RDP Online Workshop on Mathematical Physics

Bogomolny equations from the Pseudo Analytic Functions Viewpoint

Tinatin Supatashvili (MS)

Supervisor: Dr. Prof. Gia Giorgadze

Ivane Javakhishvili Tbilisi State University

The Plan:

> Looking at interesting Physical problem through the differential geometry language.
> Writing equations for vortex solutions.
> Defining the Vortex Number and stating the theorem about the solutions written by Jaffe and Taubes in [1].
$>$ Going to complex variables.
$>$ Getting the same results but with a different approach to the Bogomolny equations, in particular, using the already existing theorems known in Pseudoanalytic Functions Theory.

Physical system:

- Lagrangian for the complex scalar field $\varphi(x)$ in (2+1)-dimensional space-time with $U(1)$ gauge symmetry:

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{4} F_{v \mu} F^{v \mu}+\left(D_{\mu} \varphi\right) \overline{\left(D^{\mu} \varphi\right)}-V(\varphi) \tag{1}
\end{equation*}
$$

$\nu, \mu=0,1,2 ; \eta_{\nu \mu}=\operatorname{diag}(1,-1,-1)$

- $D_{\mu}=\partial_{\mu}-i e A_{\mu} ; \quad F_{v \mu}=\partial_{\mu} A_{v}-\partial_{\nu} A_{\mu} ; \quad V(\varphi)=\frac{\lambda}{2}\left(|\varphi|^{2}-v^{2}\right)^{2}$
- U(1) local transformation: $\varphi(x) \rightarrow e^{i \alpha(x)} \varphi(x)$

$$
\begin{equation*}
A_{\mu}(x) \rightarrow A_{\mu}(x)+\frac{1}{e} \partial_{\mu} \alpha(x) \tag{3}
\end{equation*}
$$

- Static configuration: $\varphi=\varphi(\boldsymbol{x}), A_{i}=A_{i}(\boldsymbol{x}), A_{0}=0, \quad i=1,2$.
- $E\left[A_{i}, \varphi\right]=\int_{\mathbb{R}^{2}} d^{2} x\left[\frac{1}{4} F_{i j} F_{i j}+\overline{\left(D_{i} \varphi\right)}\left(D_{i} \varphi\right)+\frac{\lambda}{2}\left(|\varphi|^{2}-v^{2}\right)^{2}\right]$
$*$ For finite E: $|\varphi| \rightarrow v \&\left(D_{i} \varphi\right) \rightarrow 0$ for $|\boldsymbol{x}| \rightarrow \infty$

Mathematical Problem:

- Taking two bundles with the Base Space \mathbb{R}^{2} :

1. Principal Bundle with the fiber $G=U(1)$;
2. Vector Bundle associated with this Principal Bundle. In our case, we have \mathbb{C} as a fiber and G group acts on it by the simple multiplication of two complex numbers.

- $\varphi(\boldsymbol{x})=\varphi_{1}(\boldsymbol{x})+i \varphi_{2}(\boldsymbol{x})$ as the section of Hermitian Line Bundle over the \mathbb{R}^{2}.
- $A_{i}(\boldsymbol{x})$ - Components of the connection on \mathbb{R}^{2}. Connection is:

$$
\begin{equation*}
A(\boldsymbol{x})=A_{1}(\boldsymbol{x}) d x_{1}+A_{2}(\boldsymbol{x}) d x_{2} \tag{7}
\end{equation*}
$$

- $F_{i j}$ - Components of the curvature :

$$
\begin{equation*}
F=d A+A \wedge A=\frac{1}{2} \sum_{i, j=1}^{2} F_{i j} d x^{i} \wedge d x^{i} \tag{8}
\end{equation*}
$$

Exterior derivative $d: \Omega^{k}\left(\mathbb{R}^{2}\right) \rightarrow \Omega^{k+1}\left(\mathbb{R}^{2}\right)$, where $\Omega^{k}\left(\mathbb{R}^{2}\right)$ is the space of smooth k-forms on the smooth manifold \mathbb{R}^{2}.
" \wedge " - is a wedge product.

