LATTICE METHODS FOR STRONGLY INTERACTING SYSTEMS

Lecture 3: Fermions, fermions, fermions!

RDP 7th Annual Ph.D. School & Workshop Tbilisi, Georgia

Thomas Luu

UNIVERSITÄT BONN

Gaussian integration

Assume we have matrix A that is real and symmetric and invertible:

$$\int_{-\infty}^{\infty} \left[\prod_{i} \frac{d\phi_{i}}{\sqrt{2\pi}} \right] e^{-\frac{1}{2} \sum_{k,l} \phi_{k} A_{k,l} \phi}$$
$$= \int_{-\infty}^{\infty} \frac{d\vec{\phi}}{(2\pi)^{n/2}} e^{-\frac{1}{2} \vec{\phi} \cdot A \cdot \vec{\phi}} .$$

One can show that this is equal to

$$\frac{1}{\sqrt{\det A}}$$

For a complex (charged) scalar field and A Hermitian, have

$$\int_{-\infty}^{\infty} \left[\prod_{i} \frac{d\phi_{i}^{*} d\phi_{i}}{2\pi i} \right] e^{-\frac{1}{2} \sum_{k,l} \phi_{k}^{*} A_{k,l} \phi_{l}}$$
$$= \frac{1}{\det A} .$$

Now consider integration with Grassmann numbers on matrix M, where M has no constraints,

$$\int \left[\prod_{i} d\xi_{i}^{*} d\xi_{i}\right] e^{-\sum_{k,l} \xi_{k}^{*} M_{k,l} \xi_{l}}$$

 $= \det M$.

Path-Integral formalism w/ fermions

We are interested in calculating

$$\langle O
angle = rac{1}{\mathcal{Z}} {
m Tr} \left(O \ e^{-eta H}
ight) \; ,$$

where $\mathcal{Z} = \text{Tr} e^{-\beta H}$.

We can express \mathcal{Z} with fermionic coherent state $|\psi_0\rangle$:

$$\mathcal{Z} = \int \left[\prod_j \ d\psi_{j,0}^* d\psi_{j,0}
ight] e^{-\sum_k \psi_{k,0}^* \psi_{k,0}} \langle -\psi_0 | e^{-eta H} | \psi_0
angle \, ,$$

PI continued. . .

We now split the exponential up into N_t timesteps of width $\delta = \beta / N_t$,

$$e^{-\beta H} \equiv e^{-\delta H} e^{-\delta H} \cdots e^{-\delta H}$$

We insert the complete set of fermionic coherent states,

$$\mathbf{1} = \int \left[\prod_{\alpha} \boldsymbol{d} \psi_{\alpha}^{\dagger} \boldsymbol{d} \psi_{\alpha}\right] \boldsymbol{e}^{-\sum_{\beta} \psi_{\beta}^{\dagger} \psi_{\beta}} |\psi\rangle \langle \psi| ,$$

between each factor of the exponential, giving for the partition function \mathcal{Z} ,

$$\mathcal{Z} = \lim_{N_t \to \infty} \int \prod_{t=0}^{N_t-1} \left\{ \left[\prod_{\alpha} d\psi_{\alpha,t}^{\dagger} d\psi_{\alpha,t} \right] \langle \psi_{t+1} | e^{-\delta H} | \psi_t \rangle e^{-\sum_{\beta} \psi_{\beta,t}^{\dagger} \psi_{\beta,t}} \right\}$$

Note: To account for the (red) minus sign in the partition function on the previous page, must have $\psi_{N_t} = -\psi_0 \implies$ anti-periodic boundary conditions in time!

The form of *H*

To go any further, must assume some form for *H*:

$$= H_0 + V_2 = \sum_{i,j} k_{ij} a_i^{\dagger} a_j + \frac{1}{2} \sum_{i,j} v_{ij} a_i^{\dagger} a_i a_j^{\dagger} a_j$$
$$= H_0 + V_2 = \sum_{i,j} k_{ij} a_i^{\dagger} a_j + \frac{1}{2} \sum_{i,j} v_{ij} n_i n_j ,$$

where $n_i \equiv a_i^{\dagger} a_i$ (number density operator). Here *k* is a "connectivity" matrix (think kinetic operator), and *v* represents 2-body matrix elements. Both are represented by c-numbers. Now consider the matrix element

$$\langle \psi_{t+1} | \boldsymbol{e}^{-\delta(H_0+V_2)} | \psi_t \rangle$$

What's the problem?

 H_0 will be quadratic in Grassmann fields – Great! V_2 will be *quartic* in Grassman fields – Oh oh!

