

Lectures on Chiral Perturbation Theory

Ulf-G. Meißner, Univ. Bonn & FZ Jülich

Chiiral Perturbation Theory – Ulf-G. Meißner – Lectures, TSU, Tiflis, August 2019 · O < < < > > > >

STRUCTURE of the LECTURES

- I) Short Introduction
- II) Chiral Symmetry in QCD
- III) Chiral Perturbation Theory: Goldstone Bosons
- IV) Chiral Perturbation Theory: Pions and Nucleons
- V) Testing Chiral Dynamics in Hadron-Hadron Scattering
- more emphasis on the foundations rather than on specific calculations

Introduction

Chiiral Perturbation Theory – Ulf-G. Meißner – Lectures, TSU, Tiflis, August 2019 · O < < \land \bigtriangledown > \triangleright •

FORCES in NATURE

type	gauge boson	spin	range	strength	
		[ħ]	[m]	@ hadronic scale	
gravity	graviton	2	∞	10^{-40}	
weak int.	W,Z-bosons	1	10^{-17}	10^{-5}	
EM int.	photon	1	∞	1/137	}
strong int.	gluons	1	10^{-15}	~ 1	

 $SU(3)_C \times SU(2)_L \times U(1)_Y$

- electro-weak interactions are perturbative at hadronic scales
- \bullet strong interactions are really strong \rightarrow non-perturbative

Chiiral Perturbation Theory – Ulf-G. Meißner – Lectures, TSU, Tiflis, August 2019 · O < < \land \bigtriangledown > \triangleright •

QCD LAGRANGIAN

• quarks and gluons are **confined** within hadrons & nuclei \hookrightarrow concentrate on the light quark sector here (pions, nucleons)

Chiiral Perturbation Theory – Ulf-G. Meißner – Lectures, TSU, Tiflis, August 2019 · O < < / \bigtriangledown > \triangleright •

QCD chiral dynamics

Chiiral Perturbation Theory – Ulf-G. Meißner – Lectures, TSU, Tiflis, August 2019 \cdot O < < \land ∇ > \triangleright \bullet

INTRO: CHIRAL SYMMETRY

• Massless fermions exhibit chiral symmetry:

$${\cal L}=iar\psi\gamma_\mu\partial^\mu\psi$$

• left/right-decomposition:

$$\psi = rac{1}{2}(1-\gamma_5)\psi + rac{1}{2}(1+\gamma_5)\psi = P_L\psi + P_R\psi = \psi_L + \psi_R$$

• projectors:

$$P_L^2 = P_L, \; P_R^2 = P_R, \; P_L \cdot P_R = 0, \; P_L + P_R = {\rm I\!I}$$

• helicity eigenstates:

$$rac{1}{2}\hat{h}\psi_{L,R}=\pmrac{1}{2}\psi_{L,R} \quad \hat{h}=ec{\sigma}\cdotec{p}/|ec{p}|$$

• L/R fields do **not** interact \rightarrow conserved L/R currents

$${\cal L}=iar{\psi}_L\gamma_\mu\partial^\mu\psi_L+iar{\psi}_R\gamma_\mu\partial^\mu\psi_R$$

$$\Psi_{R} \xrightarrow{} \Psi_{L}$$

• mass terms break chiral symmetry: $\bar{\psi}\mathcal{M}\psi = \bar{\psi}_R\mathcal{M}\psi_L + \bar{\psi}_L\mathcal{M}\psi_R$

CHIRAL SYMMETRY of QCD

• Three flavor QCD:

• \mathcal{L}^0_{QCD} is invariant under **chiral** $SU(3)_L \times SU(3)_R$ (split off U(1)'s)

$$egin{aligned} \mathcal{L}^0_{ ext{QCD}}(G_{\mu
u},q',D_\mu q') &= \mathcal{L}^0_{ ext{QCD}}(G_{\mu
u},q,D_\mu q) \ q' &= RP_R q + LP_L q = Rq_R + Lq_L \quad R,L \in SU(3)_{R,L} \end{aligned}$$

conserved L/R-handed [vector/axial-vector] Noether currents:

$$egin{aligned} J^{\mu,a}_{L,R} &= ar{q}_{L,R} \gamma^{\mu} rac{\lambda^{a}}{2} q_{L,R} \,, & a = 1, \dots, 8 \ \partial_{\mu} J^{\mu,a}_{L,R} &= 0 & [ext{or} \ V^{\mu} = J^{\mu}_{L} + J^{\mu}_{R} \,, & A^{\mu} = J^{\mu}_{L} - J^{\mu}_{R}] \end{aligned}$$

Is this symmety reflected in the vacuum structure/hadron spectrum?

THE FATE of QCD's CHIRAL SYMMETRY

- the chiral symmetry is not "visible" (spontaneously broken)
 - no parity doublets
 - $ullet \left< 0 |AA| 0
 ight>
 eq \left< 0 |VV| 0
 ight>$
 - scalar condensate $\bar{q}q$ acquires v.e.v.
 - Vafa-Witten theorem [NPB 234 (1984) 173]
 - (almost) massless pseudoscalar bosons

• the chiral symmetry is realized in the Nambu-Goldstone mode

- weakly interacting massless pseudoscalar excitations
- approximate symmetry (small quark masses)

 $ightarrow \pi, K, \eta$ as Pseudo-Goldstone Bosons

- calls for an effective field theory
- \Rightarrow Chiral Perturbation Theory

THE FATE of QCD's CHIRAL SYMMETRY II

- Wigner mode $|Q_5^a|0
 angle = Q^a|0
 angle = 0 \; (a=1,\ldots,8) \; ?$
- parity doublets: $dQ_5^a/dt = 0
 ightarrow [H,Q_5^a] = 0$

single particle state: $H|\psi_p
angle=E_p|\psi_p
angle$

axial rotation:
$$H(e^{iQ_5^a}|\psi_p\rangle) = e^{iQ_5^a}H|\psi_p\rangle = \underbrace{E_p(e^{iQ_5^a}|\psi_p\rangle)}_{same\ mass\ but\ opposite\ parity}$$

• VV and AA spectral functions (without pion pole):

$$egin{aligned} &\langle 0|VV|0
angle &= \langle 0|(L+R)(L+R)|0
angle &= \langle 0|L^2+R^2+2LR|0
angle &= \langle 0|L^2+R^2|0
angle \ &\parallel \ &\parallel \ &\langle 0|AA|0
angle &= \langle 0|(L-R)(L-R)|0
angle &= \langle 0|L^2+R^2-2LR|0
angle &= \langle 0|L^2+R^2|0
angle \end{aligned}$$

since L and R are orthogonal

10

PROPERTIES of GOLDSTONE BOSONS

• GBs are massless [no explicit symmetry breaking]

consider a broken generator [Q, H] = 0 but $Q|0\rangle \neq 0$ define $|\psi\rangle \equiv Q|0\rangle$ $\rightarrow H|\psi\rangle = HQ|0\rangle = QH|0\rangle = 0$ \rightarrow not only G.S. $|0\rangle$ has E = 0

There exist massless excitations, non-interacting as E,p
ightarrow 0

[NB: proper argumentation requires more precise use of the infinite volume]

• explicit symmetry breaking, perturbative [small parameter ε]

Goldstone bosons acquire a small mass $M_{
m GB}^2\sim arepsilon$

In QCD, this symmetry breaking is given in terms of the light quark masses

$$\Rightarrow M_{\pi}^2 \sim (m_u + m_d)$$

Chiral Perturbation Theory: Goldstone Bosons

CHIRAL EFT of QCD

Gasser, Leutwyler, Weinberg, van Kolck, Kaplan, Savage, Wise, Bernard, Kaiser, M., . . .

