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The present experimental values

Electron:   Hanneke, Fogwell, and Gabrielse ’08

   g/2=1.001 159 652 180 73 (28)  

 
                                              
Muon:   BNL E821 ’06

   g/2=1.001 165 920 89 (63)         [630 ppt]
Tau:  Delphi at LEP2 ’04 

   g/2=0.985(32)

0.28� 10�12 [0.28 ppt]

Lepton magnetic moments

1 Introduction

1.1 Preliminary Remarks

The motion of the classical particle with the angular momentum L = r × p
generates the magnetic moment µ,

µ =
e

2mc
L , (1.1)

where e is the charge of the particle and m is its mass. In quantum mechanics,
the angular momentum L becomes an operator, L = !l = −i! r ×∇, whose
eigenvalues are quantized in units of the Planck constant !. The magnetic
moment associated with the orbital motion is quantized accordingly.

Besides the orbital motion, an elementary particle may have internal ro-
tation characterized by the spin S = !s. The magnetic moment associated
with this rotation can be presented in the form similar to (1.1),

µ = g
e!

2mc
s , (1.2)

with an additional factor g which is called the gyromagnetic factor. While for
the orbital motion this factor is equal to 1, the Dirac equation for a charged
elementary fermion with spin s = 1/2 implies g = 2. The anomalous magnetic
moment refers to a deviation of the gyromagnetic factor from the g = 2 value
and is parametrized by a = (g−2)/2. It appears due to radiative corrections.
The leading contribution to a, calculated by Schwinger in 1949,

a =
α

2π
, (1.3)

is the same for the electron and the muon. Higher order effects are not uni-
versal and are affected by weak and strong interactions in addition to elec-
tromagnetism.

Recent results [1] from the experiment E821 at Brookhaven National Lab-
oratory (BNL) might indicate a disagreement between the experimental value
for the muon magnetic anomaly and the theoretical expectation based on the
Standard Model. There are two experimental results from E821 with the pre-
cision better than one part per million. They are
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H = �µ B
1. The two-photon mode of the Higgs-particle decay is important in experimental
searches. Therefore theoretical calculations of the H ⇥ �� rate received much
attention. The H transition into two photons goes via a loops of charged particles:
leptons, quarks and W bosons. In the Standard Model (SM) the Higgs coupling to
other fields is proportional to the masses of the latter; the most massive particle
have the strongest coupling. All these loops had been calculated long ago [1–4], by
di�erent methods, with totally consistent results.

Surprisingly, in two recent publications [5, 6] the question of H ⇥ �� was raised
anew, as if the passage of time negates the knowledge of the past. Raymond Gast-
mans, Sau Lan Wu and Tai Tsun Wu revisited the issue of the W -boson loop in the
H ⇥ �� decay claiming that the old results [1–4] was erroneous. Using the unitary
gauge they obtained a di�erent H ⇥ �� decay rate not coinciding with that of [1–4].
Technically, Gastmans et al. identify dimensional regularization exploited in some
previous calculations as a source of the alleged mishap.

The main argument of Gastmans et al. in favor of the statement of [5, 6] is the
requirement of decoupling: their amplitude vanishes in the limit mW /mH ⇥ 0 while
that of [1–4] does not vanish in this limit.

Superficially this argument might seem reasonable. Indeed, the above-mentioned
decoupling works for the fermion loop in the limit mf/mH ⇥ 0 because the Higgs
coupling to fermions is proportional to mf . Likewise, in the W -boson case the Higgs
coupling to W+W� is proportional to m2

W ; thus why not expect vanishing of the
W -loop contribution at mW = 0?

Actually this vanishing does not occur. In this note we will explain the absence of
decoupling for the W -boson loop in the MW ⇥ 0 limit owing to some general features
of the non-Abelian vector fields. Our argument will connect a residual nonvanishing
constant in the H ⇥ �� amplitude at mW = 0 with a Goldstone-particle loop well
known in the literature (see e.g. [7]).