The Hubbard-Stratonovich Transformation

At its foundation, the HS transformation relies on the following relations,

$$egin{array}{rcl} e^{-rac{1}{2}\,{\it Un}^2} &=& rac{1}{\sqrt{2\pi U}}\int_{-\infty}^\infty \,\, d\phi \,\, e^{-rac{1}{2U}\phi^2\pm i\phi n} \ e^{rac{1}{2}\,{\it Un}^2} &=& rac{1}{\sqrt{2\pi U}}\int_{-\infty}^\infty \,\, d\phi \,\, e^{-rac{1}{2U}\phi^2\pm \phi n} \,\,. \end{array}$$

Assumed $U \ge 0$ and the \pm signs are equivalent. The real variable ϕ (that is integrated over) is an *auxiliary* field that allows us to 'linearize-in-*n*' the arguments of the exponential.

Applying HS trans. to our problem

Define $\tilde{\kappa} \equiv \delta \kappa$ and $\tilde{\nu} \equiv \delta \nu$, and we assume that eigenvalues of $\tilde{\nu}$ are real and > 0 (why??). If this holds, then

$$\begin{split} \langle \psi_{t+1} | \boldsymbol{e}^{-\sum_{ij} \tilde{\kappa}_{ij} a_{j}^{\dagger} a_{j} - \frac{1}{2} \sum_{ij} \tilde{\nu}_{ij} n_{i} n_{j}} | \psi_{t} \rangle = \\ \int_{-\infty}^{\infty} \left[(\det \tilde{\boldsymbol{\nu}})^{-\frac{1}{2}} \prod_{k} \frac{d\phi_{k}}{\sqrt{2\pi}} \right] \, \boldsymbol{e}^{-\frac{1}{2} \sum_{ij} \phi_{i} [\tilde{\boldsymbol{\nu}}^{-1}]_{ij} \phi_{j}} \langle \psi_{t+1} | \boldsymbol{e}^{-\sum_{ji} \tilde{\kappa}_{jk} a_{j}^{\dagger} a_{k} \pm i \sum_{j} \phi_{j} n_{j}} | \psi_{t} \rangle \, . \end{split}$$

Now we can evaluate the coherent state matrix elements:

$$\begin{aligned} \langle \psi_{t+1} | e^{-\sum_{ji} \tilde{\kappa}_{jk} a_j^{\dagger} a_k \pm i \sum_j \phi_j n_j} | \psi_t \rangle &= \\ e^{-\sum_{ji} \tilde{\kappa}_{jk} \psi_{j,t+1}^{\dagger} \psi_{k,t} \pm i \sum_j \phi_j \psi_{j,t+1}^{\dagger} \psi_{j,t}} e^{\sum_i \psi_{i,t+1}^{\dagger} \psi_{i,t}} + \mathcal{O}(\delta^2) \\ &= e^{-\sum_{ji} \tilde{\kappa}_{jk} \psi_{j,t+1}^{\dagger} \psi_{k,t} + \sum_j (1 \pm i\phi_j) \psi_{j,t+1}^{\dagger} \psi_{j,t}} + \mathcal{O}(\delta^2) \end{aligned}$$

The Partition function with auxiliary fields

Combining everything gives

$$\begin{split} \mathcal{Z} &= \lim_{N_t \to \infty} \int_{-\infty}^{\infty} \mathcal{D}\left[\phi\right] e^{-\frac{1}{2} \sum_{ij,t} \phi_{i,t} [\tilde{v}^{-1}]_{ij} \phi_{j,t}} \\ &\int \mathcal{D}\left[\psi^{\dagger}, \psi\right] \exp\left\{-\sum_{j,t} \left(\psi^{\dagger}_{j,t} \psi_{j,t} - (1 \pm i\phi_{j,t}) \psi^{\dagger}_{j,t+1} \psi_{j,t}\right) - \sum_{ij,t} \tilde{\kappa}_{ij} \psi^{\dagger}_{i,t+1} \psi_{j,t}\right\} \;, \end{split}$$

where

$$\mathcal{D}\left[\phi\right] = \left(\det \tilde{v}\right)^{-N_{t}/2} \prod_{i} \prod_{t=0}^{N_{t}-1} \frac{1}{\sqrt{2\pi}} d\phi_{i,t}$$
$$\mathcal{D}\left[\psi^{\dagger},\psi\right] = \prod_{x} \prod_{t=0}^{N_{t}-1} d\psi_{x,t}^{\dagger} d\psi_{x,t} .$$

Note the temporal index to the HS field for bookkeepping purposes ($\phi_i \rightarrow \phi_{i,t}$).

July 19, 2019

Thomas Luu, IAS-4

Finally integrating out the fermions!