• Starting point: CHIRAL LAGRANGIAN (two flavors)

$$\mathcal{L}_{ ext{QCD}}
ightarrow \mathcal{L}_{ ext{EFF}} = \mathcal{L}_{\pi\pi} + \mathcal{L}_{\pi N} \ [+\mathcal{L}_{NN} + \ldots]$$

- dofs: quark & gluon fields \rightarrow pions, nucleons, external sources
- Spontaneous chiral symmetry breaking of QCD \rightarrow pions are Goldstone bosons
- Systematic expansion in powers of q/Λ_χ & M_π/Λ_χ , with $\Lambda_\chi\simeq 1\,{
 m GeV}$
- pion and pion-nucleon sectors are perturbative in $q \rightarrow$ chiral perturbation theory
- Parameters in $\mathcal{L}_{\pi\pi}$ and $\mathcal{L}_{\pi N}$ known from CHPT studies \rightarrow low-energy constants
- [• \mathcal{L}_{NN} collects short-distance contact terms, to be fitted]
- [• NN interaction requires non-perturbative resummation]
 - $[\rightarrow$ chirally expand V_{NN}, use in regularized LS equation]

Chiiral Perturbation Theory – Ulf-G. Meißner – Lectures, TSU, Tiflis, August 2019 · O < < \land \bigtriangledown > \triangleright •

STRUCTURE of the chiral EFT

• Energy expansion [derivative/momentum/...]

dimensional analysis:

(a) derivatives \rightarrow powers of q [small scale]

(b) be Λ the hard [limiting] scale

ightarrow any derivative $\partial \sim q/\Lambda$

- ightarrow N derivative vertex $\sim q^N/\Lambda^N$
- ightarrow for $E[q] \ll \Lambda$, terms w/ more derivatives are suppressed
- Energy expansion = Loop expansion

interactions generate loops loops generate imaginary parts

 \Rightarrow all this is contained in the *power counting*, which assigns a dimension [not the canonical one] to each diagram

Chiiral Perturbation Theory – Ulf-G. Meißner – Lectures, TSU, Tiflis, August 2019 · O < < \land \bigtriangledown > \triangleright •

POWER COUNTING THEOREM

• Consider
$$\mathcal{L}_{ ext{eff}} = \sum_{d} \mathcal{L}^{(d)}$$
, d bounded from below

- ullet for interacting Goldstone bosons, $d\geq 2$ and $iD(q)=\displaystyle\frac{1}{q^2-M^2}$
- consider an L-loop diagram with I internal lines and V_d vertices of order d

$$Amp \propto \int (d^4q)^L \, rac{1}{(q^2)^I} \prod_d (q^d)^{V_d}$$

• let
$$Amp \sim q^{
u}
ightarrow
u = 4L - 2I + \sum\limits_{d} dV_{d}$$

• topology:
$$L = I - \sum_d V_d + 1$$

• eliminate I:
$$\rightarrow \left(
u = 2 + 2L + \sum_{d} V_d(d-2) \right) \sqrt{2}$$

 \bullet Important: construct all possible terms for a given ν

Chiiral Perturbation Theory – Ulf-G. Meißner – Lectures, TSU, Tiflis, August 2019 · O < < \land \bigtriangledown >

POWER COUNTING for PION-PION SCATTERING

- $\pi(p_1) + \pi(p_2) \rightarrow \pi(p_3) + \pi(p_4)$ leading interaction $\sim \partial \pi \ \partial \pi \Rightarrow d = 2$
- leading order (LO)

 $d=2, N_L=0 \Rightarrow D=2$

next-to-leading order (NLO)

 $(a) \ d=4, N_L=0 \Rightarrow D=4 \qquad (b) \ d=2, N_L=1 \Rightarrow D=4$

$$d = 2 \longrightarrow q \longrightarrow d = 2$$

$$\sim \int d^4q \frac{q_1 \cdot q_2 \ q_3 \cdot q_4}{(q^2 - M_\pi^2)(q^2 - M_\pi^2)} \sim \mathcal{O}(q^4)$$

 $\cdot \circ \triangleleft \langle \wedge \nabla \rangle \rangle \diamond \bullet \bullet$ Chiiral Perturbation Theory - Ulf-G. Meißner - Lectures, TSU, Tiflis, August 2019

LOW-ENERGY CONSTANTS (LECs)

 consider a covariant & parity-invariant theory of Goldstone bosons parameterized in some matrix-valued field U

$$egin{split} \mathcal{L}_{ ext{eff}} &= g_2 ext{Tr}(\partial_\mu U \partial^\mu U^\dagger) + g_4^{(1)} ig[ext{Tr}(\partial_\mu U \partial^\mu U^\dagger) ig]^2 \ &+ g_4^{(2)} ext{Tr}(\partial_\mu U \partial^
u U^\dagger) ext{Tr}(\partial_
u U \partial^\mu U^\dagger) + \ldots \end{split}$$

• couplings = **low-energy constants** (LECs)

 $g_2 \neq 0$ spontaneous chiral symmetry breaking (cf also the $g_{>2}^{(i)}$) $g_4^{(1)}, g_4^{(2)}, \ldots$ must be fixed from data (or calculated from the underlying theory)

- calculations in EFT: fix the LECs from some processes, then make predictions
- LECs encode information about the high mass states that are integrated out

$$rac{g_{
ho\pi\pi}^2}{M_
ho^2-q^2} \stackrel{q^2 \ll M_
ho^2}{\longrightarrow} rac{g_{
ho\pi\pi}^2}{M_
ho^2} \left(1+rac{q^2}{M_
ho^2}+\ldots
ight)$$

$$\begin{bmatrix} \pi & \rho & \pi & \pi \\ \pi & \pi & \pi \\ \pi & \pi & \pi \\ \end{bmatrix} \xrightarrow{\pi} + \dots$$

Chiiral Perturbation Theory – Ulf-G. Meißner – Lectures, TSU, Tiflis, August 2019 • O < < \land \bigtriangledown > \triangleright •

LOOPS and DIVERGENCES

- Loop diagrams generate imag. parts, but are mostly divergent
- \Rightarrow choose a mass-independent & symmetry-preserving regularization scheme [like dimensional regularization] \rightarrow consider tadpole as example:

 $egin{aligned} &= -i\Delta_{\pi}(0) = rac{-i}{(2\pi)^d}\int d^d p rac{1}{M^2 - p^2 - iarepsilon} & [d ext{ space-time dim.}] \ &= (2\pi)^{-d}\int d^d k rac{1}{M^2 + k^2} ext{ with } p_0 = ik_0 \ , \ -p^2 = k_0^2 + {ec k}^2 \end{aligned}$ $=(2\pi)^{-d}\int d^dk\int_0^\infty d\lambda\exp(-\lambda(M^2+k^2))$ $=(2\pi)^{-d}\int_{0}^{\infty}d\lambda\exp(-\lambda M^{2})\int d^{d}k\exp(-\lambda k^{2})d^{d}k$ $(\pi/\lambda)^{d/2}$ $= (4\pi)^{-d} M^{d-2} \Gamma\left(1-rac{d}{2}
ight)$ has a pole at d=4 \Rightarrow absorb in LECs: $|g_i \rightarrow g_i^{\text{ren}} + \beta_i \frac{1}{d-4}|$ always possible!

CHIRAL PERTURBATION THEORY

• Consider first the mesonic chiral effective Lagrangian

$$egin{split} \mathcal{L}_{ ext{eff}} &= \mathcal{L}^{(2)} + \mathcal{L}^{(4)} + \mathcal{L}^{(6)} + \dots \ \mathcal{L}^{(2)} &= rac{F_{\pi}^2}{4} \langle D_{\mu} U D^{\mu} U^{\dagger} + \chi U^{\dagger} + \chi^{\dagger} U
angle \quad [U^{\dagger} U = U U^{\dagger} = 1, U o L U R^{\dagger}] \ U &= \exp(i \Phi / F_{\pi}) \,, \ \Phi &= \sqrt{2} egin{pmatrix} \pi^0 / \sqrt{2} + \eta / \sqrt{6} & \pi^+ & K^+ \ \pi^- & -\pi^0 / \sqrt{2} + \eta / \sqrt{6} & K^0 \ K^- & \overline{K^0} & -2\eta / \sqrt{6} \end{pmatrix} \end{split}$$

 $\chi = 2B\mathcal{M} + \ldots, B = |\langle 0|ar{q}q|0
angle|/F_\pi^2 \leftarrow ext{scalar quark condensate}$

• Two parameters:

 $F_{\pi} \simeq 92 \,\text{MeV}$ = pion decay constant (GB coupling to the vacuum) $B \simeq 2 \,\text{GeV}$ = normalized vacuum condensate

• Goldstone boson masses: $M_{\pi^+}^2 = (m_u + m_d)B \ , \ M_{K^+}^2 = (m_d + m_s)B \ , \ldots$

• has been extended to two loops $\mathcal{O}(q^6)$ in many cases

FROM QUARK to MESON MASSES

• Explicit symmetry breaking Lagrangian:

$$\mathcal{L}_{ ext{SB}} = \mathcal{M} imes f(U, \partial \mathcal{M}, \ldots) \ , \ \ \mathcal{M} = ext{diag}(m_u, m_d)$$

