SU(2|1) supersymmetric spinning models of chiral superfields

Stepan Sidorov (BLTP JINR, Dubna)

RDP Online Workshop on Mathematical Physics

December 6, 2020

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

S. Sidorov, arXiv:2003.01023 [hep-th]

Introduction

- A new class of systems of $\mathcal{N}=4$, d=1 supersymmetric quantum mechanics called "Kähler oscillator" was introduced by S. Bellucci and A. Nersessian (Phys. Rev. D 67 (2003) 065013; arXiv:hep-th/0401232).
- They studied supersymmetric oscillator models on Kähler manifolds with the term of the firstorder in time derivatives responsible for the presence of a constant magnetic field. The bosonic Lagrangian of such system can be written as

$$\mathcal{L}_{\text{bos.}} = g\dot{z}\dot{\bar{z}} + \frac{i}{2} \mathbf{B} \left(\dot{z} \,\partial_z K - \dot{\bar{z}} \,\partial_{\bar{z}} K \right) - \omega^2 g^{-1} \,\partial_z K \,\partial_{\bar{z}} K, \qquad g = \partial_z \partial_{\bar{z}} K \left(z, \bar{z} \right). \tag{1}$$

SU(2|1) supersymmetric mechanics

- It turned out, the presence of oscillator term and the interaction with a magnetic field deforms the standard $\mathcal{N} = 4$, d = 1 Poincaré supersymmetry to the so-called "Weak supersymmetry" (A. Smilga, Phys. Lett. B **585** (2004) 173).
- We showed that the deformed superalgebra of Weak supersymmetry corresponds to the worldline supersymmetry SU(2|1) (E. Ivanov, S. Sidorov, Class. Quant. Grav. **31** (2014) 0750; J. Phys. A **47** (2014) 292002).
- We initiated a study of deformed supersymmetric quantum mechanics by employing superfield approach based on the worldline supersymmetry SU(2|1) with a mass dimension deformation parameter m.

(日) (日) (日) (日) (日) (日) (日)

Superalgebra

The standard definition of the superalgebra su(2|1) is

$$\{Q^{i}, \bar{Q}_{j}\} = 2\delta^{i}_{j}\mathcal{H} - 2mI^{i}_{j}, [\mathcal{H}, Q^{k}] = -\frac{m}{2}Q^{k}, \qquad [\mathcal{H}, \bar{Q}_{l}] = \frac{m}{2}\bar{Q}_{l}, [I^{i}_{j}, \bar{Q}_{l}] = \frac{1}{2}\delta^{i}_{j}\bar{Q}_{l} - \delta^{i}_{l}\bar{Q}_{j}, \qquad [I^{i}_{j}, Q^{k}] = \delta^{k}_{j}Q^{i} - \frac{1}{2}\delta^{i}_{j}Q^{k}, [I^{i}_{j}, I^{k}_{l}] = \delta^{k}_{j}I^{i}_{l} - \delta^{i}_{l}I^{k}_{j}.$$

$$(2)$$

The indices i, j (i = 1, 2) are SU(2) indices. The U(1) generator \mathcal{H} is associated with the Hamiltonian. The generators I_j^i $(I_k^k = 0)$ form SU(2) symmetry. In the limit m = 0, models of the standard $\mathcal{N} = 4$ supersymmetric mechanics are restored with \mathcal{H} being a central charge generator.

Superalgebra

Superalgebra

The standard definition of the superalgebra su(2|1) is

$$\{Q^{i}, \bar{Q}_{j}\} = 2\delta^{i}_{j}\mathcal{H}, [\mathcal{H}, Q^{k}] = 0, \qquad [\mathcal{H}, \bar{Q}_{l}] = 0, [I^{i}_{j}, \bar{Q}_{l}] = \frac{1}{2}\delta^{i}_{j}\bar{Q}_{l} - \delta^{i}_{l}\bar{Q}_{j}, \qquad [I^{i}_{j}, Q^{k}] = \delta^{k}_{j}Q^{i} - \frac{1}{2}\delta^{i}_{j}Q^{k}, [I^{i}_{j}, I^{k}_{l}] = \delta^{k}_{j}I^{i}_{l} - \delta^{i}_{l}I^{k}_{j}.$$

$$(3)$$

The indices i, j (i = 1, 2) are SU(2) indices. The U(1) generator \mathcal{H} is associated with the Hamiltonian. The generators I_j^i $(I_k^k = 0)$ form SU(2) symmetry. In the limit m = 0, models of the standard $\mathcal{N} = 4$ supersymmetric mechanics are restored with \mathcal{H} being a central charge generator.