Now I express the argument of the exponential in matrix form,

$$\mathcal{Z} = \lim_{N_t \to \infty} \int_{-\infty}^{\infty} \mathcal{D}\left[\phi\right] e^{-\frac{1}{2}\sum_{ij,t} \phi_{i,t}[\tilde{v}^{-1}]_{ij}\phi_{j,t}} \int \mathcal{D}\left[\psi^{\dagger},\psi\right] \exp\left\{-\sum_{it',jt} \psi^{\dagger}_{it'} M[\phi]_{it',jt}\psi_{jt}\right\} ,$$

where the *fermion* matrix $M[\phi]$ is a *functional* of the field ϕ with c-number matrix elements:

$$\begin{split} \mathcal{M}[\phi]_{it',jt} &= \delta_{ij}\delta_{t't} - (\mathbf{1} \pm i\phi_{j,t})\delta_{ij}\delta_{t',t+1} - \tilde{\kappa}_{ij}\delta_{t',t+1} \\ &\approx \delta_{ij}\delta_{t't} - \boldsymbol{e}^{\pm i\phi_{j,t}}\delta_{ij}\delta_{t',t+1} - \tilde{\kappa}_{ij}\delta_{t',t+1} \ . \end{split}$$

We have a matrix and we have quadratic Grassmann terms. We must integrate!

$$\mathcal{Z} = \lim_{N_t \to \infty} \int_{-\infty}^{\infty} \mathcal{D}\left[\phi\right] \ e^{-\frac{1}{2}\sum_{ij,t} \phi_{i,t}[\tilde{v}^{-1}]_{ij}\phi_{j,t}} \det M[\phi] \ .$$

Observables \hat{O} with the PI

One can also show, using the same steps as above, that

$$\langle \hat{O} \rangle = \lim_{N_t \to \infty} \frac{1}{\mathcal{Z}} \int_{-\infty}^{\infty} \mathcal{D}[\phi] \ O[\phi] \ e^{-\frac{1}{2} \sum_{ij,t} \phi_{i,t} [\tilde{v}^{-1}]_{ij} \phi_{j,t}} \det M[\phi] ,$$

where in principle, the operator ${\it O}$ can also be functional of $\phi.$ Note:

- Every term in *M* is a c-number
- Auxiliary field ϕ is a c-number, not dynamical in this case!
- Dynamics of fermions encoded in *M*[\u03c6]

Example for \hat{O} : the fermion correlator

We are interested in calculating

$$\langle a_{\alpha}(\tau) a_{\beta}^{\dagger}(\mathbf{0}) \rangle = \lim_{N_t \to \infty} \frac{1}{\mathcal{Z}} \int_{-\infty}^{\infty} \mathcal{D}[\phi] \psi_{\alpha,\tau} \psi_{\beta,0}^{\dagger} e^{-\frac{1}{2} \sum_{ij,t} \phi_{i,t}[\tilde{\nu}^{-1}]_{ij}\phi_{j,t}} \det M[\phi]$$

But the RHS has Grassmann variables! So how do we calculate this term?

The generating functional

We introduce the generating functional (repeated indices summed):

$$Z_{0}[\eta^{\dagger},\eta] = \int \mathcal{D}\left[\psi^{\dagger},\psi\right] \boldsymbol{e}^{-\psi_{k}^{\dagger}M_{kl}[\phi]\psi_{l}+\eta_{k}^{\dagger}\psi_{k}+\psi_{k}^{\dagger}\eta_{k}}$$

The original partition function is

$$\mathcal{Z} = \lim_{N_t \to \infty} \int_{-\infty}^{\infty} \mathcal{D}\left[\phi\right] \left. e^{-\frac{1}{2}\sum_{ij,t} \phi_{i,t}[\tilde{\nu}^{-1}]_{ij}\phi_{j,t}} Z_0[\bar{\eta},\eta] \right|_{\bar{\eta}=\eta=0}$$

I can pull down products of ψ_n and ψ_m^{\dagger} by simply performing Grassman differentiation,

$$\begin{split} \int_{-\infty}^{\infty} \mathcal{D}[\phi] \ e^{-\frac{1}{2}\sum_{ij,t}\phi_{i,t}[\tilde{\nu}^{-1}]_{ij}\phi_{j,t}}\psi_{n}\psi_{m}^{\dagger} Z_{0}[\bar{\eta},\eta] \bigg|_{\bar{\eta}=\eta=0} \\ &= \int_{-\infty}^{\infty} \mathcal{D}[\phi] \ e^{-\frac{1}{2}\sum_{ij,t}\phi_{i,t}[\tilde{\nu}^{-1}]_{ij}\phi_{j,t}} \left(\overrightarrow{\frac{\partial}{\partial\eta_{n}^{\dagger}}}Z_{0}[\eta^{\dagger},\eta]\overrightarrow{\frac{\partial}{\partial\eta_{m}}}\right) \bigg|_{\eta^{\dagger}=\eta=0} \end{split}$$

We can formally integrate the generating functional

After completing the square in the argument and performing Grassmann gaussian integration

$$Z_0[\bar{\eta},\eta] = \det(\boldsymbol{M}[\phi])\boldsymbol{e}^{\bar{\eta}_k[\boldsymbol{M}[\phi]^{-1}]_{k/\eta_l}}$$

This means that

$$\left(\overrightarrow{\frac{\partial}{\partial \eta_n^{\dagger}}} Z_0[\eta^{\dagger},\eta] \overleftarrow{\frac{\partial}{\partial \eta_m}}\right) \bigg|_{\eta^{\dagger}=\eta=0} = M[\phi]_{n,m}^{-1} \det M[\phi]$$