There is a crucial di�erence between, say, spin-1/2 and spin-1 particles with re-
gard to the massless limit. Namely, the number of polarization states stays the
same for spin-1/2 massive and massless particles, while for the massive spin-1 par-
ticle we have three polarization states in contradistinction with the massless spin-1
field, with two polarization states. In the massive case, in addition to two spatially
transverse polarizations (intrinsic to the massless vector field) we have also the longi-
tudinal polarization. Moreover, the amplitude of this polarization grows in the limit
mW ⇥ 0. Indeed, the longitudinal polarization of the W boson with 4-momentum
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Anatomy of muon g-2
CERN TH SEMINAR, 7 APRIL 2004 A. Vainshtein Hadronic effects in g�2 4

The Standard Model prediction for aµ can be represented as a sum

aSM
µ = aQED

µ + ahad
µ + aEW

µ

The QED part involving only leptons and photons is the main one,

aQED
µ = 116 584 706(3)� 10�11 .

This accounts for one-, two- and three-loop contributions, i.e., up to the �3 terms.

Not calculated yet the four-loop terms are of order �4 ⇥ 10�11.

Next is the hadronic contribution.

PITT–CMU SEMINAR, 02/27/03 A. Vainshtein Hadronic effects in aEW
µ 2

Muon anomalous magnetic moment

The anomalous magnetic moment of muon is measured with a very high

precision

aexp
µ =

gµ � 2
2

= 116 592 030(80)⇥ 10�11 E821 at BNL
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aµ =
gµ � 2

2

|dn| < 2.9 ⇥ 10
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718.85(0.36) Kinoshita et al

                                            4th and 5th loop including.
Two enhancement parameters

QED
For almost all of us,  the current computations of QED corrections to muon g-2 are not 
comprehensible.  We do not know if they are right or wrong.  Yet, we must take these results 
as they are reported and make our conclusions about the significance  of the discrepancy  in  
g-2 based on them.  Given how large QED contribution is, a small change in it can cause a lot 
of trouble.  So why are we so sure that QED results are OK?  

The answer is simple: for the current level of discrepancy we only need the three-loop 
QED contribution -- which is well-known -- and enhanced contributions at four loops --that 
are well-understood.  

ln
mµ

me
⇠ 5, ⇡2 ⇠ 9

The logarithm is the consequence of RG-like running either of the fine structure constant 
or of more complex objects that can be thought of as some ``effective operators’’.  The       
enhancement shows up because several (even number) of poles of the muon propagator  can 
contribute to the final result.

⇡2

An interesting thing though is that there are two enhancement parameters: 

Thursday, September 10, 15

E.g., three loops are dominated by light-by-light  with 
the electron in the loop

QED

2) At the four loops, the pattern  repeats itself and the dominant contribution comes from same 
diagrams but with additional insertion of the  lepton vacuum polarization. The part  of the four-
loop result that is not enhanced is not important at the current level of precision.

30 2 QED Effects in the Muon Magnetic Anomaly

e

e

Fig. 2.7. The dominant four-loop diagram. Symmetric diagrams are not shown

a(4)
µ ∼

(α

π

)4 π2

2
ln2 m

me
. (2.90)

The four-loop contribution to the muon magnetic anomaly reads

a4 =
(α

π

)4 (
wlbl+vp,e

4 + w4

)
, (2.91)

where we neglect the contribution of the tau lepton at this order. The mass-
independent term w4 has been computed in [28]

w4 = −1.7502(384) . (2.92)

The term wlbl+vp, e
4 that includes the electron loop in vacuum polarization

and the light-by-light scattering diagrams reads

wlbl+vp, e
4 = 132.6823(72) . (2.93)

This value should be compared with 117.4(5) [30], that is obtained upon
evaluating the contribution to aµ due to the diagrams shown in Fig. 2.7.
It follows, that approximately ninety percent of wlbl+vp, e

4 come from a few
diagrams that are very well understood. It is precisely this feature of the four-
loop result that makes it robust; this implies that any discrepancy between
the experimental result for aµ and the theoretical expectation at the level of
100×10−11 is very unlikely to be caused by deficiencies in QED computations.