• LO invariants: $\operatorname{Tr}(\mathcal{M}U^{\dagger})$, $\operatorname{Tr}(U\mathcal{M}^{\dagger})$

$$\Rightarrow \mathcal{L}_{SB} = \frac{1}{2} F_{\pi}^{2} \left\{ B \operatorname{Tr}(\mathcal{M}U^{\dagger} + U\mathcal{M}^{\dagger}) \right\} \qquad B \text{ is a real constant if CP is conserved} \\ = (m_{u} + m_{d}) B \left[F_{\pi}^{2} - \frac{1}{2}\pi^{2} + \frac{\pi^{4}}{24F_{\pi}^{2}} + \dots \right] \quad [\text{expand } U = \exp(i\vec{\tau} \cdot \vec{\pi}/F_{\pi})]$$

First term (vacuum):
$$\frac{\partial \mathcal{L}_{\text{QCD}}}{\partial m_q}\Big|_{m_q=0} = -\bar{q}q$$

 $\Rightarrow \langle 0|\bar{u}u|0\rangle = \langle 0|\bar{d}d|0\rangle = -BF_{\pi}^2 (1 + \mathcal{O}(\mathcal{M}))$

Second term (pion mass): $-\frac{1}{2}M_{\pi}^2\pi^2 \Rightarrow M_{\pi}^2 = (m_u + m_d)B$

combined: $M_{\pi}^2 = -(m_u + m_d) \langle 0 | \bar{u}u | 0 \rangle / F_{\pi}^2$ Gell-Mann–Oakes–Renner rel.

repeat for SU(3) $\Rightarrow 3M_{\eta}^2 = 4M_K^2 - M_{\pi}^2$ Gell-Mann–Okubo relation

$\underline{\mathsf{MESON}\ \mathsf{MASSES}} \to \underline{\mathsf{QUARK}\ \mathsf{MASS}\ \mathsf{RATIOS}}$

lowest order

$$M_{\pi^+}^2 = (m_u + m_d)B \simeq (0.140 \,\text{GeV})^2$$
$$M_{K^0}^2 = (m_u + m_s)B \simeq (0.494 \,\text{GeV})^2$$
$$M_{K^+}^2 = (m_d + m_s)B \simeq (0.497 \,\text{GeV})^2$$

$$\stackrel{
m ratios}{\longrightarrow} \quad rac{m_u}{m_d} = 0.66 \;, \;\; rac{m_s}{m_d} = 20.1 \;, \;\; rac{\hat{m}}{m_s} = rac{1}{24.2} \;\; \left[\hat{m} = rac{1}{2} (m_u + m_d)
ight]$$

• corrections: next-to-leading order and beyond

electromagnetism

Weinberg, Gasser, Leutwyler, ...

$$egin{array}{c|c} egin{array}{c} rac{m_u}{m_d} = 0.553 \pm 0.043 \ , \ \ rac{m_s}{m_d} = 18.9 \pm 0.8 \ , \ \ rac{\hat{m}}{m_s} = rac{1}{24.4 \pm 1.5} \end{array}$$

lattice QCD can now get these ratios with better precision [strong] no large isospin violation since $m_u - m_d$ so small vs hadronic scale

Chiiral Perturbation Theory – Ulf-G. Meißner – Lectures, TSU, Tiflis, August 2019 \cdot O < \land \bigtriangledown > \triangleright \bullet

Chiral Perturbation Theory: Pions and Nucleons

CHIRAL EFECTIVE PION-NUCLEON THEORY

- view nucleon as matter fields [from now on, SU(2) only]
- chiral symmetry *dictates* the couplings to pions & external sources

a few steps well documented in the literature

- tree calculations: tree graphs w/ insertions from $\mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{\pi N}^{(2)}$
- one-loop calculations: tree graphs w/ insertions from $\mathcal{L}_{\pi N}^{(1)} + \ldots + \mathcal{L}_{\pi N}^{(4)}$ plus loop graphs w/ (one) insertion(s) from $\mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{\pi N}^{(2)}$

EFFECTIVE LAGRANGIAN AT ONE LOOP

• Pion-nucleon Lagrangian:

$$\begin{aligned}
\mathcal{L}_{\pi N} &= \mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{\pi N}^{(2)} + \mathcal{L}_{\pi N}^{(3)} + \mathcal{L}_{\pi N}^{(4)} \\
&= chiral dimension] \\
\mathcal{L}_{\pi N}^{(1)} &= \bar{\Psi} \left(i \not D - m_N + \frac{1}{2} g_A \not u \gamma_5 \right) \Psi \qquad [u_\mu \sim \partial_\mu \phi] \\
\mathcal{L}_{\pi N}^{(2)} &= \sum_{i=1}^7 c_i \bar{\Psi} O_i^{(2)} \Psi = \bar{\Psi} \left(c_1 \langle \chi_+ \rangle + c_2 \left(-\frac{1}{8m_N^2} \langle u_\mu u_\nu \rangle D^{\mu\nu} + h.c. \right) + c_3 \frac{1}{2} \langle u \cdot u \rangle \\
&+ c_4 \frac{i}{4} [u_\mu, u_\nu] \sigma^{\mu\nu} + c_5 \widetilde{\chi}_+ + c_6 \frac{1}{8m_N} F_{\mu\nu}^+ \sigma^{\mu\nu} + c_7 \frac{1}{8m_N} \left\langle F_{\mu\nu}^+ \right\rangle \sigma^{\mu\nu} \right) \Psi
\end{aligned}$$

- dynamical LECs $g_A \sim \partial_\mu \phi$, and $c_2, c_3, c_4 \sim \partial^2_\mu \phi, \partial_\mu \partial_
 u \phi$
- ullet symmetry breaking LECs $c_1 \sim m_u + m_d$, $c_5 \sim m_u m_d$
- ullet external probe LECs $c_6, c_7 \sim e Q \mathcal{A}_\mu$

$$\mathcal{L}_{\pi N}^{(3)} = \sum_{i=1}^{23} d_i \, ar{\Psi} \, O_i^{(3)} \, \Psi \, , \quad \mathcal{L}_{\pi N}^{(4)} = \sum_{i=1}^{118} e_i \, ar{\Psi} \, O_i^{(4)} \, \Psi$$

for details, see Fettes et al., Ann. Phys. 283 (2000) 273 [hep-ph/0001308]

POWER-COUNTING in the PION-NUCLEON THEORY

- ullet nucleon mass $m_N \sim 1\,{
 m GeV} o$ only three-momenta can be soft
 - -> complicates the power counting (see fig.) Gasser, Sainio, Svarc, Nucl. Phys. B 307 (1988) 779
- solutions:
- (1) Heavy-baryon approach

Jenkins, Manohar; Bernard, Kaiser, M., . . .

 $1/m_N$ expansion a la Foldy-Wouthuysen of the Lagrangian m_N only appears in vertices, no longer in the propagator

(2) Infrared Regularization [or variants thereof like EOMS]

Becher, Leutwyler; Kubis, M.; Gegelia, Scherer, . . .

extraction of the soft parts from the loop integrals

easier to retain proper analytic structure

• most calculations at one loop, only two at two loop accuracy (g_A, m_N) Bernard, M.; Schindler, Scherer, Gegelia

Chiiral Perturbation Theory – Ulf-G. Meißner – Lectures, TSU, Tiflis, August 2019 · O < < \land \bigtriangledown > \triangleright •

FAILURE of the POWER-COUNTING

• naive extension of loop graphs from the pion to the pion-nucleon sector

• consider the nucleon as a static, heavy source \rightarrow four-velocity v_{μ} :

Jenkins, Manohar 1991

• velocity-projection: $\Psi(x) = \exp(-im_N v \cdot x) \left[H(x) + h(x)
ight]$

with $\psi H = H, \ \psi h = -h$ ["large/small" components]

• *H*- and *h*-components decouple, separated by large mas gap $2m_N$:

$$ightarrow \left[\mathcal{L}_{\pi N}^{(1)} = ar{H} \left(iv \cdot D + g_A S \cdot u
ight) H + \mathcal{O} \left(rac{1}{m_N}
ight)
ight.$$

