

$$
\xi=\frac{x_{3}-x_{1}}{x_{3}-x_{4}} \frac{x_{2}-x_{4}}{x_{2}-x_{1}}=\frac{f\left(x_{3}\right)-f\left(x_{1}\right)}{f\left(x_{3}\right)-f\left(x_{4}\right)} \frac{f\left(x_{2}\right)-f\left(x_{4}\right)}{f\left(x_{2}\right)-f\left(x_{1}\right)}=\xi^{\prime}
$$

Proof: The same ξ corresponds to the same class

$$
\begin{gathered}
Q\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\} \simeq_{\text {conf }} H\{0,1, \xi, \infty\} \\
Q^{\prime}\left\{q_{1}^{\prime}, q_{2}^{\prime}, q_{3}^{\prime}, q_{4}^{\prime}\right\} \simeq_{\text {conf }} H\{0,1, \xi, \infty\} \\
Q\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\} \simeq_{\text {conf }} Q^{\prime}\left\{q_{1}^{\prime}, q_{2}^{\prime}, q_{3}^{\prime}, q_{4}^{\prime}\right\}
\end{gathered}
$$

There is another conformal invariant...

$$
\begin{gathered}
H\{0,1, \xi, \infty\} \simeq_{\text {conf }} H\{-\eta,-1,1, \eta\} \quad \eta=\frac{\sqrt{\xi}+1}{\sqrt{\xi}-1}>1 ; \quad \mathrm{k}=\frac{1}{\eta} ; \\
\frac{d k}{d \xi}=\frac{1}{\sqrt{\xi}(\sqrt{\xi}+1)^{2}}>0 \\
\xi:(1, \infty) \cong_{\text {bij }} k:(0,1)
\end{gathered}
$$

The following is true

$$
\begin{aligned}
& \text { two } \\
& \text { quadrilaterals } \\
& \text { are said to be } \\
& \text { conformally } \\
& \text { equivalent to } \\
& \text { each other iff } \\
& \text { their relevant } \\
& \xi \text { is the same! }
\end{aligned}
$$

two quadrilaterals are said to be conformally equivalent to each other iff their relevant k is the same!

FROM THE UPPER HALF PLANE INTO THE RECTANGLE

The rectangle: $\left\{D_{x}, D_{x}+i D_{y},-D_{x}+i D_{y},-D_{x}\right\}$

$$
\begin{aligned}
& D_{x}=B k \int_{0}^{1} \frac{d \omega}{\sqrt{1-\omega^{2}} \sqrt{1-k^{2} \omega^{2}}}=B k K(k)>0 \\
& D_{y}=B k \int_{0}^{1} \frac{d \omega}{\sqrt{1-\omega^{2}} \sqrt{1-k^{\prime 2} \omega^{2}}}=B k K\left(k^{\prime}\right)>0
\end{aligned}
$$

Where $k^{\prime}=\sqrt{1-k^{2}}$;

MODULUS AS FUNCTION OF "VERTICES"

$\left[B k K(k) ; B k K(k)+i B k K\left(k^{\prime}\right) ;-B k K(k)+i B k K\left(k^{\prime}\right) ;-B k K(k)\right]$

$$
\mu(k)=\frac{2 B k K(k)}{B k K\left(k^{\prime}\right)}=2 \frac{\int_{0}^{1} \frac{d \omega}{\sqrt{1-\omega^{2}} \sqrt{1-k^{2} \omega^{2}}}}{\int_{0}^{1} \frac{d \omega}{\sqrt{1-\omega^{2}} \sqrt{1-k^{\prime 2} \omega^{2}}}}
$$

$$
\text { Where } \mathrm{k}=\frac{1}{\eta}=\frac{\sqrt{\xi}-1}{\sqrt{\xi}+1}
$$

EQUIVALENCE OF MODULUS, " k " AND " ξ "

$$
2 \frac{\int_{0}^{1} \frac{\omega^{2} d \omega}{\sqrt{\left(1-\omega^{2}\right)}\left(1-k^{2} \omega^{2}\right)^{\frac{3}{2}}} \int_{0}^{1} \frac{d \omega}{\sqrt{\left(1-\omega^{2}\right)\left(k^{2} \omega^{2}+1-\omega^{2}\right)}}+\int_{0}^{1} \frac{d \omega}{\sqrt{\left(1-\omega^{2}\right)\left(1-k^{2} \omega^{2}\right)}} \int_{0}^{1} \frac{\omega^{2} d \omega}{\sqrt{\left(1-\omega^{2}\right)}\left(k^{2} \omega^{2}+1-\omega^{2}\right)^{\frac{3}{2}}}}{\left[\int_{0}^{1} \frac{d \omega}{\sqrt{\left(1-\omega^{2}\right)\left(k^{2} \omega^{2}+1-\omega^{2}\right)}}\right]^{2}} k
$$