Therefore our fermion correlator is

$$\langle \boldsymbol{a}_{\alpha}(\tau) \boldsymbol{a}_{\beta}^{\dagger}(\mathbf{0})
angle = \lim_{N_{t} \to \infty} \frac{1}{\mathcal{Z}} \int_{-\infty}^{\infty} \mathcal{D}\left[\phi\right] \psi_{\alpha,\tau} \psi_{\beta,0}^{\dagger} \; \boldsymbol{e}^{-\frac{1}{2}\sum_{ij,t} \phi_{i,t}[\tilde{\boldsymbol{v}}^{-1}]_{ij}\phi_{j,t}} \det \boldsymbol{M}[\phi]$$

$$= \lim_{N_t \to \infty} \frac{1}{\mathcal{Z}} \int_{-\infty}^{\infty} \mathcal{D}\left[\phi\right] \ e^{-\frac{1}{2}\sum_{ij,t} \phi_{i,t} [\tilde{v}^{-1}]_{ij} \phi_{j,t}} \ M^{-1}[\phi]_{\alpha\tau,\beta 0} \det M[\phi]$$

A theory with fermions: the Hubbard Model

The Hubbard Hamiltonian :

$$\begin{array}{lll} \mathcal{H} & \equiv & \mathcal{H}_{tb} + \mathcal{H}_{U} \\ & \equiv & -\kappa \sum_{\langle x,y \rangle,s} a_{x,s}^{\dagger} a_{y,s} - \frac{U}{2} \sum_{x} \left(n_{x,\uparrow} - n_{x,\downarrow} \right)^{2} \; , \end{array}$$

- κ is the nearest-neighbor hopping amplitude for electrons on the lattice
- *U* is the onsite interaction ($U \ge 0$)
- $\langle x, y \rangle$ denotes summation over nearest neighbors,
- *s* assumes the values \uparrow ("spin up") or \downarrow ("spin down").
- $n_{x,s} \equiv a_{x,s}^{\dagger} a_{x,s}$ is the number operator for spin *s* at position *x*

This particular form of the Hubbard Hamiltonian corresponds to a system at "half-filling", where the average number of electrons per site is 1.

Case study: 1-site Hubbard model

We can solve this problem exactly

- No hopping (nowhere to hop to!) $\implies \kappa = 0$
- Fock space:

 $|0\rangle \oplus |\uparrow\rangle \oplus |\downarrow\rangle \oplus |\uparrow\downarrow\rangle$

Partition function:

$$\mathcal{Z}=2(1+e^{eta U/2})$$
 .

Correlator:

$$egin{aligned} \mathcal{C}(au) &= egin{bmatrix} \mathcal{C}_{\uparrow\uparrow}(au) & \mathcal{C}_{\uparrow\downarrow}(au) \ \mathcal{C}_{\downarrow\uparrow}(au) & \mathcal{C}_{\downarrow\downarrow}(au) \end{bmatrix} = rac{1}{2\cosh\left(Ueta/4
ight)} egin{bmatrix} \cosh\left(rac{U}{2}\left(au-rac{eta}{2}
ight)
ight) & 0 \ 0 & \cosh\left(rac{U}{2}\left(au-rac{eta}{2}
ight)
ight) \end{bmatrix} \,. \end{aligned}$$

Our task: Use PI to calculate $C(\tau)$

- We must work with coherent states for each spin d.o.f.: $|\psi\rangle \rightarrow |\psi_{\uparrow}\psi_{\downarrow}\rangle$
- Utilize HS transformation to remove quartic terms in creation/annihilation operators

$$\begin{split} \langle \psi_{t+1,\uparrow};\psi_{t+1,\downarrow}|\boldsymbol{e}^{\frac{\tilde{U}}{2}(\boldsymbol{n}_{\chi\uparrow}-\boldsymbol{n}_{\chi\downarrow})^{2}}|\psi_{t,\uparrow};\psi_{t,\downarrow}\rangle = \\ \int_{-\infty}^{\infty}\frac{d\phi_{t}}{\sqrt{2\pi\tilde{U}}} \boldsymbol{e}^{-\frac{1}{2\tilde{U}}\phi_{t}^{2}}\langle\psi_{t+1,\uparrow};\psi_{t+1,\downarrow}|\boldsymbol{e}^{\pm\phi_{t}(\boldsymbol{n}_{\chi\uparrow}-\boldsymbol{n}_{\chi\downarrow})}|\psi_{t,\uparrow};\psi_{t,\downarrow}\rangle \;. \end{split}$$

where $\tilde{U} = \delta U$.

