

QCD Exotica

Feng-Kun Guo

Institute of Theoretical Physics, CAS

RDP Seventh Autumn PhD School & Workshop, 23–28 Sept. 2019, Tbilisi, Georgia

Feng-Kun	Guo	(ITP)

Inroduction

Hadron resonances discovered since 2003

- Open-flavor heavy mesons
- XYZ states
- Pentaquark candidates

3 Theory ideas and applications

- Approximate symmetries of QCD and applications to exotics
- Compositeness and hadronic molecules
- Threshold cusps and triangle singularties

Introduction

Two recent reviews:

- S. L. Olsen, T. Skwarnicki, Nonstandard heavy mesons and baryons: Experimental evidence, Rev. Mod. Phys. 90 (2018) 015003 [arXiv:1708.04012] experimental facts and interpretations
- F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao, B.-S. Zou, *Hadronic molecules*, Rev. Mod. Phys. 90 (2018) 015004 [arXiv:1705.00141] theoretical formalisms

Many more in the last few years, the latest one:

N. Brambilla et al., *The XYZ states: experimental and theoretical status and perspectives*, arXiv:1907.07583 • Running of the coupling constant $\alpha_s = g_s^2/(4\pi)$

- High energies
 - asymptotic freedom, perturbative
 - degrees of freedom: quarks and gluons
- Low energies
 - so nonperturbative, $\Lambda_{\text{QCD}} \sim 250 \text{ MeV} = \mathcal{O}(1 \text{ fm}^{-1})$
 - color confinement, detected particles: mesons and baryons
 - \Rightarrow challenge: how do hadrons emerge/how is QCD spectrum organized?

Theoretical tools for studying nonperturbative QCD

Lattice QCD: in discretized Euclidean space-time

lectures by Tom Luu

- finite volume (L should be large)
- finite lattice spacing (a should be small)
- for using $m_{u,d}$ larger than the physical values \Rightarrow chiral extrapolation

- Phenomenological models, such as quark model, QCD sum rules, ...
- Low-energy EFT:

mesons and baryons as effective degrees of freedom most important ingredients: symmetries (see later), power counting

Feng-Kun Guo (ITP)

QCD Exotica

lecture by Ulf-G. Meißner

Mesons and baryons in quark model

Light flavor symmetry

Light meson SU(3) [u, d, s] multiplets (octet + singlet):

Vector mesons

meson	quark content	mass (MeV)
$ ho^+/ ho^-$	$u ar{d} / d ar{u}$	775
$ ho^0$	$(u\bar{u} - d\bar{d})/\sqrt{2}$	775
K^{*+}/K^{*-}	$u\bar{s}/s\bar{u}$	892
K^{*0}/\bar{K}^{*0}	$dar{s}/sar{d}$	896
ω	$(u\bar{u}+d\bar{d})/\sqrt{2}$	783
ϕ	$s\bar{s}$	1019

approximate SU(3) symmetry

 $m_{\rho} \simeq m_{\omega}, \qquad m_{\phi} - m_{K^*} \simeq m_{K^*} - m_{\rho}$

very good isospin SU(2) symmetry

 $m_{
ho^0} - m_{
ho^\pm} = (-0.7 \pm 0.8) \text{ MeV}, \quad m_{K^{*0}} - m_{K^{*\pm}} = (6.7 \pm 1.2) \text{ MeV}$

Light flavor symmetry

Light meson SU(3) [u, d, s] multiplets (octet + singlet):

Pseudoscalar mesons

meson	quark content	mass (MeV)
π^+/π^-	$uar{d}/dar{u}$	140
π^0	$(u\bar{u}-d\bar{d})/\sqrt{2}$	135
K^+/K^-	$uar{s}/sar{u}$	494
$K^0/ar{K}^0$	$dar{s}/sar{d}$	498
η	$\sim (u\bar{u} + d\bar{d} - 2s\bar{s})/\sqrt{6}$	548
η'	$\sim (u\bar{u} + d\bar{d} + s\bar{s})/\sqrt{3}$	958

very good isospin SU(2) symmetry

 $m_{\pi^{\pm}} - m_{\pi^{0}} = (4.5936 \pm 0.0005) \text{ MeV}, \quad m_{K^{0}} - m_{K^{\pm}} = (3.937 \pm 0.028) \text{ MeV}$

Q: Why are the pions so light?

What are exotic hadrons?

• Quark model notation:

any hadron resonances beyond picture of $q\bar{q}$ for a meson and qqq for a baryon

Gluoinc excitations: hybrids and glueballs

Multiquark states

M.Gell-Mann, Phys.Lett.8(1964)214-215

We then refer to the members u_3^{5} , $d^{-\frac{1}{3}}$, and $s^{-\frac{1}{3}}$ of the triplet as "quarks" 6) q and the members of the anti-triplet as anti-quarks \bar{q} . Baryons can now be constructed from quarks by using the combinations (qqq), (qqqqq), etc., while mesons are made out of (q \bar{q}), (qq $q\bar{q}$), etc.. It is assuming that the lowest baryon configuration (qqq) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration (q \bar{q}) similarly gives just 1 and 8.

Hadronic molecules:

bound states of two or more hadrons, analogues of nuclei

• J^{PC} of regular $q\bar{q}$ mesons

L: orbital angular momentum S = (0, 1): total spin of q and \bar{q} $P = (-1)^{L+1} [Y_{Lm}(\theta - \pi, \phi + \pi) = (-1)^L Y_{Lm}(\theta, \phi)]$ $C = (-1)^{L+S} = (-1)^{L+1+S+1}$ for flavor-neutral mesons $S = 0: \frac{1}{\sqrt{2}} |\uparrow_q \downarrow_{\bar{q}} - \downarrow_q \uparrow_{\bar{q}} \rangle; \quad S = 1: \left\{ |\uparrow_q \uparrow_{\bar{q}} \rangle, \frac{1}{\sqrt{2}} |\uparrow_q \downarrow_{\bar{q}} + \downarrow_q \uparrow_{\bar{q}} \rangle, |\downarrow_q \downarrow_{\bar{q}} \rangle \right\}$ For S = 0, the meson spin J = L, one has $P = (-1)^{J+1}$ and $C = (-1)^J$. Hence, $J^{PC} = even^{-+}$ and odd⁺⁻ For S = 1, one has $P = C = (-1)^{L+1}$. Hence, $J^{PC} = 1^{--}, \{0, 1, 2\}^{++}, \{1, 2, 3\}^{--}, \dots$

• Exotic J^{PC} for mesons:

 $J^{PC} = 0^{--}$, even⁺⁻ and odd⁻⁺

Both listed as extablished particles by the PDG

$\pi_1(1400)$ $I^G(J^{PC}) = 1^-(1^{-+})$

See also the mini-review under non- q q candidates in PDG 2006, Journal of Physics G33 1 (2006).

$\pi_1(1400$) MASS	1354 ± 25 MeV (S = 1.	.8)
$\pi_1(1400$)) WIDTH	$330\pm35~{ m MeV}$	
Decay N	/lodes		
Mode		Fraction (Γ_i / Γ) C	cale Factor/ P Conf. Level (MeV/c)
Γ_1	$\eta \pi^0$	seen	557
Γ_2	$\eta\pi^-$	seen	556
Γ_3	$\eta'\pi$		318
Γ_4	$\rho(770)\pi$	not seen	442
$\pi_1(160$	0) $I^G(J^{PC}) = 1^-(1^{-+})$		
$\pi_1(160)$	0) MASS	1660 ⁺¹⁵ ₋₁₁ MeV (S = 1.2)
$\pi_1(160 \ \pi_1(160$	0) MASS 0) WIDTH	$\frac{1660^{+15}_{-11}}{257\pm 60}\text{MeV}(\text{S}=1.2$) 9)
π1(160 π1(160 Decay I	0) MASS 0) WIDTH Modes	$\frac{1660^{+15}_{-11}~\text{MeV}~(\text{S}=1.2}{257\pm60~\text{MeV}~(\text{S}=1.3}$) 9)
π1(160 π1(160 Decay I <i>Mode</i>	0) MASS 0) WIDTH Modes	1660^{+15}_{-11} MeV (S = 1.2 257 \pm 60 MeV (S = 1.5 Fraction (Γ_i / Γ)) 3) Scale Factor/ P Sonf. Level (MeV/c)
$\pi_1(160)$ $\pi_1(160)$ Decay I Mode Γ_1	0) MASS 0) WIDTH Modes	$\frac{1660^{+15}_{-15}}{257 \pm 60} \text{ MeV} (\text{S}=1.2$ 257 ± 60 MeV (S = 1.5 Fraction (Γ_{i} / Γ) C) Scale Factor/ P Sonf. Level (MeV/c) 802
$\pi_1(160)$ $\pi_1(160)$ Decay I Mode Γ_1 Γ_2	0) MASS 0) WIDTH Modes πππ μ ⁰ π	$1660^{\pm15}_{\pm11} \text{ MeV } (\text{S}=1.2$ $257\pm 60 \text{ MeV } (\text{S}=1.4$ Fraction (Γ_i / Γ) Seen Seen Seen) Boale Factor/ P Conf. Level (MeV/c) 802 640
$ \begin{array}{r} \pi_{1}(160 \\ \pi_{1}(160 \\ \hline \end{array}) \end{array} $ Decay I Mode Γ_{1} Γ_{2} Γ_{3}	0) MASS 0) WIDTH Modes πππ ρ ⁰ π ⁻ ƒ(1270)π ⁻	$1660^{+15}_{-11} \text{ MeV } (\text{S}=1.2$ $257\pm 60 \text{ MeV } (\text{S}=1.5)$ Fraction (Γ_i / Γ) C seen seen not seen) 3) Conf. Level (MeV/c) 802 640 316
$ \begin{array}{r} \pi_{1}(160 \\ \pi_{1}(160 \\ \hline \end{array}) \end{array} $ Decay I $ \begin{array}{r} Mode \\ \hline \Gamma_{1} \\ \hline \Gamma_{2} \\ \hline \Gamma_{3} \\ \hline \Gamma_{4} \\ \end{array} $	0) MASS 0) WIDTH Modes πππ ρ ⁰ π ⁻ ƒ ₁ (1270)π ⁻ b ₁ (1235)π	$\begin{array}{c} 1660^{+15}_{-11} \ \mathrm{MeV} \ (\mathrm{S}=1.2\\ 257\pm 60 \ \mathrm{MeV} \ (\mathrm{S}=1.4\\ \end{array}$) 3) Scale Factor/ P Conf. Level (MeV/c) 802 640 316 355
$\pi_{1}(160 \\ \pi_{1}(160 \\ Decay I \\ Mode \\ \Gamma_{1} \\ \Gamma_{2} \\ \Gamma_{3} \\ \Gamma_{4} \\ \Gamma_{5}$	0) MASS 0) WIDTH Modes πππ	$1660^{\pm15}_{\pm11} \text{ MeV} (\text{S}=1.2$ $257 \pm 60 \text{ MeV} (\text{S}=1.4$ Fraction (Γ_i / Γ) C seen seen nd seen seen seen seen seen seen) 3) Scale Factor/ P Conf. Level (MeV/c) 802 640 316 355 542

It is unclear what they are: hybrids? hadronic molecules? or sth. else?