The full calculation of the five-loop contribution to aµ is not available.
Nevertheless, it is reasonable to assume that electron light-by-light scattering
diagrams dominate there and existing estimates of the five-loop contribution
[27, 31, 32] are based on this assumption.

Following our explanation of how such diagrams contribute at the three-
and four-loop level, it is easy to understand that there are two possibilities
to obtain large contributions at the five-loop level. An additional electron
loop insertion into one of the photons in the four-loop diagram Fig. 2.7 gives
additional logarithms so that its contribution to w5 can be estimated as
w5 ∼ π2 ln3 m/me ≈ 103 . Alternatively, the light-by-light scattering diagram
with no electron vacuum polarization loops has four muon propagators that

a(4)µ =
⇣↵
⇡

⌘4
(132.68|lbl,vp � 1.75) a(4),approxµ = 117.4

⇣↵
⇡

⌘4

a(4)µ � a(4),approxµ ⇡ 40⇥ 10�11 ⌧ athµ � aexpµ

1) The three-loop  contribution  is very well-established. An important point is that  the 
dominant contribution is provided by the light-by-light scattering diagram with the electron 
loop.  All other contributions  are much less important, changing the complete 3-loop result 
by about 4%. 

2.5 Three-loop QED Corrections to aµ 25

The second contribution comes from the multiplicative renormalization of the
one-loop result; we write

a(1)
µ =

(α

π

)
ZαZ2

Γ (1 + ϵ)m−2ϵ

(4π)−ϵ

(
1
2

+ 2ϵ

)
, (2.78)

from where we find

δwct,2
2 =

Γ 2 (1 + ϵ)m−4ϵ

(4π)−2ϵ

(
− 5

24ϵ
− 4

3

)
. (2.79)

The final result for w2 is obtained as the sum of (2.74, 2.77, 2.79). We
derive

w2 =
197
144

+
3
4

ζ3 −
π2

2
ln 2 +

π2

12
, (2.80)

where ζ3 is given by the Riemann zeta-function ζp =
∑∞

n=1
1

np .

2.5 Three-loop QED Corrections to aµ

At the third order in the perturbative expansion in QED, the technical diffi-
culties become enormous. In addition, diagrams of the light-by-light scatter-
ing type, Fig.2.6, where, similar to hadronic vacuum polarization, all charged
particles contribute, appear at this order. Traditionally, only light-by-light
scattering diagrams with electron, muon and τ loops are included in the
QED part of the muon magnetic anomaly. The light-by-light scattering dia-
grams mediated by the electron loops turn out to be particularly important;
not only those diagrams are enhanced by lnm/me, but also coefficients of the
logarithms are large, ∼ π2 . This interesting feature leads to a strong domi-
nance of the light-by-light scattering contribution, mediated by the electron
loop, in the three-loop QED contribution to aµ, and indicates that similar
diagrams are important in fourth and higher orders.

For our discussion, we split the three-loop QED correction to the muon
anomalous magnetic moment into several components

k

e, µ, τ

Fig. 2.6. The diagram with the light-by-light scattering loop

⇠
⇣↵
⇡

⌘3 2⇡2

3
ln

mµ

me
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CERN TH SEMINAR, 7 APRIL 2004 A. Vainshtein Hadronic effects in g�2 26

Summary

• The hadronic light-by-light scattering contribution to aµ is shown to be larger than

previous estimates. We cannot claim any significant reduction in the theoretical

uncertainty although believe that the shift ⇤ 50⇥ 10�11 in the central value is real,

aLbL
µ = 134(25)⇥ 10�11

aexp
µ � ath

µ =
�

(220± 100)⇥ 10�11 (2.2 �), e+e� based
(76± 100)⇥ 10�11 (0.8 �), ⇥ based

• Hadronic effects in electroweak corrections are determined by matching the OPE

and hadronic phenomenology. Remaining uncertainty is shown to be very small.

In total a small shift in aEW
µ from the previous value of 152(4)⇥ 10�11 to a slightly

larger (but consistent) value

aEW
µ = 154(1)(2)⇥ 10�11

where the first error corresponds to hadronic loop uncertainties and the second to

an allowed Higgs mass range of 114 GeV < mH < 250 GeV, the current top

mass uncertainty and unknown three-loop effects.

