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Motivation and aspects

f Study of the various aspects of field theory in higher dimensions attracts
much attention due to the remarkable and sometimes even unexpected
properties at classical and quantum levels. Many of such properties are
closely related to superstring theory which may be treated as a theory of
infinite number of higher spin fields in higher dimensional space-time (see
e.g. M.B. Green, J.H. Schwarz, E.Witten, Superstring theory, Cambridge
Univ. Press, 1987).

f The fundamental space-time background in relativistic theory is Minkow-
ski space where the basic symmetry is described by Poincaré group. Theory
of unitary irreducible representations of Poincaré group in four dimensions
was constructed in the pioneer papers E.P.Wigner, Annals Math. 40
(1939) 149; E.P.Wigner, Z. Physik 124 (1947) 665; V. Bargmann, E.P.Wigner,
Proc. Nat. Acad. Sci. US 34 (1948) 211. Review of the unitary irreducible
representations in higher dimensions and their applications for constructing
the relativistic field equations is given in lectures X. Bekaert, N. Boulanger,
The unitary representations of the Poincaré group in any spacetime dimension,
arXiv:0611263. (see also the recent paper S.Weinberg,Massless Particles
in Higher Dimensions, Phys. Rev. D102 (2020) 095022, arXiv:2010.05823)
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Motivation and aspects

f Although the generic scheme of constructing the representations of the
Poincaré group in any dimension seems can be realized on the base of
known method of induced representations (see e.g. A.O. Barut, R. Raczka,
Theory of Group Representations and Applications, Polish Scientific Publi-
shing, 1977 and A.P. Isaev, V.A. Rubakov, Theory Of Groups And Symmetries
(I): Finite Groups, Lie Groups, And Lie Algebras. World Scientific, 2019
(IR))

f Some of such aspects are appropriate only for each concrete dimension
and can not be formulated at once for all dimensions. For example, the
spinor representations of the Lie algebra of multidimensional Lorenz group
are defined independently for each space-time dimension. Therefore one
can expect that a structure of relativistic symmetry representations in
higher dimensions is much more reacher and more complicated then in
the four-dimensional Minkowski space.
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Motivation and aspects

f In this report one will explane a possible way of constructing the massless
finite and infinite spin irreducible representations of the Lie algebra of the
Poincaré group in six-dimensional Minkowski space.
f Some aspects of such representations are considered in papers L.Mezincescu,
A.J. Routh, P.K. Townsend, Supertwistors and massive particles, Annals
Phys. 346 (2014) 66, arXiv:1312.2768 (MRT), A.S. Arvanitakis,
L.Mezincescu, P.K. Townsend, Pauli-Lubanski, supertwistors, and the super-
spinning particle, JHEP 1706 (2017) 151, arXiv:1601.05294 however
many issues, especially the infinite spin representations, were not addressed
and complete analysis was not done.
f Recently there was the paper S.M.Kuzenko, A.E. Pindur,Massless particles
in five and higher dimensions, arXiv:2010.07124 (KP) , where the unitary
irreducible massless representations of the Poincaré group in five-dimensional
Minkowski space were constructed and some issues related to representations
in arbitrary dimensions were briefly studied and the representations of super
Poincaré group were considered. The infinite spin representations were not
addressed.
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D-dimensional Poincaré algebra

f The generators Pm and Mmn = −Mnm of the Lie algebra iso(1,D − 1)
of the Poincaré group in D-dimensional space-time have the commutators

[Pn,Pk ] = 0 , [Mmn,Pk ] = i (ηmkPn − ηnkPm) , (0.1)

[Mmn,Mkl ] = i (ηmkMnl + ηnlMmk − ηmlMnk − ηnkMml) , (0.2)

where the D-vector indices run the values m, n = 0, 1, . . . ,D − 1 and we
use the space-time metric ηmn = diag(+1,−1, . . . ,−1︸ ︷︷ ︸

D−1

).

f We introduce the third rank tensor Wmnk and the vector Υm as the
elements of the enveloping algebra of iso(1, 5) (see MRT)

Wmnk = εmnklprP
lMpr , (0.3)

