New approach to $\mathrm{N}=2$ supersymmetric Ruijsenaars-Schneider model

Nikolay Kozyrev
BLTP JINR, Dubna, Russia

in collaboration with S.Krivonos and O.Lechtenfeld

Contents

- Introduction
- Ruijsenaars-Schneider models
- Attempts of $N=2$ supersymmetrization
- New approach
- Supercharges and matrix power series
- Constraints on power series
- Equation on W
- Solving equation on W
- Comparing supercharges
- How different are new supercharges?
- Property of matrix $\Pi_{i j}$
- Equation on λ_{i}
- Power series and supercharge when $c=0$
- Power series and supercharge when $c= \pm 1$
- Difference in the case $c= \pm 1$
- Conclusion

Ruijsenaars-Schneider models

In the paper [Annals of Physics 170 (1986), 370-405] Ruijsenaars and Schneider, with hope of describing soliton scattering, developed a new class of integrable systems, defined by the Hamiltonian

$$
H_{R S}=m c^{2} \sum_{i} \cosh \left(\theta_{i}\right) \prod_{j \neq i} f\left(x_{i}-x_{j}\right), \quad\left\{x_{i}, \theta_{j}\right\}=\delta_{i j},
$$

where c is the speed of light. The Hamiltonian $H_{R S}$ forms a Poincare algebra with respect to Poisson brackets together with

$$
\begin{array}{r}
P=m c \sum_{i} \sinh \left(\theta_{i}\right) \prod_{j \neq i} f\left(x_{i}-x_{j}\right), \quad B=-\frac{1}{c} \sum_{i} x_{i} \\
\left\{H_{R S}, P\right\}=0, \quad\{H, B\}=P, \quad\{P, B\}=H / c^{2}
\end{array}
$$

if $f^{2}(x)=a+b \wp(x)$, where $\wp(x)$ is the Weierstrass elliptic function. This condition follows if one just requires $\{H, P\}=0$. This condition is also sufficient for integrability of the system (we do not discuss integrals there further).
Let us also note that in the limit $c \rightarrow \infty$ this system reduces to Calogero-Moser one.

Ruijsenaars-Schneider models

One can alternatively formulate the condition of relativistic invariance as $\left\{S_{+}, S_{-}\right\}=0$, with

$$
S_{ \pm}=\frac{1}{2}\left(H_{R S} \pm P\right)=\frac{1}{2} \sum_{i} e^{ \pm \theta_{i}} \prod_{j \neq i} f\left(x_{i}-x_{j}\right) .
$$

(for further convenience, let us put $m=1, c=1$ in what follows). $S_{ \pm}$were called by Ruijsenaars and Schneider " the lightcone Hamiltonians". One can also use S_{+}as an alternative Hamiltonian, resulting in the simple equations of motion

$$
\ddot{x}_{i}=2 \sum_{j \neq i}^{n} \dot{x}_{i} \dot{x}_{j} W\left(x_{i}-x_{j}\right), \quad W(x)=-f^{\prime}(x) / f(x)
$$

Another advantage of using S_{+}as a Hamiltonian is that it can be rewritten in form, resembling the usual "free" Hamiltonian, at the cost of deforming Poisson brackets:

$$
\begin{array}{r}
H=\frac{1}{2} \sum_{i=1}^{n} p_{i}^{2}, \quad p_{i}=e^{\theta_{i}} \prod_{j(\neq i)}^{n} \sqrt{f\left(x_{i}-x_{j}\right)}, \\
\left\{x_{i}, p_{j}\right\}=\delta_{i j} p_{j}, \quad\left\{p_{i}, p_{j}\right\}=\left(1-\delta_{i j}\right) p_{i} p_{j} W\left(x_{i}-x_{j}\right) .
\end{array}
$$

Attempts of $N=2$ supersymmetrization

The attempts of construction of $N=2$ supersymmetric version of the RS model involved Hamiltonian $H_{b o s}=S_{+}=1 / 2 \sum_{i} p_{i}^{2}$, and a restricted set of functions W, which can be obtained from the general elliptic case in special limits

$$
W(x) \in\{1 / x, 1 / \sin (x), 1 / \sinh (x), 1 / \tan (x), 1 / \tanh (x)\}
$$

The $N=2$ supersymmetrization involves construction of supercharges Q, \bar{Q} with brackets

$$
\{Q, Q\}=0, \quad\{\bar{Q}, \bar{Q}\}=0, \quad\{Q, \bar{Q}\}=-2 \mathrm{i} H, \quad H=\frac{1}{2} \sum_{i} p_{i}^{2}+\text { fermions }
$$