$\mathcal{N} = 4$ multiplets

- Multiplets of $\mathcal{N} = 4$, d = 1 supersymmetry are denoted as $(\mathbf{k}, 4, 4 \mathbf{k})$ with $\mathbf{k} = 0, 1, 2, 3, 4$. These numbers correspond to the numbers of bosonic physical fields, fermionic physical fields and bosonic auxiliary fields.
- Wess-Zumino (WZ) type Lagrangians (sometimes referred as Chern-Simons) for (3, 4, 1) and (4, 4, 0) were presented in the framework of the $\mathcal{N} = 4$, d = 1 harmonic superspace (E. Ivanov, O. Lechtenfeld, JHEP 0309 (2003) 073). For example, the simplest WZ Lagrangian for (4, 4, 0) reads

$$\mathcal{L}_{WZ} = \frac{i}{2} \left(z^i \dot{\bar{z}}_i - \dot{z}^i \bar{z}_i \right) + \psi^a \bar{\psi}_a \,, \qquad i = 1, 2, \qquad a = 1, 2. \tag{4}$$

• Without kinetic Lagrangian containing bosonic terms second-order in time derivatives, this Lagrangian describes a semi-dynamical multiplet. Fermionic fields become auxiliary, while bosonic fields satisfy the following Dirac brackets:

$$\{z^{i}, \bar{z}_{j}\} = i\,\delta^{i}_{j}\,. \tag{5}$$

Coupling

Coupling

- Coupling of dynamical and semi-dynamical multiplets was proposed by S. Fedoruk, E. Ivanov, O. Lechtenfeld, Phys. Rev. D **79** (2009) 105015. This idea provided harmonic superfield construction of $\mathcal{N} = 4$ extension of Calogero system with the additional spin (isospin) degrees of freedom z^i , z_j .
- This work was followed by a further study of "spinning" models considering couplings of dynamical and semi-dynamical multiplets of various types (S. Bellucci, S. Krivonos, A. Sutulin, Phys. Rev. D 81 (2010) 105026, E. Ivanov, M. Konyushikhin, A. Smilga, JHEP 1005 (2010) 033, etc).

イロト イヨト イヨト ・ヨー つくで

Spinning models of chiral superfields

- The main goal of the present talk is to employ SU(2|1) superfield approach to spinning models of chiral superfields instead of harmonic ones.
- In this paper we consider the coupling of the chiral multiplet (2, 4, 2) and the semi-dynamical multiplet (4, 4, 0) of the mirror type.
- We construct SU(2|1) supersymmetric models based on this coupling, undeformed versions of which were studied by S. Bellucci, N. Kozyrev, S. Krivonos, A. Sutulin, Phys. Rev. D 85 (2012) 065024.

Superspace

The SU(2|1) superspace is defined as a supercoset (E. Ivanov, S. Sidorov, J. Phys. A **47** (2014) 292002):

$$\frac{\mathrm{SU}(2|1)}{\mathrm{SU}(2)} \sim \frac{\left\{\mathcal{H}, Q^i, \bar{Q}_j, I^i_j\right\}}{\left\{I^i_j\right\}} = \left\{t, \theta_i, \bar{\theta}^j\right\}.$$
(6)

It has a chiral subspace identified with the coset

$$\frac{\{\mathcal{H}, Q^{i}, \bar{Q}_{j}, I_{j}^{i}\}}{\{\bar{Q}_{j}, I_{j}^{i}\}} = \{t_{\mathrm{L}}, \theta_{i}\}.$$
(7)

The chiral condition reads

$$\bar{\mathcal{D}}_j \Phi\left(t_{\rm L}, \theta_i\right) = 0,\tag{8}$$

where $\overline{\mathcal{D}}_j$ and \mathcal{D}_j are SU(2|1) covariant derivatives.

Generalized chiral superspace

Generalized chiral superspace

A generalization of the chiral subspace is identified with the coset

$$\frac{\left\{\mathcal{H}, \hat{Q}^{i}, \bar{\hat{Q}}_{j}, I^{i}_{j}\right\}}{\left\{\bar{\hat{Q}}_{j}, I^{i}_{j}\right\}} = \left\{\hat{t}_{\mathrm{L}}, \hat{\theta}_{i}\right\},\tag{9}$$

where

$$\hat{Q}^i = \cos \lambda \ Q^i - \sin \lambda \ \bar{Q}^i, \qquad \hat{\bar{Q}}_j = \cos \lambda \ \bar{Q}_j + \sin \lambda \ Q_j.$$
 (10)

The generalized chiral condition reads

$$\left(\cos\lambda\,\bar{\mathcal{D}}_j - \sin\lambda\,\mathcal{D}_j\right)\Phi\left(\hat{t}_{\rm L},\hat{\theta}_i\right) = 0. \tag{11}$$

-

Generalized chiral multiplet

- The generalized chiral condition describes a new type of the chiral multiplet (2, 4, 2) defined on the generalized chiral superspace and depending on two deformation parameters: m, λ .
- Exactly this multiplet is a basis for the construction of supersymmetric Kähler oscillator models with the frequency of oscillator $\omega = m \sin 2\lambda/2$ and the strength of an external magnetic field $\mathbf{B} = m \cos 2\lambda$.
- Both parameters disappear in the limit m = 0 and the rotation parameter λ becomes just an external automorphism parameter of the standard $\mathcal{N} = 4$ Poincaré supersymmetry.