Czarnecki, Marciano, AV ‘02

CERN TH SEMINAR, 7 APRIL 2004 A. Vainshtein Hadronic effects in g�2 18

Electroweak contributions to aµ

In the Standard Model the one-loop electroweak contributions were calculated about

30 years ago

aEW
µ (1-loop) =

5 Gµ m2
µ

24
⇤

2⇥2

⇤
1 +

1
5

(1� 4 sin2 �W )2 +O
�

m2
µ

m2
W,H

⇥⌅
= 194.8⇥ 10�11

µ µ

ν

γ

W W
µ µ

Z

γ

µ
µ µ

H

γ

µ

One-loop electroweak contributions to aµ

Hadrons at the second loop
Nonrenormalization of triangle
Longitudinal as wel as transversal. 
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Two-loop corrections are more involved

aEW
µ (2-loop)LL =

5Gµm2
µ

24
⌅

2⇥2
· �

⇥

�
⇧

⇤�
43
3

ln
mZ

mµ
+

36
5

⌥

f⇤F

Nf Q2
f I3

f ln
mZ

mf

⇥
⌃

⌅

⇤ �37⇥ 10�11 F = ⇤, u , d, s, c, b

µ µ

γ

γZ

f

Fermion triangles ( Z⇥��⇥ vertex)

Kukhto, Kuraev, Schiller, Silagadze ’92

Peris, Perrottet, Rafael ’95

Czarnecki, Krause, Marciano ’95

mu,d = 0.3 GeV, ms = 0.5 GeV,
mc = 1.5 GeV, mb = 4.5 GeV

Total: aEW
µ = 152(4)⇥ 10�11

Czarnecki, Marciano ’01

Electroweak part 
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Hadronic contributions

ahad
µ = ahad,LO

µ + ahad,HO
µ + aLBL

µ

µ µ
!

q
!

q

Lowest order hadronic
contribution represented by
a quark loop

An example of higher order
hadronic contribution

γ

γγγ

q q

µ µ

Light-by-light scattering
contributionCERN TH SEMINAR, 7 APRIL 2004 A. Vainshtein Hadronic effects in g�2 6

In theory

ahad,LO
µ =

�� mµ

3⇥

⇥2
⌃ ⇥

4m2
�

ds

s2
K(s)R(s)

K(s) is the known function, K(s)⇧ 1, s⌅ m2
µ

R(s) is the cross section of e+e� annihilation into hadrons in units of

⇤(e+e�⇧ µ+µ�).

Two regions. The threshold region s ⇥ 4m2
� where

R(s) ⇤ 1
4

⇤
1� 4m2

�

s

⌅3/2

and the resonance region s ⇥ m2
⇥ where by quark-hadron duality

R(s) ⇤ Nc

⇧
Q2

q
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The model results in

a�0

µ = 76.5� 10�11 , aPS
µ = 114(10)� 10�11

A similar analysis for pseudovector exchange gives

aPV
µ = 22(5)� 10�11

and finally

aLbL
µ = 136(25)� 10�11

WORKSHOP ON (g � 2)µ, GLASGOW, OCTOBER 25, 2007 A. Vainshtein Determination of the light-by-light contributions 21

Comparison with other models

P

G

G
G

G
M

0

The difference with meson exchange models, like Knecht, Nyffeler et al, is due to
absence of the form factor in the vertex with the soft photon (magnetic field),
76.5� 10�11 versus 58� 10�11 for �0 exchange.

ENJL model Bijnens, Pallante, Prades is conceptually not much different
from our model. Indeed, we use meson exchange model which interpolates
between the OPE at short distances and meson poles at large ones. It results
in a less suppression at large momenta (no form factor in the vertex with magnetic
field).

In the ENJL model high momenta asymptotics are provided by adding up the
quark loops. Thus, our asymptotics are the same and difference is mostly in
details of interpolations between high and low momenta.

25
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In difference with ahad,LO
µ there is no experimental input for the light-by-light

contribution.What are possible theoretical parameters to exploit?