Υm = εmnklprP
nMklMpr . (0.4)
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Casimir operators of 6D Poincaré algebra

f The operators (0.3) and (0.4) satisfy the equations

PmWmnk = 0 , [Pl ,Wmnk ] = 0 , (0.5)

PmΥm = 0 , [Pl ,Υm] = 0 . (0.6)

f By using of these equations one can check that the operators

C2 := PmPm , (0.7)

C4 :=
1

24
WmnkWmnk , (0.8)

C6 :=
1

64
ΥmΥm (0.9)

are the Casimir operators of the Poincaré algebra iso(1, 5).
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Casimir operators of 6D Poincaré algebra. Remark

f Note that the quantity εmnklprWmnkWlpr could be an additional Casimir
operator for iso(1, 5) algebra. But it is identically equal to zero. This fact is
a special case of the property of any rank r antisymmetric tensor Wm1...mr

in 2r -dimensional space, when r is odd number. Indeed, in this case we have
(W ,V )ε = (−1)r (V ,W )ε, where (W ,V )ε := εm1...mrn1...nrWm1...mrVn1...nr

and εm1...mrn1...nr [Wm1...mr ,Vn1...nr ] = 0. Thus, for antisymmetric tensor
with components

Wm1...mr = εm1...mrn1...nrP
n1Mn2n3 . . .Mnr−1nr ,

which is defined only for odd r , we always have (W ,W )ε = 0. In this case
a Casimir operator for iso(1, 2r − 1) algebra, of the second order in W ,
has the unique form

W 2 =
1

(r + 1)!
Wm1...mrWm1...mr .

Whereas for even r we have antisymmetric tensor with components

Lm1...mr = εm1...mrn1...nrM
n1n2 . . .Mnr−1nr

which yields for so(`, 2r − `) algebra additional to L2 = Lm1...mrLm1...mr

Casimir operator (L, L)ε 6= 0 (see below for the case of so(4) algebra).
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Casimir operators of 6D Poincaré algebra

f Taking into account the expressions (0.3), (0.4) we obtain explicit form
of all Casimir operators C2,C4,C6:

C2 = PmPm , (0.10)

C4 = ΠmΠm −
1

2
MmnMmn C2 , (0.11)

C6 = −ΠkMkm ΠlM
lm +

1

2

(
MmnMmn − 8

)
C4

+
1

8

[
MklMkl

(
MmnMmn − 8

)
+ 2MmnMnkM

klMlm

]
C2 , (0.12)

where we introduce a new vector Π with components

Πm := Pk Mkm = Mkm Pk − 5i Pm , (0.13)
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Standard massless momentum reference frame

f Further we consider the massless unitary representations of the algebra
iso(1, 5) when the quadratic Casimir operator (0.10) is fixed as following:

C2 ≡ P2 = PmPm = 0 . (0.14)

f Let our Poincaré algebra acts in the representation space H with basis
vectors |k, σ〉, where σ is a set of eigenvalues of all operators commuting
with Pm and Pm|k , σ〉 = km|k , σ〉. We take the light-cone reference frame
for massless particle momentum km = (k0, ka, k5) = (k , 0, 0, 0, 0, k) in
which momentum operator Pm has a standard form

P0 = P5 = k , Pa = 0 , a = 1, 2, 3, 4 . (0.15)

f We stress that all operator formulas presented in this report (and written
in the light-cone frame) should be understood as a result of their action
on the subspace Hk ⊂ H spanned by vectors |k , σ〉 with fixed light-cone
momentum km.
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Light-cone coordinates

f The transition to this light-cone reference frame is conveniently performed
in the light-cone basis where any 6D vector Xm = (X 0,X a,X 5) has the
light-cone coordinates Xm = (X+,X−,X a), where

X± =
1√
2

(
X 0 ± X 5

)
, X± =

1√
2

(X0 ± X5) ⇒ X± = X∓ .

f Then, in the light-cone basis the contraction of two 6D vectors Xm and
Ym is

XmYm = X+Y+ + X−Y− + X aYa =

= η−+ X−Y+ + η+− X+Y− + ηab XbYa = X−Y+ + X+Y− − XaYa ,

where we use the light-cone metric η±∓ = η±∓ = 1, η±± = η±± = 0,
ηab = ηab = −δab.
f In the light-cone basis the total antisymmetric tensor εmnklpr has components