イロト 不得下 不同下 不同下

Superfield action

The chiral superfield is solved by

$$\Phi\left(\hat{t}_{\rm L},\hat{\theta}_j\right) = z + \sqrt{2}\,\hat{\theta}_k \xi^k + \hat{\theta}_k \hat{\theta}^k B,\tag{12}$$

where

$$\hat{t}_{\rm L} = t + i\,\bar{\bar{\theta}}^k\hat{\theta}_k\,,\qquad \hat{\theta}_i = \left(\cos\lambda\,\theta_i\,e^{\frac{i}{2}mt} + \sin\lambda\,\bar{\theta}_i\,e^{-\frac{i}{2}mt}\right)\left(1 - \frac{m}{2}\,\bar{\theta}^k\theta_k\right).\tag{13}$$

Superfield invariant action for the chiral superfield Φ is given by

$$S_{\text{kin.}} = \frac{1}{4} \int dt \, d^2\theta \, d^2\bar{\theta} \left(1 + 2m \,\bar{\theta}^k \theta_k\right) K\left(\Phi, \bar{\Phi}\right). \tag{14}$$

where $K(\Phi, \overline{\Phi})$ is a Kähler potential. Superpotential is given by the standard superfield action

$$S_{\text{pot.}} = \int d\hat{t}_{\text{L}} d^2 \hat{\theta} f(\Phi) + \int d\hat{t}_{\text{R}} d^2 \bar{\hat{\theta}} \bar{f}(\bar{\Phi}) .$$
(15)

December 6, 2020 10 / 30

- 21

Mirror multiplets

- The standard N = 4 multiplets have their mirror counterparts characterized by the interchange of two SU(2) groups which form SU(2) × SU'(2) → SO(4) automorphism group of the standard N = 4 Poincaré supersymmetry [E. Ivanov, J. Niederle, Phys. Rev. D 80 (2009) 065027].
- Since this interchange $(i, j \leftrightarrow i', j')$ has no essential impact on Poincaré supersymmetry, $\mathcal{N} = 4$ multiplets and their mirror counterparts are mutually equivalent when dealing with only one multiplet from such a pair.
- Deformation to SU(2|1) supersymmetry breaks the equivalence, because the first SU(2) group becomes subgroup of SU(2|1) and the second group SU'(2) is broken. It means that SU(2|1) multiplets differ from their mirror counterparts.

(日) (日) (日) (日) (日) (日) (日)

Multiplet (4, 4, 0)

First, let us consider the ordinary multiplet (4, 4, 0) satisfying the constraints

$$\mathcal{D}^{(i}q^{j)a} = 0, \qquad \bar{\mathcal{D}}^{(i}q^{j)a} = 0, \qquad \overline{(q^{ia})} = q_{ia}, \qquad a = 1, 2.$$
 (16)

One can rewrite these constraints as

$$\mathcal{D}_{i'}^{(i}q^{j)a} = 0, (17)$$

where the covariant derivatives are written via $SU(2) \times SU'(2)$ indices as

$$\mathcal{D}^{i} := \mathcal{D}^{i \, 1'} = -\mathcal{D}^{i}_{2'}, \qquad \bar{\mathcal{D}}^{i} := \mathcal{D}^{i \, 2'} = \mathcal{D}^{i}_{1'} \quad \Rightarrow \quad \mathcal{D}^{i \, i'} \tag{18}$$

3

Mirror multiplet (4, 4, 0)

Hence, its mirror counterpart is written as

$$\mathcal{D}^{i\,(i'}Y^{j')A} = 0, \qquad \overline{(Y^{i'A})} = Y_{i'A}, \qquad A = 1, 2.$$
(19)

The superfield $Y^{i'A}$ can be denoted as $Y^A = Y^{2'A}$, $\overline{Y}^A = -Y^{1'A}$ that leads to the constraints

$$\overline{\mathcal{D}}_i Y^A = 0, \qquad \mathcal{D}^i \overline{Y}^A = 0, \qquad \mathcal{D}_i Y^A = \overline{\mathcal{D}}_i \overline{Y}^A, \qquad \overline{(Y^A)} = \overline{Y}_A.$$
 (20)

One can see that first two constraints are (anti)chiral conditions describing the pair of chiral multiplets $(2, 4, 2) \oplus (2, 4, 2)$. The third constraint kills the half of component fields leaving the field content to be (4, 4, 0).

Generalized mirror multiplet (4, 4, 0)

In order to couple the mirror (4, 4, 0) and generalized chiral multiplets, we consider the generalized constraints

$$\bar{\tilde{\mathcal{D}}}_i Y^A = 0, \qquad \tilde{\mathcal{D}}^i \bar{Y}^A = 0, \qquad \tilde{\mathcal{D}}_i Y^A = \bar{\tilde{\mathcal{D}}}_i \bar{Y}^A, \qquad \overline{(Y^A)} = \bar{Y}_A,$$
(21)

where

$$\tilde{\bar{\mathcal{D}}}_i = \cos\lambda \,\bar{\mathcal{D}}_i - \sin\lambda \,\mathcal{D}_i \,, \qquad \tilde{\mathcal{D}}^i = \cos\lambda \,\mathcal{D}^i + \sin\lambda \,\bar{\mathcal{D}}^i \,. \tag{22}$$

Their solution reads

$$Y^{A}\left(\hat{t}_{L},\hat{\theta}_{i}\right) = y^{A} + \sqrt{2}\,\hat{\theta}_{i}\psi^{iA} + i\,\hat{\theta}_{k}\hat{\theta}^{k}\,\bar{y}^{A}, \qquad \overline{(y^{A})} = \bar{y}_{A}\,, \qquad \overline{(\psi^{iA})} = \psi_{iA}\,. \tag{23}$$