Smallness of chiral symmetry breaking, m2
⇥/m2

� ⇥ 1

a(n)
µ � c1

��

⇥

⇥n m2
µ

m2
�

, LO :n = 2 , LbL : n = 3

µ µ
! !

"

"+

#

µ µ

!

!!!

" "

The Goldstone nature of pion implies m2
� ⇤ mq much less than typical

M2
had � m2

⇥ . Thus, the threshold range in pion loops produces the 1/m2
�

enhancement.
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Large number of colors, Nc

Quark loops clearly give aµ ⇥ Nc . Dual not to pion loops but to meson
exchanges.

µ µ
! !"

!

!
!

!

µ

"

No continuum in the large Nc limit.
M = ⌅0,⌃,⇧, ⌅⇥, . . . for the polarization operator
M = ⇤0, ⇥, ⇥⇥, a0, a1, . . . (and any C-even meson) for the light-by-light

a(n)
µ � c2

��

⇤

⇥n
Nc

m2
µ

m2
�
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We can check for ahad,LO
µ

ahad,LO
µ =

�� mµ

3⇥

⇥2
⌃ ⇥

4m2
�

ds

s2
K(s)R(s)

K(s) is the known function, K(s)⇧ 1, s⌅ m2
µ

R(s) is the cross section of e+e� annihilation into hadrons in units of
⇤(e+e�⇧ µ+µ�).

Two regions. The threshold region s ⇥ 4m2
� where

R(s) ⇤ 1
4

⇤
1� 4m2

�

s

⌅3/2

and the resonance region s ⇥ m2
⇥ where by quark-hadron duality on average

R(s) ⇤ Nc

⇧
Q2

q
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�

ds

s2
K(s)R(s)

K(s) is the known function, K(s)⇧ 1, s⌅ m2
µ

R(s) is the cross section of e+e� annihilation into hadrons in units of
⇤(e+e�⇧ µ+µ�).

Two regions. The threshold region s ⇥ 4m2
� where

R(s) ⇤ 1
4

⇤
1� 4m2

�

s

⌅3/2

and the resonance region s ⇥ m2
⇥ where by quark-hadron duality on average

R(s) ⇤ Nc

⇧
Q2
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The chirally enhanced threshold region gives numerically

ahad,LO
µ (4m2

� ⇥ s ⇥ m2
⇥/2) ⌅ 400�10�11

Compare with the Nc enhanced ⇤ peak,

ahad,LO
µ (⇤) =

m2
µ �(⇤⇧ e+e�)

⇥ m3
⇥

⌅ 5000�10�11

This contribution is enhanced by Nc ,

aµ(⇤) ⇤ c2

��

⇥

⇥2
Nc

m2
µ

m2
⇥

What is a lesson from this exercise? We see that the large Nc enhancement
prevails over chiral one.
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In the chiral perturbation theory         

a2⇤
µ =

1
40

� �

3⇥

⇥2 m2
µ

m2
⇤

⇤
1 + 40 m2

⇤F ⇥
⇤⇤��(0) ln

m⌅

2m⇤

⌅

=
1
40

� �

3⇥

⇥2 m2
µ

m2
⇤

⇤
1 + 40

m2
⇤

m2
⌅

ln
m⌅

2m⇤

⌅

Chiral perturbation theory does not work. The leading term
is suppressed by p-wave nature.       
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In light-by-light

π
0, a 1

π
+

a b

The chirally enhanced pion box contribution does not result in large number, it is
actually rather small,

aLbL
µ (pion box) ⇤ �4⇥10�11 Hayakawa, Kinoshita, Sanda; Melnikov

similarly to the hadronic polarization case above.
A larger value (-19) for the pion box was obtained by Bijnens, Pallante, Prades
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Instability of the number is due to relatively large pion momenta in the loop, of
order of 4m� as we estimated. Then details of the model becomes important and
theoretical control is lost. In HSL model few first terms of m2

�/m2
⇥ expansion are

aµ(charged pion loop)⇥1011 = �46.37+35.46+10.98�4.7+. . . = �4.9

If momenta were small compared with m⇥ the result would be close to the leading
term – free pion loop.