HEAVY BARYON APPROACH II

• covariant spin-vector à la Pauli-Lubanski:

$$S_{\mu} = rac{i}{2} \gamma_5 \sigma_{\mu
u} v^{
u}, \ S \cdot v = 0, \ \{S_{\mu}, S_{
u}\} = rac{1}{2} (v_{\mu} v_{
u} - g_{\mu
u}), \ S^2 = rac{1-d}{4}$$

• the Dirac algebra simplifies considerably (only v_{μ} and S_{μ}):

$$ar{H}\gamma_\mu H=v_\muar{H}H,\;ar{H}\gamma_5 H=\mathcal{O}(rac{1}{m_N}),\;ar{H}\gamma_\mu\gamma_5 H=2ar{H}S_\mu H,\ldots$$

• propagator:

$$S(\omega)=rac{i}{\omega+i\eta}, ~~\omega=v\cdot\ell, ~~\eta
ightarrow 0^+$$

• mass scale moved from the propagator to $1/m_N$ suppressed vertices

 \rightarrow power counting

• can be systematically extended to arbitrary orders in $1/m_N$

Bernard, Kaiser, Kambor, M., 1992

INFRARED REGULARIZATION I

• relativistic calculation of the nucleon self-energy:

Gasser, Sainio, Švarč, 1988, Becher, Leutwyler 1999

$$H(p^2) = \frac{1}{i} \int \frac{d^d k}{(2\pi)^d} \frac{1}{M_\pi^2 - k^2} \frac{1}{m_N - (p-k)^2}$$

$$\to H(s_0) = c(d) \frac{M_{\pi}^{d-3} + m_N^{d-3}}{M_{\pi} + m_N} = I + R , \ s_0 = (M_{\pi} + m_N)^2$$

infrared singular piece *I*: generated by momenta of the order M_{π} contains the chiral physics like chiral logs etc.

infrared regular piece R: generated by momenta of the order m_N leads to the violation of the power counting polynomial in external momenta and quark masses \rightarrow can be absorbed in the LECs of the eff. Lagr.

INFRARED REGULARIZATION II

- this symmetry-preserving splitting can be *uniquely* defined for any one-loop graph
- method to separate the infrared singular and regular parts (end-point singularity at z = 1):

$$\begin{split} H &= \int \frac{d^d k}{(2\pi)^d} \frac{1}{AB} = \int_0^1 dz \int \frac{d^d k}{(2\pi)^d} \frac{1}{[(1-z)A+zB]^2} \\ &= \left\{ \int_0^\infty - \int_1^\infty \right\} dz \int \frac{d^d k}{(2\pi)^d} \frac{1}{[(1-z)A+zB]^2} = \mathbf{I} + R \\ &A = M_\pi^2 - k^2 - i\eta \;, \; \; B = m^2 - (p-k)^2 - i\eta \;, \; \; \eta \to 0^+ \end{split}$$

• preserves the low-energy analytic structure of any one-loop graph

• extension to higher loop graphs difficult but doable

Lehmann, Prezeau, 2002

HEAVY BARYON vs INFRARED REGULARIZATION

- Heavy baryon (HB) is algebraically much simpler than infrared regularization (IR)
- HB can be extended to higher loop orders (IR requires modifications)
- Strict HB approach sometimes at odds with the analytic structure, IR not, e.g. anomalous threshold in triangle diagram (isovector em form factors)

$$t_c = 4M_\pi^2 - M_\pi^4/m_N^2 \stackrel{HB}{=} 4M_\pi^2 + \mathcal{O}(1/m_N^2)$$

- IR resums kinetic energy insertions \rightarrow sometimes improves convergence e.g. neutron electric ff $G_E^n(Q^2)$ Kubis, M., 2001
- for a detailed discussion, see the review Bernard, Prog. Nucl. Part. Phys. 60 (2008) 82

 $< \land \nabla$

0

<

EOMS REGULARIZATION I

Fuchs, Gegelia, Japaridze, Scherer 2003

• Extended-on-mass-shell scheme (EOMS), consider the chiral limit M = 0:

$$H(p^2, m_N^2, 0; d) = rac{1}{i} \int rac{d^d k}{(2\pi)^d} rac{1}{[k^2 + iarepsilon]} rac{1}{[(p-k)^2 - m_N^2 + iarepsilon]}$$

 \rightarrow modify the integrand by subtracting suitable counterterms:

$$\begin{split} &\sum_{\ell=0}^{\infty} \frac{p^2 - m_N^2}{\ell!} \left[\left(\frac{1}{p^2} p_{\mu} \frac{\partial}{\partial p_{\mu}} \right)^{\ell} \frac{1}{[k^2 + i\varepsilon]} \frac{1}{[((p^2 - m_N^2) + k^2 - 2k \cdot p + i\varepsilon]} \right]_{p^2 = m_N^2} \\ &= \frac{1}{(k^2 + i\varepsilon)(k^2 - 2k \cdot p + i\varepsilon)} \bigg|_{p^2 = m_N^2} \\ &+ (p^2 - m_N^2) \left[\frac{1}{2m_N^2} \frac{1}{(k^2 - 2k \cdot p + i\varepsilon)^2} - \frac{1}{2m_N^2} \frac{1}{(k^2 + i\varepsilon)(k^2 - 2k \cdot p + i\varepsilon)} \\ &- \frac{1}{(k^2 + i\varepsilon)(k^2 - 2k \cdot p + i\varepsilon)^2} \right] + (p^2 - m_N^2)^2 \times \dots \end{split}$$

Chiiral Perturbation Theory – Ulf-G. Meißner – Lectures, TSU, Tiflis, August 2019 \cdot O < \land ∇ > \triangleright \bullet

EOMS REGULARIZATION II

Fuchs, Gegelia, Japaridze, Scherer 2003

• Formal definition of the EOMS scheme:

 \rightarrow subtract from the integrand of those terms of the series which violate the p. c.

 \hookrightarrow These terms are always analytic in the small parameter

 \hookrightarrow They do not not contain infrared singularities

 \hookrightarrow EOMS acts on the integrand, not on the integration boundaries

• Nucleon self-energy: only subtract the first term on the r.h.s.

e.g. the second term (last summand) is IR singular as k^3/k^4

• Can be formulated more elegantly using the generating functional and utilizing heat kernel regularization

Du, Guo, UGM, 2016

POWER COUNTING in the PION-NUCLEON SYSTEM II 34

• consider the nucleon mass being eliminated, e.g. in the heavy baryon scheme $S(q) \sim 1/(v \cdot q)$ and vertices with $d \geq 1$

ullet Goldstone bosons as before, $d\geq 2$ and $D(q)\sim 1/(q^2-M^2)$

• consider an *L*-loop diagram with I_B internal baryon lines, I_M internal meson lines, V_d^M mesonic vertices and V_d^{MB} meson-nucleon vertices of order d

$$Amp \propto \int (d^4q)^L \, rac{1}{(q^2)^{I_M}} rac{1}{(q)^{I_B}} \prod_d (q^d)^{(V_d^M + V_d^{MB})}$$

• let
$$Amp \sim q^{\nu} \rightarrow \nu = 4L - 2I_M + I_B + \sum_d d(V_d^M + V_d^{MB})$$

• topology: $L = I_M + I_B - \sum_d (V_d^m + V_d^{MB}) + 1$ and **one** baryon line through the diagram: $\sum_d V_d^{MB} = I_B + 1$

• eliminate
$$I_M$$
:

$$u = 1 + 2L + \sum\limits_d V^m_d(d-2) + \sum\limits_d (d-1) V^{MB}_d$$

$$ightarrow
u \geq 1$$

- STRUCTURE of the PION-NUCLEON INTERACTION
- Pion-nucleon scattering in chiral pertubation theory
- Leading order (LO) ($\nu = 1$):
- tree graphs w/ insertions with d=1
- Next-to-leading order (NLO) (ν = 2):
- tree graphs w/ insertions with d=1,2
- Next-to-next-to-leading order (NNLO) ($\nu = 3$):
- tree graphs w/ insertions with d=1,2,3and one-loop graphs w/insertion with d=1

- calculations have been performed up to $\nu = 4$ (NNNLO = complete one-loop):

heavy-baryon scheme Fettes, M., Nucl. Phys. A 676 (2000) 311, Krebs et al., Phys. Rev. C85 (2012) 054006 infrared-regularization scheme Becher, Leutwyler, JHEP 06 (2001) 017

covariant EOMS scheme Alarcon et al., Phys. Rev. C83 (2011) 055205; Siemens et al., Phys.Rev. C94 (2016) 014620

APPLICATION: DIMENSION-TWO LECS

- Low-energy constants (LECs) relate *many* processes
- e.g. the dimension-two LECs c_i in πN , NN, NN, NN, ...