ε−+abcd = −ε+−abcd = ε+−abcd = −ε−+abcd = εabcd ,

and we normalize the antisymmetric tensors εmnk`pr and εabcd as ε012345 =
1 and ε1234 = 1.
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Massless Casimir’s in light-cone frame

f In the light-cone basis the standard momentum has the components

P+ = P− =
√

2k , P− = P+ = 0 , Pa = 0 , a = 1, 2, 3, 4 .

f Casimir operators C4 and C6 take the form

Ĉ4 = −Π̂aΠ̂a , (0.16)

Ĉ6 = Π̂bMba Π̂cMca −
1

2
MbcMbc Π̂aΠ̂a , (0.17)

where we introduce Hermitian operators

Π̂a :=
√

2kM+a . (0.18)

f The operators Π̂a and Mab, which generate (0.16) and (0.17), form the
Lie algebra of ISO(4) group

[Π̂a, Π̂b] = 0 , [Π̂a,Mbc ] = i
(
δabΠ̂c − δac Π̂b

)
, (0.19)

[Mab,Mcd ] = i (δbcMad − δbdMac + δacMdb − δadMcb) , (0.20)
and therefore generate the isometries of the four-dimensional Euclidean
space. As a result, the operators Ĉ4 and Ĉ6 are the Casimir operators of
the iso(4) algebra.
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Decomposition so(4) = su(2)⊕ su(2) and ’t Hooft symbols

f Six generators of rotations Mab in four-dimensional Euclidean space are
decomposed into the sum

Mab = M
(+)
ab + M

(−)
ab , (0.21)

where

M
(±)
ab :=

1

2

(
Mab ±

1

2
εabcdMcd

)
(0.22)

are (anti-)selfdual parts. They are satisfied the identities

M
(±)
ab = ±1

2
εabcdM

(±)
cd . (0.23)

f The generators (0.22) form the algebra

[M
(±)
ab ,M

(±)
cd ] = i

(
δbcM

(±)
ad −δbdM

(±)
ac +δacM

(±)
db −δadM

(±)
cb

)
, (0.24)

[M
(+)
ab ,M

(−)
cd ] = 0 ,

which is a direct sum of two algebras with three generators M(+)
ab and with

three generators M(−)
ab respectively.

f Each of these algebras, containing three generators M
(+)
ab or M

(−)
ab , is

the su(2) algebra. 14 / 40



Decomposition so(4) = su(2)⊕ su(2) and ’t Hooft symbols

f This becomes clear (see e.g. IR) after using the ‘t Hooft symbols
G. ’t Hooft, Computation of the quantum effects due to a four-dimensional
pseudoparticle, Phys. Rev. D14 (1976) 3432.
f The ‘t Hooft symbols ηiab = −ηiba, i = 1, 2, 3 and η̄i

′

ab = −η̄i′ba, i = 1, 2, 3
are (anti-)selfdual tensors with respect to the SO(4) indices a, b:

ηiab =
1

2
εabcdη

i
cd , η̄i

′

ab = −1

2
εabcd η̄

i′

cd . (0.25)

f Below we use the following standard representations for the ‘t Hooft
symbols

ηiab =

{
εiab a, b = 1, 2, 3,
δia b = 4,

η̄i
′

ab =

{
εi′ab a, b = 1, 2, 3,
−δi′a b = 4.

(0.26)
f Due to the properties (0.25) the ‘t Hooft symbols connect (anti-)selfdual
SO(4) tensors M(±)

ab with the SO(3) vectors M(+)
i , M(−)

i′ by means of the
following relations

M
(+)
ab = −ηiabM

(+)
i , M

(−)
ab = −η̄i

′

abM
(−)
i′ . (0.27)
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Decomposition so(4) = su(2)⊕ su(2) and ’t Hooft symbols

f Such defined operators M
(+)
i and M

(−)
i′ form two su(2) algebras with

standard form of the commutators

[M
(+)
i ,M

(+)
j ] = iεijkM

(+)
k , [M

(−)
i′ ,M

(−)
j′ ] = iεi′j′k′M

(−)
k′ , [M

(+)
i ,M

(−)
j′ ] = 0 .

