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Introduction

Ruijsenaars-Schneider models

In the paper [Annals of Physics 170 (1986), 370-405] Ruijsenaars and Schneider, with
hope of describing soliton scattering, developed a new class of integrable systems,
defined by the Hamiltonian

Hrs = mc? >~ cosh(6) [ [ f(xi — X)), {x.6;} =,
i i

where c is the speed of light. The Hamiltonian Hgs forms a Poincare algebra with
respect to Poisson brackets together with

P mczi:sinh(e,-) [0 —x), B= —15 Zi:x,-,

j#i
{Hgs, P} =0, {H,B} =P, {P,B} = H/c?
if 2(x) = a+ bgp(x), where p(x) is the Weierstrass elliptic function. This condition
follows if one just requires {H, P} = 0. This condition is also sufficient for integrability

of the system (we do not discuss integrals there further).
Let us also note that in the limit ¢ — oo this system reduces to Calogero-Moser one.
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Introduction

Ruijsenaars-Schneider models

One can alternatively formulate the condition of relativistic invariance as
{8:,S_} =0, with

Si=1(Hrs£P)=1 Zei‘) []7x—x).
J#I

(for further convenience, let us put m =1, ¢ = 1 in what follows). S were called by
Ruijsenaars and Schneider “ the lightcone Hamiltonians”. One can also use S; as an
alternative Hamiltonian, resulting in the simple equations of motion

% =2 Kk Wnmx), W(x) = —(x)/1(x).
J#i

Another advantage of using S; as a Hamiltonian is that it can be rewritten in form,
resembling the usual “free” Hamiltonian, at the cost of deforming Poisson brackets:

:2Zplv p/:ee H\/ Xi—X;),

ji#)
{0} = 05y, AP, Pt = (1 = 65) pipy W (xi — X))
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Introduction

Attempts of N = 2 supersymmetrization

The attempts of construction of N = 2 supersymmetric version of the RS model
involved Hamiltonian Hpes = Sy = 1/2 Z,p,?, and a restricted set of functions W,
which can be obtained from the general elliptic case in special limits

W(x) € {1/x, 1/sin(x), 1/sinh(x), 1/tan(x), 1/tanh(x)}.

The N = 2 supersymmetrization involves construction of supercharges Q, Q with
brackets

{Q,@} =0, {Q,Q} =0, {QQ}=-2iH, H=1}>_pf + fermions.

In [JHEP 1804 (2018) 079], Galajinsky introduced the fermions 1;, 1); with standard
brackets and the supercharges at most cubic in the fermions
{i o} = —i6y, {¥n} =0 {n P} =0, Q=3 phi+ > fhintyix.
i ik
and found that {Q, Q} = 0 is possible to achieve for at most 3 particles only.

In [Phys.Lett.B 807 (2020) 135545] Krivonos and Lechtenfeld proposed using simple
“free” supercharges with modified brackets between the fermions

Q= Zpﬂ/)h Q= Z,sz/_)i, {vi, 9} = —viyiW(xi — %), {¥i, 9} =—id;+...
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Introduction

Attempts of N = 2 supersymmetrization

The modification of brackets between the fermions allowed to compensate the term

> pipiviviW (X — x;) which appeared in the bracket {Q Q} due to
{p,,p,} pipiW(xi — x;). To satisfy Jacobi identities, it is required to revise other
brackets:

{wi, &} = —i6j + v, W(x — x), {x:,%;}

= {x,9;} =0,
{pi, 1/)/} i/25;pivi Z w’ (xi — Xk)¢kwk - 1/2pl¢]¢l1r/}l ( - Xj),
k#i
{pi, s} = —i/265pi0 Y W' (xi — X )vowdk + i/ 2P W' (xi — x;)
k#i

Jacobi identities and {Q, Q} = 0 hold for any W(x).
Note that one can also define fermions with standard brackets

& =viexp (i/2) W(xi— x)tud) & i

=¢&exp(—i/2 Z W(xi — xk)éxék),
ki ki
Q= Zp/fl exp - 1/22 W(xi — X fkfk) {fufj} {f/apj} =0, {fnf]} = —idj.
k#i
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New approach

Supercharges and matrix power series

Let us propose a bit different approach to the N = 2 Ruijsenaars-Schneider model. It
is based on simple brackets

{xi.p;} = dipj, {pispi} = Pips(1 — 85) W , {&.§) = -
and the following ansatz for the supercharges:

1 _ -
Q=> p <ﬁ) & Q= > pi <?) &, Nj= 2(1 —0p) W(xi—x;) (€€—¢i€i).-
ij I i

Here, (1 — M)~ is matrix power series (1 — I'I),.]f =05+ M+ >, MMk +.... To
make the system N = 2 supersymmetric, the supercharges should satisfy
{@,Q} ={Qq} =o.

