$\mathrm{SU}(2 \mid 1)$ supersymmetric spinning models of chiral superfields

Stepan Sidorov (BLTP JINR, Dubna)
RDP Online Workshop on Mathematical Physics

December 6, 2020
S. Sidorov, arXiv:2003.01023 [hep-th]

Introduction

- A new class of systems of $\mathcal{N}=4, d=1$ supersymmetric quantum mechanics called "Kähler oscillator" was introduced by S. Bellucci and A. Nersessian (Phys. Rev. D 67 (2003) 065013; arXiv:hep-th/0401232).
- They studied supersymmetric oscillator models on Kähler manifolds with the term of the firstorder in time derivatives responsible for the presence of a constant magnetic field. The bosonic Lagrangian of such system can be written as

$$
\begin{equation*}
\mathcal{L}_{\text {bos. }}=g \dot{z} \dot{\bar{z}}+\frac{i}{2} \mathbf{B}\left(\dot{z} \partial_{z} K-\dot{\bar{z}} \partial_{\bar{z}} K\right)-\omega^{2} g^{-1} \partial_{z} K \partial_{\bar{z}} K, \quad g=\partial_{z} \partial_{\bar{z}} K(z, \bar{z}) . \tag{1}
\end{equation*}
$$

$\mathrm{SU}(2 \mid 1)$ supersymmetric mechanics

- It turned out, the presence of oscillator term and the interaction with a magnetic field deforms the standard $\mathcal{N}=4, d=1$ Poincaré supersymmetry to the so-called "Weak supersymmetry" (A. Smilga, Phys. Lett. B 585 (2004) 173).
- We showed that the deformed superalgebra of Weak supersymmetry corresponds to the worldline supersymmetry SU(2|1) (E. Ivanov, S. Sidorov, Class. Quant. Grav. 31 (2014) 0750; J. Phys. A 47 (2014) 292002).
- We initiated a study of deformed supersymmetric quantum mechanics by employing superfield approach based on the worldline supersymmetry $\mathrm{SU}(2 \mid 1)$ with a mass dimension deformation parameter m.

Superalgebra

The standard definition of the superalgebra $s u(2 \mid 1)$ is

$$
\begin{align*}
& \left\{Q^{i}, \bar{Q}_{j}\right\}=2 \delta_{j}^{i} \mathcal{H}-2 m I_{j}^{i}, \\
& {\left[\mathcal{H}, Q^{k}\right]=-\frac{m}{2} Q^{k}, \quad\left[\mathcal{H}, \bar{Q}_{l}\right]=\frac{m}{2} \bar{Q}_{l},} \\
& {\left[I_{j}^{i}, \bar{Q}_{l}\right]=\frac{1}{2} \delta_{j}^{i} \bar{Q}_{l}-\delta_{l}^{i} \bar{Q}_{j}, \quad\left[I_{j}^{i}, Q^{k}\right]=\delta_{j}^{k} Q^{i}-\frac{1}{2} \delta_{j}^{i} Q^{k},} \\
& {\left[I_{j}^{i}, I_{l}^{k}\right]=\delta_{j}^{k} I_{l}^{i}-\delta_{l}^{i} I_{j}^{k} .} \tag{2}
\end{align*}
$$

The indices $i, j(i=1,2)$ are $\mathrm{SU}(2)$ indices. The $\mathrm{U}(1)$ generator \mathcal{H} is associated with the Hamiltonian. The generators $I_{j}^{i}\left(I_{k}^{k}=0\right)$ form $\mathrm{SU}(2)$ symmetry. In the limit $m=0$, models of the standard $\mathcal{N}=4$ supersymmetric mechanics are restored with \mathcal{H} being a central charge generator.

Superalgebra

The standard definition of the superalgebra $s u(2 \mid 1)$ is

$$
\begin{align*}
& \left\{Q^{i}, \bar{Q}_{j}\right\}=2 \delta_{j}^{i} \mathcal{H}, \\
& {\left[\mathcal{H}, Q^{k}\right]=0,} \\
& {\left[I_{j}^{i}, \bar{Q}_{l}\right]=\frac{1}{2} \delta_{j}^{i} \bar{Q}_{l}-\delta_{l}^{i} \bar{Q}_{j}, \quad\left[\mathcal{H}, \bar{Q}_{l}\right]=0,} \\
& {\left[I_{j}^{i}, I_{l}^{k}\right]=\delta_{j}^{k} I_{l}^{i}-\delta_{l}^{i} I_{j}^{k},} \tag{3}
\end{align*}
$$

The indices $i, j(i=1,2)$ are $\mathrm{SU}(2)$ indices. The $\mathrm{U}(1)$ generator \mathcal{H} is associated with the Hamiltonian. The generators $I_{j}^{i}\left(I_{k}^{k}=0\right)$ form $\mathrm{SU}(2)$ symmetry. In the limit $m=0$, models of the standard $\mathcal{N}=4$ supersymmetric mechanics are restored with \mathcal{H} being a central charge generator.