Additive quantum numbers

Some trivial facts about additive quantum numbers of regular mesons

- Light-flavor mesons (here S = strangeness)
 - Nonstrange mesons: S = 0, I = 0, 1
 - Strange mesons: $S = \pm 1$, $I = \frac{1}{2}$
- Open-flavor heavy mesons
 - $-Q\bar{q}(q=u,d)$: S=0, I=1/2
 - $Q\bar{s}: S = 1, I = 0$

Heavy quarkonia ($Q\bar{Q}$): S = 0, I = 0, neutral

Charge, isospin, strangeness etc. which cannot be achieved in the $q\bar{q}$ and qqq scheme would be a smoking gun for an exotic nature

more subtleties later...

SU(3) flavor symmetry is usually satisfied to 30%

Example

$$\frac{\Gamma(K^{*+})}{\Gamma(\rho^+)} = \frac{50 \text{ MeV}}{150 \text{ MeV}} = 0.33 \text{ [exp]}, \quad \frac{3}{4} \left(\frac{M_{\rho}}{M_{K^*}}\right)^2 \left(\frac{q_{K\pi}}{q_{\pi\pi}}\right)^3 = 0.29 \text{ [SU(3)]}$$

• Okubo–Zweig–Iizuka (OZI) rule:

drawing only quark lines, the disconnected diagrams are strongly suppressed relative to the connected ones [explanation from large N_c (number of color)]

Example $\psi(3770)$: ~40 MeV above the $D\bar{D}$ threshold

 $\mathcal{B}(D\bar{D}) = (93^{+8}_{-9})\% \gg \mathcal{B}(\text{sum of all other modes})$

Mesons in a Relativized Quark Model with Chromodynamics

S. Godfrey, Nathan Isgur (Toronto U.), 1985. 43 pp. Published in Phys.Rev. D32 (1985) 189-231 DOI: <u>10.1103/PhysRevD.32.189</u>

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote OSTI.gov Server

Detailed record - Cited by 2488 records 1000+

$$\left(\sqrt{m_1^2 + p^2} + \sqrt{m_2^2 + p^2} + V\right) |\Psi\rangle = E|\Psi\rangle$$

Potential V: One-gluon exchange + linear confinement + relativistic effects

New discoveries since 2003

Many new hadron resonances observed in experiments since 2003

- Inactive: BaBar, Belle, CDF, CLEO-c, D0, ...
- Running: Belle-II, BESIII, COMPASS, LHCb, ...
- Under construction/discussion: PANDA, EIC, EicC, ...

Common strategy: search for peaks, fit with Breit-Wigner

$$\propto \frac{1}{(s-M^2)^2 + s\,\Gamma^2(s)}$$

Lots of mysteries right now ...

Open-flavor heavy mesons

Most quark-model predicted states were still missing before 2003

Charm-strange mesons (1)

Discoveries in 2003 (both Belle and BaBar started data taking in 1999):

• $D^*_{s0}(2317)$: discovered in $e^+e^- o D^+_s \pi^0 X$ BaBar, PRL90(2003)242001 [hep-ex/0304021]

 $J^P = 0^+, M = (2317.7 \pm 0.6) \text{ MeV}, \Gamma < 3.8 \text{ MeV}$

 $I = 0, \rightarrow D_s \pi^0$: breaks isospin symmetry

• $D_{s1}(2460)$: discovered in $e^+e^- \rightarrow D_s^{*+}\pi^0 X$ CLEO, PRD68(2003)032002 [hep-ex/0305100] $J^P = 1^+, M = (2459.5 \pm 0.6)$ MeV, $\Gamma < 3.5$ MeV

 $I = 0, \rightarrow D_s^* \pi^0$: breaks isospin symmetry other decays: $D_s^+ \gamma, D_s^+ \pi^+ \pi^-, D_{s0}^* (2317) \gamma$

Charm-strange mesons (2)

Charm-strange mesons

 $D_{s0}^*(2317)$ and $D_{s1}(2460)$: the first established new hadrons

- Puzzle 1: Why are $D_{s0}^{*}(2317)$ and $D_{s1}(2460)$ so light?
- Puzzle 2: Why $M_{D_{s1}(2460)} M_{D^*_{s0}(2317)} \simeq M_{D^{*\pm}} M_{D^{\pm}}$? $=(140.67\pm0.08)$ MeV $=(141.8\pm0.8)$ MeV

Obervations of charm-nonstrange excited mesons in 2003

 $B^- \to D^{(*)+}\pi^-\pi^-$

Belle, PRD69(2004)112002 [hep-ex/0307021]

Charm-nonstrange mesons (2)

• Puzzle 3: Why $M_{D_0^*(2300)} \gtrsim M_{D_{s0}^*(2317)}$ and $M_{D_1(2430)} \sim M_{D_{s1}(2460)}$?

• X(5568) by D0 Collaboration ($p\bar{p}$ collisions)

PRL117(2016)022003; PRD97(2018)092004

$$\begin{split} M &= \left(5567.8 \pm 2.9^{+0.9}_{-1.9}\right) \; \mathrm{MeV} \\ \Gamma &= \left(21.9 \pm 6.4^{+5.0}_{-2.5}\right) \; \mathrm{MeV} \end{split}$$

• Observed in $B_s^{(*)0}\pi^+$, sizeable width $\Rightarrow I = 1$:

minimal quark contents is bsdu !

 a favorite mulqituark candidate: explicitly flavor exotic, minimal number of quarks ≥ 4 Estimate of isospin breaking decay width:

$$\Gamma_{I} \sim \left(\left(\frac{m_d - m_u}{\Lambda_{\rm QCD}} \right)^2 \\ \alpha^2 \right) \times \mathcal{O} (100 \text{ MeV}) \\ = \mathcal{O} (10 \text{ keV})$$

XYZ states

XYZ states

Naming convention

For states with properties in conflict with naive quark model (normally):

• $X: I = 0, J^{PC}$ other than 1^{--} or unknown

•
$$Y: I = 0, J^{PC} = 1^{-1}$$

• Z: I = 1

PDG2018 naming scheme:

$J^{PC} =$	$\begin{cases} 0^{-+} \\ 2^{-+} \\ \vdots \end{cases}$	$^{1^{+-}}_{3^{+-}}$:	$2^{}$:	0^{++} 1^{++} \vdots
Minimal quark content				
$\overline{ud}, u\overline{u} - d\overline{d}, d\overline{u} (I=1)$	π	b	ρ	a
$d\overline{d} + u\overline{u}$ $\left\{ (I=0) \right\}$	η,η^\prime	h,h'	ω,ϕ	f, f'
and/or $s\overline{s}$				
cc	η_c	h_c	ψ^{\dagger}	χ_c
$b\overline{b}$	η_b	h_b	Υ	χ_b
$I = 1$ with $c\overline{c}$	(Π_c)	Z_c	R_c	(W_c)
$I = 1$ with $b\overline{b}$	(Π_b)	Z_b	(R_b)	(W_b)

[†]The J/ψ remains the J/ψ .

"Young man, if I could remember the names of these particles, I would have been a botanist." — Enrico Fermi

Feng-Kun Guo	(ITP)
--------------	-------

X(3872) (1)

Belle, PRL91(2003)262001 [hep-ex/0309032]

- Named as $\chi_{c1}(3872)$ since PDG18
- The beginning of the XYZ story, discovered in $B^{\pm} \rightarrow K^{\pm}J/\psi\pi\pi$
 - $M_X = (3871.69 \pm 0.17) \ {\rm MeV}$
- $\Gamma < 1.2~{\rm MeV}$

- Belle, PRD84(2011)052004
- Confirmed in many experiments: Belle, BaBar, BESIII, CDF, CMS, D0, LHCb, ...
- 10 years later, $J^{PC} = 1^{++}$

LHCb, PRL110(2013)222001

 $\Rightarrow S\text{-wave coupling to }D\bar{D}^*$

Mysterious properties:

• Mass coincides with the $D^0 \bar{D}^{*0}$ threshold:

 $M_{D^0} + M_{D^{*0}} - M_X = (0.00 \pm 0.18) \text{ MeV}$

X(3872) (2)

Mysterious properties (cont.):

- Large coupling to $D^0 \overline{D}^{*0}$:
 - $\mathcal{B}(X \to D^0 \bar{D}^{*0}) > 30\% \quad \text{Belle, PRD81(2010)031103} \\ \mathcal{B}(X \to D^0 \bar{D}^0 \pi^0) > 40\% \quad \text{Belle, PRL97(2006)162002}$
- No isospin partner observed $\Rightarrow I = 0$ but, large isospin breaking:

$$\frac{\mathcal{B}(X \to \omega J/\psi)}{\mathcal{B}(X \to \pi^+ \pi^- J/\psi)} = 0.8 \pm 0.3$$

BaBar, PRD77(2008)011102

$$C(X) = +, C(J/\psi) = - \Rightarrow C(\pi^+\pi^-) = - \Rightarrow I(\pi^+\pi^-) = 1$$

Radiative decays:

 $\frac{\mathcal{B}(X\to\gamma\psi')}{\mathcal{B}(X\to\gamma J/\psi)}=2.6\pm0.6 \qquad \text{PDG18 average of BaBar(2009) and LHCb(2014) measurements}$

Exercise:

1) Why is the isospin of the negative *C*-parity $\pi^+\pi^-$ system equal to 1? 2) Is $\Upsilon\pi^+\pi^-$ a good choice of final states for the search of X_b , the $J^{PC} = 1^{++}$ bottom analogue of the X(3872)?