Partition function $\ensuremath{\mathcal{Z}}$

$$\begin{aligned} \mathcal{Z} &= \lim_{N_t \to \infty} \int_{-\infty}^{\infty} \left[\prod_{t=0}^{N_t - 1} \frac{d\phi_t}{\sqrt{2\pi U}} \right] e^{-\frac{1}{2U} \sum_t \phi_t^2} \\ &\int \left[\prod_t^{N_t - 1} d\psi_{t\uparrow}^{\dagger} d\psi_{t\uparrow} \right] e^{-\sum_{t',t} \psi_{t'\uparrow}^{\dagger} M[\phi]_{t',t} \psi_{t\uparrow}} \int \left[\prod_t^{N_t - 1} d\psi_{t\downarrow}^{\dagger} d\psi_{t\downarrow} \right] e^{-\sum_{t',t} \psi_{t\downarrow}^{\dagger} M[-\phi]_{t',t} \psi_{t\downarrow}} \end{aligned}$$

where

$$\boldsymbol{M}[\phi]_{t',t} = \delta_{t't} - \boldsymbol{e}^{-\phi_t} \delta_{t',t+1} ,$$

Integrate out fermionic fields:

July 19, 2019

Finally the correlator $C(\tau)$

$$\begin{split} \mathcal{C}_{\uparrow\uparrow}(\tau) &= \frac{1}{\mathcal{Z}} \int_{-\infty}^{\infty} \left[\prod_{t=0}^{N_t-1} \, \frac{d\phi_t}{\sqrt{2\pi\tilde{U}}} \right] \, \mathcal{M}_{\tau,0}^{-1}[\phi] \, e^{-\frac{1}{2\tilde{U}}\sum_t \phi_t^2} \det\left(\mathcal{M}[\phi]\mathcal{M}[-\phi]\right) \\ &= \frac{1}{\mathcal{Z}} \int_{-\infty}^{\infty} \left[\prod_{t=0}^{N_t-1} \, \frac{d\phi_t}{\sqrt{2\pi\tilde{U}}} e^{-\frac{1}{2\tilde{U}}\phi_t^2} \right] \, \mathcal{M}_{\tau,0}^{-1}[\phi] \det\left(\mathcal{M}[\phi]\mathcal{M}[-\phi]\right) \; . \end{split}$$

$$\begin{split} \mathcal{C}_{\downarrow\downarrow}(\tau) &= \frac{1}{\mathcal{Z}} \int_{-\infty}^{\infty} \left[\prod_{t=0}^{N_t-1} \frac{d\phi_t}{\sqrt{2\pi\tilde{U}}} \right] \, \mathcal{M}_{\tau,0}^{-1}[-\phi] \, e^{-\frac{1}{2\tilde{U}}\sum_t \phi_t^2} \det\left(\mathcal{M}[\phi]\mathcal{M}[-\phi]\right) \\ &= \frac{1}{\mathcal{Z}} \int_{-\infty}^{\infty} \left[\prod_{t=0}^{N_t-1} \frac{d\phi_t}{\sqrt{2\pi\tilde{U}}} e^{-\frac{1}{2\tilde{U}}\phi_t^2} \right] \, \mathcal{M}_{\tau,0}^{-1}[-\phi] \det\left(\mathcal{M}[\phi]\mathcal{M}[-\phi]\right) \, . \end{split}$$

Monte Carlo Integration

- Define $\vec{\phi} = (\phi_0, \phi_1, \dots, \phi_{N_t-1})$
- Sample each component from a Gaussian distribution $\mathcal{N}_{0,\sqrt{\tilde{u}}}$
- Do this *N* times, each time performing the following calculations,

$$\begin{split} \mathcal{Z} &\approx \quad \frac{1}{N} \sum_{\vec{\phi} \in \mathcal{N}_{0,\sqrt{U}}}^{N} \det{(M[\phi]M[-\phi])} \\ \mathcal{C}_{\uparrow\uparrow}(\tau) &\approx \quad \frac{1}{N} \frac{1}{\mathcal{Z}} \sum_{\vec{\phi} \in \mathcal{N}_{0,\sqrt{U}}}^{N} M_{\tau,0}^{-1}[\phi] \det{(M[\phi]M[-\phi])} \ . \end{split}$$

Let's do this!

Necessary ingredients to numerically do this problem

• Choose U, β , and N_t . This gives you $\delta = \beta/N_t$ and $\tilde{U} = U\delta$.

• Construct
$$M[\phi]_{t',t} = \delta_{t't} - e^{-\phi_t} \delta_{t',t+1}$$

1	Θ	Θ	Θ	Θ	Θ	Θ	$e^{-\phi_7}$
$-e^{-\phi_0}$	1	Θ	Θ	0	Θ	Θ	0
Θ	$-e^{-\phi_1}$	1	Θ	Θ	Θ	Θ	0
Θ	Θ	$-e^{-\phi_2}$	1	Θ	Θ	Θ	0
Θ	Θ	Θ	$-e^{-\phi_3}$	1	Θ	Θ	0
Θ	Θ	Θ	0	$-e^{-\phi_4}$	1	Θ	0
Θ	Θ	Θ	Θ	Θ	$-e^{-\phi_5}$	1	0
Θ	Θ	Θ	Θ	Θ	Θ	$-e^{-\phi_6}$	1)

- Sampling normal distribution with python3: numpy.random.normal($\mu = 0, \sqrt{\tilde{U}}$)
- Calculating determinant of M[\u03c6]M[-\u03c6] with python3: numpy.linalg.det(M)
- Inverting matrix with python3: numpy.linalg.inv(M)

Figure: $C_{\uparrow\uparrow}(\tau)$ (red) and $C_{\downarrow\downarrow}(\tau)$ (blue) calculated from Monte Carlo integration for the one-site Hubbard Model. The parameters used for this calculation were $U/\kappa = 2$, $\kappa\beta = 2$, and $N_t = 48$. The number of Monte Carlo samples N = 50000. Shown errors are the bootstrap standard errors. The black line is the analytic result.