In [JHEP 1804 (2018) 079], Galajinsky introduced the fermions $\psi_{i}, \bar{\psi}_{j}$ with standard brackets and the supercharges at most cubic in the fermions

$$
\left\{\psi_{i}, \bar{\psi}_{j}\right\}=-\mathrm{i} \delta_{i j}, \quad\left\{\psi_{i}, \psi_{j}\right\}=0 \quad\left\{\bar{\psi}_{i}, \bar{\psi}_{j}\right\}=0, \quad Q=\frac{1}{2} \sum_{i} p_{i} \psi_{i}+\sum_{i j k} f_{i j k} \psi_{i} \psi_{j} \bar{\psi}_{k}
$$

and found that $\{Q, Q\}=0$ is possible to achieve for at most 3 particles only. In [Phys.Lett.B 807 (2020) 135545] Krivonos and Lechtenfeld proposed using simple "free" supercharges with modified brackets between the fermions

$$
\mathcal{Q}=\sum_{i} p_{i} \psi_{i}, \quad \overline{\mathcal{Q}}=\sum_{i} p_{i} \bar{\psi}_{i}, \quad\left\{\psi_{i}, \psi_{j}\right\}=-\psi_{i} \psi_{j} W\left(x_{i}-x_{j}\right), \quad\left\{\psi_{i}, \bar{\psi}_{j}\right\}=-\mathrm{i} \delta_{i j}+\ldots
$$

Attempts of $N=2$ supersymmetrization

The modification of brackets between the fermions allowed to compensate the term $\sum_{i} p_{i} p_{j} \psi_{i} \psi_{j} W\left(x_{i}-x_{j}\right)$ which appeared in the bracket $\{\mathcal{Q}, \mathcal{Q}\}$ due to $\left\{p_{i}, p_{j}\right\}=p_{i} p_{j} W\left(x_{i}-x_{j}\right)$. To satisfy Jacobi identities, it is required to revise other brackets:

$$
\begin{array}{r}
\left\{\psi_{i}, \bar{\psi}_{j}\right\}=-\mathrm{i} \delta_{i j}+\psi_{i} \bar{\psi}_{j} W\left(x_{i}-x_{j}\right), \quad\left\{x_{i}, \psi_{j}\right\}=\left\{x_{i}, \bar{\psi}_{j}\right\}=0, \\
\left\{p_{i}, \psi_{j}\right\}=\mathrm{i} / 2 \delta_{i j} p_{i} \psi_{i} \sum_{k \neq i} W^{\prime}\left(x_{i}-x_{k}\right) \psi_{k} \bar{\psi}_{k}-\mathrm{i} / 2 p_{i} \psi_{j} \psi_{i} \bar{\psi}_{i} W^{\prime}\left(x_{i}-x_{j}\right), \\
\left\{p_{i}, \bar{\psi}_{j}\right\}=-\mathrm{i} / 2 \delta_{i j} p_{i} \bar{\psi}_{i} \sum_{k \neq i} W^{\prime}\left(x_{i}-x_{k}\right) \psi_{k} \bar{\psi}_{k}+\mathrm{i} / 2 p_{i} \bar{\psi}_{j} \psi_{i} \bar{\psi}_{i} W^{\prime}\left(x_{i}-x_{j}\right)
\end{array}
$$

Jacobi identities and $\{\mathcal{Q}, \mathcal{Q}\}=0$ hold for any $W(x)$.
Note that one can also define fermions with standard brackets:

$$
\begin{gathered}
\xi_{i}=\psi_{i} \exp \left(\mathrm{i} / 2 \sum_{k \neq i} W\left(x_{i}-x_{k}\right) \psi_{k} \bar{\psi}_{k}\right) \Leftrightarrow \quad \psi_{i}=\xi_{i} \exp \left(-\mathrm{i} / 2 \sum_{k \neq i} W\left(x_{i}-x_{k}\right) \xi_{k} \bar{\xi}_{k}\right), \\
\mathcal{Q}=\sum_{i} p_{i} \xi_{i} \exp \left(-\mathrm{i} / 2 \sum_{k \neq i} W\left(x_{i}-x_{k}\right) \xi_{k} \bar{\xi}_{k}\right), \quad\left\{\xi_{i}, \xi_{j}\right\}=\left\{\xi_{i}, p_{j}\right\}=0, \quad\left\{\xi_{i}, \bar{\xi}_{j}\right\}=-\mathrm{i} \delta_{j} .
\end{gathered}
$$

Supercharges and matrix power series

Let us propose a bit different approach to the $N=2$ Ruijsenaars-Schneider model. It is based on simple brackets

$$
\left\{x_{i}, p_{j}\right\}=\delta_{i j} p_{j}, \quad\left\{p_{i}, p_{j}\right\}=p_{i} p_{j}\left(1-\delta_{i j}\right) W\left(x_{i}-x_{j}\right), \quad\left\{\xi_{i}, \bar{\xi}_{j}\right\}=-\mathrm{i} \delta_{i j}
$$