f In term of the operators M(+)
i and M

(−)
i′ the Casimir Ĉ6 takes the form

(we use the equalities ηiabη
j
ab = 4δij, η̄i

′

abη̄
j′

ab = 4δi
′j′ and ηiabη̄

j′

ab = 0)

Ĉ6 = 2M
(+)
i M

(−)
j′ ηiabη̄

j′

ac Π̂bΠ̂c −
(
M

(+)
i M

(+)
i + M

(−)
i′ M

(−)
i′

)
Π̂aΠ̂a .
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Classification orbits

f Thus, in the massless case C2 ≡ PmPm = 0 the unitary irreducible
representations are defined by the eigenvalues of the iso(4) Casimir operators
Ĉ4 and Ĉ6.
f For this noncompact symmetry there are two different cases defined the
value of Casimir operator Ĉ4, i.e. square of “four-translation” generator Π̂a.
So, in next slides we consider following unitary massless representations:

I Finite spin (helicity) representations.
In these cases the SO(4) four-vector Π̂a has zero norm:

Π̂aΠ̂a = 0 . (0.28)

I Infinite (continuous) spin representations.
In case of these representations the Euclidean four-vector Π̂a has
nonzero norm:

Π̂aΠ̂a = µ2 6= 0 . (0.29)
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Massless finite spin representations

f This case is characterized by the fulfillment of condition (0.28), which
implies that all components Π̂a (since they are Hermitian operators) of the
Euclidean vector are zero:

Π̂a = 0 at all a = 1, 2, 3, 4 . (0.30)

As a result, the Casimir operators Ĉ4 and Ĉ6 are vanish in this case: Ĉ4 = 0
and Ĉ6 = 0. Passing from this light-cone reference frame to an arbitrary
frame, we get that all Casimir operators on the massless finite spin states
take zero values (see also MRT)

C4 = 0, C6 = 0 , (0.31)

f Due to (0.30) the Euclidean four-translations are realized trivially for
these representations. As a result such representations of ISO(1, 5) are
finite dimensional. Each such massless representation defines some 6D
standard massless representation with finite number of massless particle
states. As we saw above, such representations are induced from irreducible
SO(4) representations. Let us show below that the Casimir operators of
the stability subgroup SO(4) define the 6D helicity operators.

18 / 40



6D helicity operators

f First, let us consider the vector Υm defined in (0.4). In the case C6 = 0,
we have ΥmΥm = 0 and, in the light-cone reference frame the components
of 6D vector Υ are

Υ+ = Λ1P
+ , Υ− = Υa = 0 , (0.32)

where we have
Λ1 := εabcdMabMcd . (0.33)

This operator is the Casimir operator of the so(4) algebra.
f The conditions (0.32) demonstrate that vectors Υ and P are collinear
in the light-cone reference frame and this property is conserved in any
reference frame. Namely, the relations

PmΥm = 0 , [Pl ,Υm] = 0

show that the light like vector Υ is transverse to the vector P and its
components Υm commute with Pk .
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6D helicity operators

Therefore, the vector Υm is proportional to the vector Pm:

Υm = Λ1Pm , (0.34)

where the operator (0.33) is represented in the form

Λ1 :=
Υ0

P0
. (0.35)

f This expression appears for the 4D helicity operator when Υm is replaced
by Wm (see also analogous consideration in MRT). Due to the relations

[M0i ,Λ1] =
i

P0

(
Υi − Λ1Pi

)
= 0 , [Mik ,Λ1] = 0 = [Pk ,Λ1] , (0.36)

(i , k = 1, . . . , 5) ,

we conclude that the operator (0.35) is invariant with respect to the 6D
Poincare symmetry. Therefore, the operator Λ1, defined in (0.35), is a 6D
analog of the helicity operator and it coincides with one of so(4) Casimir
operators in the light-cone reference frame.
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6D helicity operators

f We note that irreducible so(4) representations are characterized by two
quadratic Casimir operators. Another Casimir operator is appeared as a
helicity operator if we use the construction proposed in KP. Indeed, by
using the prescription of KP, one can construct another (third order in
generators of iso(1, 5)) vector with components