Much like the case of [Phys.Lett.B 807 (2020) 135545], the I1; term in the power
series allows to cancel the contribution of {p;, p;} to {Q, Q} in the quadratic
approximation in the fermions. Then other term should be chosen to cancel quadric
terms, and so on. One can examine a few first terms in the simplest case W = 1/x
and obtain that the matrix power series should read

0 + My + Z MMy + Z MMMy + .
K K1
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New approach

Constraints on W

Studying the supercharges for general W, one can check that {Q, Q} = 0 is satisfied
in the 2nd and 4th approximation in the fermions, regardless of W. However,
unusually for N = 2 supersymmetry, the terms of 6th power in the fermions cancel
only if a rather nontrivial constraint is satisfied

Epixyny = Wi Wi Wiy — Wi Wiy Wi + Wi Wi Wi — Wiy Wi Wy — W Wix Wiy +
+ W Wy Wiy + Wi Wik Wiy — Wi Wiy Wiy + Wiy Wix Wiy — W; W Wiy = 0,

where W; = W(x; — x;). One can show, however, that is actually simpler: solving
together Eji = 0 and Epyiy = 0 w.r.t. to Wi and W, one finds that

Wi — Wi Wik + Wix Wy — Wi Wiy + Wy Wiy
b =

W — Wi Wi + Wix Wy — Wik Wiy + Wy Wiy
Wi + Wik » Wi + W, ’

or Wik Wi + Wix Wi + WjiWi = Wi Wj + Wi Wiy + Wy Wi

One can note that the left hand side of this equation depends on x;, does not depend
on x; and the right hand side the opposite. They, therefore, should be equal to the
same function of x;, xx. Moreover, as left hand side is symmetric with respect to
mutual interchanges of x;, x;, X this function should be simply a constant.

N. Kozyrev (BLTP JINR, Dubna) N=2 RS model RDP Workshop, 06.12.20 8/20



New approach

Solving equation on W

Equation
W(xi — x))W(xi — x) + W(xk — xi)) W(xx — x;) + W(x; — x;) W(x; — xx) = ¢ = const

strongly restricts domain of acceptable functions W. Surprisingly, its solutions are just
a rational function and trigonometric/hyperbolic cotangent, which are among those
that are needed to make the model integrable. To show this, let us note that
@ The only significant values of ¢ are —1, 0, 1, solutions with others can be
obtained by rescaling;
@ This equation should restrict functional form of W and should be valid for any x;,
X;, Xx within the domain of acceptability;
@ The only solution smooth at 0 is W = 0. Indeed, if W is smooth and odd,
W(0) = 0. When, if x; = X, = 0, one finds W(x;)? = ¢ = 0.
Therefore, let us consider supposedly smooth ¢(x) = 1/W(x) and put x, = 0. Then
one immediately finds

c— W) W(x) _ _p(xi) + e(x)

W(x) — W(x) 1+ co(xi)e(x)
Substituting this back to the main equation, one finds that it is satisfied identically.
Moreover, one can recognize in the property of ¢ the laws that tan(x)/tanh(x) satisfy.

W(x —x) = = (X + x)
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New approach

Solving equation on W

There are no more solutions, as one can derive the differential equation ¢ should
satisfy. Taking x; = x and x; = € as an infinitesimal parameter, one can write
P(x +€) = () + €' (x) + O(°).
At the same time, the equation on ¢ implies
p() +ole)
14 co(x)e(e)
Treating € as an infinitesimal parameter, one notes that

©(€) = ¢(0) + €' (0) + O(€?) = ae + O(e?). Here, (0) = 0, as o(x) is odd, and
a= ¢'(0) is some constant.

e(x+e)=

o(X) + o(€) — p(x) = co(x)?p(e)
1+ co(x)e(e)

Therefore, ¢(x) satisfies differential equation with easily obtained odd solutions

p(x +¢) —p(x) =

= ac(1 - c?(x)) + O(&).

c=0 = p(x)=ax
¢'(x)=a(1 —cp?(x)) = { c=—-1 = p(x) =tan(ax)
c=1 = ¢(x) =tanh(ax)
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Comparing supercharges

How different are new supercharges?

