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Outline of talk

Superintegrability of N -dimensional isotropic oscillator. SO(N) angular
momentum and Fradkin’s tensors as providers of U(N) symmetry.

Superintegrability of N -particle (rational) Calogero model. Dunkl deformations
of SO(N) angular momentum and Fradkin’s tensors as providers of
superintegrability of Calgero model.

Discrete Calogero system and it’s relation to exactly solvable SU(n) spin system
with long-range interaction (Polychronakos-Frahm chain).

The behavior of deformed U(N) symmetry at the freezing limit and how it links
the symmetries of isotropic oscillator with discrete Calogero systems.
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Calogero model

The Calogero model describes 1d particles with 1/r2 interaction bound by harmonic
potential [Calogero (1969,1971)],

ĤC =
N∑
i=1

p̂2i + ω2x2i
2

+
∑
i<j

g(g ∓ ~)

(xi − xj)2
.

Where g is a positive coupling constant characterizing the strength of the
interparticle two-body interaction and ω2 is a nonnegative constant characterizing
the strength of the interaction with an external harmonic oscillator potential.

Most its properties, like (super)integrability, spectrum, wave functions, and
conservation laws, are conditioned by its nonlocal modification (called a generalized
Calogero model) [Polychronakos (1992); Brink, Hansson, Vasiliev (1992)]:

Ĥ =
1

2

N∑
i=1

(
p̂2i + ω2x2i

)
+
∑
i<j

g(g − ~Mij)

(xi − xj)2
.

The nonlocal operator Mij permutes the coordinates xi and xj .

On bosonic/fermionic states Mij = ±1 and Ĥ is reduced to ĤC.
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Dunkl operator representation

Define a new momentum
π̂i = −ı~∇i

∇i = ∂i −
g

~
∑
j 6=i

1

xi − xj
Mij .

∇i was constructed first by Dunkl [(1988)].

Then the inverse-square Calogero interaction can be encapsulated into the Dunkl
momentum operator as [Polychronakos (1992); Brink, Hansson, Vasiliev (1992)]:

Ĥ =
π̂2

2
+
ω2x2

2
.
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Properties of Dunkl operators

Dunkl operators are nonlocal covariant derivatives. Their momenta mutually
commute:

[π̂i, π̂j ] = 0.

But the standard commutations with coordinates are changed:

[π̂i, xj ] = −ıŜij ,

where

Ŝij = (δij − 1)gMij + δij

(
~ + g

∑
k 6=i

Mik

)
.

In the g = 0 limit,
π̂i = p̂i, Ŝij = ~δij

recovering the Heisenberg algebra commutations.
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Spectrum generating operators (ω = 1)

Dunkl-operator analog of lowering-rising operators:

â±i =
xi ∓ ıπ̂i√

2
.

The commutators:
[âi, âj ] = [â+i , â

+
j ] = 0,

[âi, â
+
j ] = Ŝij .

The generalized Calogero Hamiltonian can be expressed in terms of them:

Ĥ =
1

2

∑
i

(â+i âi + âiâ
+
i )

Operators â±i obey a standard spectrum generating relations [Brink, Hansson,

Vasiliev (1992); Minhatan, Polychronakos (1992)]:

[Ĥ, â±i ] = ±~â±i .
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Spectrum of Calogero system (~ = 1)

Bosonic ground state wavefuntion must obey [Brink, Hansson, Vasiliev (1992)]

aiψ0 = 0 or
∂iψ0

ψ0
= −xi +

∑
j 6=i

g

xi − xj
.

The solution is:
ψ0 =

∏
i<j

|xi − xj |ge−
1
2

∑
i x

2
i

with ground state energy

E0 =
N

2
+ g

N(N − 1)

2
.

Excitations are generated by creation operators:

|k1, . . . , kN 〉 = (A+
1 )k1(A+

2 )k2 . . . (A+
N )kNψ0, A+

l =

N∑
i=1

(a+i )l

with ki = 0, 1, 2 . . . and energy

Ek1...kN = E0 + k1 + 2k2 + · · ·+NkN

Wavefunction for bosonic system:

ψk1...kN (x) = const
∏
i<j

|xi − xj |gSym

{
N∏
i=1

Hki(xi)

}
e−

1
2
x2

,
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Dunkl analog of U(N) symmetry

As a consequence of spectrum-generating relations, the elements

Êij = â+i âj

satisfies the conservation law.

Êij are Dunkl-analogs of U(N) generators.

Together with permutations Sij , they generate the symmetries of the nonlocal
Calogero model:

[Ĥ, Êij ] = 0, [Ĥ, Ŝij ] = 0.