Sm := 3MnkP[mMnk] = MnkMnkPm − 2MknMmnPk . (0.37)

f The square of this 6D vector is

SmSm = M4P2 + 4
[
ΠkMkmΠlM

lm −M2(Π2 + P2) + Π2
]
, (0.38)

while its contraction with 6D vector momentum Pm gives

PmSm = MmnMmnP
2 − 2ΠmΠm ≡ −2C4 , (0.39)

and the commutators of Sm and Pn are

[Sm, Pn] = 2iMmnP
2 + 4iΠ[mPn] . (0.40)
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6D helicity operators

f For the massless finite spin representations previous equations (0.38),
(0.39) and (0.40) are reduced to

SmSm = 0 , PmSm = 0 , [Sm,Pn] = 0 , (0.41)

which are the same as conditions for light-like vectors Υ and P.
f So, in the case of massless finite spin representations, the vectors Pm

and Sm are also proportional to each other. One can check this in the
light-cone reference frame, the components of the 6D vector Sm are equal
to

S+ = Λ2P
+ , S− = Sa = 0 , (0.42)

where the operator
Λ2 := MabMab (0.43)

is second so(4) Casimir operator.
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6D helicity operators

f Due to the relations (0.41) for the general frame the relations (0.42)
take the form

Sm = Λ2Pm , (0.44)

where the operator Λ2 defines second helicity operator and has equivalent
“covariant” form

Λ2 :=
S0
P0

. (0.45)

f So these massless representations of finite spin are characterized by the
pair (λ1, λ2), where real numbers λ1,2 define the eigenvalue of the Casimir
operators Λ1 and Λ2, respectively.
f Using the formula for the decomposition of generators Mab on (anti-
)selfdual parts and relations of these parts with t’ Hooft symbols we
represent helicity operators Λ1 and Λ2 in the form

Λ1 = 2
(
M

(+)
ab M

(+)
ab −M

(−)
ab M

(−)
ab

)
= 8

(
M

(+)
i M

(+)
i −M

(−)
i′ M

(−)
i′

)
,

Λ2 = M
(+)
ab M

(+)
ab + M

(−)
ab M

(−)
ab = 4

(
M

(+)
i M

(+)
i + M

(−)
i′ M

(−)
i′

)
.
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6D helicity operators

f In case of unitary representations, the operatorsM(+)
i M

(+)
i andM(−)

i′ M
(−)
i′

are equal to j+(j++1) and j−(j−+1) respectively. Therefore, the eigenvalues
of the helicity operators take the values

λ1 = 8j+(j+ + 1)− 8j−(j− + 1) , (0.46)

λ2 = 4j+(j+ + 1) + 4j−(j− + 1) , (0.47)

where j± are integer or half-integer numbers in the case of the unitary
representations.
f Note that the standard 4D helicity operator is invariant under proper
SO(1, 3) rotations but changes its sign under improper O(1, 3) rotations.
We have the same property for Λ1 but it is not the case for Λ2.
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Examples

f Here we will demonstrate the use of the obtained formulas for determining
the helicities on the examples of some massless finite spin fields. To clarity
and avoid technical complications, we will consider only bosonic integer-
spin fields.
f Since the irreducible massless representations of the 6D Poincaré group
are induced by the irreducible SO(4) representations in the light-cone
reference frame, we will use the following procedure.
f Below, in all examples of this section, we first consider a fixed irreducible
SO(4) representation and determine the values of the helicities. Here we
will use the defining representation for the so(4) generators

(Mab)eg = i(δaeδbg − δagδbe) . (0.48)

f Then we reconstruct the corresponding 6D field, for which the equations
of motion and gauge fixing show that the independent components are
exactly those SO(4) fields which were considered earlier in the Euclidean
four-dimensional picture.
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Vector field

f Let us consider the SO(4) vector field Aa. In this case the so(4) generators
coincide with (0.48):

(Mab)eg = (Mab)eg . (0.49)

f Then, the SO(4) Casimir operators take the form

(Λ1)eg = εabcd(MabMcd)eg = 0 ,

(Λ2)eg = (MabMab)eg = 6δeg .
(0.50)

f When acting on the SO(4) vector field Aa, the operators (0.50) give the
following values of helicities:

λ1 = 0 , λ2 = 6 ; j+ = j− =
1

2
. (0.51)
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Vector field

f This Euclidean vector field Aa describes physical components of the 6D
vector gauge field Am. In the momentum representation the U(1) massless
gauge field Am is described by the equations of motion