Y(4260) [aka $\psi(4260)$]

Z_c^\pm and Z_b^\pm (1)

- Z_c^{\pm}, Z_b^{\pm} : charged structures in heavy quarkonium mass region, excellent tetraquark candidates: $Q\bar{Q}\bar{d}u, Q\bar{Q}\bar{u}d$
- $Z_b(10610)^{\pm}$ and $Z_b(10650)^{\pm}$: Belle, arXiv:1105.4583; PRL108(2012)122001 observed in $\Upsilon(10860) \rightarrow \pi^{\mp}[\pi^{\pm}\Upsilon(1S, 2S, 3S)/h_b(1P, 2P)]$

 Z_c^{\pm} and Z_b^{\pm} (2)

• $Z_c(3900)^{\pm}$: structure around 3.9 GeV seen in $J/\psi\pi^{\pm}$ by BESIII and Belle in $Y(4260) \rightarrow J/\psi\pi^{+}\pi^{-}$, BESIII, PRL110(2013)252001; Belle, PRL110(2013)252002; and in $D\bar{D}^*$ by BESIII in $Y(4260) \rightarrow \pi^{\pm}(D\bar{D}^*)^{\mp}$ BESIII, PRD92(2015)092006

• $Z_c(4020)^{\pm}$ observed in $h_c\pi^{\pm}$ and $(\bar{D}^*D^*)^{\pm}$ distributions

BESIII, PRL111(2013)242001; PRL112(2014)132001

• $Z_c(3900)^{\pm}$ and $Z_c(4020)^{\pm}$ very close to $D\bar{D}^*$ and $D^*\bar{D}^*$ thresholds

Feng-Kun Guo (ITP)

Charmonium spectrum: current status

Charmonium spectrum: current status

• X(3915) is probably just the $\chi_{c2}(2P)$ with 2^{++} Z.-Y. Zhou et al., PRL115(2015)022001

• $\psi_3(3^{--})$ recently discovered: $M = 3842.71 \pm 0.20$ MeV

LHCb, JHEP1907(2019)035

Bottomonium spectrum: current status

Pentaquark candidates

LHCb's P_c (1)

Two Breit-Wigner resonances needed:

$$M_1 = (4380 \pm 8 \pm 29) \text{ MeV}_{2}$$

$$M_2 = (4449.8 \pm 1.7 \pm 2.5) \text{ MeV}_{2}$$

 $\Gamma_1 = (205 \pm 18 \pm 86) \text{ MeV},$ $\Gamma_2 = (39 \pm 5 \pm 19) \text{ MeV}.$

LHCb's P_c (2)

- In $J/\psi p$ invariant mass distribution, with hidden charm \Rightarrow pentaguarks if they are hadron resonances
- Quantum numbers not fully determined, for ($P_c(4380), P_c(4450)$): $(3/2^-, 5/2^+), (3/2^+, 5/2^-), (5/2^+, 3/2^-), \ldots$ LHCb, PRL-

From a reanalysis using an extended Λ^* model:

LHCb, PRL115(2015)072001

N. Jurik, CERN-THESIS-2016-086

		$P_{c}(4380)$		$P_{c}(4450)$	
$J^p(4380, 4450)$	$(\sqrt{\Delta(-2\ln\mathcal{L})})^2$	M_0	Γ_0	M_0	Γ_0
	$(3/2-,5/2^+)$	solutior	1		
$3/2^{-}, 5/2^{+}$		4359	151	4450.1	49
	Δ from (3/2-, 5/2	2^+) solu	ition		
$5/2^+, 3/2^-$	-3.6^{2}	10	-7	-1.6	-6
$5/2^{-}, \frac{3/2^{+}}{}$	-2.7^{2}	-4	-9	-3.6	-2
$3/2^{-}, 5/2^{+}$	_	_	_	_	_

Early prediction:

Prediction of narrow N^* and Λ^* resonances with hidden charm above 4 GeV, J.-J. Wu, R. Molina, E. Oset, B.-S. Zou, PRL105(2010)232001

The 2019 update of LHCb's P_c: three narrow states LHCb, PRL122(2019)222001

State	$M \; [{\rm MeV}]$	Γ [MeV]	(95% CL)	R [%]
$P_c(4312)^+$	$4311.9\pm0.7^{+6.8}_{-0.6}$	$9.8 \pm 2.7^{+ \ 3.7}_{- \ 4.5}$	(< 27)	$0.30\pm0.07^{+0.34}_{-0.09}$
$P_c(4440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+\ 8.7}_{-10.1}$	(< 49)	$1.11\pm0.33^{+0.22}_{-0.10}$
$P_c(4457)^+$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4 \pm 2.0^{+}_{-} ~ {}^{5.7}_{1.9}$	(< 20)	$0.53 \pm 0.16^{+0.15}_{-0.13}$

 $\mathcal{R} \equiv \mathcal{B}(\Lambda_b^0 \to P_c^+ K^-) \mathcal{B}(P_c^+ \to J/\psi p) / \mathcal{B}(\Lambda_b^0 \to J/\psi p K^-)$
Recent reviews on new hadrons (incomplete list)

- H.-X. Chen et al., *The hidden-charm pentaquark and tetraquark states*, Phys. Rept. 639 (2016) 1 [arXiv:1601.02092]
- A. Hosaka et al., *Exotic hadrons with heavy flavors X*, *Y*, *Z* and related states, Prog. Theor. Exp. Phys. 2016, 062C01 [arXiv:1603.09229]
- R. F. Lebed, R. E. Mitchell, E. Swanson, *Heavy-quark QCD exotica*, Prog. Part. Nucl. Phys. 93 (2017) 143, arXiv:1610.04528 [hep-ph]
- A. Esposito, A. Pilloni, A. D. Polosa, *Multiquark resonances*, Phys. Rept. 668 (2017) 1 [arXiv:1611.07920]
- F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao, B.-S. Zou, *Hadronic molecules*, Rev. Mod. Phys. 90 (2018) 015004 [arXiv:1705.00141]
- S. L. Olsen, T. Skwarnicki, Nonstandard heavy mesons and baryons: Experimental evidence, Rev. Mod. Phys. 90 (2018) 015003 [arXiv:1708.04012]
- M. Karliner, J. L. Rosner, T. Skwarnicki, *Multiquark states*, Ann. Rev. Nucl. Part. Sci. 68 (2018) 17 [arXiv:1711.10626]
- C.-Z. Yuan, *The XYZ states revisited*, Int. J. Mod. Phys. A 33 (2018) 1830018 [arXiv:1808.01570]
- N. Brambilla et al., *The XYZ states: experimental and theoretical status and perspectives*, Phys. Rept. [arXiv:1907.07583]

Feng-Kun Guo (ITP)

Approximate symmetries of QCD: chiral and heavy quark

Useful monographs:

- H. Georgi, Weak Interactions and Modern Particle Physics (2009)
- J.F. Donoghue, E. Golowich, B.R. Holstein, *Dynamics of the Standard Model* (1992)
- S. Scherer, M.R. Schindler, A Primer for Chiral Perturbation Theory (2012)
- A.V. Manohar, M.B. Wise, Heavy Quark Physics (2000)

• Different quark flavors:

$$\underbrace{\begin{array}{c} \textbf{u} \\ \textbf{u} \\ \textbf{u} \\ \textbf{u} \\ \textbf{v}^{5} \text{ MeV} \end{array} }_{\text{Light quarks}} \underbrace{\textbf{s}}_{\text{c}^{100}} \\ \textbf{k} \\$$

lectures by Ulf

Heavy quarks

Spontaneously broken chiral symmetry: π , K and η as the pseudo-Goldstone bosons

- Heavy quark spin symmetry
- Heavy quark flavor symmetry
- Heavy antiquark-diquark symmetry

• For heavy quarks (charm, bottom) in a hadron, typical momentum transfer $\Lambda_{\sf QCD}$

Reavy quark spin symmetry (HQSS): chromomag. interaction $\propto \frac{\boldsymbol{\sigma} \cdot \boldsymbol{B}}{m_Q}$ spin of the heavy quark decouples

Let total angular momentum $J = s_Q + s_\ell$,

 s_Q : heavy quark spin,

 s_{ℓ} : spin of the light degrees of freedom (including orbital angular momentum)

HQSS:

 s_{ℓ} and s_{Q} are conserved separately in the heavy quark limit!