and the following ansatz for the supercharges:
$Q=\sum_{i, j} p_{i}\left(\frac{1}{1-\Pi}\right)_{i j} \xi_{j}, \quad \bar{Q}=\sum_{i, j} p_{i}\left(\frac{1}{1-\Pi}\right)_{i j} \bar{\xi}_{j}, \quad \Pi_{i j}=\frac{i}{2}\left(1-\delta_{i j}\right) W\left(x_{i}-x_{j}\right)\left(\xi_{i} \bar{\xi}_{j}-\xi_{j} \bar{\xi}_{i}\right)$.
Here, $(1-\Pi)^{-1}$ is matrix power series $(1-\Pi)_{i j}^{-1}=\delta_{i j}+\Pi_{i j}+\sum_{k} \Pi_{i k} \Pi_{k j}+\ldots$. To make the system $N=2$ supersymmetric, the supercharges should satisfy $\{Q, Q\}=\{\bar{Q}, \bar{Q}\}=0$.
Much like the case of [Phys.Lett.B 807 (2020) 135545], the $\Pi_{i j}$ term in the power series allows to cancel the contribution of $\left\{p_{i}, p_{j}\right\}$ to $\{Q, Q\}$ in the quadratic approximation in the fermions. Then other term should be chosen to cancel quadric terms, and so on. One can examine a few first terms in the simplest case $W=1 / x$ and obtain that the matrix power series should read

$$
\delta_{i j}+\Pi_{i j}+\sum_{k} \Pi_{i k} \Pi_{k j}+\sum_{k, l} \Pi_{i k} \Pi_{k \mid} \Pi_{i j}+\ldots
$$

Constraints on W

Studying the supercharges for general W, one can check that $\{Q, Q\}=0$ is satisfied in the 2nd and 4th approximation in the fermions, regardless of W. However, unusually for $N=2$ supersymmetry, the terms of 6th power in the fermions cancel only if a rather nontrivial constraint is satisfied

$$
\begin{aligned}
& E_{[i k] j j l}=W_{i j} W_{i k} W_{i l}-W_{i j} W_{i l} W_{j k}+W_{i k} W_{i l} W_{j k}-W_{i l} W_{j k} W_{j l}-W_{i j} W_{j k} W_{k l}+ \\
& \quad+W_{i j} W_{i l} W_{k l}+W_{i j} W_{j k} W_{k l}-W_{i k} W_{j k} W_{k l}+W_{i l} W_{j k} W_{k l}-W_{i j} W_{j l} W_{k l}=0
\end{aligned}
$$

where $W_{i j}=W\left(x_{i}-x_{j}\right)$. One can show, however, that is actually simpler: solving together $E_{[i k](j i)}=0$ and $E_{[j k](i)}=0$ w.r.t. to $W_{i k}$ and $W_{i l}$, one finds that

$$
W_{i k}=\frac{W_{i j} W_{j k}+W_{j k} W_{j l}-W_{j k} W_{k l}+W_{j l} W_{k l}}{W_{i j}+W_{j k}}, \quad W_{i l}=\frac{W_{i j} W_{j l}+W_{j k} W_{j l}-W_{j k} W_{k l}+W_{j l} W_{k l}}{W_{i j}+W_{j l}},
$$

$$
\text { or } W_{i k} W_{i j}+W_{i k} W_{j k}+W_{j i} W_{j k}=W_{j k} W_{j l}+W_{k j} W_{k l}+W_{j l} W_{k l}
$$

One can note that the left hand side of this equation depends on x_{i}, does not depend on x_{l} and the right hand side the opposite. They, therefore, should be equal to the same function of x_{j}, x_{k}. Moreover, as left hand side is symmetric with respect to mutual interchanges of x_{i}, x_{j}, x_{k} this function should be simply a constant.

Solving equation on W

Equation

$$
W\left(x_{i}-x_{j}\right) W\left(x_{i}-x_{k}\right)+W\left(x_{k}-x_{i}\right) W\left(x_{k}-x_{j}\right)+W\left(x_{j}-x_{i}\right) W\left(x_{j}-x_{k}\right)=c=\mathrm{const}
$$

strongly restricts domain of acceptable functions W. Surprisingly, its solutions are just a rational function and trigonometric/hyperbolic cotangent, which are among those that are needed to make the model integrable. To show this, let us note that

- The only significant values of c are $-1,0,1$, solutions with others can be obtained by rescaling;
- This equation should restrict functional form of W and should be valid for any x_{i}, x_{j}, x_{k} within the domain of acceptability;
- The only solution smooth at 0 is $W=0$. Indeed, if W is smooth and odd, $W(0)=0$. When, if $x_{j}=x_{k}=0$, one finds $W\left(x_{i}\right)^{2}=c=0$.
Therefore, let us consider supposedly smooth $\varphi(x)=1 / W(x)$ and put $x_{k}=0$. Then one immediately finds

$$
W\left(x_{i}-x_{j}\right)=\frac{c-W\left(x_{i}\right) W\left(x_{j}\right)}{W\left(x_{i}\right)-W\left(x_{j}\right)} \Rightarrow \varphi\left(x_{i}+x_{j}\right)=\frac{\varphi\left(x_{i}\right)+\varphi\left(x_{j}\right)}{1+c \varphi\left(x_{i}\right) \varphi\left(x_{j}\right)}
$$

Substituting this back to the main equation, one finds that it is satisfied identically. Moreover, one can recognize in the property of φ the laws that $\tan (x) / \tanh (x)$ satisfy.