In case of polarization operator the suppression of the leading term in the chiral
expansion (larger momenta) can be related to the p-wave p3 suppression. There
is a suppression for s-wave in two-pion intermediate state near threshold in the
case of LbL.
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P

G

G
G

G
M

0

Hayakawa, Kinoshita, Sanda
Bijnens, Pallante, Prades

Barbieri, Remiddi
Pivovarov

Bartos, Dubničkova,Dubnička, Kuraev, Zemlyanaya
Knecht, Nyffeler

Knecht, Nyffeler, Perrotttet, de Rafael
Ramsey-Musolf, Wise

Blokland, Czarnecki, Melnikov
Melnikov, A.V.

Different models: constituent quark loop, extended Nambu–Jano-Lasinio model
(ENJL), hidden local symmetry (HLS) model . . .
The ⇥0 pole part of LbL contains besides Nc the chiral enhancement in the
logarithmic form, leading to the model-independent analytical expression

aLbL
µ (⇥0) =

��

⇥

⇥3
Nc

m2
µ Nc

48⇥2F 2
�

ln2 m⇥

m�
+ . . .
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However next, model dependent, terms are comparable with the the leading one.
Numerically

aLbL
µ (�0) = 58(10)�10�11 Knecht, Nyffeler

Models
HLS model is a modification the Vector Meson Dominance model.

ENJL model is represented by the following graphs



Massive quark loop (Laporta, Remiddi ’91)

1. Introduction.

From a theoretical point of view the hadronic light–by–light scattering (HLbL) contribution to the
muon magnetic moment is described by the vertex function (see Fig. 1 below):

Γ(H)
µ (p2, p1) = ie6

∫
d4k1

(2π)4

∫
d4k2

(2π)4
Π(H)

µνρσ(q, k1, k3, k2)

k2
1k2

2k2
3

γν (̸p2+ ̸k2−mµ)−1γρ(̸p1− ̸k1−mµ)−1γσ ,

(1)
where mµ is the muon mass and Π(H)

µνρσ(q, k1, k3, k2), with q = p2 −p1 = −k1 −k2 −k3, denotes
the off–shell photon–photon scattering amplitude induced by hadrons,

Π(H)
µνρσ(q, k1, k3, k2) =

∫

d4x1

∫

d4x2

∫

d4x3 exp[−i(k1 · x1+k2 · x2+k3 · x3)]

×⟨0|T{jµ(0) jν(x1) jρ(x2) jσ(x3)}|0⟩ . (2)

Here jµ is the Standard Model electromagnetic current, jµ(x) =
∑

q Qqq̄(x)γµq(x), where Qq

denotes the electric charge of quark q. The external photon with momentum q represents the magnetic

X

μ

q

kkk 21 3

p
1

p2

H

Figure 1: Hadronic light–by–light scattering contribution.

field. We are interested in the limit q → 0 where the current conservation implies that Γ(H)
µ is linear

in q,

Γ(H)
µ = −

aHLbL

4mµ

[γµ , γν ] qν . (3)

The muon anomaly can then be extracted as follows

aHLbL =
−ie6

48mµ

∫
d4k1

(2π)4

∫
d4k2

(2π)4
1

k2
1k2

2k2
3

[
∂

∂qµ
Π(H)

λνρσ(q, k1, k3, k2)

]

q=0

× tr
{

(̸p + mµ)[γµ, γλ](̸p + mµ)γν (̸p+ ̸k2 − mµ)−1γρ(̸p− ̸k1 − mµ)−1γσ
}

.(4)

Unlike the case of the hadronic vacuum polarization (HVP) contribution, there is no direct ex-
perimental input for the hadronic light–by–light scattering (HLbL) so one has to rely on theoretical
approaches. Let us start with the massive quark loop contribution which is known analytically,

aHLbL(quark loop) =

(
α

π

)3

NcQ
4
q

{
[
3

2
ζ(3) −

19

16

]