The cubic condition
Eqigin = Wy Wi Wy — Wy Wiy Wik + Wix Wy Wi — Wy Wik Wy — Wi Wi Wiy +
+ W Wy Wig + Wi Wik Wiy — Wi Wiy Wig + Wi Wix Wiy — W W Wiy = 0
that we already solved ensures that {Q, Q} = 0 is satisfied in the 6th approximation in
the fermions, but in the case of 5 and more particles this is not enough. At the same
time, we learned that domain of acceptable W’s is rather restricted, and thus should
be taken into account while proving that {Q, Q} = 0. We, therefore, adopt a different

approach and, instead of directly proving that { Q, Q} = 0 for any number of particles,
try to relate our supercharges

Q=>p <%) &, Nj= %(1 — 0 W(xi — X)) (& — §€i)
ij i
to ones found in [Phys.Lett.B 807 (2020) 135545]
Q = Zp,{; exp ( = i/2 Z W(X,‘ = Xk)fk.’;rk).

ki

Let us show that in the case of rational W they are identical, and in the case of
trigonometric/hyperbolic W acquire simple fermionic modification.
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Comparing supercharges

Property of matrix I1;

Connection between different supercharges can be established if one notes that the
matrix My = i/2(1 — 5;) W(xi — X)) (& — &&;) satisfies &M;& = 0. Moreover, it could
be proven by induction that

«@ i . a— @
&(N%),& = 5&&2 W(x —x)(N°7"), &&= &(N%),& = 0.
k
Therefore, the matrix power series in the supercharge

Z (na)ij /i~ 5 Z W(x— Xk)(g’gk 5"5') (na 1)k] —Si5 Z W(xi— Xk _1);(/5/5_’(
j

are proportional to & and some function of x; and the fermions, just as in the
exponential case, and one can present Ej(1 - I‘I),/T1§,- =& + A& forany W. The
function \;, in turn, is determined by the relation

] . . .
&=y (1-N); <1—”>1k & = 5,-(A,-+% z/: W(x,-—x,-)g,g,-+% Zj: W(xi—x)&iAj) = 0

J:k
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Comparing supercharges

Equation on \;

The relation for \; can be written in more clear notation with evident formal solution
> @G- 2N =T, Zj=-sWx-x)gg, Ti= Zz, A=Y % (Z%),Ti
i a=0 j
Thus X, in general, is not simply a function of i/23 ", W(x,- — Xk )&kEk, but still a matrix

power series. Let us recall, however, that we are interested in W'’s that satisfy the
equation

W(xi — x)W(xi — %) + W(xe — x)W(xk — x;) + W(x — x) W(x — %) = ¢
As a result, Zj satisfies the relation that can be used to simplify the power series in Zj:

ZZ”Z’k B <_7> Z W(xi — x;) W(x; — Xi)§&j i =

= (—7) Z — X)W (X — xk) — W(xi — ) W(Xc — X)) — ) &€ &l =

)

ZZI/ k= Tk) Kk + C&k{kJ J= nggm

Let us use it to resum 327 Z. Z<).T;in the cases ¢ = 0, ¢ = £1 separately.

N. Kozyrev (BLTP JINR, Dubna) ) N=2 RS model RDP Workshop, 06.12.20 13/20




Comparing supercharges

Power series and supercharge for c =0

In the simpler case ¢ = 0, 3=, Z;Zkx = (T; — Tk) Zx and one can note that a few first
terms in series -7, 3", (Z“),.I.T, can be presented as functions of T;:

1
AT =3 %= () =3 ZTh = 3 5T, = 5(T)
1
2 (2T =5 AN = T3 4T = 3 AT
J J
1 1
>2Z(T)* = 5(T)% 32(29),T = (7).
J J

Therefore, one can assume that 3, (Z“) i = f(a) T+ and substitute this into the
relation, which follows from 3=, Z;Zj = (T Tk) Zik:

> (@7 = 2 @NZ ) Ti= T )T AT E ()T
/ B ) )
to find that 3°, Z;(7;) also should be known. It is not difficult to establish relation for it,

Zz,, i (Th)* = T,Zz,k Te)” Zz,k (T
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Comparing supercharges

Power series and supercharge for c =0

Itis also safe to assume that 3, Z;(T;)* = g(e) T**". Then, substituting this into
> ZiZi(Te) = TZZ,k (Te)® Zz,k (T,
J.k
one finds self-sufficient iterative relation
gla)gla+1)=9g(a) —gla+1) = (1/g) (e +1) = (1/9) (a) =1,
(1/9) (@) = a+constor g(a) =1/(a+ 1) for g(1) = 1/2.
Then the relation on 37, (Z*),T; can be reduced to

1

(@t D) = (a+ Di{a =1) = fla=2) = Ho) = 75

Therefore, we find the exponential solution for \;:

a+1

Sy — iz (Z2%).T; ; Z (1 + e’ — 1 and, therefore,

a=0 |

Q=>_p <1% n) =2_pte B E Wk = g for W(x) =
i
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Comparing supercharges

Power series and supercharge for ¢ = +1

Rewriting supercharge in the case ¢ = &1 is somewhat more difficult, as the relation
on (Zz)l.j contains, aside of Z and T, also combination of fermions J = 3~ {mém:

1 -
> ZiZk = (Ti = T) Zu + g0 J &b
j
Keeping in mind the previous experience, we write down the equation for =, Z;(T;)"

ZZ// 7 (T)™ = T/ZZU —ZZ/'/‘(E)QM‘F%JZ{:&&(TOQ =

1 «@
a1 h(a) =

ZZ’I( T)" = 9(a)(T)*"" + h(a) JZék&k (T)*" = gla) =
J
AS Ty &k (T) ™ = =5 Xy &l W(xk — x)&E(Tk) ™" = = X, &8 Zk(Ti) ™" and

we can obtain:

> kT =~ 36k (1) - 21 5 el (1)
k ! !