This is always positive. So, the modulus increases when k varies from " 0 " to " 1 "

$$
\xi:(1, \infty) \cong_{b i j} k:(0,1) \cong_{b i j} \mu:(0, \infty) ;
$$

Thus there is one to one map between ξ, k and modulus, where

$$
\xi=\frac{x_{3}-x_{1}}{x_{3}-x_{4}} \frac{x_{2}-x_{4}}{x_{2}-x_{1}}
$$

An important question:

$\mu(\xi)$?

ξ-transformation

$$
\begin{gathered}
\mu\left(q_{2}, q_{3}, q_{4}, q_{1}\right)=\frac{1}{\mu\left(q_{1}, q_{2}, q_{3}, q_{4}\right)} \\
{[\mu, k, \xi] \leftrightarrow_{\xi}\left[\frac{1}{\mu}, \frac{\sqrt{\xi}-\sqrt{\xi-1}}{\sqrt{\xi}+\sqrt{\xi-1}}, \frac{\xi}{\xi-1}\right]}
\end{gathered}
$$

k-transformation

$$
\begin{gathered}
\mu\left(\sqrt{1-k^{2}}\right)=\frac{4}{\mu(k)} \\
{[\mu, k, \xi] \leftrightarrow_{k}\left[\frac{4}{\mu}, \sqrt{1-k^{2}},\left(\frac{1+\sqrt{1-k^{2}}}{1-\sqrt{1-k^{2}}}\right)^{2}\right]}
\end{gathered}
$$

Non-symmetric combinations and the infinity chain

$$
\ldots \leftrightarrow_{k} \frac{1}{4 \mu} \leftrightarrow_{\xi} 4 \mu \leftrightarrow_{k} \frac{1}{\mu} \leftrightarrow_{\xi} \mu \leftrightarrow_{k} \frac{4}{\mu} \leftrightarrow_{\xi} \frac{\mu}{4} \leftrightarrow_{k} \frac{16}{\mu} \leftrightarrow_{\xi} \ldots
$$

$$
2^{2 s} \mu \text { or } 2^{2 s} \mu^{-1}
$$

Suppose $\mu=1$. Using ξ-transformation

$$
\begin{gathered}
\xi=\frac{\xi}{\xi-1}=2, \quad k=\frac{\sqrt{2}-1}{\sqrt{2}+1} \\
{[\mu, k, \xi] \leftrightarrow \xi\left[\frac{1}{\mu}, \frac{\sqrt{\xi}-\sqrt{\xi-1}}{\sqrt{\xi}+\sqrt{\xi-1}}, \frac{\xi}{\xi-1}\right]}
\end{gathered}
$$

Suppose $\mu=2$. Using k-transformation

$$
\begin{gathered}
k=\sqrt{1-k^{2}}=\frac{1}{\sqrt{2}}, \quad \xi=\left(\frac{1+\frac{1}{\sqrt{2}}}{1-\frac{1}{\sqrt{2}}}\right)^{2} ; \\
{[\mu, k, \xi] \leftrightarrow_{k}\left[\frac{4}{\mu}, \sqrt{1-k^{2}},\left(\frac{1+\sqrt{1-k^{2}}}{1-\sqrt{1-k^{2}}}\right)^{2}\right]}
\end{gathered}
$$

Two independent chains

$$
\begin{aligned}
& 1 \leftrightarrow_{k} 4 \leftrightarrow_{\xi} \frac{1}{4} \leftrightarrow_{k} 16 \leftrightarrow_{\xi} \frac{1}{16} \leftrightarrow_{k} 64 \leftrightarrow_{\xi} \frac{1}{64} \ldots \\
& 2 \leftrightarrow_{\xi} \frac{1}{2} \leftrightarrow_{k} 8 \leftrightarrow_{\xi} \frac{1}{8} \leftrightarrow_{k} 32 \leftrightarrow_{\xi} \frac{1}{32} \leftrightarrow_{k} 128 \ldots
\end{aligned}
$$

$$
\begin{gathered}
\xi=33.9705627485 ; k=0.707106781187 ; \mu=2 \\
\xi=1.03033008589 ; k=0.0074696667295 ; \mu=\frac{1}{2} \\
\xi=5.1391447246 \times 10^{9} ; k=0.99997210165 ; \mu=8
\end{gathered}
$$