✓ spin multiplets:

for singly heavy mesons, e.g. $\{D, D^*\}, \{B, B^*\}$ with $s_{\ell}^P = \frac{1}{2}^-$; for heavy quarkonia, e.g. *S*-wave: $\{\eta_c, J/\psi\}, \{\eta_b, \Upsilon\}$;

P-wave: $\{h_c, \chi_{c0,c1,c2}\}, \{h_b, \chi_{b0,b1,b2}\}$

- For heavy quarks (charm, bottom) in a hadron, typical momentum transfer Λ_{OCD}
 - heavy guark flavor symmetry (HQFS) for any hadron containing one heavy B quark:

velocity remains unchanged in the limit $m_Q \to \infty$: $\Delta v = \frac{\Delta p}{m_Q} = \frac{\Lambda_{\text{QCD}}}{m_Q}$

 \Rightarrow heavy quark is like a static color triplet source, m_O is irrelevant

heavy anti-quark-diquark symmetry $m_O v \gg \Lambda_{\rm QCD}$, the diquark serves as a point-like color- $\overline{3}$ source, like a heavy anti-guark. It relates doubly-heavy baryons to antiheavy mesons

1/Agel

Savage, Wise (1990)

- Many new hadrons observed (in particular in the charm sector), lots of mysteries
- Symmetries of QCD:
 - spontaneously broken chiral symmetry for light flavors
 - heavy quark spin and flavor symmetries for heavy flavors
- \Rightarrow next, applications of symmetries to the new hadrons

HQS for open-flavor heavy hadrons

Examples of HQSS phenomenology:

• In the Review of Particle Physics (RPP) by the Particle Data Group (PDG), there are two D_1 ($J^P = 1^+$) mesons with very different widths $\Gamma[D_1(2420)] = (27.4 \pm 2.5) \text{ MeV} \ll \Gamma[D_1(2430)] = (384^{+130}_{-110}) \text{ MeV}$

 $s_\ell = s_q + L \; \Rightarrow \;$ for P-wave charmed mesons: $s_\ell^P = rac{1}{2}^+$ or $rac{3}{2}^+$

for decays
$$D_1 \rightarrow D^* \pi$$
:
 $\frac{1}{2}^+ \rightarrow \frac{1}{2}^- + 0^-$ in *S*-wave \Rightarrow large width
 $\frac{3}{2}^+ \rightarrow \frac{1}{2}^- + 0^-$ in *D*-wave \Rightarrow small width
for thus, dominant components: $D_1(2420)$: $s_\ell = \frac{3}{2}$, $D_1(2430)$: $s_\ell = \frac{1}{2}$

• Suppression of the *S*-wave production of $\frac{3}{2}^+ + \frac{1}{2}^-$ heavy meson pairs in $e^+e^$ annihilation Table VI in E.Eichten et al., PRD17(1978)3090; X. Li, M. Voloshin, PRD88(2013)034012

Exercise: Try to understand this statement as a consequence of HQSS. Hint: in e^+e^- collisions, the leading production mechanism of heavy meson pairs is from the vector current $\bar{Q}\gamma^{\mu}Q$ which couples to the virtual photon, *i.e.*, $e^+e^- \rightarrow \gamma^* \rightarrow \bar{Q}Q$ with the $Q\bar{Q}$ pair in an *S*-wave.

Applications of HQS: $D_{s0}^{*}(2317)$ and $D_{s1}(2460)$ (1)

- HQFS: for a singly-heavy hadron, $M_{H_Q} = m_Q + A + \mathcal{O}\left(m_Q^{-1}
 ight)$
- rough estimates of bottom analogues whatever the D_{sJ} states are

$$\begin{split} M_{B_{s0}^*} &= M_{D_{s0}^*(2317)} + \Delta_{b-c} + \mathcal{O}\left(\Lambda_{\rm QCD}^2\left(\frac{1}{m_c} - \frac{1}{m_b}\right)\right) \simeq (5.65 \pm 0.15) \text{ GeV} \\ M_{B_{s1}} &= M_{D_{s1}(2460)} + \Delta_{b-c} + \mathcal{O}\left(\Lambda_{\rm QCD}^2\left(\frac{1}{m_c} - \frac{1}{m_b}\right)\right) \simeq (5.79 \pm 0.15) \text{ GeV} \end{split}$$

here $\Delta_{b-c} \equiv m_b - m_c \simeq \overline{M}_{B_s} - \overline{M}_{D_s} \simeq 3.33$ GeV, where $\overline{M}_{B_s} = 5.403$ GeV, $\overline{M}_{D_s} = 2.076$ GeV: spin-averaged g.s. $Q\bar{s}$ meson masses comparing with the lattice QCD results: Lang et al., PLB750(2015)17

$$\begin{split} M_{B_{s_0}}^{\rm lat.} &= (5.711 \pm 0.013 \pm 0.019) \ {\rm GeV} \\ M_{B_{s_1}}^{\rm lat.} &= (5.750 \pm 0.017 \pm 0.019) \ {\rm GeV} \end{split}$$

both to be discovered ¹

• more precise predictions can be made in a given model, e.g. hadronic molecules

¹The established meson $B_{s1}(5830)$ is probably the bottom partner of $D_{s1}(2536)$.

Feng-Kun Guo (ITP)

Applications of HQS: $D_{s0}^{*}(2317)$ and $D_{s1}(2460)$ (2)

• in had. mol. model: $D_{s0}^*(2317)[\simeq DK(I=0)]$, $D_{s1}(2460)[\simeq D^*K(I=0)]$ Barnes, Close, Lipkin (2003); van Beveren, Rupp (2003); Kolomeitsev, Lutz (2004); FKG et al. (2006); FKG, Hanhart, Meißner (2009); ...

 $D^{(*)}K$ bound states: poles of the T-matrix

• HQSS \Rightarrow similar binding energies $M_D + M_K - M_{D^*_{s0}} \simeq 45 \text{ MeV}$

 $M_{D_{s1}(2460)} - M_{D^*_{s0}(2317)} \simeq M_{D^*} - M_D$ is natural

 $T = V + V G V + V G G V + \dots$

• HQFS \Rightarrow predicting the 0^+ and 1^+ bottom-partner masses

$$\begin{split} M_{B_{s0}^*} \simeq M_B + M_K - \text{45 MeV} &\simeq 5.730 \text{ GeV} \\ M_{B_{s1}} \simeq M_{B^*} + M_K - \text{45 MeV} \simeq 5.776 \text{ GeV} \end{split}$$

Recall the lattice QCD results:

Lang et al., PLB750(2015)17

$$\begin{split} M_{B_{s_1}}^{\text{lat.}} &= (5.711 \pm 0.013 \pm 0.019) \text{ GeV} \\ M_{B_{s_1}}^{\text{lat.}} &= (5.750 \pm 0.017 \pm 0.019) \text{ GeV} \end{split}$$

Applications of HQS: X(5568)

FKG, Meißner, Zou, How the X(5568) challenges our understanding of QCD, Commun. Theor. Phys. 65 (2016) 593

- mass too low for X(5568) to be a $\bar{b}s\bar{u}d$: $M \simeq M_{B_s} + 200$ MeV
 - ${}^{\tiny \rm I\!S\!S} \ M_\pi \simeq 140 \; {\rm MeV}$ because pions are pseudo-Goldstone bosons
 - Sell-Mann–Oakes–Renner: $M_{\pi}^2 \propto m_q$

 $M_{\bar{b}s\bar{u}d}\gtrsim M_{B_s}+500~{\rm MeV}\sim 5.9~{\rm GeV}$

• HQFS predicts an isovector X_c:

$$M_{X_c} = M_{X(5568)} - \Delta_{b-c} + \mathcal{O}\left(\Lambda_{\text{QCD}}^2 \left(\frac{1}{m_c} - \frac{1}{m_b}\right)\right) \simeq (2.24 \pm 0.15) \text{ GeV}$$

but in $D_s\pi$, only the isoscalar $D_{s0}^*(2317)$ was observed!

BaBar (2003)

negative results reported by LHCb,

by CMS, by CDF, by ATLAS LHCb, PRL117(2016)152003 CMS, PRL120(2018)202005 CDF, PRL120(2018)202006 ATLAS, PRL120(2018)202007 Development inspired by the LHCb discovery of the $\Xi_{cc}(3620)^{++}$

• Heavy antiquark-diquark symmetry (HADS): repalcing \bar{Q} in $\bar{Q}q$ by QQ [$\bar{3}_{color}$] $\Rightarrow QQq$; repalcing \bar{Q} in $\bar{Q}\bar{q}\bar{q}\bar{q}$ by QQ [$\bar{3}_{color}$] $\Rightarrow QQ\bar{q}\bar{q}\bar{q}$;

$$\begin{array}{cccc} Qq & \Rightarrow & QQq, & Q\bar{q}\bar{q} \Rightarrow & QQ\bar{q}\bar{q}\\ \\ \text{mass} \approx & m_Q + A & \Rightarrow & m_{QQ} + A, & m_Q + B & \Rightarrow & m_{QQ} + B \end{array}$$

Prediction: $M_{QQ\bar{q}\bar{q}} - M_{\bar{Q}\bar{q}\bar{q}} \simeq M_{QQq} - M_{\bar{Q}q}$

Doubly-charmed baryon discovered by LHCb

PRL119(2017)112001 [arXiv:1707.01621]

 $M_{\Xi_{cc}^{++}} = (3621.40 \pm 0.78)$ MeV can be used as input

Applications from heavy baryons to doubly-heavy tetraquarks (2)

TABLE II. Expectations for the ground-state tetraquark masses, in MeV.^a The column labeled "HQS relation" is the result of our heavy-quark symmetry relations and is explicitly given by the sum of the right-hand side of Eq. (1) and the kinetic-energy mass shifts of Eq. (7). Here q denotes an up or down quark. For stable tetraquark states the Q value is highlighted in a box.