Solving equation on W

There are no more solutions, as one can derive the differential equation φ should satisfy. Taking $x_{i}=x$ and $x_{j}=\epsilon$ as an infinitesimal parameter, one can write

$$
\varphi(x+\epsilon)=\varphi(x)+\epsilon \varphi^{\prime}(x)+O\left(\epsilon^{2}\right) .
$$

At the same time, the equation on φ implies

$$
\varphi(x+\epsilon)=\frac{\varphi(x)+\varphi(\epsilon)}{1+c \varphi(x) \varphi(\epsilon)} .
$$

Treating ϵ as an infinitesimal parameter, one notes that $\varphi(\epsilon)=\varphi(0)+\epsilon \varphi^{\prime}(0)+O\left(\epsilon^{2}\right)=a \epsilon+O\left(\epsilon^{2}\right)$. Here, $\varphi(0)=0$, as $\varphi(x)$ is odd, and $a=\varphi^{\prime}(0)$ is some constant.
$\varphi(x+\epsilon)-\varphi(x)=\frac{\varphi(x)+\varphi(\epsilon)-\varphi(x)-c \varphi(x)^{2} \varphi(\epsilon)}{1+c \varphi(x) \varphi(\epsilon)}=a \epsilon\left(1-c \varphi^{2}(x)\right)+O\left(\epsilon^{2}\right)$.
Therefore, $\varphi(x)$ satisfies differential equation with easily obtained odd solutions

$$
\varphi^{\prime}(x)=a\left(1-c \varphi^{2}(x)\right) \Rightarrow\left\{\begin{array}{l}
c=0 \Rightarrow \varphi(x)=a x \\
c=-1 \Rightarrow \varphi(x)=\tan (a x) \\
c=1 \Rightarrow \varphi(x)=\tanh (a x)
\end{array}\right.
$$

How different are new supercharges?

The cubic condition

$$
\begin{aligned}
& E_{[i k] j i l}=W_{i j} W_{i k} W_{i l}-W_{i j} W_{i l} W_{j k}+W_{i k} W_{i l} W_{j k}-W_{i l} W_{j k} W_{j l}-W_{i j} W_{j k} W_{k l}+ \\
& \quad+W_{i j} W_{i l} W_{k l}+W_{i j} W_{j k} W_{k l}-W_{i k} W_{j k} W_{k l}+W_{i l} W_{j k} W_{k l}-W_{i j} W_{j i} W_{k l}=0
\end{aligned}
$$

that we already solved ensures that $\{Q, Q\}=0$ is satisfied in the 6 th approximation in the fermions, but in the case of 5 and more particles this is not enough. At the same time, we learned that domain of acceptable W 's is rather restricted, and thus should be taken into account while proving that $\{Q, Q\}=0$. We, therefore, adopt a different approach and, instead of directly proving that $\{Q, Q\}=0$ for any number of particles, try to relate our supercharges

$$
Q=\sum_{i, j} p_{i}\left(\frac{1}{1-\Pi}\right)_{i j} \xi_{j}, \quad \Pi_{i j}=\frac{\mathrm{i}}{2}\left(1-\delta_{i j}\right) W\left(x_{i}-x_{j}\right)\left(\xi_{i} \bar{\xi}_{j}-\xi_{j} \bar{\xi}_{i}\right)
$$

to ones found in [Phys.Lett.B 807 (2020) 135545]

$$
\mathcal{Q}=\sum_{i} p_{i} \xi_{i} \exp \left(-\mathrm{i} / 2 \sum_{k \neq i} W\left(x_{i}-x_{k}\right) \xi_{k} \bar{\xi}_{k}\right) .
$$

Let us show that in the case of rational W they are identical, and in the case of trigonometric/hyperbolic W acquire simple fermionic modification.

Property of matrix $\Pi_{i j}$

Connection between different supercharges can be established if one notes that the matrix $\Pi_{i j}=\mathrm{i} / 2\left(1-\delta_{i j}\right) W\left(x_{i}-x_{j}\right)\left(\xi_{i} \bar{\xi}_{j}-\xi_{j} \bar{\xi}_{i}\right)$ satisfies $\xi_{i} \Pi_{i j} \xi_{j}=0$. Moreover, it could be proven by induction that

$$
\xi_{i}\left(\Pi^{\alpha}\right)_{i j} \xi_{j}=\frac{\mathrm{i}}{2} \xi_{i} \bar{\xi}_{i} \sum_{k} W\left(x_{i}-x_{k}\right)\left(\Pi^{\alpha-1}\right)_{k j} \xi_{k} \xi_{j} \Rightarrow \xi_{i}\left(\Pi^{\alpha}\right)_{i j} \xi_{j}=0 .
$$