Some discrete values of conformal invariants

$$
\xi=2 ; k=0.171572875254 ; \mu=1 ;
$$

$$
\xi=17922.4570753 ; k=0.985171431009 ; \mu=4
$$

$$
\xi=1.00005579903 ; k=0.0000139493694242 ; \mu=\frac{1}{4}
$$

$$
\xi=4.2257246934 \times 10^{20} ; k=0.999999999903 ; \mu=16
$$

Discrete graph of " $\mu(\xi)$ "

It is well known that

$$
\int_{0}^{1} \frac{d \omega}{\sqrt{\left(1-\omega^{2}\right)\left(1-k^{2} \omega^{2}\right)}}=\frac{\pi / 2}{M\left(1, \sqrt{1-k^{2}}\right)} ; \quad \rightarrow \quad \mu(k)=2 \frac{M(1, k)}{M\left(1, \sqrt{1-k^{2}}\right)}
$$

where

$$
\begin{gathered}
M\left(a_{0}, b_{0}\right)=\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n} ; \\
a_{0} \geq b_{0}>0 ; \quad a_{n}=\frac{a_{n-1}+b_{n-1}}{2} ; b_{n}=\sqrt{a_{n-1} b_{n-1}} ;
\end{gathered}
$$

Properties of AGM

1) Symmetry: $M(a, b)=M(b, a)$
2) Bilinearity: $\mathrm{q} M(a, b)=M(q a, q b)$
3) Sequence invariance:

$$
\begin{gathered}
\ldots=M\left(a_{-1}, b_{-1}\right)=M\left(a_{-1}, b_{-1}\right)=M\left(a_{0}, b_{0}\right)=M\left(a_{1}, b_{1}\right)=M\left(a_{2}, b_{2}\right)=\cdots \\
\text { Let } a_{0}=1 \text { and } b_{0}=k, \text { then } \\
\ldots=\left(1+\sqrt{1-k^{2}}\right) M_{-1}\left(1, \frac{1-\sqrt{1-k^{2}}}{1+\sqrt{1-k^{2}}}\right)=M_{0}(1, k)=\frac{1+k}{2} M_{1}\left(1, \frac{2 \sqrt{k}}{1+k}\right)=\cdots
\end{gathered}
$$

General form $\ldots v_{-1}(k) M_{-1}\left(1, \tau_{-1}(k)\right)=v_{0}(k) M_{0}\left(1, \tau_{0}(k)\right)=v_{1}(k) M_{1}\left(1, \tau_{1}(k)\right) \ldots$

Recurrent formulas:

$$
\text { Let } \tau_{r}(k)= \begin{cases}\frac{2 \sqrt{\tau_{r-1}(k)}}{1+\tau_{r-1}(k)} ; & r>0 \\
k ; & r=0 \\
\frac{1-\sqrt{1-\tau_{r+1}^{2}(k)}}{1+\sqrt{1-\tau_{r+1}^{2}(k)}} ; & v_{r}(k)=\left\{\begin{array}{ll}
\prod_{p=0}^{r-1} \frac{1+\tau_{p}(k)}{2} ; & r<0 \\
1 ; & \prod_{q=r+1}^{0}\left(1+\sqrt{1-\tau_{q}^{2}(k)}\right) ;
\end{array}\right]\end{cases}
$$

Then $\mu_{r}=2 \frac{M_{0}(1, k)}{M_{r}\left(1, \sqrt{1-k^{2}}\right)}=2 v_{r}(k)$
where k is the solution of the following equation: $\sqrt{1-k^{2}}=\tau_{r}(k)$

The relation to AMG functions

The DISCRETE

 SPECTRUM of k parameterFor each r there exist only one solution

One r
 One k_{r}
 One μ_{r}

The DISCRETE SPECTRUM of the Modulus
 ("AMG" chain)