= operator from
$$\mathcal{L}^{(2)}_{\pi N} \propto c_i ~(i=1,2,3,4)$$

- Here:
- determine the c_i from the purest process $\pi N o \pi N$
- later use in the calculation of nuclear forces

Chiiral Perturbation Theory – Ulf-G. Meißner – Lectures, TSU, Tiflis, August 2019 · O < < \land \bigtriangledown > \triangleright •
DETERMINATION OF THE LECs

- πN scattering data can be explored in different ways (CHPT or disp. rel.):
- πN scattering inside the Mandelstam triangle:
- \rightarrow best convergence, relies on dispersive analysis
- \rightarrow not sensitive to all LECs, esp. c_2 Büttiker, M., Nucl. Phys. A 668 (2000) 97 [hep-ph/9908247]
- πN scattering in the threshold region:
- \rightarrow large data basis, not all consistent
- \rightarrow use threshold parameters and global fits
- \rightarrow sizeable uncertainties remain in some LECs
- πN scattering from Roy-Steiner equations:

Fettes, M., Steininger, Nucl. Phys. A 640 (1998) 119 [hep-ph/9803266] Fettes, M., Nucl. Phys. A 676 (2000) 311 [hep-ph/0002182] Becher, Leutwyler, JHEP 0106 (2001) 017 [arXiv:hep-ph/0103263]

 \rightarrow hyperbolic partial-wave dispersion relations (unitarity & analyticity & crossing symmetry) \rightarrow most accurate representation of the πN amplitudes

Hoferichter, Ruiz de Elvira, Kubis, UGM, Phys. Rev. Lett. 115 (2015) 092301; Phys. Rev. Lett. 115 (2015) 192301; Phys. Rept. 625 (2016) 1

37

RESULTS for the LECs

- Chiral expansion expected to work best at the subthreshold point (polynomial, maximal distance to singularities)
- Express subthreshold parameters in terms of LECs \rightarrow invert system
- LECs c_i of the dimension two chiral effective πN Lagrangian:

LEC	RS	KGE 2012	UGM 2005
$c_1 [{ m GeV}^{-1}]$	-1.11 ± 0.03	$-1.13\ldots-0.75$	$-0.9\substack{+0.2 \\ -0.5}$
c_2 [GeV $^{-1}$]	3.13 ± 0.03	$3.49 \dots 3.69$	3.3 ± 0.2
$c_3[{ m GeV}^{-1}]$	-5.61 ± 0.06	$-5.51\ldots-4.77$	$-4.7^{+1.2}_{-1.0}$
$c_4[{GeV}^{-1}]$	4.26 ± 0.04	$3.34 \dots 3.71$	$-3.5\substack{+0.5 \\ -0.2}$

Krebs, Gasparyan, Epelbaum, Phys. Rev. C85 (2012) 054006 UGM, PoS LAT2005 (2006) 009

• also results for pertinent dimension three and four LECs

INTERMEDIATE SUMMARY

- QCD has a chiral symmetry in the light quark sector (neglecting quark masses)
- Chiral symmetry is *spontaneously* and *explicitely* broken appearance of almost massless Goldstone bosons (π, K, η) Goldstone boson interactions vanish as $E, p \to 0$
- Chiral perturbation theory is the EFT of QCD that explores chiral symmetry
- Meson sector: only even powers in small momenta, many successes
- Single nucleon sector: odd & even powers, quite a few successes
- Low-energy constants relate many processes (in particular the c_i)
- Isospin-breaking can be systematically incorporated \rightarrow spares
- NREFT can be set up for hadronic atoms \rightarrow extraction of scattering lengths

Testing chiral dynamics in hadron-hadron scattering

WHY HADRON-HADRON SCATTERING?

• Weinberg's 1966 paper "Pion scattering lengths"

Weinberg, Phys. Rev. Lett. 17 (1966) 616

- pion scattering on a target with mass m_t and isospin T_t :

$$a_T = -rac{L}{1 + M_\pi/m_t} \left[T(T+1) - T_t(T_t+1) - 2 \right]$$

- pion scattering on a pion ["the more complicated case"]:

amazing predictions - witness to the power of chiral symmetry

• what have we learned since then?

Chiiral Perturbation Theory – Ulf-G. Meißner – Lectures, TSU, Tiflis, August 2019 · O < < \land \bigtriangledown > \triangleright •

ELASTIC PION-PION SCATTERING

- Purest process in two-flavor chiral dynamics (really light quarks)
- scattering amplitude at threshold: two numbers (a_0, a_2)
- History of the prediction for a_0 :

LO (tree):	$a_0 = 0.16$	Weinberg 1966
NLO (1-loop):	$a_0=0.20\pm 0.01$	Gasser, Leutwyler 1983
NNLO (2-loop):	$a_0 = 0.217 \pm 0.009$	Bijnens et al. 1996

• even better: match 2-loop representation to Roy equation solution

Roy + 2-loop:
$$a_0 = 0.220 \pm 0.005$$
 Colangelo et al. 2000

 \Rightarrow this is an *amazing* prediction!

• same precision for a_2 , but corrections very small \ldots

Chiiral Perturbation Theory – Ulf-G. Meißner – Lectures, TSU, Tiflis, August 2019 • O < < \land \bigtriangledown > \triangleright •

HOW ABOUT EXPERIMENT?

ullet Kaon decays (K_{e4} and $K^0
ightarrow 3\pi^0$): most precise

• Lifetime of pionium: experimentally more difficult

Kaon decays:

 $a_0^0 = 0.2210 \pm 0.0047_{
m stat} \pm 0.0040_{
m sys}$ $a_0^2 = -0.0429 \pm 0.0044_{
m stat} \pm 0.0028_{
m sys}$

J. R. Batley et al. [NA48/2 Coll.] EPJ C 79 (2010) 635

Pionium lifetime:

 $|a_0^0 - a_0^2| = 0.264^{+0.033}_{-0.020}$

B. Adeva et al. [DIRAC Coll.] PL B 619 (2005) 50

• and how about the lattice?

 \Rightarrow direct and indirect determinations of the scattering lengths

Chiiral Perturbation Theory – Ulf-G. Meißner – Lectures, TSU, Tiflis, August 2019 · O < < \land \bigtriangledown >

THE GRAND PICTURE

Fig. courtesy Heiri Leutwyler 2012

• one of the finest tests of the Standard Model

(what about lattice a_0 calcs?)

Chiiral Perturbation Theory – Ulf-G. Meißner – Lectures, TSU, Tiflis, August 2019 · O < < / abla

- ELASTIC PION-PION SCATTERING LATTICE a_0
- ullet Only a few lattice determinations of a_0
 - $\hookrightarrow \text{disconnected diagrams difficult}$
 - \hookrightarrow quantum numbers of the vacuum
- only a few results:

Author(s)	a_0	Fermions	Pion mass range
Fu	0.214(4)(7)	asqtad staggered	240 - 430 MeV
ETMC	0.198(9)(6)	twisted mass	250 - 320 MeV
GWU	0.213(1)	LW + nHYP	224 - 315 MeV

Fu, PRD87 (2013) 074501; Liu et al. [ETMC], PRD96 (2017) 054516; Mai et la. (GWU), arXiv:1909.05749

→ use EFT of PQQCD to investigate these contributions
 Acharya, Guo, UGM, Seng, Nucl.Phys. B922 (2017) 480, JHEP 1904 (2019) 165
 → more LQCD calculations needed!