Therefore, the matrix power series in the supercharge
$\sum_{j}\left(\Pi^{\alpha}\right)_{i j} \xi_{j}=\frac{i}{2} \sum_{j, k} W\left(x_{i}-x_{k}\right)\left(\xi_{i} \bar{\xi}_{k}-\xi_{k} \bar{\xi}_{i}\right)\left(\Pi^{\alpha-1}\right)_{k j} \xi_{j}=-\xi_{i} \frac{i}{2} \sum_{j, k} W\left(x_{i}-x_{k}\right)\left(\Pi^{\alpha-1}\right)_{k j} \xi_{j} \bar{\xi}_{k}$
are proportional to ξ_{i} and some function of x_{i} and the fermions, just as in the exponential case, and one can present $\sum_{j}(1-\Pi)_{i j}^{-1} \xi_{j}=\xi_{i}+\lambda_{i} \xi_{i}$ for any W. The function λ_{i}, in turn, is determined by the relation
$\xi_{i}=\sum_{j, k}(1-\Pi)_{i j}\left(\frac{1}{1-\Pi}\right)_{j k} \xi_{k} \Rightarrow \xi_{i}\left(\lambda_{i}+\frac{\mathrm{i}}{2} \sum_{j} W\left(x_{i}-x_{j}\right) \xi_{j} \bar{\xi}_{j}+\frac{\mathrm{i}}{2} \sum_{j} W\left(x_{i}-x_{j}\right) \xi_{j} \bar{\xi}_{j} \lambda_{j}\right)=0$.

Equation on λ_{i}

The relation for λ_{i} can be written in more clear notation with evident formal solution

$$
\sum_{j}\left(\delta_{i j}-Z_{i j}\right) \lambda_{j}=T_{i}, \quad Z_{i j}=-\frac{i}{2} W\left(x_{i}-x_{j}\right) \xi_{j} \bar{\xi}_{j}, \quad T_{i}=\sum_{j} Z_{i j} \Rightarrow \lambda_{i}=\sum_{\alpha=0}^{\infty} \sum_{j}\left(Z^{\alpha}\right)_{i j} T_{j}
$$

Thus λ_{i}, in general, is not simply a function of $\mathrm{i} / 2 \sum_{k} W\left(x_{i}-x_{k}\right) \xi_{k} \bar{\xi}_{k}$, but still a matrix power series. Let us recall, however, that we are interested in W's that satisfy the equation

$$
W\left(x_{i}-x_{j}\right) W\left(x_{i}-x_{k}\right)+W\left(x_{k}-x_{i}\right) W\left(x_{k}-x_{j}\right)+W\left(x_{j}-x_{i}\right) W\left(x_{j}-x_{k}\right)=c
$$

As a result, $Z_{i j}$ satisfies the relation that can be used to simplify the power series in $Z_{i j}$:

$$
\begin{array}{r}
\sum_{j} z_{i j} z_{j k}=\left(-\frac{\mathrm{i}}{2}\right)^{2} \sum_{j} W\left(x_{i}-x_{j}\right) W\left(x_{j}-x_{k}\right) \xi_{j} \bar{\xi}_{j} \xi_{k} \bar{\xi}_{k}= \\
=\left(-\frac{\mathrm{i}}{2}\right)^{2} \sum_{j}\left(W\left(x_{i}-x_{j}\right) W\left(x_{i}-x_{k}\right)-W\left(x_{i}-x_{k}\right) W\left(x_{k}-x_{j}\right)-c\right) \xi_{j} \bar{\xi}_{j} \xi_{k} \bar{\xi}_{k} \Rightarrow \\
\sum_{j} z_{i j} z_{j k}=\left(T_{i}-T_{k}\right) z_{i k}+\frac{1}{4} c \xi_{k} \bar{\xi}_{k} J, \quad J=\sum_{m} \xi_{m} \bar{\xi}_{m} .
\end{array}
$$

Let us use it to resum $\sum_{\alpha=0}^{\infty} \sum_{i}\left(Z^{\alpha}\right)_{i j} T_{j}$ in the cases $c=0, c= \pm 1$ separately.

Power series and supercharge for $c=0$

In the simpler case $c=0, \sum_{j} z_{i j} z_{j k}=\left(T_{i}-T_{k}\right) z_{i k}$ and one can note that a few first terms in series $\sum_{\alpha=0}^{\infty} \sum_{j}\left(Z^{\alpha}\right)_{i j} T_{j}$ can be presented as functions of T_{i} :

$$
\begin{array}{r}
\sum_{j} Z_{i j} T_{j}=\sum_{j, k} Z_{i j} Z_{j k}=\left(T_{i}\right)^{2}-\sum_{k} Z_{i k} T_{k} \Rightarrow \sum_{j} Z_{i j} T_{j}=\frac{1}{2}\left(T_{i}\right)^{2} \\
\sum_{j}\left(Z^{2}\right)_{i j} T_{j}=\frac{1}{2} \sum_{j} Z_{i j}\left(T_{j}\right)^{2}=T_{i} \sum_{k} Z_{i k} T_{k}-\sum_{k} Z_{i k}\left(T_{k}\right)^{2} \Rightarrow \\
\sum_{j} Z_{i j}\left(T_{j}\right)^{2}=\frac{1}{3}\left(T_{i}\right)^{3}, \sum_{j}\left(Z^{2}\right)_{i j} T_{j}=\frac{1}{6}\left(T_{i}\right)^{3}
\end{array}
$$