State	J^P	jℓ	$m(Q_iQ_jq_m)$ (c.g.)	HQS relation	$m(Q_i Q_j \bar{q}_k \bar{q}_l)$	Decay channel	\mathcal{Q} (MeV)
${cc}[\bar{u}\bar{d}]$	1^{+}	0	3663 ^b	$m({cc}u) + 315$	3978	D^+D^{*0} 3876	102
$\{cc\}[\bar{q}_k\bar{s}]$	1^{+}	0	3764 ^c	$m(\{cc\}s) + 392$	4156	$D^+D_s^{*-}$ 3977	179
$\{cc\}\{\bar{q}_k\bar{q}_l\}$	$0^+, 1^+, 2^+$	1	3663	$m({cc}u) + 526$	4146,4167,4210	D^+D^0, D^+D^{*0} 3734,3876	412,292,476
$[bc][\bar{u}\bar{d}]$	0^{+}	0	6914	m([bc]u) + 315	7229	$B^{-}D^{+}/B^{0}D^{0}$ 7146	83
$[bc][\bar{q}_k\bar{s}]$	0^{+}	0	7010 ^d	m([bc]s) + 392	7406	<i>B</i> _s <i>D</i> 7236	170
$[bc]\{\bar{q}_k\bar{q}_l\}$	1^{+}	1	6914	m([bc]u) + 526	7439	B*D/BD* 7190/7290	249
$\{bc\}[\bar{u}\bar{d}]$	1^{+}	0	6957	$m(\{bc\}u) + 315$	7272	B*D/BD* 7190/7290	82
$\{bc\}[\bar{q}_k\bar{s}]$	1^{+}	0	7053 ^d	$m(\{bc\}s) + 392$	7445	DB_{s}^{*} 7282	163
$\{bc\}\{\bar{q}_k\bar{q}_l\}$	$0^+, 1^+, 2^+$	1	6957	$m(\{bc\}u) + 526$	7461,7472,7493	BD/B*D 7146/7190	317,282,349
$\{bb\}[\bar{u}\bar{d}]$	1^{+}	0	10176	$m(\{bb\}u) + 306$	10 482	$B^{-}\bar{B}^{*0}$ 10 603	-121
$\{bb\}[\bar{q}_k\bar{s}]$	1+	0	10 252 ^c	$m(\{bb\}s) + 391$	10 643	$\bar{B}\bar{B}_{s}^{*}/\bar{B}_{s}\bar{B}^{*}$ 10 695/10 691	-48
$\{bb\}\{\bar{q}_k\bar{q}_l\}$	$0^+, 1^+, 2^+$	1	10 176	$m(\{bb\}u) + 512$	$10674,\!10681,\!10695$	B^-B^0, B^-B^{*0} 10 559,10 603	115,78,136

^aMasses of the unobserved doubly heavy baryons are taken from Ref. [14]; for lattice evaluations of *b*-baryon masses, see Ref. [15]. ^bBased on the mass of the LHCb Ξ_{cc}^{++} candidate, 3621.40 MeV, Ref. [10].

^cUsing the s/d mass differences of the corresponding heavy-light mesons. ^dEvaluated as $\frac{1}{2}[m(c\bar{s}) - m(c\bar{d}) + m(b\bar{s}) - m(b\bar{d})] + m(bcd)$.

Eichten, Quigg, PRL119(2017)202002

HADS ⇒ stable doubly-bottom tetraquarks (only decay weakly) are likely to exist

see also Carlson, Heller, Tjon, PRD37(1988)744; Manohar, Wise, NPB399(1993)17; Karliner, Rosner,

PRL119(2017)202001; Czarnecki, Leng, Voloshin, PLB778(2018)233; ...

- support from lattice QCD
 Francis, Hudspith, Lewis, Maltman, PRL118(2017)142001
- Detecting method: T. Gershon, A. Poluektov, Displaced B_c mesons as an inclusive signature of

weakly decaying double beauty hadrons, JHEP 01 (2019) 019

Feng-Kun Guo (ITP)

HQS for XYZ states

HQSS for XYZ (1)

- Hadronic molecular model: X(3872): $D\overline{D}^*$; $Z_b(10610, 10650)$: $B\overline{B}^*$ and $B^*\overline{B}^*$
- Consider S-wave interaction between a pair of $s_{\ell}^P = \frac{1}{2}^-$ (anti-)heavy mesons:

$$\begin{array}{rcl} 0^{++}: & D\bar{D}, & D^*\bar{D}^* \\ 1^{+-}: & \frac{1}{\sqrt{2}} \left(D\bar{D}^* + D^*\bar{D} \right), & D^*\bar{D}^* \\ 1^{++}: & \frac{1}{\sqrt{2}} \left(D\bar{D}^* - D^*\bar{D} \right); & 2^{++}: & D^*\bar{D}^* \end{array}$$

here, phase convention: $D \xrightarrow{C} + \bar{D}, \; D^* \xrightarrow{C} - \bar{D}^*$

• Heavy quark spin irrelevant \Rightarrow interaction matrix elements:

$$\left\langle s_{1c}, s_{2c}, s_{c\bar{c}}; s_{1\,\ell}, s_{2\,\ell}, \boldsymbol{s}_{L}; J \left| \hat{\mathcal{H}} \right| s_{1c}', s_{2c}', s_{c\bar{c}}'; s_{1\,\ell}', s_{2\,\ell}', \boldsymbol{s}_{L}'; J' \right\rangle$$
$$= \left\langle s_{1\,\ell}, s_{2\,\ell}, \boldsymbol{s}_{L} \left| \hat{\mathcal{H}} \right| s_{1\,\ell}', s_{2\,\ell}', \boldsymbol{s}_{L} \right\rangle \delta_{s_{c\bar{c}}}, s_{c\bar{c}}' \delta_{s_{L}}, s_{L}' \delta_{JJ'}$$

For each isospin, 2 independent terms

$$\left\langle \frac{1}{2}, \frac{1}{2}, \mathbf{0} \left| \hat{\mathcal{H}} \right| \frac{1}{2}, \frac{1}{2}, \mathbf{0} \right\rangle, \qquad \left\langle \frac{1}{2}, \frac{1}{2}, \mathbf{1} \left| \hat{\mathcal{H}} \right| \frac{1}{2}, \frac{1}{2}, \mathbf{1} \right\rangle$$

 \Rightarrow 6 pairs grouped in 2 multiplets with $s_L = 0$ and 1, respectively

- For the HQSS consequences, convenient to use the basis of states: $s_L^{PC} \otimes s_{c\bar{c}}^{PC}$ $rac{s}{s} S$ -wave: s_L^{PC} , $s_{c\bar{c}}^{PC} = 0^{-+}$ or 1^{--} $rac{s}{s} with a state of the state of the$
 - multiplet with $s_L = 0$:

$$0_{L}^{-+} \otimes 0_{c\bar{c}}^{-+} = 0^{++}, \qquad 0_{L}^{-+} \otimes 1_{c\bar{c}}^{--} = 1^{+-}$$

multiplet with $s_L = 1$:

$$\mathbf{1}_{L}^{--} \otimes \mathbf{0}_{c\bar{c}}^{-+} = \mathbf{1}^{+-}, \qquad \mathbf{1}_{L}^{--} \otimes \mathbf{1}_{c\bar{c}}^{--} = \mathbf{0}^{++} \oplus \boxed{\mathbf{1}^{++}} \oplus \mathbf{2}^{++}$$

- Multiplets in strict heavy quark limit:
 - $\boxtimes X(3872)$ has three partners with 0^{++} , 2^{++} and 1^{+-}

Hidalgo-Duque et al., PLB727(2013)432; Baru et al., PLB763(2016)20

 $\boxtimes Z_b, Z_b'$ as $B^{(*)}\bar{B}^*$ molecules would imply 6 I = 1 hadronic molecules:

$$Z_b[1^{+-}], Z_b'[1^{+-}]$$
 and $W_{b0}[0^{++}], W_{b0}'[0^{++}], W_{b1}[1^{++}]$ and $W_{b2}[2^{++}]$

Bondar et al., PRD84(2011)054010; Voloshin, PRD84(2011)031502;

Mehen, Powell, PRD84(2011)114013

Recall the excercise in Lecture-1:

Is $\Upsilon \pi^+ \pi^-$ a good choice of final states for the search of X_b , the $J^{PC} = 1^{++}$ bottom analogue of the X(3872)?

<u>Answer</u>: No. $X_b \rightarrow \Upsilon \pi \pi$ breaks isospin symmetry

FKG, Hidalgo-Duque, Nieves, Valderrama, PRD88(2013)054007; Karliner, Rosner, PRD91(2015)014014 $M_{B^0} - M_{B^\pm} = (0.31 \pm 0.06) \text{ MeV} \quad [M_{D^\pm} - M_{D^0} = (4.822 \pm 0.015) \text{ MeV}]$

Negative results:

CMS, Search for a new bottomonium state decaying to $\Upsilon(1S)\pi^+\pi^-$ in pp collisions at $\sqrt{s} = 8$ TeV, PLB727(2013)57;

ATLAS, Search for the X_b and other hidden-beauty states in the $\pi^+\pi^-\Upsilon(1S)$ channel at ATLAS, PLB740(2015)199

• The results can be reinterpreted as for the search of W_{bJ} ($I = 1, J^{++}$)

HQSS for XYZ (4)

$$\mathbf{1}_{L}^{--} \otimes \mathbf{1}_{c\bar{c}}^{--} = 0^{++} \oplus \boxed{\mathbf{1}^{++}} \oplus 2^{++}$$

- Heavy quark spin selection rule for X(3872): for X(3872) being a 1⁺⁺ $D\bar{D}^*$ molecule, $s_L = 1$, $s_{c\bar{c}} = 1$
- spin structure of QQ

	s_L	$s_{c\bar{c}}$	J^{PC}	$c\bar{c}$
$S ext{-wave}$	0	0	0^{-+}	η_c
	0	1	1	J/ψ
$P ext{-wave}$	1	0	1^{+-}	h_c
	1	1	$(0, 1, 2)^{++}$	$\chi_{c0}, \chi_{c1}, \chi_{c2}$

• allowed: $X(3872) \to J/\psi\pi\pi$, $X(3872) \to \chi_{cJ}\pi$, $X(3872) \to \chi_{cJ}\pi\pi$ suppressed: $X(3872) \to \eta_c\pi\pi$, $X(3872) \to h_c\pi\pi$

• Interesting feature of $Z_b^{(\prime)}$: observed with similar rates in both $\Upsilon \pi \pi [s_{b\bar{b}} = 1]$ and $h_b \pi \pi [s_{b\bar{b}} = 0]$ Bondar, Garmash, Milstein, Mizuk, Voloshin, PRD84(2011)054010 $Z_b \sim B\bar{B}^* \sim 0^-_{b\bar{b}} \otimes 1^-_{q\bar{q}} - 1^-_{b\bar{b}} \otimes 0^-_{q\bar{q}}, \ Z'_b \sim B^*\bar{B}^* \sim 0^-_{b\bar{b}} \otimes 1^-_{q\bar{q}} + 1^-_{b\bar{b}} \otimes 0^-_{q\bar{q}}$