July 19, 2019

Thomas Luu, IAS-4

SHOW ME THE QUARKS!

• Let's reverse the situation, and now consider a theory with only fermions and no gauge fields

$$L_{F} = \overline{\psi}(x) \Big(\gamma_{\mu} \partial_{\mu} + m \Big) \psi(x)$$

$$\{ \gamma_{\mu}, \gamma_{\nu} \} = 2\delta_{\mu\nu}$$

$$\overline{\psi}(x) = \psi^{*T} \gamma_{0}$$

Note: no covariant derivative!

• The propagator for these fermions is simply the inverse of the kernel, which in momentum space is

$$G_F \propto \frac{1}{\gamma_{\mu}p_{\mu} + m + i\varepsilon} = \frac{\gamma_{\mu}p_{\mu} - m}{p^2 + m^2 + i\varepsilon}$$

LET'S LOOK AT THE FERMION PROPAGATOR ON A LATTICE

• The Lagrangian now becomes

$$\partial_{\mu}\psi(x) = \frac{\psi(x+\hat{\mu}) - \psi(x-\hat{\mu})}{2a}$$

$$S_{F} = \sum_{x,y} \overline{\psi}(x) K_{xy} \psi(y)$$

$$K_{xy} = \sum_{\mu} \frac{\gamma_{\mu}}{2a} \left(\delta_{x,y+\hat{\mu}} - \delta_{x,y-\hat{\mu}} \right) + m \delta_{x,y}$$

• Does the propagator, in the limit $a \rightarrow 0$, give the correct expression in the momentum representation?

$$G_F = \lim_{a \to 0} K^{-1} \propto \frac{\gamma_{\mu} \frac{\sin(p_{\mu}a)}{a} - m}{\sum_{\mu} \left(\frac{\sin(p_{\mu}a)}{a}\right)^2 + m^2}$$

• For $p \rightarrow 0$, one gets the correct expression

- For $|p| \rightarrow \pi/2$, one also gets the correct expression (near the corners of the Brillouin zones (BZ))!
 - We get more than one correct solution
 - In d-dimensions, we get 2^d allowed solutions, only one of which is relevant in the continuum limit
 - "Fermion doubling problem"
- There is a physical realization of this doubling—the lattice is trying to preserve chiral symmetry
 - Chiral symmetry $\leftarrow \rightarrow$ fermion doubling
- Can/should we remedy this?

WILSON FERMIONS

• We can use Wilson fermions

$$S_{W} = S_{F} - \frac{r}{2}a^{2}\sum_{x,y}\overline{\psi}(x)\left(\partial_{\mu}\right)^{2}\psi(y)$$

$$G_{F} = \lim_{a \to 0} K^{-1} \propto \frac{\gamma_{\mu}\frac{\sin(p_{\mu}a)}{a} - m(p)}{\sum_{\mu}\left(\frac{\sin(p_{\mu}a)}{a}\right)^{2} + m(p)^{2}} \quad ; \quad m(p) = m + \frac{2r}{a}\sum_{\mu}\sin\left(\frac{p_{\mu}a}{2}\right)^{2}$$

$$m(0) = m \quad ; \quad m\left(\frac{\pi}{2}\right) = \infty$$

- Wait—can we just arbitrarily add terms to our lattice lagrangian?
 - Yes—as long as we obtain the correct continuum limit (e.g. just like in our YM example of last lecture)
 - But we lost chiral symmetry

STAGGERED FERMIONS

• What if we just forced the fermion field to live in a world where the BZ was different?

• In the staggered formalism, the fermion BZs are never actually probed—i.e. (almost) no doublers!

- Only works with even number of flavors of fermions
- Preserves certain aspects of chiral symmetry (but not all)
- Does it have the correct continuum limit???

THE FIFTH DIMENSION—AND NO, I'M NOT TALKING ABOUT THE MOVIE (THOUGH I DID LIKE THE MOVIE TOO!)

- The *Nielson-Ninomiya* theorem in LQCD essentially tells us that when dealing with fermions on a lattice, exact chiral symmetry comes hand-in-hand with fermion doublers (tastes) in any number of dimensions
- In the 90s it was discovered that one could formulate a lattice theory in 5-dimensions where doublers and the like existed, but the underlying 4-dimensional world retained fermions with "exact" chiral symmetry BUT W/O doublers!
 - Domain-Wall fermions (Kaplan)
 - Overlap fermions
- Drawbacks
 - Very computationally demanding!