$\mathcal{N}=4$ multiplets

- Multiplets of $\mathcal{N}=4, d=1$ supersymmetry are denoted as $(\mathbf{k}, \mathbf{4}, \mathbf{4}-\mathbf{k})$ with $\mathbf{k}=\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}$. These numbers correspond to the numbers of bosonic physical fields, fermionic physical fields and bosonic auxiliary fields.
- Wess-Zumino (WZ) type Lagrangians (sometimes referred as Chern-Simons) for ($\mathbf{3}, \mathbf{4}, \mathbf{1}$) and $(\mathbf{4}, \mathbf{4}, \mathbf{0})$ were presented in the framework of the $\mathcal{N}=4, d=1$ harmonic superspace (E. Ivanov, O. Lechtenfeld, JHEP 0309 (2003) 073). For example, the simplest WZ Lagrangian for (4, 4, 0) reads

$$
\begin{equation*}
\mathcal{L}_{\mathrm{WZ}}=\frac{i}{2}\left(z^{i} \dot{\bar{z}}_{i}-\dot{z}^{i} \bar{z}_{i}\right)+\psi^{a} \bar{\psi}_{a}, \quad i=1,2, \quad a=1,2 \tag{4}
\end{equation*}
$$

- Without kinetic Lagrangian containing bosonic terms second-order in time derivatives, this Lagrangian describes a semi-dynamical multiplet. Fermionic fields become auxiliary, while bosonic fields satisfy the following Dirac brackets:

$$
\begin{equation*}
\left\{z^{i}, \bar{z}_{j}\right\}=i \delta_{j}^{i} \tag{5}
\end{equation*}
$$

Coupling

- Coupling of dynamical and semi-dynamical multiplets was proposed by S. Fedoruk, E. Ivanov, O. Lechtenfeld, Phys. Rev. D 79 (2009) 105015. This idea provided harmonic superfield construction of $\mathcal{N}=4$ extension of Calogero system with the additional spin (isospin) degrees of freedom z^{i}, z_{j}.
- This work was followed by a further study of "spinning" models considering couplings of dynamical and semi-dynamical multiplets of various types (S. Bellucci, S. Krivonos, A. Sutulin, Phys. Rev. D 81 (2010) 105026, E. Ivanov, M. Konyushikhin, A. Smilga, JHEP 1005 (2010) 033, etc).

Spinning models of chiral superfields

- The main goal of the present talk is to employ $\mathrm{SU}(2 \mid 1)$ superfield approach to spinning models of chiral superfields instead of harmonic ones.
- In this paper we consider the coupling of the chiral multiplet $(\mathbf{2}, \mathbf{4}, \mathbf{2})$ and the semi-dynamical multiplet $(\mathbf{4}, \mathbf{4}, \mathbf{0})$ of the mirror type.
- We construct $\operatorname{SU}(2 \mid 1)$ supersymmetric models based on this coupling, undeformed versions of which were studied by S. Bellucci, N. Kozyrev, S. Krivonos, A. Sutulin, Phys. Rev. D 85 (2012) 065024.

Superspace

The $\mathrm{SU}(2 \mid 1)$ superspace is defined as a supercoset (E. Ivanov, S. Sidorov, J. Phys. A 47 (2014) 292002):

$$
\begin{equation*}
\frac{\mathrm{SU}(2 \mid 1)}{\mathrm{SU}(2)} \sim \frac{\left\{\mathcal{H}, Q^{i}, \bar{Q}_{j}, I_{j}^{i}\right\}}{\left\{I_{j}^{i}\right\}}=\left\{t, \theta_{i}, \bar{\theta}^{j}\right\} . \tag{6}
\end{equation*}
$$

It has a chiral subspace identified with the coset

$$
\begin{equation*}
\frac{\left\{\mathcal{H}, Q^{i}, \bar{Q}_{j}, I_{j}^{i}\right\}}{\left\{\bar{Q}_{j}, I_{j}^{i}\right\}}=\left\{t_{\mathrm{L}}, \theta_{i}\right\} . \tag{7}
\end{equation*}
$$

The chiral condition reads

$$
\begin{equation*}
\overline{\mathcal{D}}_{j} \Phi\left(t_{\mathrm{L}}, \theta_{i}\right)=0, \tag{8}
\end{equation*}
$$

where $\overline{\mathcal{D}}_{j}$ and \mathcal{D}_{j} are $\mathrm{SU}(2 \mid 1)$ covariant derivatives.

Generalized chiral superspace

A generalization of the chiral subspace is identified with the coset

$$
\begin{equation*}
\frac{\left\{\mathcal{H}, \hat{Q}^{i}, \overline{\hat{Q}}_{j}, I_{j}^{i}\right\}}{\left\{\overline{\hat{Q}}_{j}, I_{j}^{i}\right\}}=\left\{\hat{t}_{\mathrm{L}}, \hat{\theta}_{i}\right\} \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{Q}^{i}=\cos \lambda Q^{i}-\sin \lambda \bar{Q}^{i}, \quad \overline{\hat{Q}}_{j}=\cos \lambda \bar{Q}_{j}+\sin \lambda Q_{j} \tag{10}
\end{equation*}
$$

The generalized chiral condition reads

$$
\begin{equation*}
\left(\cos \lambda \overline{\mathcal{D}}_{j}-\sin \lambda \mathcal{D}_{j}\right) \Phi\left(\hat{t}_{\mathrm{L}}, \hat{\theta}_{i}\right)=0 \tag{11}
\end{equation*}
$$

Generalized chiral multiplet

- The generalized chiral condition describes a new type of the chiral multiplet $(\mathbf{2}, \mathbf{4}, \mathbf{2})$ defined on the generalized chiral superspace and depending on two deformation parameters: m, λ.
- Exactly this multiplet is a basis for the construction of supersymmetric Kähler oscillator models with the frequency of oscillator $\omega=m \sin 2 \lambda / 2$ and the strength of an external magnetic field $\mathbf{B}=m \cos 2 \lambda$.
- Both parameters disappear in the limit $m=0$ and the rotation parameter λ becomes just an external automorphism parameter of the standard $\mathcal{N}=4$ Poincaré supersymmetry.