Example 2

Chiiral Perturbation Theory – Ulf-G. Meißner – Lectures, TSU, Tiflis, August 2019 · O < < \land \bigtriangledown > \triangleright •

STRANGE QUARK MYSTERIES

ullet Is the strange quark really light? $m_s \sim \Lambda_{
m QCD}$

 \rightarrow expansion parameter: $\xi_s = \frac{M_K^2}{(4\pi F_\pi)^2} \simeq 0.18 \quad \left[\text{SU(2): } \xi = \frac{M_\pi^2}{(4\pi F_\pi)^2} \simeq 0.014\right]$

• many predictions of SU(3) CHPT work quite well, but:

 \hookrightarrow indications of bad convergence in some lattice calculations:

$$\star$$
 masses and decay constantsAllton et al. 2008 $\star K_{\ell 3}$ -decaysBoyle et al. 2008 \hookrightarrow suppression of the three-flavor condensate? \star sum rule: $\Sigma(3) = \Sigma(2)[1 - 0.54 \pm 0.27]$ Moussallam 2000 \star lattice: $\Sigma(3) = \Sigma(2)[1 - 0.23 \pm 0.39]$ Fukuya et al. 2011

ELASTIC PION-KAON SCATTERING

- Purest process in three-flavor chiral dynamics
- scattering amplitude at threshold: two numbers $(a_0^{1/2}, a_0^{3/2})$
- History of the chiral predictions:

	CA [1]	1-loop [2]	2-loop [3]
$a_0^{1/2}$	0.14	0.18 ± 0.03	0.220 [0.17 0.225]
$a_0^{3/2}$	-0.07	-0.05 ± 0.02	$-0.047[-0.075\ldots -0.04]$

[1] Weinberg 1966, Griffith 1969 [2] Bernard, Kaiser, UGM 1990 [3] Bijnens, Dhonte, Talavera 2004

• match 1-loop representation to Roy-Steiner equation solution

$$a_0^{1/2} = 0.224 \pm 0.022 \;,\;\; a_0^{3/2} = -0.0448 \pm 0.0077$$
 Büttiker et al. 2003

• constrained forward dispersion relations:

$$a_0^{1/2} = 0.22 \pm 0.01 \;, \;\; a_0^{3/2} = -0.054^{+0.010}_{-0.014}$$
 Pelaez, Rodas 2016

THE GRAND PICTURE

Fig. courtesy Daniel Mohler

- tension between lattice results and/or Roy-Steiner
- need improved lattice results (more direct calculations)

 \Rightarrow work required

• see also Pion-Kaon Interactions Workshop at JLab website https://www.jlab.org/conferences/pki2018/program.html [arXiv:1804.06528]

Chiiral Perturbation Theory – Ulf-G. Meißner – Lectures, TSU, Tiflis, August 2019 · O < < \land \bigtriangledown > \triangleright •

Example 3

Chiiral Perturbation Theory – Ulf-G. Meißner – Lectures, TSU, Tiflis, August 2019 · O < < \land \bigtriangledown > \triangleright •

PION-NUCLEON SCATTERING

- simplest scattering process involving nucleons
- intriguing LO prediction for isoscalar/isovector scattering length:

$$a_{\mathrm{CA}}^{+}=0, \;\; a_{\mathrm{CA}}^{-}=rac{1}{1+M_{\pi}/m_{p}}rac{M_{\pi}^{2}}{8\pi F_{\pi}^{2}}=79.5\cdot 10^{-3}/M_{\pi},$$

- chiral corrections:
 - chiral expansion for a^- converges fast

Bernard, Kaiser, UGM 1995

- large cancellations in a^+ , even sign not known from scattering data

	$\mathcal{O}(q)$	${\cal O}(q^2)$	${\cal O}(q^3)$	${\cal O}(q^4)$
fit to KA85	0.0	0.46	-1.00	-0.96
fit to EM98	0.0	0.24	0.49	0.45
fit to SP98	0.0	1.01	0.14	0.27

52

Fettes, UGM 2000

A WONDERFUL ALTERNATIVE: HADRONIC ATOMS

- Hadronic atoms: bound by the static Coulomb force (QED)
- Many species: $\pi^+\pi^-$, $\pi^\pm K^\mp$, π^-p , π^-d , K^-p , K^-d , \ldots
- Observable effects of QCD: strong interactions as **small** perturbations

- \star deacy width Γ
- ⇒ access to scattering at zero energy!
 = S-wave scattering lengths
- can be analyzed in suitable NREFTs
 - Pionic hydrogen
 - **Pionic deuterium**

Gasser, Rusetsky, ... 2002 Baru, Hoferichter, Kubis ... 2011

PION–NUCLEON SCATTERING LENGTHS

- Superb experiments performed at PSI
- Hadronic atom theory (Bern, Bonn, Jülich)

Gotta et al.

Gasser et al., Baru et al.

Baru, Hoferichter, Hanhart, Kubis, Nogga, Phillips, Nucl. Phys. A 872 (2011) 69

 \Rightarrow very precise value for a^- & first time definite sign for a^+

Chiiral Perturbation Theory – Ulf-G. Meißner – Lectures, TSU, Tiflis, August 2019 · O < \wedge ∇

ROLE of the PION-NUCLEON σ -TERM

• Scalar couplings of the nucleon:

- \hookrightarrow Dark Matter detection
- $\hookrightarrow \mu o e$ conversion in nuclei
- Condensates in nuclear matter

$$rac{\langlear{q}q
angle(
ho)}{\langle 0|ar{q}q|0
angle} = 1 - rac{
ho\,oldsymbol{\sigma_{\pi N}}}{F_\pi^2 M_\pi^2} + \dots$$

- CP-violating πN couplings
 - \hookrightarrow hadronic EDMs (nucleon, nuclei)

Crivellin, Hoferichter, Procura

RESULTS for the SIGMA-TERM

• Basic formula:

$$\sigma_{\pi N} = F_{\pi}^2 (d_{00}^+ + 2 M_{\pi}^2 d_{01}^+) + \Delta_D - \Delta_\sigma - \Delta_R$$

- Subthreshold parameters output of the RS equations:
 - $$\begin{split} d^+_{00} &= -1.36(3) M_\pi^{-1} & [\text{KH:} -1.46(10) M_\pi^{-1}] \\ d^+_{01} &= 1.16(3) M_\pi^{-3} & [\text{KH:} 1.14(2) M_\pi^{-3}] \end{split}$$
- $ullet \Delta_D \Delta_\sigma = (1.8 \pm 0.2)\,{
 m MeV}$
- $ullet \Delta_{oldsymbol{R}} \lesssim 2\, extsf{MeV}$

Hoferichter, Ditsche, Kubis, UGM (2012)

Bernard, Kaiser, UGM (1996)

- ullet Isospin breaking in the CD theorem shifts $\sigma_{\pi N}$ by $+3.0~{
 m MeV}$
- \Rightarrow Final result:

 $\sigma_{\pi N} = (59.1 \pm 1.9_{
m RS} \pm 3.0_{
m LET}) \ {
m MeV} = (59.1 \pm 3.5) \ {
m MeV}$

• consistent with scattering data analysis: $\sigma_{\pi N} = 58 \pm 5$ MeV Ruiz de Elvira, Hoferichter, Kubis, UGM (2018)

• recover $\sigma_{\pi N} = 45$ MeV if KH80 scattering lengths are used

RESULTS for the SIGMA-TERM

• Recent results from various LQCD collaborations:

collaboration	$\sigma_{\pi N}$ [MeV]	reference	tension to RS
BMW	38(3)(3)	Dürr et al. (2015)	3.8σ
χ QCD	45.9(7.4)(2.8)	Yang et al. (2015)	1.5σ
ETMC	41.6(3.8)	Alexandrou et al. (2019)	5.0σ
CRC 55	35 (6)	Bali et al. (2016)	4.0σ

• We seem to have a problem - do we? [we = RS folks]

• Robust prediction of the RS analysis:

$$egin{aligned} &\sigma_{\pi N} = (59.1 \pm 3.1) \, \mathrm{MeV} + \sum_{I_s} c_{I_s} \left(a^{I_s} - ar{a}^{I_s}
ight) & (I_s = rac{1}{2}, rac{3}{2}) \ &c_{1/2} = 0.242 \, \mathrm{MeV} imes 10^3 M_\pi, & c_{3/2} = 0.874 \, \mathrm{MeV} imes 10^3 M_\pi \ &ar{a}^{1/2} = (169.8 \pm 2.0) imes 10^{-3} M_\pi^{-1}, & ar{a}^{3/2} = (-86.3 \pm 1.8) imes 10^{-3} M_\pi^{-1} \end{aligned}$$

 \rightarrow expansion around the reference values from πH and πD

Chiiral Perturbation Theory – Ulf-G. Meißner – Lectures, TSU, Tiflis, August 2019 • O < < \land \bigtriangledown > \triangleright •

RESULTS for the SIGMA-TERM

• Apply this linear expansion to the lattice data:

 \Rightarrow Lattice results clearly at odds with empirical information on the scattering lengths! \Rightarrow scattering lengths to $[5 \dots 10]\% \rightarrow \delta \sigma_{\pi N} = [5.0 \dots 8.5]$ MeV

Chiiral Perturbation Theory – Ulf-G. Meißner – Lectures, TSU, Tiflis, August 2019 · O < < \land \bigtriangledown > \triangleright •

ANTIKAON-NUCLEON SCATTERING

- $K^-p \rightarrow K^-p$: fundamental scattering process with strange quarks
- coupled channel dynamics
- dynamic generation of the $\Lambda(1405)$ Dalitz, Tuan 1960
- major playground of **unitarized CHPT**

Kaiser, Siegel, Weise, Oset, Ramos, Oller, UGM, Lutz, ...