A SECOND LOOK AT QCD, THIS TIME WITH FERMIONS

• Okay, so here's the full-fledged QCD lagrangian using Wilson fermions, for example:

$$\begin{split} S_{QCD} &= S_G[U] + S_{F,W}[U,\overline{\psi},\psi] \\ S_G[U] &= \frac{6}{g^2} \sum_P \left(1 - P_{\mu\nu}\right) \\ S_{F,W}[U,\overline{\psi},\psi] &= (m+4r) \sum_x \overline{\psi}(x)\psi(x) \\ &- \frac{1}{2} \sum_{x,\mu} \left(\overline{\psi}(x)(r-\gamma_{\mu})U_{\mu}(x)\psi(x+a\hat{\mu}) + \overline{\psi}(x+a\hat{\mu})(r-\gamma_{\mu})U_{\mu}^{*T}(x)\psi(x)\right) \end{split}$$

Okay, so I skipped a couple of steps in deriving the expression on the previous page

• First off, I expressed everything in terms of dimensionless quantities

$$\psi \rightarrow \frac{1}{a^{3/2}} \psi \quad ; \quad m \rightarrow \frac{1}{a} m$$
$$\partial_{\mu} \rightarrow \frac{1}{a} \partial_{\mu}$$

- Used the covariant derivative in the fermion action $D_{\mu} = \partial_{\mu} + igA_{\mu}(x)$
- Re-expressed coupling of fermions with gauge fields using link variables

SO WE INTEGRATE OUT THE FERMION FIELDS

$$\int d[U]d[\overline{\psi}]d[\psi]e^{-S_g[U]-S_F[U,\overline{\psi},\psi]}$$

$$= \int d[U]d[\overline{\psi}]d[\psi]e^{-S_g[U]-\overline{\psi}M[U]\psi}$$

$$= \int d[U]\det(M[U])e^{-S_g[U]}$$
Function of gauge links U
and consists of real numbers!

Problem #4 (easy):

Show that for Wilson fermions, have

$$\begin{split} M_{ij}[U] &= (m+4r)\delta_{ij} \\ &- \frac{1}{2}\sum_{\mu>0} \Big((r-\gamma_{\mu}) U_{\mu}(i)\delta_{i+a\hat{\mu},j} + (r-\gamma_{\mu}) U_{\mu}^{*T}(i-a\hat{\mu})\delta_{i-a\hat{\mu},j} \Big) \end{split}$$

Problem #5 (easy):

What is the dimension of $M_{ij}[U]$?

SO THAT'S IT! WE CAN NOW SIMULATE QCD, RIGHT?

• We just need to generate gauge configurations with probability distribution proportional to

$$P \propto \det(M[U])e^{-S_G[U]} = e^{-S_G[U] + \log(\det(M[U]))}$$

- \circ *M* in our case is no ordinary, run-of-the-mill matrix
 - Non-local
 - It's big
 - Can be ill-conditioned
- The upshot: calculating the determinant of *M* is the most time-consuming aspect when generating configurations

BUT COMPUTERS ARE MUCH FASTER NOW, RIGHT?

- Yes, but even with advances in computer technology, simulating dynamical fermions is never easy!
 - Condition number of matrix increases as mass of quarks decreases, or equivalently, $m_{\pi}^{lattice} \rightarrow m_{\pi}^{phys.}$

THE FALL OF THE BERLIN WALL

- Great advancements in algorithms:
 - Hybrid Monte Carlo
 - Smarter pre-conditioners cost ~
 - Deflation methods

$$\sim \frac{V^{1 \leftrightarrow 5/4}}{m_{\pi}^{5 \leftrightarrow 6} a^7} \longrightarrow \frac{V^{1 \leftrightarrow 5/4}}{m_{\pi}^2 a^6}$$

Ukawa 08, Sugar 08

• Greater theoretical control

- Finite-volume Effective Field Theories
- Finite-volume many-body techniques

• And yes, faster computers

SO DO YOU HAVE A BIG COMPUTER? YES?

- Go to <u>http://usqcd.jlab.org/usqcd-docs/chroma/</u> and download *chroma* (and it's supporting software)
 - Supported under SciDac-2
 - And of course, there are other LQCD codes on the market
- There are decent tutorials that show you how the code works and how to run it

YOU CAN ALSO DOWNLOAD FULL FLEDGED LATTICE CONFIGURATIONS

- Go to <u>http://qcd.nersc.gov/</u>
 - Set up an account (it's free)

The Gauge Conn	ection
	NERSC
1 Thomas	Home /
🔒 Search	Search Clear Search Examples
Volumes	
Spacing	48409 32.0 TB 138 19 1529
# Action	
Collaboration	Files Size Users Bookmarks Downloads
Obmains	
Gallery	
Instructions	
Globus Online	11 % 55% 33%
Bookmarks	
Manage	ILDG-USQCD ILDG-LDG USQCD

EXACTLY HOW ARE THE MASSES MEASURED IN LQCD?