-

Superpotential

The superpotential action

$$S_{\text{pot.}} = \frac{\mu}{2} \int d\hat{t}_{\text{L}} \, d^2 \hat{\theta} \, h\left(Y^A\right) + \frac{\mu}{2} \int d\hat{t}_{\text{R}} \, d^2 \bar{\hat{\theta}} \, \bar{h}\left(\bar{Y}_A\right), \tag{24}$$

yields Wess-Zumino type Lagrangian:

$$S_{\text{pot.}} = \int dt \,\mathcal{L}_{\text{WZ}}, \qquad \mathcal{L}_{\text{WZ}} = \mu \left[i \, \dot{\bar{y}}^A \,\partial_A h \left(y^A \right) + \frac{1}{2} \,\psi^{iA} \psi^B_i \,\partial_A \partial_B h \left(y^A \right) + \text{c.c.} \right]. \tag{25}$$

3

イロト 不通 とうせい うけい

Gauged mirror multiplet (4, 4, 0)

We can also assume that the chiral superfields Y^A are subjected to the local U(1) transformations

$$(Y^{1})' = e^{\frac{1}{2}(\Lambda - \bar{\Lambda})} Y^{1}, \qquad (Y^{2})' = e^{-\frac{1}{2}(\Lambda - \bar{\Lambda})} Y^{2},$$
 (26)

where $\Lambda := \Lambda\left(\hat{t}_{\mathrm{L}}, \hat{\theta}_{i}\right), \, \bar{\Lambda} := \bar{\Lambda}\left(\hat{t}_{\mathrm{R}}, \bar{\bar{\theta}}^{j}\right)$. The superfields then satisfy the new gauge invariant constraints

$$\begin{pmatrix} \bar{\tilde{\mathcal{D}}}^i + \frac{1}{2} \begin{bmatrix} \bar{\tilde{\mathcal{D}}}^i, X \end{bmatrix} \end{pmatrix} Y^1 = 0, \quad \begin{pmatrix} \bar{\tilde{\mathcal{D}}}^i - \frac{1}{2} \begin{bmatrix} \bar{\tilde{\mathcal{D}}}^i, X \end{bmatrix} \end{pmatrix} Y^2 = 0, \quad \text{c.c.},$$

$$\begin{pmatrix} \tilde{\mathcal{D}}^i - \frac{1}{2} \begin{bmatrix} \tilde{\mathcal{D}}^i, X \end{bmatrix} \end{pmatrix} Y^1 = \begin{pmatrix} \bar{\tilde{\mathcal{D}}}^i + \frac{1}{2} \begin{bmatrix} \bar{\tilde{\mathcal{D}}}^i, X \end{bmatrix} \end{pmatrix} \bar{Y}^1,$$

$$\begin{pmatrix} \tilde{\mathcal{D}}^i + \frac{1}{2} \begin{bmatrix} \tilde{\mathcal{D}}^i, X \end{bmatrix} \end{pmatrix} Y^2 = \begin{pmatrix} \bar{\tilde{\mathcal{D}}}^i - \frac{1}{2} \begin{bmatrix} \bar{\tilde{\mathcal{D}}}^i, X \end{bmatrix} \end{pmatrix} \bar{Y}^2.$$

$$(27)$$

where the real superfield X is a gauge superfield transforming as

$$X' = X + \Lambda + \bar{\Lambda} . \tag{28}$$

Gauge superfield

The superfield X satisfies the additional gauge invariant constraint

$$\tilde{\mathcal{D}}_{(i}\tilde{\tilde{\mathcal{D}}}_{j)}X = 0.$$
⁽²⁹⁾

It is solved by

$$X\left(t,\hat{\theta}_{i},\bar{\bar{\theta}}^{j}\right) = x + \sqrt{2}\left(\hat{\theta}_{k}\bar{\chi}^{k} + \bar{\bar{\theta}}^{k}\chi_{k}\right) + 2\bar{\bar{\theta}}_{k}\hat{\theta}^{k}\mathcal{A} + \hat{\theta}_{k}\hat{\theta}^{k}D + \bar{\bar{\theta}}^{k}\bar{\bar{\theta}}_{k}\bar{D} + \sqrt{2}i\bar{\bar{\theta}}^{k}\hat{\theta}_{k}\left(\hat{\theta}_{i}\dot{\chi}^{i} - \bar{\bar{\theta}}^{i}\dot{\chi}_{i}\right) - \frac{1}{4}\hat{\theta}_{i}\hat{\theta}^{i}\bar{\bar{\theta}}^{j}\bar{\bar{\theta}}_{j}\ddot{x}, \overline{\langle x \rangle} = x, \quad \overline{\langle \mathcal{A} \rangle} = \mathcal{A}, \quad \overline{\langle D \rangle} = \bar{D}, \quad \overline{\langle \chi^{i} \rangle} = \bar{\chi}_{i}.$$
(30)

This superfield describes the mirror multiplet (1, 4, 3) that differs from the ordinary one because of the deformation. Using the U(1) gauge freedom $X' = X + \Lambda + \overline{\Lambda}$, we can choose the WZ gauge:

$$X_{\rm WZ} = 2 \,\hat{\theta}^k \hat{\theta}_k \,\mathcal{A} \,, \qquad \mathcal{A}'(t) = \mathcal{A}(t) - \dot{\alpha}(t) \,. \tag{31}$$