Voloshin, PLB604(2004)69

HQSS for XYZ (5)

unitary transformation from two-meson basis to $|s_{1c}, s_{2c}, s_{c\bar{c}}; s_{1\ell}, s_{2\ell}, s_L; J\rangle$:

$$\begin{aligned} |s_{1c}, s_{1\ell}, j_1; s_{2c}, s_{2\ell}, j_2; J\rangle &= \sum_{s_{c\bar{c}}, s_L} \sqrt{(2j_1 + 1)(2j_2 + 1)(2s_{c\bar{c}} + 1)(2s_L + 1)} \\ &\times \begin{cases} s_{1c} & s_{2c} & s_{c\bar{c}} \\ s_{1\ell} & s_{2\ell} & s_L \\ j_1 & j_2 & J \end{cases} |s_{1c}, s_{2c}, s_{c\bar{c}}; s_{1\ell}, s_{2\ell}, s_L; J\rangle \end{aligned}$$

 $j_{1,2}$: meson spins;

J: the total angular momentum of the whole system

$$s_{1c(2c)} = \frac{1}{2}$$
: spin of the heavy quark in meson 1 (2)

 $s_{1\ell(2\ell)} = \frac{1}{2}$: angular momentum of the light quarks in meson 1 (2)

- $s_{c\bar{c}} = 0, 1$: total spin of $c\bar{c}$, conserved but decoupled
- $s_L = 0, 1$: total angular momentum of the light-quark system, conserved
- only two independent $\langle s_{\ell 1}, s_{\ell 2}, s_L | \hat{\mathcal{H}} | s'_{\ell 1}, s'_{\ell 2}, s_L \rangle_I$ terms for each isospin I:

$$F_{I0} = \left\langle \frac{1}{2}, \frac{1}{2}, 0 \left| \hat{\mathcal{H}} \right| \frac{1}{2}, \frac{1}{2}, 0 \right\rangle_{I}, \quad F_{I1} = \left\langle \frac{1}{2}, \frac{1}{2}, 1 \left| \hat{\mathcal{H}} \right| \frac{1}{2}, \frac{1}{2}, 1 \right\rangle_{I}$$

HQSS for XYZ (6)

$$\begin{pmatrix} D\bar{D} \\ D^*\bar{D}^* \end{pmatrix} : \quad V^{(0^{++})} = \begin{pmatrix} C_{IA} & \sqrt{3}C_{IB} \\ \sqrt{3}C_{IB} & C_{IA} - 2C_{IB} \end{pmatrix},$$

$$\begin{pmatrix} D\bar{D}^* \\ D^*\bar{D}^* \end{pmatrix} : \quad V^{(1^{+-})} = \begin{pmatrix} C_{IA} - C_{IB} & 2C_{IB} \\ 2C_{IB} & C_{IA} - C_{IB} \end{pmatrix},$$

$$D\bar{D}^* : \quad V^{(1^{++})} = C_{IA} + C_{IB},$$

$$D^*\bar{D}^* : \quad V^{(2^{++})} = C_{IA} + C_{IB},$$

here, $C_{IA} = \frac{1}{4}(3F_{I1} + F_{I0}), C_{IB} = \frac{1}{4}(F_{I1} - F_{I0})$

- This would suggest spin multiplets. Good candidates:
 - $\mathbb{X}(3872) \text{ and } X_2(4013) \text{ (not observed yet!); } Z_c(3900) \text{ and } Z_c(4020)$ $\mathbb{N}_{\text{Nieves, Valderrama, PRD86(2012)056004; ...} }$

 $M_{X_2(4013)} - M_{X(3872)} \approx M_{Z_c(4020)} - M_{Z_c(3900)} \approx M_{D^*} - M_D$

 \mathbb{I} Z_c and Z_b states need a suppression of coupled-channel effect (reason?)

HQSS for P_c (1)

The LHCb P_c states might be $\Sigma_c^{(*)} \bar{D}^{(*)}$ molecules predicted in Wu, Molina, Oset, Zou (2010) $P_c(4312) \sim \Sigma_c \bar{D}, P_c(4440, 4457) \sim \Sigma_c \bar{D}^*$

Consider S-wave pairs of $\Sigma_c^{(*)} \bar{D}^{(*)} [J_{\Sigma_c} = \frac{1}{2}, J_{\Sigma_c^*} = \frac{3}{2}]$:

$$J^{P} = \frac{1}{2}^{-} : \Sigma_{c}\bar{D}, \ \Sigma_{c}\bar{D}^{*}, \ \Sigma_{c}^{*}\bar{D}^{*}$$
$$J^{P} = \frac{3}{2}^{-} : \Sigma_{c}^{*}\bar{D}, \ \Sigma_{c}\bar{D}^{*}, \ \Sigma_{c}^{*}\bar{D}^{*}$$
$$J^{P} = \frac{5}{2}^{-} : \Sigma_{c}^{*}\bar{D}^{*}$$

Spin of the light degrees of freedom s_{ℓ} : $s_{\ell}(D^{(*)}) = \frac{1}{2}$, $s_{\ell}(\Sigma_c^{(*)}) = 1$. Thus, $s_L = \frac{1}{2}, \frac{3}{2}$ For each isospin, 2 independent terms

$$\left\langle 1, \frac{1}{2}, \frac{1}{2} \left| \hat{\mathcal{H}} \right| 1, \frac{1}{2}, \frac{1}{2} \right\rangle, \qquad \left\langle 1, \frac{1}{2}, \frac{3}{2} \left| \hat{\mathcal{H}} \right| 1, \frac{1}{2}, \frac{3}{2} \right\rangle$$

Thus, the 7 pairs are in two spin multiplets: 3 with $s_L = \frac{1}{2}$ and 4 with $s_L = \frac{3}{2}$

HQSS for P_c (2)

Seven P_c generally expected in this hadronic molecular model Xiao, Nieves, Oset (2013); Liu et al. (2018, 2019); Sakai et al. (2019);...

Predictions using the masses	of $P_c($	4440, 4457) as inputs
------------------------------	-----------	------------	-------------

Liu et al., PRL122(2019)242001

Scenario	Molecule	J^{P}	B (MeV)	M (MeV)
A	$\bar{D}\Sigma_c$	$\frac{1}{2}^{-}$	7.8 – 9.0	4311.8 - 4313.0
Α	$ar{D}\Sigma_c^*$	$\frac{3}{2}^{-}$	8.3 - 9.2	4376.1 - 4377.0
A	$ar{D}^*\Sigma_c$	$\frac{1}{2}^{-}$	Input	4440.3
Α	$ar{D}^*\Sigma_c$	$\frac{3}{2}^{-}$	Input	4457.3
A	$ar{D}^*\Sigma_c^*$	$\frac{1}{2}^{-}$	25.7 - 26.5	4500.2 - 4501.0
A	$ar{D}^*\Sigma_c^*$	$\frac{3}{2}^{-}$	15.9 – 16.1	4510.6 - 4510.8
A	$ar{D}^*\Sigma_c^*$	$\frac{5}{2}$ -	3.2 - 3.5	4523.3 - 4523.6
В	$ar{D}\Sigma_c$	$\frac{1}{2}^{-}$	13.1 - 14.5	4306.3 - 4307.7
В	$ar{D}\Sigma_c^*$	$\frac{3}{2}^{-}$	13.6 - 14.8	4370.5 - 4371.7
В	$ar{D}^*\Sigma_c$	$\frac{1}{2}^{-}$	Input	4457.3
В	$ar{D}^*\Sigma_c$	$\frac{3}{2}$	Input	4440.3
В	$ar{D}^*\Sigma_c^*$	$\frac{1}{2}^{-}$	3.1 - 3.5	4523.2 - 4523.6
В	$ar{D}^*\Sigma_c^*$	$\frac{3}{2}^{-}$	10.1 - 10.2	4516.5 - 4516.6
В	$ar{D}^*\Sigma_c^*$	5-	25.7 - 26.5	4500.2 - 4501.0

Compositeness and hadronic molecules

FKG, Hanhart, Meißner, Wang, Zhao, Zou, *Hadronic molecules*, Rev. Mod. Phys. **90** (2018) 015004

• Hadronic molecule:

dominant component is a composite state of 2 or more hadrons

 Concept at large distances, so that can be approximated by system of multi-hadrons at low energies

Consider a 2-body bound state with a mass $M = m_1 + m_2 - E_B$

size:
$$R \sim \frac{1}{\sqrt{2\mu E_B}} \gg r_{\rm hadron}$$

- scale separation \Rightarrow power expansion in p/Λ , (nonrelativistic) EFT applicable!
- Only narrow hadrons can be considered as components of hadronic molecules, $\Gamma_h \ll 1/r, r$: range of forces

Filin et al., PRL105(2010)019101; FKG, Meißner, PRD84(2011)014013

Hadronic molecules (2)

- Why are hadronic molecules interesting?
 - one realization of color-neutral objects, analogue of light nuclei
 - important information for hadron-hadron interaction
 - \square understanding the XYZ states
 - EFT applicable; model-independent statements can be made for *S*-wave, compositeness (1 - Z) related to measurable quantities compositeness: probability of the physical state being a 2-body bound state

Weinberg, PR137(1965); Baru et al., PLB586(2004); Hyodo, IJMPA28(2013)1330045; ...

see also, e.g., Weinberg's books: QFT Vol.I, Lectures on QM

$$\begin{aligned} |g_{\rm NR}|^2 &\approx (1-Z) \frac{2\pi}{\mu^2} \sqrt{2\mu E_B} \le \frac{2\pi}{\mu^2} \sqrt{2\mu E_B} \\ a &\approx -\frac{2(1-Z)}{(2-Z)\sqrt{2\mu E_B}}, \quad r_e \approx \frac{Z}{(1-Z)\sqrt{2\mu E_B}} \end{aligned}$$

Model-independent result for *S*-wave loosely bound composite states:

Consider a system with Hamiltonian

$$\mathcal{H} = \mathcal{H}_0 + V$$

 \mathcal{H}_0 : free Hamiltonian, V: interaction potential

Compositeness:

the probability of finding the physical state $|B\rangle$ in the 2-body continuum $|q\rangle$

$$1 - Z = \int \frac{d^3 \boldsymbol{q}}{(2\pi)^3} \left| \langle \boldsymbol{q} | B \rangle \right|^2$$

• $Z = |\langle B_0 | B \rangle|^2$, $0 \le (1 - Z) \le 1$

 $rac{}{} Z = 0$: pure bound (composite) state

 $rac{}{} Z = 1$: pure elementary state

Compositeness (2)