︸ ︷︷ ︸

0.62

m2
µ

m2
q

+ O

[

m4
µ

m4
q

log2
m2

µ

m2
q

] }

, (5)

where Nc is the number of colors and mq ≫ mµ is implied. It gives a reliable result for the heavy
quarks c , b , t with mq ≫ ΛQCD. Numerically, however, heavy quarks do not contribute much. For

2

For c-quark with the c quark, with mc ≈ 1.5 GeV,

aHLbL(c) = 2.3 × 10−11 . (6)

To get a very rough estimate for the light quarks u, d, s let us use a constituent mass of 300 MeV for
mq . This gives aHLbL(u, d, s) = 64 × 10−11. QCD tells us that the quark loop should be accurate
in describing large virtual momenta, ki ≫ ΛQCD, i.e. short–distances. What is certainly missing
in this constituent quark loop estimate, however, is the low–momenta piece dominated by a neutral
pion–exchange in the light–by–light scattering. Adding up this contribution, discussed in more detail
below, approximately doubles the estimate to aHLbL ≈ 12 × 10−10. While the ballpark of the effect
is given by this rough estimate, a more refined analysis is needed to get its magnitude and evaluate the
accuracy. Details and comparison of different contributions will be discussed below, but it is already
interesting to point out that all existing calculations fall into a range:

aHLbL = (11 ± 4) × 10−10 , (7)

compatible with this rough estimate. The dispersion of the aHLbL results in the literature is not too
bad when compared with the present experimental accuracy of 6.3 × 10−10. However the proposed
new gµ − 2 experiment sets a goal of 1.4 × 10−10 for the error, which calls for a considerable
improvement in the theoretical calculations as well. We believe that theory is up to this challenge;
a further use of theoretical and experimental constraints could result in reaching such accuracy soon
enough.

The history of the evaluation of the hadronic light–by–light scattering contribution is a long one
which can be found in the successive review articles on the subject. In fact, but for the sign error in
the neutral pion exchange discovered in 2002 [1, 2], the theoretical predictions for aHLbL have been
relatively stable over more than ten years.

Here we are interested in highlighting the generic properties of QCD relevant to the evaluation of
Eq. (4), as well as their connection with the most recent model dependent estimates which have been
made so far.

2. QCD in the Large Nc and Chiral Limits

For the light quark components in the electromagnetic current (q = u , d , s) the integration of
the light–by–light scattering over virtual momenta in Eq. (4) is convergent at characteristic hadronic
scales. We choose the mass of the ρ meson mρ to represent that scale. Of course, hadronic physics
at such momenta is non–perturbative and the first question to address is what theoretical parameters
can be used to define an expansion. Two possibilities are: the large number of colors, 1/Nc ≪ 1,
and the smallness of the chiral symmetry breaking, m2

π/m2
ρ ≪ 1. Their relevance can be seen from

the expansion of aHLbL as a power series in these parameters,

aHLbL ∼
(α

π

)3 m2
µ

m2
ρ

[

c1 Nc + c2

m2
ρ

m2
π

+ c3 + O(1/Nc)
]

, (8)

where mπ > mµ is implied. Only the power dependencies are shown; possible chiral logarithms,
ln(mρ/mπ), are included into the coefficients ci.

Terms leading in the large Nc limit

The first term, linear in Nc , comes from the one–particle exchange of a meson M in the HLbL
amplitude, see Fig. 2(a). In principle, the meson M is any neutral, C–even meson. In particular this
includes pseudoscalar mesons π0, η, η′; scalars f0, a0; vectors π0

1 ; pseudovectors a0
1, f1, f∗

1 ; spin 2
tensor and pseudotensor mesons f2, a2, η2, π2 .

The neutral pion exchange is special because of the Goldstone nature of the pion; its mass is much
smaller than the hadronic scale mρ. In aHLbL(π0) this leads to an additional enhancement by two
powers of a chiral logarithm [2],

aHLbL(π0) =
(α

π

)3
Nc

m2
µNc

48π2F 2
π

[

ln2 mρ

mπ

+ O
(

ln
mρ

mπ

)

+ O(1)
]

. (9)
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Terms leading in the large Nc limit

The first term, linear in Nc , comes from the one–particle exchange of a meson M in the HLbL
amplitude, see Fig. 2(a). In principle, the meson M is any neutral, C–even meson. In particular this
includes pseudoscalar mesons π0, η, η′; scalars f0, a0; vectors π0

1 ; pseudovectors a0
1, f1, f∗

1 ; spin 2
tensor and pseudotensor mesons f2, a2, η2, π2 .