They imply following deformation of u(N) commutations[Feigin, T.H. (2015);

Correa, T.H., Lechtenfeld, Nersessian (2016)]:

[Êij , Êkl + Ŝkl] = ÊilŜkj − ŜilÊkj .
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Liouville integrals

As a consequence, the diagonal elements are closed under commutation. They are
not Abelian but obey a simple commutation,

[Êii, Êkk] = (Êii − Êkk)Ŝik.

The above algebra ensures that the power sums form a system of Liouville integrals
of the Calogero system [Polychronakos (1992)],

Êk =
∑
i

Êk
ii, [Êk, Êl] = 0.

The generalized Hamiltonian itself is expressed in terms of the first member in this
family,

Ĥ = Ê1 − S +
N~
2
,

where the permutation invariant element

S =
∑
i<j

Mij .

Moreover, it is a unique Casimir element (up to a nonessential constant term) of the
Dunkl-deformed u(N) algebra [Feigin, Hakobyan (2015)].
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Dunkl angular momentum. Dunkl-Fradkin tensor

The antisymmetric combinations of Êij yield the Dunkl angular momentum
components [Feigin (2003); Kuznetsov (1996)],

L̂ij = Êij − Êji = xiπ̂j − xj π̂i.

Together with permutations, they produce a deformation of so(N) algebra.

The Casimir element is a deformation of the usual angular momentum square
[Feigin, T.H. (2015)],

L̂2 = L̂2 + S2 − ~(N − 2)S, [L̂ij , L̂2] = 0.

L̂2 is an angular Hamiltonian describing the spherical part of the Calogero
model [Feigin, Lechtenfeld, Polychronakos (2013)].

The symmetric combinations of the deformed u(N) produce a Dunkl-operator
deformation of the Fradkin tensor [Correa, T.H., Lechtenfeld, Nersessian (2016)],

Îij = Êij + Êji − Ŝij = π̂iπ̂j + xixj .
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Complete set of integrals for Calogero model

More general invariants may include the nondiagonal generators Eij .

The most general integrals of the Calogero Hamiltonian are symmetric
polynomials Psym on the generators Êij , (or L̂ij and Îij) and permutation Sij ,

Psym(Êij , Sij) = P ′sym(L̂ij , Îij , Sij)

[Psym, ĤC] = 0.

Some simplest integrals: ∑
i,j

Îkij ,
∑
i,j

L̂2k
ij ,

∑
i<j

ÎkijMij ,
∑
i,j

ÎkiiL̂
2l
ij .
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Reduction to discrete system

Set constant g = 1 in the nonlocal Calogero system:

Ĥ =
1

2

N∑
i=1

(
p̂2i + x̂2i

)
+
∑
i<j

1− ~Mij

x̂2ij
.

Consider the dynamical system at the equilibrium point x̂ = x, where the
(classical) confining Calogero potential is minimal:

∂V

∂xi
= 0, V (x) =

N∑
i=1

x2i
2

+
∑
i<j

1

x2ij
.

These equilibrium coordinates are roots of Hermite polynomial [Frahm (1993)],

HN (xi) = 0

All roots differ, so there are N ! equivalent minima related by permutations Mij .

Permutations are the only allowed evolutions in frozen system, so the system
becomes discrete.
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Generalized Polychronakos-Frahm model

Apply ~ expansion to dynamical system [Mathieu, Xudous (2001)]

Ĥ = V + ~H(1) − ~2∂2

2
.

Generalized Polychronakos-Frahm Hamiltonian [Polychronakos (1993)]:

H(1) =
∑
i<j

1

x2ij
Mij .

The SU(n) symmetric Polychronakos-Frahm spin chain is recovered after the
replacement of the coordinate permutations with spin exchange operators,

HPF =
∑
i<j

Pij

x2ij
.

Pij permutes SU(n) spins s = 1, . . . , n:

Pij |s1 . . . si . . . sj . . . sN 〉 = |s1 . . . sj . . . si . . . sN 〉.
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Equivalence between spin and coordinate chains for identical particles

Endow the particles xi with additional spin degrees of freedom, si:

ξi = (xi, si)

Then in bosonic and fermionic sectors, the coordinate Hamiltonian becomes
identical to the spin system

H(1) = ±HPF

For bosonic states:
MijPij = 1 so that Mij = Pij

For fermionic states:

MijPij = −1 so that Mij = −Pij

The projection inverts the order of permutations so that the operator MijMkl

must be substituted by PklPij .
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Discrete Dunkl momentum

Planck’s expansion of Dunkl momentum:

π̂i = πi − ı~∂i.

The zero-term is a discrete analog of Dunkl momentum operator [Polychronakos
(1993)]:

πi =
∑
j 6=i

ı

xij
Mij .