$\begin{array}{llll}r=3 ; & \xi=1.2070 ; & k=0.047 ; & \mu=0.7070 ; \\ r=2 ; & \xi=2.0002 ; & k=0.1716 ; & \mu=1.0000 ; \\ r=1 ; & \xi=5.8280 ; & k=0.4142 ; & \mu=1.4142 ; \\ r=0 ; & \xi=33.9687 ; & k=0.7071 ; & \mu=2 ; \\ r=-1 ; & \xi=452.4858 ; & k=0.9102 ; & \mu=2.8284 ; \\ r=-2 ; & \xi=17992.2344 ; & k=0.9852 ; & \mu=3.9998 ; \\ r=-3 ; & \xi=3302149.76033 ; & k=0.9989 ; & \mu=5.6574 ;\end{array}$
$\mu(\xi)$ is monotonic and slowly increasing function

$$
r=0 ; \quad \xi=33.9687 ; \quad k=0.7071 ; \quad \mu=2
$$

$$
r= \pm 1
$$

$$
\xi=5.82804546569 ; k=0.4142 ; \mu=1.4142
$$

$$
\xi=452.337043898 ; k=0.910185893101 ; \mu=2.82845424975
$$

$$
\xi=1.20712315307 ; k=0.0470252827077 ; \mu=0.707113562438
$$

$$
\xi=1.0022156391 ; k=0.000553296990388 ; \mu=0.35355
$$

$$
\xi=3264623.75025 ; k=0.998893699443 ; \mu=5.6568
$$

$\xi=1.7072087103 \times 10^{14} ; k=0.999999846931 ; \mu=11.313816999 ;$
$\xi=1.00000030631 ; k=7.6578514845 \times 10^{-8} ; \mu=0.17677839061 ;$

$$
r= \pm 2
$$

$$
\xi=2.00022359311 ; k=0.1716 ; \mu=1.00004630354
$$

$$
\xi=17910.9572796 ; k=0.985166706705 ; \mu=3.99981479442
$$

$$
\xi=1.99977645687 ; k=0.171545753279 ; \mu=0.999953698604
$$

$$
\xi=1.00005583486 ; k=0.000013958325918 ; \mu=0.250011575885 ;
$$

$$
\xi=17933.9648431 ; k=0.985176154062 ; \mu=4.00018521416
$$

$$
\xi=4.2148959295 \times 10^{20} ; k=0.999999999903 ; \mu=15.9992591777 ;
$$

$$
\xi=1.00005576323 ; k=0.0000139404182201 ; \mu=0.249988424651 ;
$$

The relation to AMG functions

The discrete graph of $\mu(k)$

Approximate formula of modulus

$$
\begin{gathered}
\mu(k)=\left(\left(\ln \left(\frac{1}{1-k}\right)\right)^{\frac{1}{6}} e^{k^{\frac{1}{6}}}\right)- \\
-\frac{1}{19}\left(\frac{\ln (\sin (\pi k))}{\pi}-\operatorname{tg}\left(\frac{4 \pi}{10}\right) k+\left(\frac{\cos (\pi k)+\pi k}{2 \pi}\right)+2.36\right)- \\
-0.7 \sqrt{1-4\left(k-\frac{1}{2}\right)^{2}}+(1.8 k)^{3}+0.05 e^{-1000 k}
\end{gathered}
$$

For the interval $k \in(0,0.171572875254)$ and $\mu \in(0,1)$

Summary:

1) We have proven that the modulus is conformal invariant of quadrilaterals.
2) Using the properties of the modulus we have established the new method of finding some discrete values by the known ones.
3) Using the relation to AMG functions we have established another method of calculating and joined these two methods together.
4) After all we did not give up and found the approximate formula for the further calculations on some local interval.

[1] CAMBRIDGE TEXTS IN APPLIED MATHEMATICS Complex Variables. Introduction and Applications. Second edition. Mark J. Ablowitz. Athanassios S. Focas.
[2] Topic 10 notes. Jeremy Orloff.
[3] Inverse Function Theorem for Holomorphic Functions
[4] Holomorphic maps
[5] Simply Connected Domains
[6] Students in Logic, Grammar and Rhetoric 10 (23) 2007. Jordan's Proof of the Jordan Curve Theorem. Thomas C. Hales*. University of Pittsburgh.
[7] Joseph Bak Donald J. Newman. Undergraduate texts in mathematics. Complex Analysis, Third Edition.
[8] Renzo's Math 490 Introduction to Topology. winter 2007.
[9] Proceedngs of I. vekua Institute of Applied Mathematics, Vol. 67, 2017. Conformal Modulus of Quadrilaterals. Shengelia I.
[10] Schwarz lemma and automorphisms of the disk.
[11] Helsinki University of Technology. Faculty of Information and Natural Sciences. Tri Quach. Numerical conformal mappings and capacity compuation.
[12] The Arithmetic-Geometric Mean of Gauss. Tomack Gilmore. Supervised by Professor S. R. Bullett Queen Mary, University of London.