PmFmn = 0 , (0.52)

where Fmn = i(PmAn − PnAm) is the field strength, and determined up to
gauge transformations

δAm = iPmϕ . (0.53)

One of the possible gauge fixing for transformations (0.53) is the light-cone
gauge (W. Siegel, Fields, arXiv:hep-th/9912205 (WS))

A+ = 0 . (0.54)

Then in the light-cone frame, the equations of motion (0.52) give A− = 0
and an independent field is given by the transverse part Aa of the 6D gauge
field Am.
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Second rank symmetric tensor field

f Now we consider the SO(4) second rank tensors. In this case the so(4)
generators take the matrix form

(Mab)e1e2,g1g2 =
(
(Mab)1+(Mab)2

)
e1e2,g1g2

= (Mab)e1g1δe2g2+δe1g1(Mab)e2g2

and the SO(4) Casimir operators are

(Λ1)e1e2,g1g2 = εabcd
(
MabMcd

)
e1e2,g1g2

= 2 εabcd
(
(Mab)1(Mcd)2

)
e1e2,g1g2

= 8 εe1e2g1g2 ,

(Λ2)e1e2,g1g2 = (MabMab)e1e2,g1g2 =
(
(M2

ab)1+(M2
ab)2+2(Mab)1(Mab)2

)
e1e2,g1g2

= 12 δe1g1δe2g2 + 4(δe1g2δe2g1 − δe1e2δg1g2) .

First, we consider the SO(4) second rank tensor ĥab, which is symmetric
ĥab = ĥba and traceless ĥaa. On this field the helicity operators take the
values

λ1 = 0 , λ2 = 16 ; j+ = j− = 1 . (0.55)

Let us show that this field ĥab describes the physical components of the
6D linearized gravitational field.
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Second rank symmetric tensor field

f Let us show that this field ĥab describes the physical components of
the 6D linearized gravitational field. The 6D linearized gravitational field
hmn = hnm is determined by the well known equations of motion

P2hmn − PmPkh
nk − PnPkh

mk + PmPnhk
k = 0 , (0.56)

and has gauge invariance

δhmn = iP(mϕn) . (0.57)

For the transformations (0.57) we can put again the light-cone gauge (see
also WS)

h+m = 0 . (0.58)

The equations of motion (0.56) produce h−m = 0, haa = 0 in the light-cone
frame. As a result, nonvanishing physical components of the 6D gravity
field hmn are given by the traceless part ĥab of its transverse components
hab.
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Third rank (anti-)selfdual antisymmetric tensor fields

f Now we consider the SO(4) antisymmetric tensors of the second rank
B

(±)
ab = −B(±)

ba , which are (anti-)selfdual

B
(±)
ab = ±1

2
εabcdB

(±)
cd . (0.59)

These tensors form the spaces of two SO(4) irreducible representations
which make up the SO(4) reducible representation in the space of all

antisymmetric rank 2 tensors associated to Young diagram [12] ≡ .

f In this case the so(4) generators Mab and helicity operators Λ1,Λ2 have
the same expressions. Then the eigenvalues of the operators Λ1,Λ2 are
given by numbers

λ1 = 16 , λ2 = 8 ; j+ = 1 , j− = 0 (0.60)

on the space of the selfdual fields B(+)
ab , and by

λ1 = −16 , λ2 = 8 ; j+ = 0 , j− = 1 (0.61)

on the space of the anti-selfdual fields B(−)
ab .
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Third rank (anti-)selfdual antisymmetric tensor fields

f It is clear that these SO(4) (anti-)selfdual fields B
(±)
[ab] are independent

components of the 6D massless (anti-)selfdual 3-rank fields B
(±)
mnk which

satisfy the identities

B
(±)
mnk = ± 1

3!
εmnklprB

(±)lpr . (0.62)

So, the equations of motion of the 6D massless fields B(±)
mnk are

a) PmB
(±)
mnk = 0 , b) P[mB

(±)
nkl ] = 0 , c) P2B

(±)
nkl = 0 .