$$\left\langle O^{\{A\}}(t) \right\rangle = \frac{\int d[U] O^{\{A\}}(t) \det(M[U]) e^{-S_g[U]}}{\int d[U] \det(M[U]) e^{-S_g[U]}} = \sum_i C_i e^{-E_i^{\{A\}} t}$$

Let's look at the Pion as an example

• The operator in this case is of the form

- The interpolating fields have the same quantum numbers as the charged pion
 - Isospin = 1
 - Strangeness = 0
 - Negative parity
 - Color singlet

WE USE THE RULES FROM THE PREVIOUS LECTURE TO CALCULATE THE EXPECTATION VALUE OF THIS OPERATOR

BY DEFINITION, THE LOWEST EIGENVALUE IS DEFINED AS THE MASS OF THE PION

$$\left\langle \overline{\pi^+}(t) \ \pi^+(0) \right\rangle \equiv C_{\pi}(t) = \sum_i C_i e^{-E_i t} \xrightarrow{t>>1} C_0 e^{-m_{\pi} t}$$

$$M_{eff}(t) = \log \left(\frac{C_{\pi}(t)}{C_{\pi}(t+1)} \right) \xrightarrow{t >>1} m_{\pi}$$

AND OF COURSE THE INTERPOLATING OPERATORS CAN BE GENERALIZED

$$\mathbf{K}^{+}(x,t) = \psi_{u}(x,t)\gamma_{5}\overline{\psi}_{s}(x,t) \qquad \begin{array}{c} \text{Kaon interpolating} \\ \text{field} \end{array}$$

$$N(x,t) = \varepsilon_{abc} \psi_{u}^{a}(x,t) \Big(\psi_{u}^{bT}(x,t) C \gamma_{5} \psi_{d}^{c}(x,t) \Big)$$

Proton interpolating field
Ensures color neutrality

AS YOU MIGHT HAVE GUESSED, WE CAN DO MANY PARTICLES

• For example, two pions need four interpolating fields

• And for three pions, we need six interpolating operators, and so on . . .

Examples of correlators from real LQCD calculations

OKAY, WE CAN GET ENERGIES, BUT WHAT'S THAT GOOD FOR?

• Since the beginning of time, it has been known that the nonrelativistic eigenenergies E_{nrel} of two particles in a box can be related to their masses and scattering amplitudes

"Lüscher's formula"

$$\frac{1}{L}S\left(\frac{E_{nrel}}{\varepsilon_0}\right) = p\cot(\delta(p))$$
$$E_{nrel} = \frac{p^2}{2\mu} \quad ; \quad \varepsilon_0 = \frac{1}{2\mu L^2}$$

 $|\vec{n}| < \Lambda$

 $S(x) = \lim_{\Lambda \to \infty} 4\pi \sum_{\vec{n}} \frac{1}{4\pi^2 \vec{n}^2 - x} -$

3-d zeta function

Assumption: range of interaction << L

Comm. Math. & Phys., 105, 153 (1986)

 $\vec{n} = (n_x, n_y, n_z)$

TYPICALLY THE INTERACTING MOMENTUM P IS SMALL

Scattering length There is no restriction to the size of this of the scattering length!!!

LQCD ALLOWS US TO CALCULATE E_{NREL} !

WE CAN USE THESE RELATIONS TO CALCULATE THE SCATTERING LENGTH BETWEEN TWO CHARGED PIONS, FOR EXAMPLE

LET'S "TALK THE TALK"

Anatomy of a LQCD calculation

SO WHERE DOES LQCD GO FROM HERE?

Calculations at physical point opens new opportunities...

- Probing the interactions between nucleons and hyperons
 - Poorly constrained empirically
 - Relevant to matter at extreme conditions
 - Compact astrophysical objects (think neutron stars!)
- Tackling QCD exotica
 - Everything Prof. Guo has been talking about!
 - see Prof. Zou's talk
- Constraining BSM physics
 - Need to pin down hadronic component
 - Nuclear matrix element
 - e.g. nEDM, muon g-2 etc. . .
 - see Dr. Gupta's talk. . . :(
 - see talks by Agadjanov, Petschlies
- Tackling the "sign problem"
 - See my talk on Friday! :)

LATTICE QCD CAN ONLY CALCULATE "OBSERVABLES"

A word of warning. . .

- Energy levels (e.g. masses, binding energies)
- ERE parameters (e.g. scattering lengths, effective ranges ∈ phase shifts)
- If an experiment can measure it, then (in principle) LQCD can calculate it
- Question: Is a potential an observable?

SOME REFERENCES, IN CASE I DIDN'T SCARE YOU AWAY. . .

Lattice Gauge Theories, An Introduction—H. Rothe Lattice QCD for Novices—P. Lepage hep- lat-0506036v1 Quarks, Gluons, and Lattices—M. Cruetz Introduction to Quantum Field Theories—J. Smit Introduction to Lattice QCD-R. Gupta hep-lat/ 9807028 QCD on the Lattice—C. Gattringer and C. Lang