Superfield action

The chiral superfield is solved by

$$
\begin{equation*}
\Phi\left(\hat{t}_{\mathrm{L}}, \hat{\theta}_{j}\right)=z+\sqrt{2} \hat{\theta}_{k} \xi^{k}+\hat{\theta}_{k} \hat{\theta}^{k} B \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{t}_{\mathrm{L}}=t+i \overline{\hat{\theta}}^{k} \hat{\theta}_{k}, \quad \hat{\theta}_{i}=\left(\cos \lambda \theta_{i} e^{\frac{i}{2} m t}+\sin \lambda \bar{\theta}_{i} e^{-\frac{i}{2} m t}\right)\left(1-\frac{m}{2} \bar{\theta}^{k} \theta_{k}\right) . \tag{13}
\end{equation*}
$$

Superfield invariant action for the chiral superfield Φ is given by

$$
\begin{equation*}
S_{\text {kin. }}=\frac{1}{4} \int d t d^{2} \theta d^{2} \bar{\theta}\left(1+2 m \bar{\theta}^{k} \theta_{k}\right) K(\Phi, \bar{\Phi}) . \tag{14}
\end{equation*}
$$

where $K(\Phi, \bar{\Phi})$ is a Kähler potential. Superpotential is given by the standard superfield action

$$
\begin{equation*}
S_{\text {pot. }}=\int d \hat{t}_{\mathrm{L}} d^{2} \hat{\theta} f(\Phi)+\int d \hat{t}_{\mathrm{R}} d^{2} \overline{\hat{\theta}} \bar{f}(\bar{\Phi}) . \tag{15}
\end{equation*}
$$

Mirror multiplets

- The standard $\mathcal{N}=4$ multiplets have their mirror counterparts characterized by the interchange of two $\mathrm{SU}(2)$ groups which form $\mathrm{SU}(2) \times \mathrm{SU}^{\prime}(2) \rightarrow \mathrm{SO}(4)$ automorphism group of the standard $\mathcal{N}=4$ Poincaré supersymmetry [E. Ivanov, J. Niederle, Phys. Rev. D 80 (2009) 065027].
- Since this interchange $\left(i, j \longleftrightarrow i^{\prime}, j^{\prime}\right)$ has no essential impact on Poincaré supersymmetry, $\mathcal{N}=4$ multiplets and their mirror counterparts are mutually equivalent when dealing with only one multiplet from such a pair.
- Deformation to $\mathrm{SU}(2 \mid 1)$ supersymmetry breaks the equivalence, because the first $\mathrm{SU}(2)$ group becomes subgroup of $\mathrm{SU}(2 \mid 1)$ and the second group $\mathrm{SU}^{\prime}(2)$ is broken. It means that $\mathrm{SU}(2 \mid 1)$ multiplets differ from their mirror counterparts.

Multiplet (4, 4, 0)

First, let us consider the ordinary multiplet $(\mathbf{4}, \mathbf{4}, \mathbf{0})$ satisfying the constraints

$$
\begin{equation*}
\mathcal{D}^{(i} q^{j) a}=0, \quad \overline{\mathcal{D}}^{(i} q^{j) a}=0, \quad \overline{\left(q^{i a}\right)}=q_{i a}, \quad a=1,2 . \tag{16}
\end{equation*}
$$

One can rewrite these constraints as

$$
\begin{equation*}
\mathcal{D}_{i^{\prime}}^{(i} q^{j) a}=0, \tag{17}
\end{equation*}
$$

where the covariant derivatives are written via $\mathrm{SU}(2) \times \mathrm{SU}^{\prime}(2)$ indices as

$$
\begin{equation*}
\mathcal{D}^{i}:=\mathcal{D}^{i 1^{\prime}}=-\mathcal{D}_{2^{\prime}}^{i}, \quad \overline{\mathcal{D}}^{i}:=\mathcal{D}^{i 2^{\prime}}=\mathcal{D}_{1^{\prime}}^{i} \quad \Rightarrow \quad \mathcal{D}^{i i^{\prime}} \tag{18}
\end{equation*}
$$

Mirror multiplet $(\mathbf{4}, \mathbf{4}, \mathbf{0})$

Hence, its mirror counterpart is written as

$$
\begin{equation*}
\mathcal{D}^{i\left(i^{\prime}\right.} Y^{\left.j^{\prime}\right) A}=0, \quad \overline{\left(Y^{i^{\prime} A}\right)}=Y_{i^{\prime} A}, \quad A=1,2 . \tag{19}
\end{equation*}
$$

The superfield $Y^{i^{\prime} A}$ can be denoted as $Y^{A}=Y^{2^{\prime} A}, \bar{Y}^{A}=-Y^{1^{\prime} A}$ that leads to the constraints

$$
\begin{equation*}
\overline{\mathcal{D}}_{i} Y^{A}=0, \quad \mathcal{D}^{i} \bar{Y}^{A}=0, \quad \mathcal{D}_{i} Y^{A}=\overline{\mathcal{D}}_{i} \bar{Y}^{A}, \quad \overline{\left(Y^{A}\right)}=\bar{Y}_{A} . \tag{20}
\end{equation*}
$$

One can see that first two constraints are (anti)chiral conditions describing the pair of chiral multiplets $(\mathbf{2}, \mathbf{4}, \mathbf{2}) \oplus(\mathbf{2}, \mathbf{4}, \mathbf{2})$. The third constraint kills the half of component fields leaving the field content to be $(\mathbf{4}, \mathbf{4}, \mathbf{0})$.