(0.63)
f Then in the light-cone frame the equations (0.63a) give B(±)−mn = 0
whereas the equations (0.63b) produce B(±)abc = 0. As a result, independent
fields of the 6D tensors B(±)

mnk are the SO(4) (anti-)selfdual fields B(±)−ab ≡
B(±)ab which are subjected the SO(4) (anti-)selfdual conditions (0.59) due
to the 6D (anti-)selfdual conditions (0.62).
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Massless infinite (continuous) spin representations

f In this case, when the condition Π̂aΠ̂a = µ2 6= 0 is satisfied and
the Euclidean four-vector Π̂a is nonzero. Then the representations of the
ISO(4) group, which induce the 6D relativistic massless representations,
are infinite dimensional.
In case of these representations the Casimir operator Ĉ4 has nonvanishing
eigenvalue

C4 = Ĉ4 = −µ2 , µ 6= 0 . (0.64)
Moreover, we can take the basis with nonzero only the fourth component:

Π̂1 = Π̂2 = Π̂3 = 0 , Π̂4 = µ . (0.65)

Then taking into account ηia4 = δia and η̄i
′

a4 = −δi′a in previous formula for
Ĉ6 (in terms of t’ Hoofts symbols and generators su(2) algebras M

(±)
i ),

we obtain that the value of the Casimir operator Ĉ6:

Ĉ6 = −µ2 J iJ i , (0.66)

where
J i := M

(+)
i + M

(−)
i (0.67)

are the generators of the diagonal su(2) subalgebra of the stability algebra
so(4) = su(2)⊕ su(2) .
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Massless infinite (continuous) spin representations

f Using explicit expressions of the ‘t Hooft symbols (see e.g. Sect. 3.3.3
in IR) we find

J i = −1

2
εijkM jk , i = 1, 2, 3 . (0.68)

So the operators (0.67) are in fact the generators of the SO(3) subgroup of
the SO(4) stability group. Therefore, in case of the unitary representations
it is necessary to satisfy the equality

J2 = s(s + 1) , (0.69)

where s is a fixed integer or a half-integer number. So, in the case of
the irreducible representations of infinite (continuous) spin, the Casimir
operator C6 takes the value

C6 = Ĉ6 = −µ2 s(s + 1) , (0.70)

Such irreducible representations describe a tower of infinite number of
massless states.
f As a result, the massless infinite spin representations are characterized
by the pair (µ, s), where the real parameter µ defines the eigenvalue of the
Casimir operator C4 and the (half-)integer number s defines the eigenvalue
of the Casimir operator (0.70).
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Massless infinite (continuous) spin representations

f Let us examine in our consideration the D = 6 infinite integer spin
system X.Bekaert, J.Mourad; arXiv:hep-th/0509092 (BM) which is a
higher dimension generalization of the D = 4 model E.P.Wigner, Annals
Math. 40 (1939) 149; E.P.Wigner, Z. Physik 124 (1947) 665; V. Bargmann,
E.P.Wigner, Proc. Nat. Acad. Sci. US 34 (1948) 211; BMmodel is described
by the pair of the space-time phase operators

xm , pm , [xm, pk ] = iδmk (0.71)

and two pairs of the additional bosonic phase vectors

wm , ξm , [wm, ξk ] = iδmk ; um , ζm , [um, ζk ] = iδmk . (0.72)
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Massless infinite (continuous) spin representations

f These two pairs of vectors (0.72) are responsible for spinning degrees
of freedom. Infinite integer spin field Ψ in BM is described by the D = 6
generalization of the Wigner-Bargmann equations

p2 Ψ = 0 , ξ · p Ψ = 0 , (w · p− µ) Ψ = 0 , (ξ · ξ + 1) Ψ = 0 , (0.73)

f And additional equations with vector operators from the second pair

u·p Ψ = 0 , ζ ·p Ψ = 0 , ζ ·ξΨ = 0 , ζ ·ζ Ψ = 0 , (u ·ζ−s) Ψ = 0 , (0.74)

where ξ ·p := ξmpm, etc.
f Note that, in contrast to the four-dimensional case with one pair of
auxiliary variables wm, ξm1, in the six-dimensional case it is necessary to
use the second pair of auxiliary vector variables um, ζm to describe arbitrary
infinite spin representations.