0, a=2N+1,

;&&(Tk)a:{ 4(_i)a/2, a = 2N.

T+a 4
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Comparing supercharges

Power series and supercharge for ¢ = +1

With these results, one can expect that > (Z”‘)ij7} can be represented as a function
of T; and J only:

(2%, Ti=Y Ha B)(T)* P
i B=0

Substituting this into equation for (Z“)I.I.Tj, one finds equation for f(a, 8)

S22, T= T3 (207, =2 ZeTe 3 (2°72) 1 Tt G Dk (2°75) T
k,m

j k k m
Indeed, one finds an equation for f(«, 3) as

a+1

Zfaﬁ T) PP = Zfa—1,8 T)* PP

= fa—2,8) ati=p s f(a )RS
“2 g (7Y 4 T e (W)

Counting powers of J, one can note that the last term is proportional to J***. This
power of J can be found also only in the first term. Only first and second terms contain
J®. Thus one should consider separately terms with J**!, J% and J7, v < o
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Comparing supercharges

Power series and supercharge for ¢ = +1

Examining the terms with J* and J7, v < «, one finds

o ( —-2,8) g __ap)
f(ayﬂ)_f( 176) ﬂ+17 f(a7a)_f(a 17a) = f(a"B)_(a—B—i—‘l)'
The function a(3) could onIy be determined by considering terms ~ J**'. Careful
analysis shows that a(3) = 0 for odd 3, while for even 3 they are related by an
equation

B/2

_ o) = S (CDEE25(2y) oy (a2
a(ﬁ+2—2N)_; G272 (3) :

For any g, this allows to find a(3) in terms of a(y < 3), and, as a(0) = 1, find all of
them. A few first of a(3) read

61c° 277¢*
a(o) - 1> 3(2) 77 3(4) 384 ( ) 46 0807 a( ) - ma
It was checked up to 20th orderin T - J that

oo a+l

=> > (e, B)(T)* PP = eTicos™ (%)—1,where

a=0 =0

-1 o =
(-G =604+N), Ti=—5> WX — x)éék-



Comparing supercharges

Difference in the case ¢ = +1

Therefore, we find, comparing with the supercharges O obtained in [Phys.Lett.B 807
(2020) 135545],

Qat = Zpi ‘fie_é Lok S/ (=) — Qrat»
i
1 _i t(X; — Xk )€ £ 1
Q = @2 2k COMXI—Xi)EkEk Otan,
a cosh (% : P& cosh () ~™"
1
Q. _ e—z S coth(x—x)éx €k _ Qtanh
anh cos ( ZP: fl cos (%) tan

It should be noted that appearing functions of J do not spoil supersymmetry, and this,
moreover, is valid for any function f(J), not only these particular functions. Indeed,
one can note that {&x&k, Eémém} = 0. Therefore, for any function f(J)

{Q,f(J)} = f'(J)Zpﬁié Sk W(Xf*Xk)&kEk{ghgjgj} =if (J)Q and
i
{Q,Q) = {{(J)Q, f(J)Q} = —2(J)Q{Q, f(J)} = —2if(J)f (J)Q* = 0.

Therefore, the modified supercharges Q = f(J)Q still form N = 2, d = 1 Poincaré
superalgebra for any f(J).
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Conclusion

Conclusion

In this talk we discussed a version of N = 2 supersymmetric Ruijenaars-Schneider
model, based on the supercharges

1 _ N . o
@=2.p (1_”)#&7 a=2p (1—[1)/51 My = 5(1-8)Wox—x) (66-68).

We showed that if the N = 2, d = 1 superalgebra conditions {Q, Q} = {Q,Q} =0
are satisfied, the only acceptable functions W are

W(x) € {1/x, 1/tan(x), 1/tanh(x)},

which are among those that are needed to make the system integrable. For these
particular functions W(x), the supercharges coincide with those found in [Phys.Lett.B
807 (2020) 135545], modified by functions of J = >, &kék.

It would be interesting to find the constants of motion of this system and find how the
structure of obtained supercharges affects them. Another question to study is the
N = 4 supersymmetric extension of this system.
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