Generalized mirror multiplet ($4,4,0$)

In order to couple the mirror $(\mathbf{4}, \mathbf{4}, \mathbf{0})$ and generalized chiral multiplets, we consider the generalized constraints

$$
\begin{equation*}
\overline{\tilde{\mathcal{D}}}_{i} Y^{A}=0, \quad \tilde{\mathcal{D}}^{i} \bar{Y}^{A}=0, \quad \tilde{\mathcal{D}}_{i} Y^{A}=\overline{\tilde{\mathcal{D}}}_{i} \bar{Y}^{A}, \quad \overline{\left(Y^{A}\right)}=\bar{Y}_{A}, \tag{21}
\end{equation*}
$$

where

$$
\begin{equation*}
\overline{\tilde{\mathcal{D}}}_{i}=\cos \lambda \overline{\mathcal{D}}_{i}-\sin \lambda \mathcal{D}_{i}, \quad \tilde{\mathcal{D}}^{i}=\cos \lambda \mathcal{D}^{i}+\sin \lambda \overline{\mathcal{D}}^{i} . \tag{22}
\end{equation*}
$$

Their solution reads

$$
\begin{equation*}
Y^{A}\left(\hat{t}_{\mathrm{L}}, \hat{\theta}_{i}\right)=y^{A}+\sqrt{2} \hat{\theta}_{i} \psi^{i A}+i \hat{\theta}_{k} \hat{\theta}^{k} \dot{\bar{y}}^{A}, \quad \overline{\left(y^{A}\right)}=\bar{y}_{A}, \quad \overline{\left(\psi^{i A}\right)}=\psi_{i A} \tag{23}
\end{equation*}
$$

Superpotential

The superpotential action

$$
\begin{equation*}
S_{\text {pot. }}=\frac{\mu}{2} \int d \hat{t}_{\mathrm{L}} d^{2} \hat{\theta} h\left(Y^{A}\right)+\frac{\mu}{2} \int d \hat{t}_{\mathrm{R}} d^{2} \hat{\hat{\theta}} \bar{h}\left(\bar{Y}_{A}\right) \tag{24}
\end{equation*}
$$

yields Wess-Zumino type Lagrangian:

$$
\begin{equation*}
S_{\text {pot. }}=\int d t \mathcal{L}_{\mathrm{WZ}}, \quad \mathcal{L}_{\mathrm{WZ}}=\mu\left[i \dot{\bar{y}}^{A} \partial_{A} h\left(y^{A}\right)+\frac{1}{2} \psi^{i A} \psi_{i}^{B} \partial_{A} \partial_{B} h\left(y^{A}\right)+\text { c.c. }\right] . \tag{25}
\end{equation*}
$$

Gauged mirror multiplet $(\mathbf{4}, \mathbf{4}, \mathbf{0})$

We can also assume that the chiral superfields Y^{A} are subjected to the local $\mathrm{U}(1)$ transformations

$$
\begin{equation*}
\left(Y^{1}\right)^{\prime}=e^{\frac{1}{2}(\Lambda-\bar{\Lambda})} Y^{1}, \quad\left(Y^{2}\right)^{\prime}=e^{-\frac{1}{2}(\Lambda-\bar{\Lambda})} Y^{2} \tag{26}
\end{equation*}
$$

where $\Lambda:=\Lambda\left(\hat{t}_{\mathrm{L}}, \hat{\theta}_{i}\right), \bar{\Lambda}:=\bar{\Lambda}\left(\hat{t}_{\mathrm{R}}, \overline{\hat{\theta}}^{j}\right)$. The superfields then satisfy the new gauge invariant constraints

$$
\begin{align*}
& \left(\overline{\tilde{\mathcal{D}}}^{i}+\frac{1}{2}\left[\overline{\tilde{\mathcal{D}}}^{i}, X\right]\right) Y^{1}=0, \quad\left(\overline{\tilde{\mathcal{D}}}^{i}-\frac{1}{2}\left[\overline{\tilde{\mathcal{D}}}^{i}, X\right]\right) Y^{2}=0, \quad \text { с.c. } \\
& \left(\tilde{\mathcal{D}}^{i}-\frac{1}{2}\left[\tilde{\mathcal{D}}^{i}, X\right]\right) Y^{1}=\left(\overline{\tilde{\mathcal{D}}}^{i}+\frac{1}{2}\left[\overline{\tilde{\mathcal{D}}}^{i}, X\right]\right) \bar{Y}^{1} \\
& \left(\tilde{\mathcal{D}}^{i}+\frac{1}{2}\left[\tilde{\mathcal{D}}^{i}, X\right]\right) Y^{2}=\left(\overline{\tilde{\mathcal{D}}}^{i}-\frac{1}{2}\left[\overline{\tilde{\mathcal{D}}}^{i}, X\right]\right) \bar{Y}^{2} \tag{27}
\end{align*}
$$

where the real superfield X is a gauge superfield transforming as

$$
\begin{equation*}
X^{\prime}=X+\Lambda+\bar{\Lambda} \tag{28}
\end{equation*}
$$

Gauge superfield

The superfield X satisfies the additional gauge invariant constraint

$$
\begin{equation*}
\tilde{\mathcal{D}}_{(i} \overline{\tilde{\mathcal{D}}}_{j)} X=0 . \tag{29}
\end{equation*}
$$

It is solved by

$$
\begin{align*}
X\left(t, \hat{\theta}_{i}, \overline{\hat{\theta}}^{j}\right)= & x+\sqrt{2}\left(\hat{\theta}_{k} \bar{\chi}^{k}+\overline{\hat{\theta}}^{k} \chi_{k}\right)+2 \overline{\hat{\theta}}_{k} \hat{\theta}^{k} \mathcal{A}+\hat{\theta}_{k} \hat{\theta}^{k} D+\overline{\hat{\theta}}^{k} \overline{\hat{\theta}}_{k} \bar{D} \\
& +\sqrt{2} i \overline{\hat{\theta}}^{k} \hat{\theta}_{k}\left(\hat{\theta}_{i} \dot{\chi}^{i}-\overline{\hat{\theta}}^{i} \dot{\chi}_{i}\right)-\frac{1}{4} \hat{\theta}_{i} \hat{\theta}^{i} \overline{\hat{\theta}}^{j} \overline{\hat{\theta}}_{j} \ddot{x}, \\
& \overline{(x)}=x, \quad \overline{(\mathcal{A})}=\mathcal{A}, \quad \overline{(D)}=\bar{D}, \quad \overline{\left(\chi^{i}\right)}=\bar{\chi}_{i} . \tag{30}
\end{align*}
$$