- In our case: $F=d A$ and $F_{i j}=\partial_{i} A_{j}-\partial_{j} A_{i}$

In the Language of Differential Forms and "Youg-Mills-Higgss Action":

- $\varphi-\mathbb{C}$ - valued 0 -form; $A-\mathfrak{u}(1)$ algebra-valued 1 -form; $F-\mathfrak{u}(1)$ algebra-valued 2 -form.
- Action: $\mathcal{A}\left[A_{i}, \varphi\right]=\frac{1}{2} \int_{\mathbb{R}^{2}}\left[F_{A} \wedge * F_{A}+\left(D_{A} \varphi\right) \wedge * \overline{\left(D_{A} \varphi\right)}+\frac{\lambda}{2} *\left(|\varphi|^{2}-1\right)^{2}\right]$
- Hodge Star Operator $*: \Omega^{k}\left(\mathbb{R}^{2}\right) \rightarrow \Omega^{\operatorname{dim}\left(\mathbb{R}^{2}\right)-k}\left(\mathbb{R}^{2}\right)$.
- $D_{A} \varphi=\left(\nabla_{A}\right)_{1} \varphi d x_{1}+\left(\nabla_{A}\right)_{2} \varphi d x_{2}$
- Covariant derivative of the $\varphi: \quad\left(\nabla_{A}\right)_{i} \varphi=\nabla_{i} \varphi+\rho\left(A_{i}\right) \varphi$.
$\nabla_{i} \equiv \partial_{i}$ and $\rho\left(A_{j}\right)$ is a representation of the Lie algebra corresponding to the considered group. The representation space is chosen to be a fiber of the associated Vector Bundle.

The Case When $\lambda=1$:

- Define Vortex Number:

$$
\begin{equation*}
N=\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} F_{A} \tag{13}
\end{equation*}
$$

Which is an integer number $N \in \mathbb{Z}$.

$$
\begin{align*}
& \cdot \mathcal{A}\left[A_{i}, \varphi\right]=\int_{\mathbb{R}^{2}} d^{2} x\left\{\frac{1}{2}\left[\left(\partial_{1} \varphi_{1}+A_{1} \varphi_{2}\right) \mp\left(\partial_{2} \varphi_{2}-A_{2} \varphi_{1}\right)\right]^{2}+\right. \\
&+\frac{1}{2}\left[\left(\partial_{2} \varphi_{1}+A_{2} \varphi_{2}\right) \pm\left(\partial_{1} \varphi_{2}-A_{1} \varphi_{1}\right)\right]^{2}+ \\
&\left.+\frac{1}{2}\left[F_{12} \pm \frac{1}{2}\left(\varphi_{1}^{2}+\varphi_{2}^{2}-1\right)\right]^{2}\right\} \pm \frac{1}{2} \int_{\mathbb{R}^{2}} d^{2} x F_{12} \tag{14}
\end{align*}
$$

- $\mathcal{A} \geq \pi|N|$, where N is a vortex number.

Bogomolny Equations:

- If $N>0$, the minimum is achieved when:
- $\left(\partial_{1} \varphi_{1}+A_{1} \varphi_{2}\right)-\left(\partial_{2} \varphi_{2}-A_{2} \varphi_{1}\right)=0$
- $\left(\partial_{2} \varphi_{1}+A_{2} \varphi_{2}\right)+\left(\partial_{1} \varphi_{2}-A_{1} \varphi_{1}\right)=0$
- $F_{12}+\frac{1}{2}\left(\varphi_{1}^{2}+\varphi_{2}^{2}-1\right)=0$
- Solutions of (15),(16),(17) also satisfy the variational equations:

$$
\begin{gather*}
d * F_{A}=\frac{i}{2} *\left(\varphi \overline{D_{A} \varphi}-\bar{\varphi} D_{A} \varphi\right) \tag{18}\\
D_{A} * D_{A} \varphi=\frac{\lambda}{2} *\left(|\varphi|^{2}-1\right) \varphi \tag{19}
\end{gather*}
$$

- In components: $\partial_{i} F_{i j}=\operatorname{Im}\left(\overline{\varphi\left(\nabla_{A}\right)_{j} \varphi}\right)$

$$
\begin{equation*}
\nabla_{A}^{2} \varphi=\frac{\lambda}{2} \varphi\left(|\varphi|^{2}-1\right) \tag{20}
\end{equation*}
$$

Complex Vairables:

- Connection: $A=\alpha d z+\bar{\alpha} d \bar{z}$, where $\alpha=\frac{1}{2}\left(A_{1}-i A_{2}\right) ; \bar{\alpha}=\frac{1}{2}\left(A_{1}+i A_{2}\right)$
- $D_{A} \varphi=\left(\partial_{z}-i \alpha\right) \varphi d z+\left(\partial_{\bar{z}}-i \bar{\alpha}\right) \varphi d \bar{z}$
$\circ(15) \rightarrow\left(\partial_{z}+i \alpha\right) \bar{\varphi}+\left(\partial_{\bar{z}}-i \bar{\alpha}\right) \varphi=0$
$\circ(16) \rightarrow\left(\partial_{z}+i \alpha\right) \bar{\varphi}-\left(\partial_{\bar{z}}-i \bar{\alpha}\right) \varphi=0$
- $(17) \rightarrow \operatorname{Im}\left(\partial_{\bar{z}} \alpha\right)=\frac{1}{8}(1-\varphi \bar{\varphi})$
- (23) and (24) are Real and Imaginary parts of:

$$
\begin{equation*}
D_{A} \varphi-i * D_{A} \varphi=2\left(\partial_{\bar{z}}-i \bar{\alpha}\right) \varphi d \bar{z}=0 \tag{26}
\end{equation*}
$$

- $\quad\left(\partial_{\bar{z}}-i \bar{\alpha}\right) \varphi=0$
- This is the main equation that we are going to study.

Main Theorem:

- Given an integer $N \geq 0$ and a set $\left\{z_{i}\right\}, i=1, \ldots, N$, of N points in \mathbb{C}, there exists a finite action solution to equations (15),(16),(17) unique up to gauge equivalence, with the following properties:

1. The solution is globally C^{∞}.
2. The zeros of φ are the set of points $\left\{z_{i}\right\}$, and as $z \rightarrow z_{i}$:

$$
\varphi(z, \bar{z}) \sim c_{i}\left(z-z_{i}\right)^{n_{i}}, \quad c_{i} \neq 0
$$

3.

$$
N=\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} F_{A}=\sum_{\substack{d i s t i n n c t \\ z_{i}}} n_{i}=\frac{1}{\pi} \mathcal{A}
$$

Solutions for which $N \neq 0$ are called " N-vortex" solutions. In case of $N=0$, we have a classical vacuum solution for φ and A_{i}.

Pseudo Analytic Functions Viewpoint:

- Definition: A pair of complex functions F and G in the domain $-\Omega$, which have Höldercontinuous partial derivatives with respect to the real variables is called a generating pair if the next inequality holds: $\operatorname{Im}(\bar{F} G)>0$ in Ω
- Generalized Cauchy-Riemann equations:
ω is (F, G) pseudoanalytic function of the first kind. a, b are defined by the generating pair (F, G) :

$$
\begin{equation*}
a_{(F, G)}=-\frac{\bar{F} G_{\bar{z}}-F_{\bar{z}} \bar{G}}{F \bar{G}-\bar{F} G} \quad b_{(F, G)}=\frac{F G_{\bar{z}}-F_{\bar{z}} G}{F \bar{G}-\bar{F} G} \tag{28}
\end{equation*}
$$

- $\omega(z)$ is (F, G) pseudoanalytic function of the first kind if and only if it satisfies Generalized Cauchy-Riemann equation.

Pseudo Analytic Functions Viewpoint:

- We consider such $a_{(F, G)}$ and $b_{(F, G)}$ that satisfy the regularity condition:

$$
a_{(F, G)}, b_{(F, G)} \in L_{p, 2}(\mathbb{C}) \quad p>2
$$

- $L_{p, 2}(\mathbb{C}), p>2$ is a set of all functions $f(z)$ defined on the complex plane and satisfying the conditions:
- $f(z) \in L_{p}\left(E_{1}\right) \quad E_{1}=\{z| | z \mid \leq 1\}$
- $f_{2}(z)=\frac{1}{|z|^{2}} f\left(\frac{1}{z}\right) \in L_{p}\left(E_{1}\right)$

Our equation is:

$$
\varphi_{\bar{z}}=i \bar{\alpha} \varphi
$$

- So here: $b=0$ and $a=i \bar{\alpha}$.