Therefore, one can assume that $\sum_{j}\left(Z^{\alpha}\right)_{i j} T_{j}=f(\alpha) T_{i}^{\alpha+1}$ and substitute this into the relation, which follows from $\sum_{j} z_{i j} z_{j k}=\left(T_{i}-T_{k}\right) Z_{i k}$:

$$
\sum_{j}\left(Z^{\alpha}\right)_{i j} T_{j}=\sum_{j, k}\left(Z^{2}\right)_{i k}\left(Z^{\alpha-2}\right)_{k j} T_{j}=T_{i} \sum_{j}\left(Z^{\alpha-1}\right)_{i j} T_{j}-\sum_{k} Z_{i k} T_{k} \sum_{j}\left(Z^{\alpha-2}\right)_{k j} T_{j}
$$

to find that $\sum_{j} Z_{i j}\left(T_{j}\right)^{\alpha}$ also should be known. It is not difficult to establish relation for it,

$$
\sum_{j, k} Z_{i j} Z_{j k}\left(T_{k}\right)^{\alpha}=T_{i} \sum_{k} Z_{i k}\left(T_{k}\right)^{\alpha}-\sum_{k} Z_{i k}\left(T_{k}\right)^{\alpha+1}
$$

Power series and supercharge for $c=0$

It is also safe to assume that $\sum_{j} Z_{i j}\left(T_{j}\right)^{\alpha}=g(\alpha) T_{i}^{\alpha+1}$. Then, substituting this into

$$
\sum_{j, k} Z_{i j} Z_{j k}\left(T_{k}\right)^{\alpha}=T_{i} \sum_{k} Z_{i k}\left(T_{k}\right)^{\alpha}-\sum_{k} Z_{i k}\left(T_{k}\right)^{\alpha+1}
$$

one finds self-sufficient iterative relation

$$
\begin{array}{r}
g(\alpha) g(\alpha+1)=g(\alpha)-g(\alpha+1) \Rightarrow(1 / g)(\alpha+1)-(1 / g)(\alpha)=1 \\
(1 / g)(\alpha)=\alpha+\text { const or } g(\alpha)=1 /(\alpha+1) \text { for } g(1)=1 / 2
\end{array}
$$

Then the relation on $\sum_{j}\left(Z^{\alpha}\right)_{i j} T_{j}$ can be reduced to

$$
(\alpha+1) f(\alpha)=(\alpha+1) f(\alpha-1)-f(\alpha-2) \Rightarrow f(\alpha)=\frac{1}{(1+\alpha)!}
$$

Therefore, we find the exponential solution for λ_{i} :

$$
\begin{array}{r}
\lambda_{i}=\sum_{\alpha=0}^{\infty} \sum_{j}\left(Z^{\alpha}\right)_{i j} T_{j}=\sum_{\alpha=0}^{\infty} \frac{\left(T_{i}\right)^{\alpha+1}}{(1+\alpha)!}=e^{T_{i}}-1 \text { and, therefore } \\
Q=\sum_{i, j} p_{i}\left(\frac{1}{1-\Pi}\right)_{i j} \xi_{j}=\sum_{i} p_{i} \xi_{i} e^{-\frac{i}{2} \sum_{k} W\left(x_{i}-x_{k}\right) \xi_{k} \bar{\xi}_{k}}=\mathcal{Q} \text { for } W(x)=\frac{1}{x}
\end{array}
$$

Power series and supercharge for $c= \pm 1$

Rewriting supercharge in the case $c= \pm 1$ is somewhat more difficult, as the relation on $\left(Z^{2}\right)_{i j}$ contains, aside of Z and T, also combination of fermions $J=\sum_{m} \xi_{m} \bar{\xi}_{m}$:

$$
\sum_{j} Z_{i j} Z_{j k}=\left(T_{i}-T_{k}\right) Z_{i k}+\frac{1}{4} c J \xi_{k} \bar{\xi}_{k}
$$

Keeping in mind the previous experience, we write down the equation for $\sum_{j} Z_{i j}\left(T_{j}\right)^{\alpha}$

$$
\sum_{j, k} z_{i j} z_{j k}\left(T_{k}\right)^{\alpha}=T_{i} \sum_{j} z_{i j}\left(T_{j}\right)^{\alpha}-\sum_{j} z_{i j}\left(T_{j}\right)^{\alpha+1}+\frac{c}{4} J \sum_{k} \xi_{k} \bar{\xi}_{k}\left(T_{k}\right)^{\alpha} \Rightarrow
$$