1Note that in the twistor formulation of the infinite spin particle I.L. Buchbinder,
S. Fedoruk, A.P. Isaev, Twistorial and space-time descriptions of massless infinite spin
(super)particles and fields, Nucl. Phys. B 945 (2019) 114660, arXiv:1903.07947, it was
more convenient for us to use dimensional additional variables ym = wm/µ, qm = µξm.
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Massless infinite (continuous) spin representations

f In the light-cone frame and in the representation ξm = −i∂/∂wm,
ζm = −i∂/∂um the equations (0.73) give the conditions

∂

∂w+
Ψ = 0 , (p+w− − µ) Ψ = 0 ,

(
∂

∂wa

∂

∂wa
+ 1

)
Ψ = 0 , (0.75)

whereas (0.74) yield

p+u− Ψ = 0 ,
∂

∂u+
Ψ = 0 ,

∂

∂ua

∂

∂wa
Ψ = 0 , (0.76)

∂

∂ua

∂

∂ua
Ψ = 0 ,

(
ua

∂

∂ua
− s

)
Ψ = 0 . (0.77)

f The solution of this equations is the field

Ψ = δ(p+w− − µ) δ(p+u−) Φ(wa, ua) , (0.78)

where Φ(wa, ua) has series expansions presented in BM.
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Massless infinite (continuous) spin representations

f Now we can determine the values of the Casimir operators Ĉ4 and Ĉ6

on the field (0.78). For the field (0.78) the generators of the iso(4) algebra
have the form

Mab = i

(
wa

∂

∂wb
− wb

∂

∂wa
+ ua

∂

∂ub
− ub

∂

∂ua

)
, Π̂a = −iµ ∂

∂wa
.

As a result, due to third equation from (0.75), we obtain the fulfillment of
the condition for the Casimir operator C4: C4 = Ĉ4 = −µ2.
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Massless infinite (continuous) spin representations

f Moreover, this representations lead to the expression

Ĉ6 = µ2 ua
∂

∂ua

(
ub

∂

∂ub
+ 1

)
∂

∂wc

∂

∂wc
(0.79)

+µ2

(
ua

∂

∂wa
ub

∂

∂wb
− uaua

∂

∂wb

∂

∂wb

)
∂

∂uc

∂

∂uc

+µ2

(
uaua

∂

∂ub

∂

∂wb
− 2ua

∂

∂ua
ub

∂

∂wb

)
∂

∂uc

∂

∂wc

for the sixth order Casimir operator. So, due to the equations (0.75), (0.76)
the operator Ĉ6 takes the value Ĉ6 = −µ2s(s + 1) on the field Ψ.

f Thus, the infinite spin field with only one additional vector variables
and obeying the Wigner-Bargmann equations and additional equations
describes the irreducible (µ, s) infinite spin representation. The system with
only one pair of auxiliary variables wm, ξm and with only the equations of
motion (0.73) describe the infinite spin representations at s = 0 (see BM).
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Conclusions

We have studied the massless irreducible representations of the Poincaré
group in six-dimensional Minkowski space and give full classification of all
massless representations including infinite integer spin case.

I The representations are described by three Casimir operators written
in the form (0.7), (0.8), (0.9) or in the equivalent form (0.10), (0.11),
(0.12).

I The properties of these operators are explored in the standard massless
momentum reference frame, where it is seen that the unitary represen-
tations of ISO(1, 5) group are induced from representations of SO(4)
and ISO(4) groups and correspondingly are divided into finite spin
(helicity) and infinite spin representations. Both these representations
are studied in details.

I It is proved that the finite spin representation is described by two
integer or half-integer numbers while the infinite spin representation
is described by one real parameter and one integer or half-integer
number.

I In case of half-integer spin we should introduce an additional spinor
or twistor variables like in BM.
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Continuation

I As a continuation of this research it would be interesting to describe
the massless representations with half-integer spin and massive irreducible
representations of six-dimensional Poincaré group with both integer
and half-integer spin.

I Another open problem is constructing the representations of the correspon-
ding six-dimensional super Poincaré group.

I Also it would be useful to work out the field realizations of the
massless representations considered in the paper arXiv:2011.14725
and develop a Lagrange formulation for these fields in six-dimensional
Minkowski space.

f We plan to study all these problems in the forthcoming papers.
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