Compositeness :
$$1 - Z = \int \frac{d^3 \boldsymbol{q}}{(2\pi)^3} \left| \langle \boldsymbol{q} | B \rangle \right|^2$$

Schrödinger equation

$$(\mathcal{H}_0 + V)|B\rangle = -E_B|B\rangle$$

multiplying by $\langle q |$ and using $\mathcal{H}_0 | q \rangle = \frac{q^2}{2\mu} | q \rangle$: \Rightarrow momentum-space wave function:

$$\langle \pmb{q}|B\rangle = -\frac{\langle \pmb{q}|V|B\rangle}{E_B + \pmb{q}^2/(2\mu)}$$

• S-wave, small binding energy so that $R=1/\sqrt{2\mu E_B}\gg r,$ r: range of forces $\langle {m q}|V|B
angle=g_{
m NR}\left[1+{\cal O}(r/R)
ight]$

• Compositeness:

$$1 - Z = \int \frac{d^3 q}{(2\pi)^3} \frac{|g_{\rm NR}|^2}{\left[E_B + q^2/(2\mu)\right]^2} \left[1 + \mathcal{O}\left(\frac{r}{R}\right)\right] = \frac{\mu^2 |g_{\rm NR}|^2}{2\pi\sqrt{2\mu E_B}} \left[1 + \mathcal{O}\left(\frac{r}{R}\right)\right]$$

 \mathcal{H}

• Coupling constant measures the compositeness for an *S*-wave shallow bound state

$$|g_{\rm NR}|^2 \approx (1-Z) \frac{2\pi}{\mu^2} \sqrt{2\mu E_B} \le \frac{2\pi}{\mu^2} \sqrt{2\mu E_B}$$

bounded from the above

Exercise: Show that $|g_{\rm NR}|^2$ is the residue of the *T*-matrix element at the pole $E = -E_B$: $|g_{\rm NR}|^2 = \lim_{E \to -E_B} (E + E_B) \langle \mathbf{k} | T | \mathbf{k} \rangle$ Hint: use the Lippmann–Schwinger equation $T = V + V \frac{1}{E - \mathcal{H}_0 + i\epsilon} T$ and the completeness relation $|B\rangle\langle B| + \int \frac{d^3q}{(2\pi)^3} |\mathbf{q}_{(+)}\rangle\langle \mathbf{q}_{(+)}| = 1$ to derive the Low equation (noticing $T|\mathbf{q}\rangle = V|\mathbf{q}_{(+)}\rangle$): $\langle \mathbf{k}' | V | B \rangle \langle B | V | \mathbf{k} \rangle = \int \frac{d^3q}{d^3q} \langle \mathbf{k}' | T | \mathbf{q} \rangle \langle \mathbf{q} | T^{\dagger} | \mathbf{k} \rangle$

$$\langle \mathbf{k}'|T|\mathbf{k}\rangle = \langle \mathbf{k}'|V|\mathbf{k}\rangle + \frac{\langle \mathbf{k}'|V|B\rangle\langle B|V|\mathbf{k}\rangle}{E + E_B + i\epsilon} + \int \frac{d^3q}{(2\pi)^3} \frac{\langle \mathbf{k}'|T|\mathbf{q}\rangle\langle \mathbf{q}|T'|\mathbf{k}\rangle}{E - \mathbf{q}^2/(2\mu) + i\epsilon}$$

• Z can be related to scattering length a and effective range r_e Weinberg (1965)

$$a = -\frac{2R(1-Z)}{2-Z} \left[1 + \mathcal{O}\left(\frac{r}{R}\right) \right], \quad r_e = \frac{RZ}{1-Z} \left[1 + \mathcal{O}\left(\frac{r}{R}\right) \right]$$

Effective range expansion: $f^{-1}(k) = 1/a + r_e k^2/2 - ik + O(k^4)$

Derivation:

$$T(E) \equiv \langle k|T|k\rangle = -\frac{2\pi}{\mu}f(k) \quad \Rightarrow \quad \text{Im}\,T^{-1}(E) = \frac{\mu}{2\pi}\sqrt{2\mu E}\,\theta(E)$$

Twice-subtracted dispersion relation for $T^{-1}(E)$

elation or 1 (L')

$$T^{-1}(E) = \frac{E + E_B}{|g_{\rm NR}|^2} + \frac{(E + E_B)^2}{\pi} \int_0^{+\infty} dw \frac{\operatorname{Im} T^{-1}(w)}{(w - E - i\epsilon)(w + E_B)^2}$$
$$= \frac{E + E_B}{|g_{\rm NR}|^2} + \frac{\mu R}{4\pi} \left(\frac{1}{R} - \sqrt{-2\mu E - i\epsilon}\right)^2$$

Example: deuteron as pn bound state. Exp.: $E_B = 2.2$ MeV, $a_{3S_1} = -5.4$ fm

$$a_{Z=1} = 0 \text{ fm}, \qquad a_{Z=0} = (-4.3 \pm 1.4) \text{ fm}$$

Fena-Kun Guo (ITP)

• Coupling constant fixed by binding energy, long-distance processes such as $X(3872) \rightarrow D^0 \bar{D}^0 \pi^0, D^0 \bar{D}^0 \gamma$ calculable

E.g., XEFT prediction of $\Gamma(X \to D^0 \overline{D}{}^0 \pi^0)$

Compositeness from scattering length:

scattering lengths calculable using the Lüscher formalism in lattice QCD

E.g., from DK I = 0 scattering length \Rightarrow the DK component of $D_{s0}^*(2317)$

- $(70 \pm 4)\%$ from DK isoscalar scattering length computed from unitarized CHPT • with LECs fixed from fitting to scattering lengths of five other channels Liu, Orignos, FKG, Hanhart, Meißner, PRD86(2013)014508
- $(72 \pm 13 \pm 5)\%$ from the lattice energy levels in C. Lang et al., PRD90(2014)034510

Martínez Torres, Oset, Prelovsek, Ramos, JHEP1505,153

Latest lattice results in G. Bali et al., PRD96(2017)074501

1 - Z = 1.04(0.08)(+0.30)

M_{π} [MeV]	150	290			
$M_{D^*_{s0}(2317)} \mathrm{[MeV]}$	2348 ± 4	2384 ± 3			
$M_{D_s} \ \mathrm{[MeV]}$	1977 ± 1	1980 ± 1			
strong M_{π} dependence!					

Du, FKG, Meißner, Yao,

EPJC77(2017)728

Threshold cusps and triangle singularties

Peaks and resonances

Resonances do not always appear as peaks:

J. R. Taylor, Scattering Theory: The Quantum Theory on Nonrelativistic Collisions

Peaks are not always due to resonances:

- Dynamics \Rightarrow poles in the S-matrix (resonances): genuine physical states.
- Kinematic effects \Rightarrow branching points of S-matrix
 - normal two-body threshold cusp
 - triangle singularity

RP .

. . .

tools/traps in hadron spectroscopy

Unitarity and threshold cusp

• Unitarity of the *S*-matrix: $SS^{\dagger} = S^{\dagger}S = 1$, $S_{fi} = \delta_{fi} - i(2\pi)^4 \delta^4 (p_f - p_i) T_{fi}$ *T*-matrix: $T_{fi} - T_{fi}^{\dagger} = -i(2\pi)^4 \sum_{n} \delta(p_n - p_i) T_{fn}^{\dagger} T_{ni}$

all physically accesible states

assuming all intermediate states are two-body, partial-wave unitarity relation:

 $\operatorname{Im} T_{L,fi}(s) = -\sum_n T^*_{L,fn} \, \rho_n(s) \, T_{L,ni}$

2-body phase space factor: $\rho_n(s) = q_{\text{cm},n}(s)/(2\sqrt{s})\theta(\sqrt{s} - m_{n1} - m_{n2}),$ $q_{\text{cm},n}(s) = \sqrt{[s - (m_{n1} + m_{n2})^2][s - (m_{n1} - m_{n2})^2]}/(2\sqrt{s})$

There is always a cusp at an S-wave threshold

- Cusp effect as a useful tool for precise measurement:

 - strength of the cusp measures the interaction strength!

Budini, Fonda (1961); Meißner, Müller, Steininger (1997); Cabibbo (2004); Colangelo, Gasser, Kubis, Rusetsky (2006); ...

 \sim threshold, only sensitive to scattering length, $(a_0 - a_2)M_{\pi^+} = 0.2571 \pm 0.0056$

• Very prominent cusp \Rightarrow large scattering length \Rightarrow likely a nearby pole effective range expansion (ERE): $f(k) = \frac{1}{1/a + rk^2/2 - ik}$

Triangle singularity (TS)

$$\frac{A(P)}{\frac{1}{2m_A}\sqrt{\lambda(m_A^2,m_1^2,m_2^2)}} \equiv \boxed{p_{2,\text{left}} = p_{2,\text{right}}} \equiv \gamma \left(\beta E_2^* - p_2^*\right)$$

on-shell momentum of m_2 at the left and right cuts in the A rest frame $\beta = |\vec{p}_{23}|/E_{23}, \gamma = 1/\sqrt{1-\beta^2}$ Bayar et al., PRD94(2016)074039

- $p_2 > 0, p_3 = \gamma \left(\beta E_3^* + p_2^*\right) > 0 \Rightarrow m_2$ and m_3 move in the same direction
- velocities in the A rest frame: $v_3 > \beta > v_2$

$$v_2 = \beta \, \frac{E_2^* - p_2^* / \beta}{E_2^* - \beta \, p_2^*} < \beta \,, \qquad v_3 = \beta \, \frac{E_3^* + p_2^* / \beta}{E_3^* + \beta \, p_2^*} > \beta$$

Conditions (Coleman–Norton theorem): Coleman, Norton (1965); Bronzan (1964)
 Image: all three intermediate particles can go on shell simultaneously
 Image: p
 ² p
 ² p
 ³ particle-3 can catch up with particle-2 (as a classical process)
 needs very special kinematics ⇒ process dependent! (contrary to pole position)

Feng-Kun Guo (ITP)
Applications: $Z_c(3900)$ (1)