This superfield describes the mirror multiplet $(\mathbf{1}, \mathbf{4}, \mathbf{3})$ that differs from the ordinary one because of the deformation. Using the $\mathrm{U}(1)$ gauge freedom $X^{\prime}=X+\Lambda+\bar{\Lambda}$, we can choose the WZ gauge:

$$
\begin{equation*}
X_{\mathrm{WZ}}=2 \overline{\hat{\theta}}^{k} \hat{\theta}_{k} \mathcal{A}, \quad \mathcal{A}^{\prime}(t)=\mathcal{A}(t)-\dot{\alpha}(t) . \tag{31}
\end{equation*}
$$

Triplet

One can introduce accompanying chiral superfields

$$
\begin{equation*}
\mathcal{V}_{\mathrm{WZ}}\left(\hat{t}_{\mathrm{L}}, \hat{\theta}_{i}\right)=\hat{\theta}_{k} \hat{\theta}^{k} \mathcal{A}, \quad \overline{\mathcal{V}}_{\mathrm{WZ}}\left(\hat{t}_{\mathrm{R}}, \overline{\hat{\theta}}^{j}\right)=\overline{\hat{\theta}}^{k} \overline{\hat{\theta}}_{k} \mathcal{A} \tag{32}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
\tilde{\mathcal{D}}_{i} X_{\mathrm{WZ}}=\overline{\tilde{\mathcal{D}}}_{i} \overline{\mathcal{V}}_{\mathrm{WZ}}, \quad \overline{\tilde{\mathcal{D}}}_{i} X_{\mathrm{WZ}}=-\tilde{\mathcal{D}}_{i} \mathcal{V}_{\mathrm{WZ}} \tag{33}
\end{equation*}
$$

These superfields can be combined in the form a triplet superfield $\mathcal{V}^{i^{\prime} j^{\prime}} \equiv \mathcal{V}^{\left(i^{\prime} j^{\prime}\right)}$ as

$$
\begin{equation*}
\mathcal{V}^{i^{\prime} j^{\prime}}=\hat{\theta}^{k\left(i^{\prime}\right.} \hat{\theta}_{k}^{\left.j^{\prime}\right)} \mathcal{A}, \quad \tilde{\mathcal{D}}^{i\left(i^{\prime}\right.} \mathcal{V}^{\left.j^{\prime} k^{\prime}\right)}=0 . \tag{34}
\end{equation*}
$$

Thus, it can be interpreted as a mirror counterpart of the "topological" gauge multiplet described by the harmonic superfield V^{++}in the WZ gauge [F. Delduc, E. Ivanov, Nucl. Phys. B 753 (2006) 211-241; Nucl. Phys. B 770 (2007) 179-205].

Solution

According to the (anti)chiral conditions, the superfield solution is modified as

$$
\begin{array}{ll}
Y^{1}\left(t, \hat{\theta}_{i}, \bar{\theta}^{j}\right)=e^{-\frac{x}{2}} Y_{\mathrm{L}}^{1}\left(\hat{t}_{\mathrm{L}}, \hat{\theta}_{i}\right), & \left(Y_{\mathrm{L}}^{1}\right)^{\prime}=e^{\Lambda} Y_{\mathrm{L}}^{1}, \\
Y^{2}\left(t, \hat{\theta}_{i}, \hat{\theta}^{j}\right)=e^{\frac{x}{2}} Y_{\mathrm{L}}^{2}\left(\hat{t}_{\mathrm{L}}, \hat{\theta}_{i}\right), & \left(Y_{\mathrm{L}}^{2}\right)^{\prime}=e^{-\Lambda} Y_{\mathrm{L}}^{2} . \tag{35}
\end{array}
$$

Solving the additional constraint the left chiral superfield Y_{L}^{A} has the following θ-expansion:

$$
\begin{equation*}
Y_{\mathrm{L}}^{A}\left(\hat{t}_{\mathrm{L}}, \hat{\theta}_{i}\right)=y^{A}+\sqrt{2} \hat{\theta}_{i} \psi^{i A}+i \hat{\theta}_{k} \hat{\theta}^{k} \nabla_{t} \bar{y}^{A}, \quad \nabla_{t} \bar{y}^{1}=\left(\partial_{t}+i \mathcal{A}\right) \bar{y}^{1}, \quad \nabla_{t} \bar{y}^{2}=\left(\partial_{t}-i \mathcal{A}\right) \bar{y}^{2} . \tag{36}
\end{equation*}
$$

Finally, the superpotential action must be written as a function of the only possible invariant $Y_{\mathrm{L}}^{1} Y_{\mathrm{L}}^{2}$, since it is the only gauge invariant object defined on the left chiral subspace.

Coupling of dynamical and semi-dynamical multiplets

The simplest superpotential term of interacting multiplets reads

$$
\begin{equation*}
S_{\text {int. }}=\frac{\mu}{2} \int d \hat{t}_{\mathrm{L}} d^{2} \hat{\theta} Y_{\mathrm{L}}^{1} Y_{\mathrm{L}}^{2} f(\Phi)-\frac{\mu}{2} \int d \hat{t}_{\mathrm{R}} d^{2} \overline{\hat{\theta}} \bar{Y}_{\mathrm{R}}^{1} \bar{Y}_{\mathrm{R}}^{2} \bar{f}(\bar{\Phi}) \tag{37}
\end{equation*}
$$

where f is an arbitrary holomorphic function of Φ. The Lagrangian is then given by

$$
\begin{align*}
\mathcal{L}_{\text {int. }}= & \mu\left[i\left(y^{1} \nabla_{t} \bar{y}_{1}-y^{2} \nabla_{t} \bar{y}_{2}\right) f+\psi^{i 1} \psi_{i}^{2} f+B y^{1} y^{2} \partial_{z} f\right. \\
& \left.+\xi^{i}\left(\psi_{i 1} y^{1}-\psi_{i 2} y^{2}\right) \partial_{z} f-\frac{\xi_{i} \xi^{i}}{2} y^{1} y^{2} \partial_{z} \partial_{z} f+\text { c.c. }\right] . \tag{38}
\end{align*}
$$