- two-pole scenario of the $\Lambda(1405)$ emerges
- loopholes: convergence a posteriori, crossing symmetry, on-shell approximation, unphysical poles, ...

Oller. UGM 2001

A PUZZLE RESOLVED

- DEAR data inconsistent with scattering data
 - UGM, Raha, Rusetsky 2004
- \Rightarrow vaste number of papers ...

• SIDDHARTA to the rescue

Bazzi et al. 2011

 \Rightarrow more precise, consistent with KpX

$$\epsilon_{1s} = -283 \pm 36(\mathrm{stat}) \pm 6(\mathrm{syst}) \,\mathrm{eV}$$

 $\Gamma_{1s} = 541 \pm 89(\mathrm{stat}) \pm 22(\mathrm{syst}) \,\mathrm{eV}$

CONSISTENT ANALYSIS

- kaonic hydrogen + scattering data can now be analyzed consistently
- use the chiral Lagrangian at NLO, three groups (different schemes)

Ikeda, Hyodo, Weise 2011; UGM, Mai 2012, Guo, Oller 2012

- 14 LECs and 3 subtraction constants to fit
- \Rightarrow simultaneous description of the SIDDHARTA and the scattering data

KAON–NUCLEON SCATTERING LENGTHS

$$a_{0} = -1.81^{+0.30}_{-0.28} + i \ 0.92^{+0.29}_{-0.23} \text{ fm}$$

$$a_{1} = +0.48^{+0.12}_{-0.11} + i \ 0.87^{+0.26}_{-0.20} \text{ fm}$$

$$a_{K^{-}p} = -0.68^{+0.18}_{-0.17} + i \ 0.90^{+0.13}_{-0.13} \text{ fm}$$
SIDDHARTA only:
$$a_{K^{-}p} = -0.65^{+0.15}_{-0.15} + i \ 0.81^{+0.18}_{-0.18} \text{ fm}$$

• clear improvement compared to scattering data only

 \Rightarrow fundamental parameters to within about 15% accuracy

COMPARISON of VAROIUS APPROACHES

• systematic study of the two-pole scenario of the $\Lambda(1405)$ using various approaches Cieply, Mai, UGM, Smejkal, Nucl. Phys. A954 (2016) 17

- \hookrightarrow higher/lower pole well/not well determined
- \hookrightarrow some solutions also include precise data on $\gamma p o \Sigma K \pi$ from JLab
- \hookrightarrow need more data on the $\pi\Sigma$ mass distribution from various reactions

Chiiral Perturbation Theory – Ulf-G. Meißner – Lectures, TSU, Tiflis, August 2019 · O < < < < > > > > <

INTERMEDIATE SUMMARY

- Hadron-hadron scattering: important role of chiral symmetry (CHPT)
 - \rightarrow combine with dispersion relations, unitarization, lattice
- Pion-pion scattering
 - \rightarrow a fine test of the Standard Model
- Pion-kaon scattering
 - \rightarrow tension between lattice and Roy-Steiner solution
- Pion-nucleon scattering
 - \rightarrow superbe accuracy from EFTs for pionic hydrogen/deuterium
 - $ightarrow \sigma_{\pi N}$: tension between lattice and Roy-Steiner
 - \rightarrow lattice determination of scattering lengths required!
- Antikaon-nucleon scattering
 - \rightarrow consistent determination of the scattering lengths possible

SPARES

Chiiral Perturbation Theory – Ulf-G. Meißner – Lectures, TSU, Tiflis, August 2019 · O << \land \bigtriangledown \checkmark \triangleright \triangleright •

Isospin symmetry and isospin violation

ISOSPIN SYMMETRY

• For $m_u = m_d$, QCD is invariant under *SU(2) isospin* transformations:

$$q
ightarrow q' = U q \;, \;\; q = \left(egin{array}{c} u \ d \end{array}
ight) , \;\;\; U = \left(egin{array}{c} a^* & b^* \ -b & a \end{array}
ight) , \;\;\; |a|^2 + |b|^2 = 1$$

- NB: Charge symmetry = 180° rotation in iso-space

• Rewriting of the QCD quark mass term:

$$\mathcal{H}_{\text{QCD}}^{\text{SB}} = m_u \, \bar{u}u + m_d \, \bar{d}d = \underbrace{\frac{1}{2}(m_u + m_d)(\bar{u}u + \bar{d}d)}_{I=0} + \underbrace{\frac{1}{2}(m_u - m_d)(\bar{u}u - \bar{d}d)}_{I=1}$$

- Competing effect: QED \rightarrow can be treated in CHPT
- Standard situation: small IV on top of large iso-symmetric background, requires precise machinery to perform accurate calculations

Gasser, Urech, Steininger, Fettes, M., Knecht, Kubis, ...

Strong isospin violation (IV)

ISOSPIN VIOLATION - PIONS & KAONS

Weinberg, Gasser, Leutwyler, Urech, Neufeld, Knecht, M., Müller, Steininger, ...

• SU(2) effective Lagrangian w/ virtual photons to leading order:

Q = quark charge matrix

$$\mathcal{L}^{(2)} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{\lambda}{2} (\partial_{\mu} A^{\mu})^2 + \frac{F_{\pi}^2}{4} \langle D_{\mu} U D^{\mu} U^{\dagger} + \chi U^{\dagger} + \chi^{\dagger} U \rangle + C \langle Q U Q U^{\dagger} \rangle$$

- \star pion mass difference of em origin, $M_{\pi^+}^2 M_{\pi^0}^2 = 2 C e^2 / F_\pi^2$
- * no strong isospin breaking at LO, absence of D-symbol
- * strong and em corrections at NLO worked out

M., Müller, Steininger, Phys. Lett. B 406 (1997) 154

• Three-flavor chiral perturbation theory:

 \star for $m_u=m_d\Rightarrow M_{K^+}^2-M_{K^0}^2=M_{\pi^+}^2-M_{\pi^0}^2=rac{2Ce^2}{F_\pi^2}$ – Dashen's theorem

 \star for $m_u \neq m_d \Rightarrow$ leading order strong kaon mass difference:

$$\left| (M_{K^0}^2 - M_{K^+}^2)^{\mathrm{strong}} = (m_u - m_d) B_0 + \mathcal{O}(m_q^2) \right|_{B_0 = |\langle 0|\bar{q}q|0
angle| / F_\pi^2}$$

* strong and em corrections at NLO incl. leptons worked out

Urech, Nucl. Phys. B 433 (1995) 234 Knecht, Neufeld, Rupertsberger, Talavera, Eur. Phys. J. C 12 (2000) 469

Chiiral Perturbation Theory – Ulf-G. Meißner – Lectures, TSU, Tiflis, August 2019 · O < < \land \bigtriangledown > \triangleright •

ISOSPIN VIOLATION - NUCLEONS

• Effective Lagrangian for isospin violation (to leading order):

$$\mathcal{L}_{\pi N}^{(2,\mathrm{IV})} = ar{N} \Big\{ egin{aligned} c_5 \ \underbrace{(\chi_+ - rac{1}{2} \langle \chi_+
angle)}_{\sim m_u - m_d} + eta_1 \ \underbrace{\langle \hat{Q}_+^2 - Q_-^2
angle}_{\sim q_u - q_d} + eta_2 \ \underbrace{\hat{Q}_+ \langle Q_+
angle}_{\sim q_u - q_d} \Big\} N + \mathcal{O}(q^3) \ \end{aligned}$$

- Three LECs parameterize the leading strong (c_5) & em (f_1, f_2) IV effects
- These LECs link various observables/processes:

 $m_n - m_p = 4 c_5 B_0(m_u - m_d) + 2 e^2 f_2 F_\pi^2 + \dots$ fairly well known Gasser, Leutwyler, ...

$$a(\pi^0 p) - a(\pi^0 n) = \text{const} (-4 c_5 B_0 (m_u - m_d)) + \dots$$

extremely hard to measure

Weinberg, M., Steininger

- IV in π N scattering analyzed in CHPT \rightarrow intriguing results Fettes & M., Nucl. Phys. A 693 (2001) 693; Hoferichter, Kubis, M., Phys. Lett. B 678 (2009) 65
- also access to IV in $np \to d\pi^0$ and $dd \to \alpha \pi^0$ (spin-isospin filter)
 - \rightarrow need to develop a high-precision EFT for few-nucleon systems

BOUND STATE EFT: HADRONIC ATOMS

- Hadronic atoms are bound by the static Coulomb force (QED)
- Many species: $\pi^+\pi^-$, $\pi^\pm K^\mp$, $\pi^- p$, $\left| \pi^- d, K^- p, K^- d, \right| \dots$
- \bullet Bohr radii \gg typical scale of strong interactions
- Small average momenta \Rightarrow non-relativistic approach
- Observable effects of QCD
 - \star energy shift ΔE from the Coulomb value
 - \star decay width Γ

 \Rightarrow access to scattering at zero energy! = S-wave scattering lengths

- These scattering lengths are very sensitive to the chiral & isospin symmetry breaking in QCD Weinberg, Gasser, Leutwyler, ...
- can be analyzed systematically & consistently in the framework of low-energy Effective Field Theory (including virtual photons)

EFFECTIVE FIELD THEORY for HADRONIC ATOMS

• Three step procedure utilizing *nested* effective field theories

• Step 1:

Construct non-relativistic effective Lagrangian (complex couplings) & solve Coulomb problem exactly, corrections in perturbation theory

• Step 2: *matching*

relate complex couplings of $\mathcal{L}_{\rm eff}$ to QCD parameters, e.g. scattering lengths & express complex energy shift in terms of QCD parameters

• Step 3:

extract scattering length(s) from the measured complex energy shift

 \Rightarrow most precise way of determining hadron-hadron scattering lengths

 \rightarrow study kaonic hydrogen as one example
FEATURES OF KAONIC HYDROGEN

• Strong $(K^- p \to \pi^0 \Lambda, \pi^{\pm} \Sigma^{\mp}, ...)$ and weaker electromagnetic $(K^- p \to \gamma \Lambda, \gamma \Sigma^0, ...)$ decays

 \rightarrow complicated (interesting) analytical structure

- Average momentum $\langle p^2 \rangle = \alpha \, \mu \simeq 2 \, {\sf MeV}$ ightarrow highly non-relativistic
- Bohr radius $r_B = 1/(\alpha \, \mu) \simeq 100$ fm
- Binding energy $E_{1s}=rac{1}{2}\,lpha^2\,\mu+\ldots\simeq 8\,{
 m keV}$
- Width $\Gamma_{1s} \simeq 250\,{
 m eV} \ll E_{1s}$
- $\mathcal{M} = m_n + M_{K^0} m_p + M_{K^-} > 0 \Rightarrow$ unitary cusp
- Isospin breaking, small parameter $\delta \sim lpha \sim (m_d m_u)$

$$\Delta E = \underbrace{\delta^3}_{\text{LO}} + \underbrace{\delta^4}_{\text{NLO}} + \dots$$

 $\cdot \circ \triangleleft < \land \lor > \triangleright$

Chiiral Perturbation Theory – Ulf-G. Meißner – Lectures, TSU, Tiflis, August 2019

NON-RELATIVISTIC EFFECTIVE LAGRANGIAN

 \rightarrow calculate electromagnetic levels and the strong shift (note: \tilde{d}_i complex!)

Chiiral Perturbation Theory – Ulf-G. Meißner – Lectures, TSU, Tiflis, August 2019 \cdot O \triangleleft C \wedge ∇ > D \bullet

ENERGY SHIFT in KAONIC HYDROGEN

- a) recoil corrections
- b) transverse photon exchange
- c) finite size corrections
- d) vacuum polarisation
- e) leading K⁻p interaction
 f) K⁻p interaction w/ Coulomb ladders
 g) leading K⁰n intermediate state
- h) iterated $\bar{K}^0 n$ intermediate state i) Coulomb ladders in the $K^- p$ interaction

MATCHING CONDITIONS

Electromagnetic form factors

$$c_p^F = 1 + \mu_p, c_p^D = 1 + 2\mu_p + \frac{4}{3} m_p^2 \langle r_p^2 \rangle, c_p^S = 1 + 2\mu_p$$

$$c_K^R = M_{K^+}^2 \langle r_K^2 \rangle$$

Kaon–nucleon scattering amplitude

matching allows to express the complex strong energy shift in terms of the threshold amplitude (kaon-nucleon scattering lengths a_0 and a_1)

$$\left|\Delta E_n^s - \frac{i}{2}\Gamma_n = -\frac{\alpha^3 \mu_c^3}{2\pi M_{K^+} n^3} \mathcal{T}_{KN} \left\{ 1 - \frac{\alpha \mu_c^2}{4\pi M_{K^+}} \mathcal{T}_{KN} (s_n(\alpha) + 2\pi i) + \delta_n^{\text{vac}} \right\}\right.$$

with
$$\mathcal{T}_{KN} = 4\pi \left(1 + \frac{M_{K^+}}{m_p}\right) \frac{1}{2} (a_0 + a_1) + O(\sqrt{\delta})$$

 $s_n(\alpha) = 2(\psi(n) - \psi(1) - \frac{1}{n} + \ln \alpha - \ln n)$
 \Rightarrow correct but not sufficiently accurate

conect, but not summerily accurate

 $\cdot \circ \triangleleft < \land \lor >$ Chiiral Perturbation Theory - Ulf-G. Meißner - Lectures, TSU, Tiflis, August 2019

UNITARY CUSP

- Corrections at $\mathcal{O}(\sqrt{\delta})$ can be expressed entirely in terms of a_0 and a_1
- \rightarrow resum the fundamental bubble to account for the unitary cusp

$$\mathcal{T}_{KN}^{(0)} = 4\pi \left(1 + \frac{M_{K^+}}{m_p}\right) \frac{\frac{1}{2} \left(a_0 + a_1\right) + q_0 a_0 a_1}{1 + \frac{q_0}{2} \left(a_0 + a_1\right)}, \quad q_0 = \sqrt{2\mu_0 \Delta \mathcal{M}}$$

* agrees with R.H. Dalitz and S.F.Tuan, Ann. Phys. 3 (1960) 307 * all corrections at $\mathcal{O}(\sqrt{\delta})$ included

$$\mathcal{T}_{KN} = \mathcal{T}_{KN}^{(0)} + \frac{i\alpha\mu_c^2}{2M_{K^+}} \left(\mathcal{T}_{KN}^{(0)}\right)^2 + \underbrace{\delta\mathcal{T}_{KN}}_{\mathcal{O}(\delta)} + o(\delta)$$

 \Rightarrow These further $\mathcal{O}(\delta)$ corrections are expected to be small

FINAL FORMULA to ANALYZE the DATA

$$\Delta E_n^s - rac{i}{2} \Gamma_n = -rac{lpha^3 \mu_c^3}{2\pi M_{K^+} n^3} \left(\mathcal{T}_{KN}^{(0)} + \delta \mathcal{T}_{KN}
ight) iggl\{ 1 - rac{lpha \mu_c^2 s_n(lpha)}{4\pi M_{K^+}} \, \mathcal{T}_{KN}^{(0)} + \delta_n^{
m vac} iggr\}$$

- $\mathcal{O}(\sqrt{\delta})$ and $\mathcal{O}(\delta \ln \delta)$ terms:
 - \star Parameter-free, expressed in terms of a_0 and a_1
 - * Numerically by far dominant
- Estimate of δT_{KN} in CHPT

 $\star \delta T_{KN} / T_{KN} = (-0.5 \pm 0.4) \cdot 10^{-2}$ at $O(p^2)$

 \star should be improved (loops, unitarization, influence of $\Lambda(1405),$ etc.)

• vacuum polarization calculation: $\delta_n^{\rm vac} \simeq 1\%$

D. Eiras and J. Soto, Phys. Lett. B 491 (2000) 101 [hep-ph/0005066]