$\sum_{j} Z_{i j}\left(T_{j}\right)^{\alpha}=g(\alpha)\left(T_{i}\right)^{\alpha+1}+h(\alpha) \frac{c}{4} J \sum_{k} \xi_{k} \bar{\xi}_{k}\left(T_{k}\right)^{\alpha-1} \Rightarrow g(\alpha)=\frac{1}{\alpha+1}, h(\alpha)=\frac{\alpha}{\alpha+1}$
As $\sum_{k} \xi_{k} \bar{\xi}_{k}\left(T_{k}\right)^{\alpha}=-\frac{i}{2} \sum_{k, l} \xi_{k} \bar{\xi}_{k} W\left(x_{k}-x_{l}\right) \xi \xi_{l} \bar{\xi}_{l}\left(T_{k}\right)^{\alpha-1}=-\sum_{k, l} \xi_{\xi} \bar{\xi}_{l} Z_{l k}\left(T_{k}\right)^{\alpha-1}$ and we can obtain:

$$
\begin{gathered}
\sum_{k} \xi_{k} \bar{\xi}_{k}\left(T_{k}\right)^{\alpha}=-\frac{1}{\alpha} \sum_{l} \xi_{l} \bar{\xi}_{l}\left(T_{l}\right)^{\alpha}-\frac{\alpha-1}{\alpha} \frac{c J}{4} \sum_{l} \xi_{l} \bar{\xi}_{l}\left(T_{l}\right)^{\alpha-2} \Rightarrow \\
\sum_{k} \xi_{k} \bar{\xi}_{k}\left(T_{k}\right)^{\alpha}=\left\{\begin{array}{l}
0, \alpha=2 \mathbb{N}+1, \\
\frac{J}{1+\alpha}\left(-\frac{\omega^{2}}{4}\right)^{\alpha / 2}, \quad \alpha=2 \mathbb{N} .
\end{array}\right.
\end{gathered}
$$

Power series and supercharge for $c= \pm 1$

With these results, one can expect that $\sum_{j}\left(Z^{\alpha}\right)_{i j} T_{j}$ can be represented as a function of T_{i} and J only:

$$
\sum_{j}\left(Z^{\alpha}\right)_{i j} T_{j}=\sum_{\beta=0}^{\alpha+1} f(\alpha, \beta)\left(T_{i}\right)^{\alpha+1-\beta} J^{\beta} .
$$

Substituting this into equation for $\left(Z^{\alpha}\right)_{i j} T_{j}$, one finds equation for $f(\alpha, \beta)$
$\sum_{j}\left(Z^{\alpha}\right)_{i j} T_{j}=T_{i} \sum_{k}\left(Z^{\alpha-1}\right)_{i j} T_{j}-\sum_{k} Z_{i k} T_{k} \sum_{m}\left(Z^{\alpha-2}\right)_{k m} T_{m}+\frac{C}{4} J \sum_{k, m} \xi_{k} \bar{\xi}_{k}\left(Z^{\alpha-2}\right)_{k m} T_{m}$,
Indeed, one finds an equation for $f(\alpha, \beta)$ as

$$
\begin{array}{r}
\sum_{\beta=0}^{\alpha+1} f(\alpha, \beta)\left(T_{i}\right)^{\alpha+1-\beta} J^{\beta}=\sum_{\beta=0}^{\alpha} f(\alpha-1, \beta)\left(T_{i}\right)^{\alpha+1-\beta} J^{\beta}- \\
-\sum_{\beta=0}^{\alpha-1} \frac{f(\alpha-2, \beta)}{\alpha-\beta+1}\left(T_{i}\right)^{\alpha+1-\beta} J^{\beta}+\frac{c J}{4} \sum_{\beta=0}^{\alpha-1} \frac{f(\alpha-2, \beta)}{\alpha-\beta+1} \sum_{k} \xi_{k} \bar{\xi}_{k}\left(T_{k}\right)^{\alpha-1-\beta} J^{\beta} .
\end{array}
$$

Counting powers of J, one can note that the last term is proportional to $J^{\alpha+1}$. This power of J can be found also only in the first term. Only first and second terms contain J^{α}. Thus one should consider separately terms with $J^{\alpha+1}, J^{\alpha}$ and $J^{\gamma}, \gamma<\alpha$.

Power series and supercharge for $c= \pm 1$

Examining the terms with J^{α} and $J^{\gamma}, \gamma<\alpha$, one finds

$$
f(\alpha, \beta)=f(\alpha-1, \beta)-\frac{f(\alpha-2, \beta)}{\alpha-\beta+1}, \quad f(\alpha, \alpha)=f(\alpha-1, \alpha) \Rightarrow f(\alpha, \beta)=\frac{a(\beta)}{(\alpha-\beta+1)!} .
$$

The function $a(\beta)$ could only be determined by considering terms $\sim J^{\alpha+1}$. Careful analysis shows that $a(\beta)=0$ for odd β, while for even β they are related by an equation

$$
a(\beta+2=2 \mathbb{N})=\sum_{\gamma=0}^{\beta / 2} \frac{(-1)^{(\beta-2 \gamma) / 2} a(2 \gamma)}{(\beta-2 \gamma+2)!}\left(\frac{c}{4}\right)^{(\beta+2-2 \gamma) / 2} .
$$

For any β, this allows to find $a(\beta)$ in terms of $a(\gamma<\beta)$, and, as $a(0)=1$, find all of them. A few first of $a(\beta)$ read

$$
a(0)=1, a(2)=\frac{c}{8}, a(4)=\frac{5 c^{2}}{384}, a(6)=\frac{61 c^{3}}{46080}, a(8)=\frac{277 c^{4}}{2064384}, \ldots
$$