December 6, 2020 17 / 30

化口水 化固水 化压水 化压

Triplet

One can introduce accompanying chiral superfields

$$\mathcal{V}_{WZ}\left(\hat{t}_{L},\hat{\theta}_{i}\right) = \hat{\theta}_{k}\hat{\theta}^{k}\mathcal{A}, \qquad \bar{\mathcal{V}}_{WZ}\left(\hat{t}_{R},\bar{\bar{\theta}}^{j}\right) = \bar{\bar{\theta}}^{k}\bar{\bar{\theta}}_{k}\mathcal{A}, \qquad (32)$$

satisfying

$$\tilde{\mathcal{D}}_i X_{WZ} = \tilde{\bar{\mathcal{D}}}_i \bar{\mathcal{V}}_{WZ} , \qquad \tilde{\bar{\mathcal{D}}}_i X_{WZ} = -\tilde{\mathcal{D}}_i \mathcal{V}_{WZ} .$$
(33)

These superfields can be combined in the form a triplet superfield $\mathcal{V}^{i'j'} \equiv \mathcal{V}^{(i'j')}$ as

$$\mathcal{V}^{i'j'} = \hat{\theta}^{k\,(i'}\hat{\theta}^{j')}_k \mathcal{A}, \qquad \tilde{\mathcal{D}}^{i\,(i'}\mathcal{V}^{j'k')} = 0. \tag{34}$$

Thus, it can be interpreted as a mirror counterpart of the "topological" gauge multiplet described by the harmonic superfield V^{++} in the WZ gauge [F. Delduc, E. Ivanov, Nucl. Phys. B **753** (2006) 211-241; Nucl. Phys. B **770** (2007) 179-205].

December 6, 2020 18 / 30

5 9 9 9 P

イロト 不得下 イヨト イヨト

Solution

According to the (anti)chiral conditions, the superfield solution is modified as

$$Y^{1}\left(t,\hat{\theta}_{i},\bar{\hat{\theta}}^{j}\right) = e^{-\frac{X}{2}} Y^{1}_{\mathrm{L}}\left(\hat{t}_{\mathrm{L}},\hat{\theta}_{i}\right), \qquad \left(Y^{1}_{\mathrm{L}}\right)' = e^{\Lambda} Y^{1}_{\mathrm{L}},$$
$$Y^{2}\left(t,\hat{\theta}_{i},\bar{\hat{\theta}}^{j}\right) = e^{\frac{X}{2}} Y^{2}_{\mathrm{L}}\left(\hat{t}_{\mathrm{L}},\hat{\theta}_{i}\right), \qquad \left(Y^{2}_{\mathrm{L}}\right)' = e^{-\Lambda} Y^{2}_{\mathrm{L}}.$$
(35)

Solving the additional constraint the left chiral superfield $Y_{\rm L}^A$ has the following θ -expansion:

$$Y_{\rm L}^A\left(\hat{t}_{\rm L},\hat{\theta}_i\right) = y^A + \sqrt{2}\,\hat{\theta}_i\psi^{iA} + i\,\hat{\theta}_k\hat{\theta}^k\,\nabla_t\bar{y}^A, \qquad \nabla_t\bar{y}^1 = \left(\partial_t + i\mathcal{A}\right)\bar{y}^1, \quad \nabla_t\bar{y}^2 = \left(\partial_t - i\mathcal{A}\right)\bar{y}^2. \tag{36}$$

Finally, the superpotential action must be written as a function of the only possible invariant $Y_{\rm L}^1 Y_{\rm L}^2$, since it is the only gauge invariant object defined on the left chiral subspace.

Coupling of dynamical and semi-dynamical multiplets

The simplest superpotential term of interacting multiplets reads

$$S_{\rm int.} = \frac{\mu}{2} \int d\hat{t}_{\rm L} \, d^2 \hat{\theta} \, Y_{\rm L}^1 Y_{\rm L}^2 \, f\left(\Phi\right) - \frac{\mu}{2} \int d\hat{t}_{\rm R} \, d^2 \bar{\hat{\theta}} \, \bar{Y}_{\rm R}^1 \bar{Y}_{\rm R}^2 \, \bar{f}\left(\bar{\Phi}\right), \tag{37}$$

where f is an arbitrary holomorphic function of Φ . The Lagrangian is then given by

$$\mathcal{L}_{\text{int.}} = \mu \left[i \left(y^1 \, \nabla_t \bar{y}_1 - y^2 \, \nabla_t \bar{y}_2 \right) f + \psi^{i1} \psi_i^2 f + B \, y^1 y^2 \, \partial_z f \right. \\ \left. + \xi^i \left(\psi_{i1} \, y^1 - \psi_{i2} \, y^2 \right) \partial_z f - \frac{\xi_i \xi^i}{2} \, y^1 y^2 \, \partial_z \partial_z f + \text{c.c.} \right].$$
(38)