Similarity Principle:

- $q(z)=T_{\mathbb{C}}[g(z)]=-\frac{1}{\pi} \int_{\mathbb{C}} \frac{g(\lambda)}{\lambda-z} d \xi d \eta \quad \lambda=\xi+i \eta$ $g(z) \in L_{p, 2}(\mathbb{C}), p>2 . q(z) \in D_{\bar{z}}(\mathbb{C})$.
- $D_{\bar{z}}(\mathbb{C})$ - is a linear space of functions that have generalized derivative in the Sobolev sense with respect to \bar{z}.
- "Similarity Principle": Let $\omega(\mathrm{z})$ satisfy the generalized Cauchy-Riemann equation, then the following representation is valid:

$$
\begin{equation*}
\omega=\Phi e^{s} \tag{30}
\end{equation*}
$$

-Where $\Phi(\mathrm{z})$ is analytic and $s(z)=\left\{\begin{array}{c}T_{\mathbb{C}}\left[a+b \frac{\bar{\omega}}{\omega}\right], \text { if } \omega(z) \neq 0 \quad z \in \Omega \\ T_{\mathbb{C}}[a+b], \text { if } \omega(z)=0 \quad z \in \Omega\end{array}\right.$

- Corollary 1 (Carleman's theorem): A pseudoanalytic function, which does not vanish identically, has only isolated zeros.

Similarity Principle:

- From Similarity Principle follows that we can rewrite φ as:

$$
\begin{align*}
\varphi(z)=\Phi e^{T_{\mathbb{C}}[a]}=\Phi(\mathrm{z}) e^{-\frac{1}{\pi} \int_{\mathbb{C}} \frac{a(\lambda)}{\lambda-z} d \xi d \eta} & =\Phi(\mathrm{z}) e^{-\frac{i}{\pi} \int_{\mathbb{C}} \frac{\bar{\alpha}(\lambda)}{\lambda-z} d \xi d \eta}= \\
& =\Phi(\mathrm{z}) e^{-\frac{i}{2 \pi} \int_{\mathbb{C}} \frac{\left(A_{1}+i A_{2}\right)(\lambda)}{\lambda-z} d \xi d \eta} \\
& =\Phi(\mathrm{z}) e^{\frac{1}{4 \pi} \int_{\mathbb{C}} \frac{\left(A_{1}+i A_{2}\right)(\lambda)}{\lambda-z} d \lambda d \bar{\lambda}} \tag{32}
\end{align*}
$$

* The same result is obtained using $\bar{\partial}$-Poincaré lemma.
- For it to be a solution of our problem, it needs to satisfy the following condition:

$$
\begin{equation*}
|\varphi(z)|=\left|\Phi(\mathrm{z}) e^{\frac{1}{4 \pi} \int_{\Omega} \frac{\left(A_{1}+i A_{2}\right)(\lambda)}{\lambda-z} d \lambda d \bar{\lambda}}\right| \rightarrow 1 \quad \text { as }|z| \rightarrow \infty \tag{33}
\end{equation*}
$$

* Corollary1- if φ has zeros, they are isolated.

Behavior Near Zeros:

- Let $\varphi\left(z_{k} \in \Omega\right)=0$, in the neighborhood of z_{k}

$$
\Phi(z)=g(z)\left(z-z_{k}\right)^{n_{k}}
$$

$n_{k^{-}}$multiplicity of $z_{k} \cdot g(z)$ is analytic function and $g\left(z_{k}\right) \neq 0$. Furthermore, for φ we can write:
$\varphi=g(z)\left(z-z_{k}\right)^{n_{k}} e^{s}=h(z)\left(z-z_{k}\right)^{n_{k}}=|h(z)| e^{\operatorname{iarg}(h(z))}\left|z-z_{k}\right|^{n_{k}} e^{i n_{k} \arg \left(z-z_{k}\right)}$
$h(z)=g(z) e^{s}, h\left(z_{k}\right) \neq 0$ and we come to the result, that all zeros of $\varphi(z)$ are at the same time singular points for the "phase":

$$
\begin{equation*}
\theta(z) \equiv \arg (h(z))+n_{k} \arg \left(z-z_{k}\right) \tag{35}
\end{equation*}
$$

Winding Number:

- Constructing a map $f: S^{1} \rightarrow S^{1}$, where S^{1} is in \mathbb{R}^{2}, or equivalently in \mathbb{C} and $S^{\prime 1}$ is a set of values of $\varphi(z)$ when $|z| \rightarrow \infty$.
- $\operatorname{deg}(f)=$ winding number $=\frac{1}{2 \pi i} \oint_{S^{1}} \frac{\partial_{z} f}{f} d z$
- Since : $f=\lim _{|z| \rightarrow \infty} \varphi(z)$, we can represent f as :
- $f=\exp \left\{2 i \sum_{k} \arg \left(z-z_{k}\right)\right\}$
- $\operatorname{deg}(f)=\frac{1}{2 \pi i} \oint_{S^{1}} \frac{\partial_{z} f}{f} d z=\frac{1}{2 \pi i} \oint_{S^{1}} \frac{1}{z-z_{k}} d z=\sum_{\text {distinct }_{z_{i}}} n_{i}$
- $\operatorname{deg}(f)=$ Winding number $=\sum_{\text {distinct }_{z_{i}}} n_{i}$

Vortex Number:

- when $|z| \rightarrow \infty:|\varphi| \rightarrow 1 ; D_{A} \varphi=d \varphi-i A \varphi \rightarrow 0 \Rightarrow d \varphi \rightarrow i A \varphi$.

On and beyond a sufficiently large circle $|\varphi|=1, d \varphi=i A \varphi$:

- $\partial_{z} \varphi d z+\partial_{\bar{z}} \varphi d \bar{z}=i \alpha \varphi d z+i \bar{\alpha} \varphi d \bar{z} \quad \rightarrow\left\{\begin{array}{l}\left(\partial_{\bar{z}}-i \bar{\alpha}\right) \varphi=0 \\ \left(\partial_{z}-i \alpha\right) \varphi=0\end{array}\right.$
- Using (37) : $\left(\partial_{z}-i \alpha\right) \varphi=\left(\partial_{z}-i \alpha\right) \exp \left\{2 i \sum_{k} \arg \left(z-z_{k}\right)\right\}=0$

$$
\begin{equation*}
\alpha(z)=\partial_{z} 2 \sum_{k} \arg \left(z-z_{k}\right)=-i \sum_{k} \frac{1}{z-z_{k}} \tag{39}
\end{equation*}
$$

- For any $z \in \mathbb{C}, \alpha(z)=-i X(z, \bar{z}) \sum_{k} \frac{1}{z-z_{k}} ; \quad \lim _{|z| \rightarrow \infty} X(z, \bar{z})=1$

$$
\text { - } \begin{align*}
N= & \frac{1}{2 \pi} \int_{\mathbb{R}^{2}} F_{A}=\frac{1}{2 \pi} \oint_{S^{1}(|z| \rightarrow \infty)} A=\frac{1}{2 \pi}\left(-i \oint_{S^{1}(|z| \rightarrow \infty)} \sum_{k} \frac{1}{z-z_{k}} d z+i \oint_{S^{1}(|z| \rightarrow \infty)} \sum_{k} \frac{1}{\bar{z}-\overline{z_{k}}} d \bar{z}\right)= \\
& =\sum_{\substack{\text { distinct } \\
z_{i}}} n_{i} \tag{40}
\end{align*}
$$

Summary:

- After rewriting and minimizing the Yung-Mills-Higgss action, we get Bogomolny equations. Going to the complex variables, two of them together take a form of the Generalized Cauchy-Riemann equations for the pseudoanalytic functions of the first kind.
- Using The Similarity Principle we easily arrive to the useful representation for φ.
- From that, we immediately conclude that if φ has zeros, they must be isolated.
- Using a representation of φ we also arrive to its behavior near the zeros.
- Constructing a map $f: S^{1} \rightarrow S^{1}$ we can compute its degree and see that the number is characterized by the sum of multiplicities of zeros for φ.
- Using the asymptotic behavior of the field, its covariant derivative and previous results we finally write formula the Vortex Number.

References:

[1] A.Jaffe, C.Taubes -Vortices And Monopoles. Birkhauser, 1980
[2] Lipman Bers - "An Outline Of Pseudo Analytic Functions" - Volume 62, Number 4 (1956), 291-331.
[3] G.Akhalaia,G.Giorgadze, G.Gulagashvili - "The Analysis of Vortex Equations Using Methods of Generalized Analytic Functions" -Bull.TICMI, Vol.22, No.2, 2018, 135-141.

Thank you for your attention!