It was checked up to 20th order in $T \cdot J$ that

$$
\begin{aligned}
\lambda_{i}= & \sum_{\alpha=0}^{\infty} \sum_{\beta=0}^{\alpha+1} f(\alpha, \beta)\left(T_{i}\right)^{\alpha-\beta+1} J^{\beta}=e^{T_{i}} \cos ^{-1}\left(\frac{\sqrt{c} J}{2}\right)-1, \text { where } \\
& \sum(1-\Pi)_{i j}^{-1} \xi_{j}=\xi_{i}\left(1+\lambda_{i}\right), \quad T_{i}=-\frac{i}{2} \sum W\left(x_{i}-x_{k}\right) \xi_{k} \bar{\xi}_{k} .
\end{aligned}
$$

Difference in the case $c= \pm 1$

Therefore, we find, comparing with the supercharges \mathcal{Q} obtained in [Phys.Lett.B 807 (2020) 135545],

$$
\begin{aligned}
Q_{r a t} & =\sum_{i} p_{i} \xi_{i} e^{-\frac{i}{2} \sum_{k} \xi_{k} \bar{\xi}_{k} /\left(x_{i}-x_{k}\right)}=\mathcal{Q}_{\mathrm{rat}} \\
Q_{\mathrm{tan}} & =\frac{1}{\cosh \left(\frac{J}{2}\right)} \sum_{i} p_{i} \xi_{i} e^{-\frac{i}{2} \sum_{k} \cot \left(x_{i}-x_{k}\right) \xi_{k} \bar{\xi}_{k}}=\frac{1}{\cosh \left(\frac{J}{2}\right)} \mathcal{Q}_{\mathrm{tan}}, \\
Q_{\mathrm{tanh}} & =\frac{1}{\cos \left(\frac{J}{2}\right)} \sum_{i} p_{i} \xi_{i} e^{-\frac{i}{2} \sum_{k} \operatorname{coth}\left(x_{i}-x_{k}\right) \xi_{k} \bar{\xi}_{k}}=\frac{1}{\cos \left(\frac{J}{2}\right)} \mathcal{Q}_{\mathrm{tanh}}
\end{aligned}
$$

It should be noted that appearing functions of J do not spoil supersymmetry, and this, moreover, is valid for any function $f(J)$, not only these particular functions. Indeed, one can note that $\left\{\xi_{k} \bar{\xi}_{k}, \xi_{m} \bar{\xi}_{m}\right\}=0$. Therefore, for any function $f(J)$

$$
\begin{array}{r}
\{\mathcal{Q}, f(J)\}=f^{\prime}(J) \sum_{i, j} p_{i} e^{-\frac{\mathrm{i}}{2} \sum_{k} W\left(x_{i}-x_{k}\right) \xi_{k} \bar{\xi}_{k}}\left\{\xi_{i}, \xi_{j} \bar{\xi}_{j}\right\}=\mathrm{i} f^{\prime}(J) \mathcal{Q} \text { and } \\
\{Q, Q\}=\{f(J) \mathcal{Q}, f(J) \mathcal{Q}\}=-2 f(J) \mathcal{Q}\{\mathcal{Q}, f(J)\}=-2 \mathrm{i} f(J) f^{\prime}(J) \mathcal{Q}^{2}=0 .
\end{array}
$$

Therefore, the modified supercharges $Q=f(J) \mathcal{Q}$ still form $N=2, d=1$ Poincaré superalgebra for any $f(J)$.

Conclusion

In this talk we discussed a version of $N=2$ supersymmetric Ruijenaars-Schneider model, based on the supercharges
$Q=\sum_{i, j} p_{i}\left(\frac{1}{1-\Pi}\right)_{i j} \xi_{j}, \quad \bar{Q}=\sum_{i, j} p_{i}\left(\frac{1}{1-\Pi}\right)_{i j} \bar{\xi}_{j}, \quad \Pi_{i j}=\frac{\mathrm{i}}{2}\left(1-\delta_{i j}\right) W\left(x_{i}-x_{j}\right)\left(\xi_{i} \bar{\xi}_{j}-\xi_{j} \bar{\xi}_{i}\right)$.
We showed that if the $N=2, d=1$ superalgebra conditions $\{Q, Q\}=\{\bar{Q}, \bar{Q}\}=0$ are satisfied, the only acceptable functions W are

$$
W(x) \in\{1 / x, 1 / \tan (x), 1 / \tanh (x)\},
$$

which are among those that are needed to make the system integrable. For these particular functions $W(x)$, the supercharges coincide with those found in [Phys.Lett.B 807 (2020) 135545], modified by functions of $J=\sum_{k} \xi_{k} \bar{\xi}_{k}$.
It would be interesting to find the constants of motion of this system and find how the structure of obtained supercharges affects them. Another question to study is the $N=4$ supersymmetric extension of this system.