Fayet-Iliopoulos term can be constructed as

$$S_{\rm FI} = -\frac{c}{4} \left[\int d\hat{t}_{\rm L} \, d^2 \hat{\theta} \, \mathcal{V}_{\rm WZ} + \int d\hat{t}_{\rm R} \, d^2 \bar{\hat{\theta}} \, \bar{\mathcal{V}}_{\rm WZ} \right] \quad \Rightarrow \quad \mathcal{L}_{\rm FI} = -c \, \mathcal{A} \,, \quad c = \text{const.} \tag{39}$$

イロト イポト イモト イモト

Total Lagrangian

• We consider the model of the dynamical multiplet (2, 4, 2) interacting with the semi-dynamical multiplet (4, 4, 0). The total Lagrangian is written as

$$\mathcal{L} = \mathcal{L}_{\text{kin.}} + \mathcal{L}_{\text{int.}} + \mathcal{L}_{\text{FI}}.$$
(40)

• Eliminating the auxiliary fields B and ψ^{iA} by their equations of motion and performing the following redefinition

$$y^{1} = v \left(f + \bar{f}\right)^{-\frac{1}{2}}, \qquad y^{2} = \bar{w} \left(f + \bar{f}\right)^{-\frac{1}{2}}, \qquad \xi^{i} = g^{-\frac{1}{2}} \eta^{i}, \bar{y}_{1} = \bar{v} \left(f + \bar{f}\right)^{-\frac{1}{2}}, \qquad \bar{y}_{2} = w \left(f + \bar{f}\right)^{-\frac{1}{2}}, \qquad \bar{\xi}_{j} = g^{-\frac{1}{2}} \bar{\eta}_{j},$$
(41)

we obtain the total on-shell Lagrangian \mathcal{L} .

= 900

Component Lagrangian

Component Lagrangian reads

$$\mathcal{L} = g \dot{\bar{z}} \dot{\bar{z}} + \frac{i}{2} \left(\eta^{i} \dot{\bar{\eta}}_{i} - \dot{\eta}^{i} \bar{\eta}_{i} \right) + \frac{i}{2} \mu \left(v \dot{\bar{v}} + w \dot{\bar{w}} - \dot{v} \bar{v} - \dot{w} \bar{w} \right) + \frac{i \mu \left(\dot{\bar{z}} \partial_{\bar{z}} \bar{f} - \dot{z} \partial_{\bar{z}} f \right)}{2 \left(f + \bar{f} \right)} \left(v \bar{v} - w \bar{w} \right) \right) \\ + \frac{i}{2} \left(\dot{\bar{z}} \partial_{\bar{z}} g - \dot{z} \partial_{z} g \right) g^{-1} \eta^{k} \bar{\eta}_{k} - \frac{\partial_{z} f \partial_{\bar{z}} \bar{f}}{g \left(f + \bar{f} \right)^{2}} \left[\mu \left(v \bar{v} - w \bar{w} \right) \eta^{k} \bar{\eta}_{k} + \mu^{2} w \bar{w} v \bar{v} \right] \\ - \frac{\mu v \bar{w}}{g \left(f + \bar{f} \right)} \left[\frac{\partial_{z} \partial_{z} f}{2} - \frac{\partial_{z} f \partial_{z} f}{(f + \bar{f})} - \frac{\partial_{z} f}{2} g^{-1} \partial_{z} g \right] \eta_{i} \eta^{i} \\ - \frac{\mu w \bar{v}}{g \left(f + \bar{f} \right)} \left[\frac{\partial_{\bar{z}} \partial_{\bar{z}} \bar{f}}{2} - \frac{\partial_{\bar{z}} \bar{f} \partial_{\bar{z}} \bar{f}}{(f + \bar{f})} - \frac{\partial_{\bar{z}} \bar{f}}{2} g^{-1} \partial_{\bar{z}} g \right] \bar{\eta}^{j} \bar{\eta}_{j} \\ + \frac{1}{4g^{2}} \left(\partial_{z} \partial_{\bar{z}} g - g^{-1} \partial_{z} g \partial_{\bar{z}} g \right) \eta_{i} \eta^{i} \bar{\eta}^{j} \bar{\eta}_{j} + \left[\mu \left(v \bar{v} + w \bar{w} \right) - c \right] \mathcal{A} + \mathcal{L}_{m} ,$$

$$(42)$$

December 6, 2020 22 / 30

ж.

イロト 不通 とうせい うけい

Component Lagrangian

where \mathcal{L}_m is a deformed part:

$$\mathcal{L}_{m} = \frac{i}{2} m \cos 2\lambda \left(\dot{z} \,\partial_{z} K - \dot{\bar{z}} \,\partial_{\bar{z}} K \right) - \frac{\left(m \sin 2\lambda \right)^{2}}{4g} \,\partial_{z} K \,\partial_{\bar{z}} K + \frac{m \sin 2\lambda}{4g} \left[\left(\partial_{z} \partial_{z} K - g^{-1} \,\partial_{z} K \,\partial_{z} g \right) \eta_{i} \eta^{i} + \left(\partial_{\bar{z}} \partial_{\bar{z}} K - g^{-1} \,\partial_{\bar{z}} K \,\partial_{\bar{z}} g \right) \bar{\eta}^{j} \bar{\eta}_{j} \right] + \frac{m \sin 2\lambda}{2g \left(f + \bar{f} \right)} \left(\mu \, w \bar{v} \,\partial_{z} f \,\partial_{\bar{z}} K + \mu \, v \bar{w} \,\partial_{\bar{z}} \bar{f} \,\partial_{z} K \right) - \frac{m \cos 2\lambda}{2} \,\eta^{k} \bar{\eta}_{k} \,.$$

$$(43)$$

Indeed, it depends on two deformation parameters:

$$\mathbf{B} = m\cos 2\lambda, \qquad \omega = \frac{m\sin 2\lambda}{2}. \tag{44}$$