Consider the triangle loop:

• For $E_{\rm cm} = 4.26$ GeV, TS in the unphysical region

Enhancement very sensitive to the cm energy

Feng-Kun Guo (ITP)

Applications: $Z_c(3900)$ (2)

• Importance of TS in $Y(4260) \rightarrow Z_c \pi$ already noticed, but Z_c pole still needed

Q.Wang, Hanhart, Q.Zhao, PRL111(2013)132002; PLB725(2013)106

however, debate continues:

Pilloni et al. (JPAC), PLB772(2017)200

Applications: $Z_c(3900)$ (3)

Albaladejo, FKG, Hidalgo-Duque, Nieves, PLB755(2016)337

Applications: $Z_c(3900)$ (4)

Applications: P_c (1)

FKG, Meißner, Wang, Yang, PRD92(2015)071502

- Mass: $M_{P_c(4450)} = (4449.8 \pm 1.7 \pm 2.5)$ MeV
- Trivial observation: $P_c(4450)$ coincides with the $\chi_{c1}p$ threshold:

 $M_{P_c(4450)} - M_{\chi_{c1}} - M_p = (0.9 \pm 3.1) \text{ MeV}$

• A bit non-trivial observation: there is a triangle singularity at the same time! Solving the equation $p_{2,\text{left}} = p_{2,\text{right}}$ \Rightarrow for $M_{\Lambda^*} \simeq 1.89 \text{ GeV}$, a TS at $M_{J/\psi p} = M_{\chi_{c1}} + M_p$ four-star baryon: $\Lambda(1890)$, $J^P = \frac{3}{2}^+$, $\Gamma : 60 - 200 \text{ MeV}$ On shell $\Rightarrow \Lambda^*$ must be unstable, the TS is then a finite peak

More possible relevant TSs, see

X.-H. Liu, Q. Wang, Q. Zhao, PLB757(2015)231

• narrow peak produced by TS, if S-wave between $\chi_{c1}p,\,J^P=rac{1}{2}^+,rac{3}{2}^+$

- χ_{c1} very narrow ($\Gamma = (0.84 \pm 0.04)$ MeV), has little effect on the peak
- impossible to produce a narrow peak for other $\chi_{c1}p$ partial waves
- strength unkown
- LHCb 2019: $P_c(4440)$ & $P_c(4457)$ cannot be just such a TS, but there might still be a nontrivial interference (dip at 4.45 GeV)

- Lots of resonances or resonance-like structures observed in recent years, many puzzles
- QCD symmetries (chiral, heavy quark) prove to be useful tools
- Many more data needed, lots of work needs to be done

Thank you for your attention!

Backup slides

Consider the scalar three-point loop integral

$$I = i \int \frac{d^4q}{(2\pi)^4} \frac{1}{\left[(P-q)^2 - m_1^2 + i\epsilon\right] \left(q^2 - m_2^2 + i\epsilon\right) \left[(p_{23} - q)^2 - m_3^2 + i\epsilon\right]}$$

Rewriting a propagator into two poles:

$$\frac{1}{q^2 - m_2^2 + i\epsilon} = \frac{1}{(q^0 - \omega_2 + i\epsilon)(q^0 + \omega_2 - i\epsilon)} \quad \text{with} \quad \omega_2 = \sqrt{m_2^2 + \vec{q'}^2}$$

focus on the positive-energy poles

$$I \simeq \frac{i}{8m_1m_2m_3} \int \frac{dq^0 d^3\vec{q}}{(2\pi)^4} \frac{1}{\left(P^0 - q^0 - \omega_1 + i\epsilon\right)\left(q^0 - \omega_2 + i\epsilon\right)\left(p_{23}^0 - q^0 - \omega_3 + i\epsilon\right)}$$

Contour integral over $q^0 \Rightarrow$

cut-1 cut-2

$$I \propto \int \frac{d^3 \vec{q}}{(2\pi)^3} \frac{1}{[P^0 - \omega_1(q) - \omega_2(q) + i\epsilon][p_{23}^0 - \omega_2(q) - \omega_3(\vec{p}_{23} - \vec{q}) + i\epsilon]} \\ \propto \int_0^\infty dq \; \frac{q^2}{P^0 - \omega_1(q) - \omega_2(q) + i\epsilon} f(q)$$

The second cut:

$$f(q) = \int_{-1}^{1} dz \, \frac{1}{p_{23}^{0} - \omega_{2}(q) - \sqrt{m_{3}^{2} + q^{2} + p_{23}^{2} - 2p_{23}qz} + i \, \epsilon}$$

Relation between singularities of integrand and integral

- singularity of integrand does not necessarily give a singularity of integral: integral contour may be deformed to avoid the singularity
- Two cases that a singularity cannot be avoided:
 - endpoint singularity
 - pinch singularity

Singularities of the **integrand of** I in the rest frame of initial particle ($P^0 = M$):

• 1st cut:
$$M - \omega_1(l) - \omega_2(l) + i \epsilon = 0 \Rightarrow$$

$$q_{\text{on}\pm} \equiv \pm \left(\frac{1}{2M}\sqrt{\lambda(M^2, m_1^2, m_2^2)} + i \epsilon\right)$$

• 2nd cut: $A(q, \pm 1) = 0 \Rightarrow$ endpoint singularities of f(q)

$$\begin{aligned} z &= +1: \quad q_{a+} = \gamma \left(\beta \, E_2^* + p_2^*\right) + i \, \epsilon \,, \qquad q_{a-} = \gamma \left(\beta \, E_2^* - p_2^*\right) - i \, \epsilon \,, \\ z &= -1: \quad q_{b+} = \gamma \left(-\beta \, E_2^* + p_2^*\right) + i \, \epsilon \,, \qquad q_{b-} = -\gamma \left(\beta \, E_2^* + p_2^*\right) - i \, \epsilon \\ \beta &= |\vec{p}_{23}|/E_{23}, \qquad \gamma = 1/\sqrt{1 - \beta^2} = E_{23}/m_{23} \end{aligned}$$

 $E_2^*(p_2^*)$: energy (momentum) of particle-2 in the cmf of the (2,3) system

Feng-Kun Guo (ITP)

TS: some details (5)

All singularities of the integrand of *I*:

 $\begin{array}{ll} q_{\rm on+}, & q_{a+} = \gamma \left(\beta \, E_2^* + p_2^*\right) + i \, \epsilon, & q_{a-} = \gamma \left(\beta \, E_2^* - p_2^*\right) - i \, \epsilon, \\ q_{\rm on-} < 0, & q_{b-} = -q_{a+} < 0 \; (\text{for } \epsilon = 0), & q_{b+} = -q_{a-}, \end{array}$

We may also start from a QFT (for very small E_B , nonrelativistic)

Here $E_0 = M_0 - m_1 - m_2$ with M_0 the bare mass, $\Sigma(E)$ is the self-energy (g_0 : bare coupling constant)

$$\Sigma(E) = ig_0^2 \int \frac{d^4k}{(2\pi)^4} \left[\left(k^0 - \frac{k^2}{2m_1} + i\epsilon \right) \left(E - k^0 - \frac{k^2}{2m_2} + i\epsilon \right) \right]^{-1}$$

$$= -i2\mu g_0^2 (2\pi i) \int^{\Lambda} \frac{d^3k}{(2\pi)^4} \frac{1}{2\mu E - k^2 + i\epsilon}$$

$$E - \frac{k^2}{2m_1} + i\epsilon = g_0^2 \frac{\mu}{2\pi} \sqrt{-2\mu E - i\epsilon} + \text{constant}$$

$$\frac{k^2}{2m_1} - i\epsilon^{\text{Rek^0}} = g_0^2 \frac{\mu}{2\pi} \left[\sqrt{-2\mu E \theta} (-E) - i\sqrt{2\mu E \theta} (E) \right] + \text{constant}$$

Compositeness (6)

The physical mass is $M = m_1 + m_2 + E_B(E_B \ge 0)$ with $-E_B$ the solution of $E - E_0 - \Sigma(E) = 0$, i.e.

$$E_B = -E_0 - \Sigma(-E_B)$$

Expanding the self-energy around the pole, we rewrite the propagator

$$\frac{i}{E - E_0 - \Sigma(E)} = \frac{i}{E - E_0 - \left[\Sigma(-E_B) + (E + E_B)\Sigma'(-E_B) + \tilde{\Sigma}(E)\right]}$$
$$= \frac{i}{E + E_B - (E + E_B)\Sigma'(-E_B) - \tilde{\Sigma}(E)}$$
$$= \frac{iZ}{E + E_B - Z\tilde{\Sigma}(E)}$$

Z is the wave function renormalization constant

$$Z = \frac{1}{1 - \Sigma'(-E_B)} = \left[1 + \frac{g_0^2 \mu^2}{2\pi \sqrt{2\mu E_B}}\right]^{-1}$$

The physical coupling constant

$$\tilde{g}^2 = Zg_0^2 = \frac{1}{\frac{1}{g_0^2} + \frac{\mu^2}{2\pi\sqrt{2\mu E_B}}} = (1 - Z)\frac{2\pi}{\mu^2}\sqrt{2\mu E_B}$$

Taking into account the nonrel. normalization, we get the one with rel. normalization

$$g^2 = 8m_1m_2(m_1 + m_2)\tilde{g}^2 = 16\pi(1 - Z)(m_1 + m_2)^2\sqrt{\frac{2E_B}{\mu}}$$

If the ERE is dominated by the scattering length (when the pole is extremely close to threshold),

$$T(E) = \frac{2\pi/\mu}{-1/a - \sqrt{-2\mu E - i\epsilon}}$$

At LO, effective coupling strength for bound state

$$|g_{\rm NR}|^2 = \lim_{E \to -E_B} (E + E_B) T(E) = -\frac{2\pi}{\mu} \left(\frac{d}{dE} \sqrt{-2\mu E - i\epsilon} \right)_{E=-E_B}^{-1}$$
$$= \frac{2\pi}{\mu^2} \sqrt{2\mu E_B} \quad \Rightarrow \quad Z = 0 \text{ at this leading order approximation}$$