Planck’s expansion of permutation matrix:

Ŝij = Sij + ~δij with Sij =

{
−Mij , if i 6= j,∑

k 6=iMik, otherwise.

Canonical commutations resemble their original form:

[πi, πj ] = 0, [xi, πj ] = ıSij .
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Discrete spectrum-generating operators

The discrete lowering-rising operators:

a±i =
xi ∓ ıπi√

2
, where â±i = a±i ±

~√
2
∂i

They obey similar commutations as â±i under replacement Ŝij → Sij

[Polychronakos (1993)]:

[ai, aj ] = [a+i , a
+
j ] = 0, [ai, a

+
j ] = Sij .

The spectrum generating relation remains valid for the discrete system too
[Polychronakos (1993)]:

[H(1), a±i ] = ±a±i .

However, unlike the dynamical case (or oscillator case), the discrete Hamiltonian
is not expressed via lowering-rising operators,

H(1) 6= 1

2

∑
i

(a+i ai + aia
+
i )
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Discrete analog of Dunkl U(N) and SO(N) symmetries

The constants of motion of the dynamical system have Planck’s expansion:

Êij = Eij + ~E(1)
ij −

~2

2
∂i∂j .

Expansion for the antisymmetric (Dunkl angular momentum) is simpler:

L̂ij = Lij − ı~(xi∂j − xj∂i).

It produces a discrete Dunkl angular momentum operator,

Lij = xiπj − xjπi.

A similar expansion for the symmetrised components of Êij is more complex:

Îij = Iij + ~I(1)ij − ~2∂i∂j .

It defines a discrete analog of the Fradkin’s tensor:

Iij = xixj + πiπj .
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Algebra of discrete Dunkl U(N) generators

The mapping from the dynamical to discrete Dunkl U(N) generators

Êij → Eij , Ŝij → Sij

provides the following relation for the discrete symmetries,

[Eij , Ekl + Skl] = EilSkj − SilEkj ,

[Eii, Ekk] = (Eii − Ekk)Sik.

The power sums of diagonal elements

Ek =
∑
i

Ek
ii

yield Liouville integrals of the Polychronakos-Frahm chain [Polychronakos (1993)]:

[Ek, El] = 0, [H(1), Ek] = 0.

Seda Vardanyan (Yerevan State University)Symmetry algebra of dynamical and discrete Calogero models 18 / 21



Discrete Dunkl U(N) generators: additional relations

For the dynamical system following quadratic relation is the only constraint on
Êij [Feigin, T.H. (2015)].

Êij(Êkl + Ŝkl) = Êil(Êkj + Ŝkj).

But for the discrete system, there are a lot of other restrictions on them. Such as:

1 Linear relations (consequence of the zero centre-of-mass):∑
i

Eik =
∑
i

Eki =
∑
i

Lik =
∑
i

Iik = 0.

2 Triviality of the first Liouville integral (for k ≥ 2 they are more complicate):

E1 = S + 1
2
N(N − 1).

3 In the equilibrium limit angular Calogero Hamiltonian is just a constant:

L2 = r4, r2 = 1
2
N(N − 1)
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Two-dimensional Calogero system with Dihedral symmetry

1 The Dihedral group Dn is a finite group that describes the symmetries of a
regular polygon with rotations and reflections.

2 In the complex plane,

z = x1 + ıx2, z̄ = x1 − ıx2,

3 It consists of the n discrete rotations and n reflections with respect to the
symmetry axes

rk(z) = w2kz, w = e
ıπ
n , sk(z) = w−2k

with k = 0, 1, . . . , n− 1
4 The Dunkl operators are defined as [C.F.Dunkl(1989)].

∇z = ∂z − g
n−1∑
k=0

w−k

fk
sk with fk = zw−k − z̄wk

5 The two-dimensional analogs of both dynamical and descrete Calogero models,
remain invariant with respect to the Dihedral group Dn with odd n.
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Summary

1 The symmetries of the Calogero model have been described by means of the
Dunkl-operators deformation of U(N) generators (symmetry algebra of d = N
isotropic oscillator).

2 The symmetries of the discrete Calogero model are described by means of a
discrete version Dunkl-deformed U(N) algebra. Polychronakos-Frahm spin chain
has been described as discrete Calogero model for identical particals.

3 The complete set of independent integrals of motion for the discrete Calogero
Hamiltonian are retrieved using dynamical-to-discrete transition relations.

4 Some of the integrals of motion become mere constants for discrete Calogero
model (H, L2).

5 The dynamical-to-discrete relations of Calogero models can be extended with
general finite reflection groups (the dihedral group Dn provides the simplest
example in d = 2).
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