The U(1) gauge field \mathcal{A} plays the role of a Lagrange multiplier enforcing the constraint

$$\mu \left(v\bar{v} + w\bar{w} \right) - c = 0. \tag{45}$$

December 6, 2020 23 / 30

-

Classical mechanics

Classical mechanics

Classical Hamiltonian reads

$$\mathcal{H} = g^{-1}P_{z}P_{\bar{z}} - \frac{1}{4} \left(\partial_{z}\partial_{\bar{z}}g - g^{-1}\partial_{z}g \,\partial_{\bar{z}}g \right) g^{-2} \eta_{i}\eta^{i} \bar{\eta}^{j} \bar{\eta}_{j} + \frac{2 \,\partial_{z}f \,\partial_{\bar{z}}\bar{f} \,S_{3}}{g \left(f + \bar{f}\right)^{2}} \eta^{k} \bar{\eta}_{k} + \frac{m \cos 2\lambda}{2} \eta^{k} \bar{\eta}_{k}$$

$$+ \frac{S_{+}}{g \left(f + \bar{f}\right)} \left[\frac{\partial_{z}\partial_{z}f}{2} - \frac{\partial_{z}f \,\partial_{z}f}{(f + \bar{f})} - \frac{\partial_{z}f}{2} g^{-1} \,\partial_{z}g \right] \eta_{k} \eta^{k}$$

$$+ \frac{S_{-}}{g \left(f + \bar{f}\right)} \left[\frac{\partial_{\bar{z}}\partial_{\bar{z}}\bar{f}}{2} - \frac{\partial_{\bar{z}}\bar{f} \,\partial_{\bar{z}}\bar{f}}{(f + \bar{f})} - \frac{\partial_{\bar{z}}\bar{f}}{2} g^{-1} \,\partial_{\bar{z}}g \right] \bar{\eta}^{k} \bar{\eta}_{k}$$

$$- \frac{m \sin 2\lambda}{4} \left[\left(\partial_{z}\partial_{z}K - g^{-1} \,\partial_{z}K \,\partial_{z}g \right) g^{-1} \eta_{i} \eta^{i} + \left(\partial_{\bar{z}}\partial_{\bar{z}}K - g^{-1} \,\partial_{\bar{z}}K \,\partial_{\bar{z}}g \right) g^{-1} \bar{\eta}^{j} \bar{\eta}_{j} \right]$$

$$+ g^{-1} \left[\frac{\partial_{z}f \,S_{+}}{(f + \bar{f})} - \frac{m \sin 2\lambda}{2} \,\partial_{z}K \right] \left[\frac{\partial_{\bar{z}}\bar{f} \,S_{-}}{(f + \bar{f})} - \frac{m \sin 2\lambda}{2} \,\partial_{\bar{z}}K \right] , \qquad (46)$$

December 6, 2020 24 / 30

∃ 990

Classical mechanics

Classical mechanics

where

$$S_{3} = \frac{\mu}{2} \left(v\bar{v} - w\bar{w} \right), \qquad S_{+} = \mu \, v\bar{w}, \qquad S_{-} = \mu \, w\bar{v},$$
$$P_{z} = p_{z} - \frac{i}{2} \, m \cos 2\lambda \, \partial_{z}K + \frac{i \, \partial_{z}f \, S_{3}}{\left(f + \bar{f}\right)} + \frac{i}{2} \, g^{-1} \, \partial_{z}g \, \eta^{i}\bar{\eta}_{i} \,,$$
$$P_{\bar{z}} = p_{\bar{z}} + \frac{i}{2} \, m \cos 2\lambda \, \partial_{\bar{z}}K - \frac{i \, \partial_{\bar{z}}\bar{f} \, S_{3}}{\left(f + \bar{f}\right)} - \frac{i}{2} \, g^{-1} \, \partial_{\bar{z}}g \, \eta^{j}\bar{\eta}_{j} \,.$$

Poisson (Dirac) brackets are imposed as

$$\{p_z, z\} = -1, \qquad \{p_{\bar{z}}, \bar{z}\} = -1, \qquad \{\eta^i, \bar{\eta}_j\} = -i\delta^i_j, \\ \{v, \bar{v}\} = i\mu^{-1}, \qquad \{w, \bar{w}\} = i\mu^{-1}.$$

$$(48)$$

イロト イヨト イヨト イヨト

(47)