Fayet-Iliopoulos term can be constructed as

$$
\begin{equation*}
S_{\mathrm{FI}}=-\frac{c}{4}\left[\int d \hat{t}_{\mathrm{L}} d^{2} \hat{\theta} \mathcal{V}_{\mathrm{WZ}}+\int d \hat{t}_{\mathrm{R}} d^{2} \hat{\hat{\theta}} \overline{\mathcal{V}}_{\mathrm{WZ}}\right] \quad \Rightarrow \quad \mathcal{L}_{\mathrm{FI}}=-c \mathcal{A}, \quad c=\text { const. } \tag{39}
\end{equation*}
$$

Total Lagrangian

- We consider the model of the dynamical multiplet $(\mathbf{2}, \mathbf{4}, \mathbf{2})$ interacting with the semi-dynamical multiplet $(\mathbf{4}, \mathbf{4}, \mathbf{0})$. The total Lagrangian is written as

$$
\begin{equation*}
\mathcal{L}=\mathcal{L}_{\text {kin. }}+\mathcal{L}_{\text {int. }}+\mathcal{L}_{\mathrm{FI}} . \tag{40}
\end{equation*}
$$

- Eliminating the auxiliary fields B and $\psi^{i A}$ by their equations of motion and performing the following redefinition

$$
\begin{array}{lll}
y^{1}=v(f+\bar{f})^{-\frac{1}{2}}, & y^{2}=\bar{w}(f+\bar{f})^{-\frac{1}{2}}, & \xi^{i}=g^{-\frac{1}{2}} \eta^{i}, \\
\bar{y}_{1}=\bar{v}(f+\bar{f})^{-\frac{1}{2}}, & \bar{y}_{2}=w(f+\bar{f})^{-\frac{1}{2}}, & \bar{\xi}_{j}=g^{-\frac{1}{2}} \bar{\eta}_{j}, \tag{41}
\end{array}
$$

we obtain the total on-shell Lagrangian \mathcal{L}.

Component Lagrangian

Component Lagrangian reads

$$
\begin{align*}
\mathcal{L}= & g \dot{\bar{z}} \dot{z}+\frac{i}{2}\left(\eta^{i} \dot{\bar{\eta}}_{i}-\dot{\eta}^{i} \bar{\eta}_{i}\right)+\frac{i}{2} \mu(v \dot{\bar{v}}+w \dot{\bar{w}}-\dot{v} \bar{v}-\dot{w} \bar{w})+\frac{i \mu\left(\dot{\bar{z}} \partial_{\bar{z}} \bar{f}-\dot{z} \partial_{z} f\right)}{2(f+\bar{f})}(v \bar{v}-w \bar{w}) \\
& +\frac{i}{2}\left(\dot{\bar{z}} \partial_{\bar{z}} g-\dot{z} \partial_{z} g\right) g^{-1} \eta^{k} \bar{\eta}_{k}-\frac{\partial_{z} f \partial_{\bar{z}} \bar{f}}{g(f+\bar{f})^{2}}\left[\mu(v \bar{v}-w \bar{w}) \eta^{k} \bar{\eta}_{k}+\mu^{2} w \bar{w} v \bar{v}\right] \\
& -\frac{\mu v \bar{w}}{g(f+\bar{f})}\left[\frac{\partial_{z} \partial_{z} f}{2}-\frac{\partial_{z} f \partial_{z} f}{(f+\bar{f})}-\frac{\partial_{z} f}{2} g^{-1} \partial_{z} g\right] \eta_{i} \eta^{i} \\
& -\frac{\mu w \bar{v}}{g(f+\bar{f})}\left[\frac{\partial_{\bar{z}} \partial_{\bar{z}} \bar{f}}{2}-\frac{\partial_{\bar{z}} \bar{f} \partial_{\bar{z}} \bar{f}}{(f+\bar{f})}-\frac{\partial_{\bar{z}} \bar{f}}{2} g^{-1} \partial_{\bar{z}} g\right] \bar{\eta}^{j} \bar{\eta}_{j} \\
& +\frac{1}{4 g^{2}}\left(\partial_{z} \partial_{\bar{z}} g-g^{-1} \partial_{z} g \partial_{\bar{z}} g\right) \eta_{i} \eta^{i} \bar{\eta}^{j} \bar{\eta}_{j}+[\mu(v \bar{v}+w \bar{w})-c] \mathcal{A}+\mathcal{L}_{m} \tag{42}
\end{align*}
$$

Component Lagrangian

where \mathcal{L}_{m} is a deformed part:

$$
\begin{align*}
\mathcal{L}_{m}= & \frac{i}{2} m \cos 2 \lambda\left(\dot{z} \partial_{z} K-\dot{\bar{z}} \partial_{\bar{z}} K\right)-\frac{(m \sin 2 \lambda)^{2}}{4 g} \partial_{z} K \partial_{\bar{z}} K \\
& +\frac{m \sin 2 \lambda}{4 g}\left[\left(\partial_{z} \partial_{z} K-g^{-1} \partial_{z} K \partial_{z} g\right) \eta_{i} \eta^{i}+\left(\partial_{\bar{z}} \partial_{\bar{z}} K-g^{-1} \partial_{\bar{z}} K \partial_{\bar{z}} g\right) \bar{\eta}^{j} \bar{\eta}_{j}\right] \\
& +\frac{m \sin 2 \lambda}{2 g(f+\bar{f})}\left(\mu w \bar{v} \partial_{z} f \partial_{\bar{z}} K+\mu v \bar{w} \partial_{\bar{z}} \bar{f} \partial_{z} K\right)-\frac{m \cos 2 \lambda}{2} \eta^{k} \bar{\eta}_{k} . \tag{43}
\end{align*}
$$

Indeed, it depends on two deformation parameters:

$$
\begin{equation*}
\mathbf{B}=m \cos 2 \lambda, \quad \omega=\frac{m \sin 2 \lambda}{2} . \tag{44}
\end{equation*}
$$

The $\mathrm{U}(1)$ gauge field \mathcal{A} plays the role of a Lagrange multiplier enforcing the constraint

$$
\begin{equation*}
\mu(v \bar{v}+w \bar{w})-c=0 . \tag{45}
\end{equation*}
$$

Classical mechanics

Classical Hamiltonian reads

$$
\begin{align*}
\mathcal{H}= & g^{-1} P_{z} P_{\bar{z}}-\frac{1}{4}\left(\partial_{z} \partial_{\bar{z}} g-g^{-1} \partial_{z} g \partial_{\bar{z}} g\right) g^{-2} \eta_{i} \eta^{i} \bar{\eta}^{j} \bar{\eta}_{j}+\frac{2 \partial_{z} f \partial_{\bar{z}} \bar{f} S_{3}}{g(f+\bar{f})^{2}} \eta^{k} \bar{\eta}_{k}+\frac{m \cos 2 \lambda}{2} \eta^{k} \bar{\eta}_{k} \\
& +\frac{S_{+}}{g(f+\bar{f})}\left[\frac{\partial_{z} \partial_{z} f}{2}-\frac{\partial_{z} f \partial_{z} f}{(f+\bar{f})}-\frac{\partial_{z} f}{2} g^{-1} \partial_{z} g\right] \eta_{k} \eta^{k} \\
& +\frac{S_{-}}{g(f+\bar{f})}\left[\frac{\partial_{\bar{z}} \partial_{\bar{z}} \bar{f}}{2}-\frac{\partial_{\bar{z}} \bar{f} \partial_{\bar{z}} \bar{f}}{(f+\bar{f})}-\frac{\partial_{\bar{z}} \bar{f}}{2} g^{-1} \partial_{\bar{z}} g\right] \bar{\eta}^{k} \bar{\eta}_{k} \\
& -\frac{m \sin 2 \lambda}{4}\left[\left(\partial_{z} \partial_{z} K-g^{-1} \partial_{z} K \partial_{z} g\right) g^{-1} \eta_{i} \eta^{i}+\left(\partial_{\bar{z}} \partial_{\bar{z}} K-g^{-1} \partial_{\bar{z}} K \partial_{\bar{z}} g\right) g^{-1} \bar{\eta}^{j} \bar{\eta}_{j}\right] \\
& +g^{-1}\left[\frac{\partial_{z} f S_{+}}{(f+\bar{f})}-\frac{m \sin 2 \lambda}{2} \partial_{z} K\right]\left[\frac{\partial_{\bar{z}} \bar{f} S_{-}}{(f+\bar{f})}-\frac{m \sin 2 \lambda}{2} \partial_{\bar{z}} K\right] \tag{46}
\end{align*}
$$

Classical mechanics

where

$$
\begin{align*}
S_{3} & =\frac{\mu}{2}(v \bar{v}-w \bar{w}), \quad S_{+}=\mu v \bar{w}, \quad S_{-}=\mu w \bar{v} \\
P_{z} & =p_{z}-\frac{i}{2} m \cos 2 \lambda \partial_{z} K+\frac{i \partial_{z} f S_{3}}{(f+\bar{f})}+\frac{i}{2} g^{-1} \partial_{z} g \eta^{i} \bar{\eta}_{i} \\
P_{\bar{z}} & =p_{\bar{z}}+\frac{i}{2} m \cos 2 \lambda \partial_{\bar{z}} K-\frac{i \partial_{\bar{z}} \bar{f} S_{3}}{(f+\bar{f})}-\frac{i}{2} g^{-1} \partial_{\bar{z}} g \eta^{j} \bar{\eta}_{j} \tag{47}
\end{align*}
$$

Poisson (Dirac) brackets are imposed as

$$
\begin{array}{ll}
\left\{p_{z}, z\right\}=-1, & \left\{p_{\bar{z}}, \bar{z}\right\}=-1, \quad\left\{\eta^{i}, \bar{\eta}_{j}\right\}=-i \delta_{j}^{i} \\
\{v, \bar{v}\}=i \mu^{-1}, & \{w, \bar{w}\}=i \mu^{-1} \tag{48}
\end{array}
$$

$\mathrm{SU}(2 \mid 1)$ generators

$\mathrm{SU}(2 \mid 1)$ supercharges are

$$
\begin{align*}
Q^{i}= & \sqrt{2} e^{\frac{i}{2} m t} g^{-\frac{1}{2}}\left\{\cos \lambda \eta^{i}\left[P_{z}-\frac{i}{2}(1-\cos 2 \lambda) m \partial_{z} K\right]-\sin \lambda \bar{\eta}^{i}\left[P_{\bar{z}}-\frac{i}{2}(1+\cos 2 \lambda) m \partial_{\bar{z}} K\right]\right. \\
& \left.-\frac{i}{(f+\bar{f})}\left(\cos \lambda \partial_{\bar{z}} \bar{f} S_{-} \bar{\eta}^{i}-\sin \lambda \partial_{z} f S_{+} \eta^{i}\right)\right\} \tag{49}
\end{align*}
$$

$$
\begin{align*}
\bar{Q}_{j}= & \sqrt{2} e^{-\frac{i}{2} m t} g^{-\frac{1}{2}}\left\{\cos \lambda \bar{\eta}_{j}\left[P_{\bar{z}}+\frac{i}{2}(1-\cos 2 \lambda) m \partial_{\bar{z}} K\right]+\sin \lambda \eta_{j}\left[P_{z}+\frac{i}{2}(1+\cos 2 \lambda) m \partial_{z} K\right]\right. \\
& \left.-\frac{i}{(f+\bar{f})}\left(\cos \lambda \partial_{z} f S_{+} \eta_{j}+\sin \lambda \partial_{\bar{z}} \bar{f} S_{-} \bar{\eta}_{j}\right)\right\} \tag{50}
\end{align*}
$$