∃ 990

SU(2|1) generators

SU(2|1) supercharges are

$$Q^{i} = \sqrt{2} e^{\frac{i}{2}mt} g^{-\frac{1}{2}} \left\{ \cos \lambda \ \eta^{i} \left[P_{z} - \frac{i}{2} \left(1 - \cos 2\lambda \right) m \ \partial_{z} K \right] - \sin \lambda \ \bar{\eta}^{i} \left[P_{\bar{z}} - \frac{i}{2} \left(1 + \cos 2\lambda \right) m \ \partial_{\bar{z}} K \right] - \frac{i}{\left(f + \bar{f} \right)} \left(\cos \lambda \ \partial_{\bar{z}} \bar{f} \ S_{-} \ \bar{\eta}^{i} - \sin \lambda \ \partial_{z} f \ S_{+} \ \eta^{i} \right) \right\},$$

$$(49)$$

$$\bar{Q}_{j} = \sqrt{2} e^{-\frac{i}{2}mt} g^{-\frac{1}{2}} \left\{ \cos \lambda \, \bar{\eta}_{j} \left[P_{\bar{z}} + \frac{i}{2} \left(1 - \cos 2\lambda \right) m \, \partial_{\bar{z}} K \right] + \sin \lambda \, \eta_{j} \left[P_{z} + \frac{i}{2} \left(1 + \cos 2\lambda \right) m \, \partial_{z} K \right] - \frac{i}{\left(f + \bar{f} \right)} \left(\cos \lambda \, \partial_{z} f \, S_{+} \, \eta_{j} + \sin \lambda \, \partial_{\bar{z}} \bar{f} \, S_{-} \, \bar{\eta}_{j} \right) \right\}.$$

$$(50)$$

SU(2) subgroup generators are written as

$$I_j^i = \eta^i \bar{\eta}_j - \frac{\delta_j^i}{2} \, \eta^k \bar{\eta}_k \,. \tag{51}$$

æ

SU(2) group of spin variables

The generators S_3 and S_{\pm} , written trough spin variables as

$$S_{3} = \frac{\mu}{2} \left(v\bar{v} - w\bar{w} \right), \qquad S_{+} = \mu v\bar{w}, \qquad S_{-} = \mu w\bar{v}, \tag{52}$$

form the su(2) algebra:

$$\{S_3, S_{\pm}\} = \mp i S_{\pm}, \qquad \{S_+, S_-\} = -2iS_3.$$
(53)

The Hamiltonian commutes with the Casimir operator

$$C_{\rm SU(2)} = S_+ S_- + (S_3)^2 \,. \tag{54}$$

3

SU(2) group of spin variables

According to the constraint

$$\mu \left(v\bar{v} + w\bar{w} \right) - c = 0, \tag{55}$$

the Casimir operator is determined by the constant

$$C_{\rm SU(2)} = \frac{\mu^2 \left(v\bar{v} + w\bar{w} \right)^2}{4} = \frac{c^2}{4} \,. \tag{56}$$

Its quantum counterpart (up to the ordering ambiguity) is given by $(c \approx 2s)$

$$C_{SU(2)} = s(s+1),$$
 (57)

where s is a spin of the quantum system.

December 6, 2020 28 / .	30	
-------------------------	----	--

• We proposed new models of SU(2|1) supersymmetric mechanics with the use of dynamical and gauged semi-dynamical multiplets. As an alternative of harmonic superspace, we exploited the generalized chiral superspace.

-

- We proposed new models of SU(2|1) supersymmetric mechanics with the use of dynamical and gauged semi-dynamical multiplets. As an alternative of harmonic superspace, we exploited the generalized chiral superspace.
- We considered in details the deformed model on the pseudo-sphere SU(1,1)/U(1) (Lobachevsky space) with the corresponding metric $g = (1 \gamma z \bar{z})^{-2}$ and the special choice of f(z).

イロト イポト イモト イモト

- We proposed new models of SU(2|1) supersymmetric mechanics with the use of dynamical and gauged semi-dynamical multiplets. As an alternative of harmonic superspace, we exploited the generalized chiral superspace.
- We considered in details the deformed model on the pseudo-sphere SU(1,1)/U(1) (Lobachevsky space) with the corresponding metric $g = (1 \gamma z \bar{z})^{-2}$ and the special choice of f(z).
- In distinct from [S. Bellucci, N. Kozyrev, S. Krivonos, A. Sutulin, Phys. Rev. D 85 (2012) 065024], the symmetry $SU(1, 1) \times U(1)$ of the model is broken. We can define only the remaining $U(1) \subset SU(1, 1)$ generator J_3 that commutes with all SU(2|1) generators. However, one can restore this symmetry in the limit $\lambda = 0$.

- We tried to obtain superconformal symmetry for considered models, but it is impossible at least for a single-particle model. Superconformal models can possibly be obtained for two or more chiral dynamical multiplets.
- It would be interesting to study mirror counterparts of the multiplets (1, 4, 3) and (3, 4, 1). The latter one is described by a triplet consisting of real and chiral superfields, *i.e.* X, V and \overline{V} .
- One can try to couple the mirror multiplets (3, 4, 1) and (4, 4, 0) in SU(2|1) chiral superspace.

- We tried to obtain superconformal symmetry for considered models, but it is impossible at least for a single-particle model. Superconformal models can possibly be obtained for two or more chiral dynamical multiplets.
- It would be interesting to study mirror counterparts of the multiplets (1, 4, 3) and (3, 4, 1). The latter one is described by a triplet consisting of real and chiral superfields, *i.e.* X, Φ and $\overline{\Phi}$.
- One can try to couple the mirror multiplets (3, 4, 1) and (4, 4, 0) in SU(2|1) chiral superspace.

Thank you for your attention!