$\mathrm{SU}(2)$ subgroup generators are written as

$$
\begin{equation*}
I_{j}^{i}=\eta^{i} \bar{\eta}_{j}-\frac{\delta_{j}^{i}}{2} \eta^{k} \bar{\eta}_{k} \tag{51}
\end{equation*}
$$

$\mathrm{SU}(2)$ group of spin variables

The generators S_{3} and $S_{ \pm}$, written trough spin variables as

$$
\begin{equation*}
S_{3}=\frac{\mu}{2}(v \bar{v}-w \bar{w}), \quad S_{+}=\mu v \bar{w}, \quad S_{-}=\mu w \bar{v}, \tag{52}
\end{equation*}
$$

form the $s u(2)$ algebra:

$$
\begin{equation*}
\left\{S_{3}, S_{ \pm}\right\}=\mp i S_{ \pm}, \quad\left\{S_{+}, S_{-}\right\}=-2 i S_{3} \tag{53}
\end{equation*}
$$

The Hamiltonian commutes with the Casimir operator

$$
\begin{equation*}
C_{\mathrm{SU}(2)}=S_{+} S_{-}+\left(S_{3}\right)^{2} . \tag{54}
\end{equation*}
$$

$\mathrm{SU}(2)$ group of spin variables

According to the constraint

$$
\begin{equation*}
\mu(v \bar{v}+w \bar{w})-c=0, \tag{55}
\end{equation*}
$$

the Casimir operator is determined by the constant

$$
\begin{equation*}
C_{\mathrm{SU}(2)}=\frac{\mu^{2}(v \bar{v}+w \bar{w})^{2}}{4}=\frac{c^{2}}{4} . \tag{56}
\end{equation*}
$$

Its quantum counterpart (up to the ordering ambiguity) is given by ($c \approx 2 s$)

$$
\begin{equation*}
C_{\mathrm{SU}(2)}=s(s+1), \tag{57}
\end{equation*}
$$

where s is a spin of the quantum system.

Conclusions

- We proposed new models of $\operatorname{SU}(2 \mid 1)$ supersymmetric mechanics with the use of dynamical and gauged semi-dynamical multiplets. As an alternative of harmonic superspace, we exploited the generalized chiral superspace.

Conclusions

- We proposed new models of $\operatorname{SU}(2 \mid 1)$ supersymmetric mechanics with the use of dynamical and gauged semi-dynamical multiplets. As an alternative of harmonic superspace, we exploited the generalized chiral superspace.
- We considered in details the deformed model on the pseudo-sphere $\mathrm{SU}(1,1) / \mathrm{U}(1)$ (Lobachevsky space) with the corresponding metric $g=(1-\gamma z \bar{z})^{-2}$ and the special choice of $f(z)$.

Conclusions

- We proposed new models of $\operatorname{SU}(2 \mid 1)$ supersymmetric mechanics with the use of dynamical and gauged semi-dynamical multiplets. As an alternative of harmonic superspace, we exploited the generalized chiral superspace.
- We considered in details the deformed model on the pseudo-sphere $\mathrm{SU}(1,1) / \mathrm{U}(1)$ (Lobachevsky space) with the corresponding metric $g=(1-\gamma z \bar{z})^{-2}$ and the special choice of $f(z)$.
- In distinct from [S. Bellucci, N. Kozyrev, S. Krivonos, A. Sutulin, Phys. Rev. D 85 (2012) $065024]$, the symmetry $\mathrm{SU}(1,1) \times \mathrm{U}(1)$ of the model is broken. We can define only the remaining $\mathrm{U}(1) \subset \mathrm{SU}(1,1)$ generator J_{3} that commutes with all $\mathrm{SU}(2 \mid 1)$ generators. However, one can restore this symmetry in the limit $\lambda=0$.

Conclusions

- We tried to obtain superconformal symmetry for considered models, but it is impossible at least for a single-particle model. Superconformal models can possibly be obtained for two or more chiral dynamical multiplets.
- It would be interesting to study mirror counterparts of the multiplets $(\mathbf{1}, \mathbf{4}, \mathbf{3})$ and $(\mathbf{3}, \mathbf{4}, \mathbf{1})$. The latter one is described by a triplet consisting of real and chiral superfields, i.e. X, \mathcal{V} and $\overline{\mathcal{V}}$.
- One can try to couple the mirror multiplets $(\mathbf{3}, \mathbf{4}, \mathbf{1})$ and $(\mathbf{4}, \mathbf{4}, \mathbf{0})$ in $\mathrm{SU}(2 \mid 1)$ chiral superspace.

Conclusions

- We tried to obtain superconformal symmetry for considered models, but it is impossible at least for a single-particle model. Superconformal models can possibly be obtained for two or more chiral dynamical multiplets.
- It would be interesting to study mirror counterparts of the multiplets $(\mathbf{1}, \mathbf{4}, \mathbf{3})$ and $(\mathbf{3}, \mathbf{4}, \mathbf{1})$. The latter one is described by a triplet consisting of real and chiral superfields, i.e. X, Φ and $\bar{\Phi}$.
- One can try to couple the mirror multiplets $(\mathbf{3}, \mathbf{4}, \mathbf{1})$ and $(\mathbf{4}, \mathbf{4}, \mathbf{0})$ in $\mathrm{SU}(2 \mid 1)$ chiral superspace.

Thank you for your attention!