The neutral pion exchange is special because of the Goldstone nature of the pion; its mass is much
smaller than the hadronic scale mρ. In aHLbL(π0) this leads to an additional enhancement by two
powers of a chiral logarithm [2],

aHLbL(π0) =
(α

π

)3
Nc

m2
µNc

48π2F 2
π

[

ln2 mρ

mπ

+ O
(

ln
mρ

mπ

)

+ O(1)
]

. (9)
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However next, model dependent, terms are comparable with the the leading one.
Numerically

aLbL
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HLS model is a modification the Vector Meson Dominance model.

ENJL model is represented by the following graphs
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OPE constraints and hadronic model

⇤µ
i (qi) , i = 1, 2, 3, 4,

�
qi = 0

⇤4 represents the external magnetic field f�⇥ = q�
4⇤⇥

4 � q⇥
4⇤

�
4 , q4 ⌅ 0.

The LbL amplitude

M = �2Nc Tr [Q̂4]A = �2Nc Tr [Q̂4]Aµ1µ2µ3�⇥⇤
µ1
1 ⇤µ2

2 ⇤µ3
3 f�⇥

= �e3

⇥
d4xd4y e�iq1x�iq2y ⇤µ1

1 ⇤µ2
2 ⇤µ3

3 ⇧0|T {jµ1(x) jµ2(y) jµ3(0)} |⇥⌃

The electromagnetic current jµ= q̄ Q̂⇥µq, q = {u, d, s}
Three Lorentz invariants: q2

1, q
2
2, q

2
3

Consider the Euclidian range q2
1 ⇥ q2

2 ⇤ q2
3 ⇤ �2

QCD

1. Introduction.

From a theoretical point of view the hadronic light–by–light scattering (HLbL) contribution to the
muon magnetic moment is described by the vertex function (see Fig. 1 below):

Γ(H)
µ (p2, p1) = ie6

∫
d4k1

(2π)4

∫
d4k2

(2π)4
Π(H)

µνρσ(q, k1, k3, k2)

k2
1k2

2k2
3

γν (̸p2+ ̸k2−mµ)−1γρ(̸p1− ̸k1−mµ)−1γσ ,

(1)
where mµ is the muon mass and Π(H)

µνρσ(q, k1, k3, k2), with q = p2 −p1 = −k1 −k2 −k3, denotes
the off–shell photon–photon scattering amplitude induced by hadrons,

Π(H)
µνρσ(q, k1, k3, k2) =

∫

d4x1

∫

d4x2

∫

d4x3 exp[−i(k1 · x1+k2 · x2+k3 · x3)]

×⟨0|T{jµ(0) jν(x1) jρ(x2) jσ(x3)}|0⟩ . (2)

Here jµ is the Standard Model electromagnetic current, jµ(x) =
∑

q Qqq̄(x)γµq(x), where Qq

denotes the electric charge of quark q. The external photon with momentum q represents the magnetic

X

μ

q

kkk 21 3

p
1

p2

H

Figure 1: Hadronic light–by–light scattering contribution.

field. We are interested in the limit q → 0 where the current conservation implies that Γ(H)
µ is linear

in q,

Γ(H)
µ = −

aHLbL

4mµ

[γµ , γν ] qν . (3)

The muon anomaly can then be extracted as follows

aHLbL =
−ie6

48mµ

∫
d4k1

(2π)4

∫
d4k2

(2π)4
1

k2
1k2

2k2
3

[
∂

∂qµ
Π(H)

λνρσ(q, k1, k3, k2)

]

q=0

× tr
{

(̸p + mµ)[γµ, γλ](̸p + mµ)γν (̸p+ ̸k2 − mµ)−1γρ(̸p− ̸k1 − mµ)−1γσ
}

.(4)

Unlike the case of the hadronic vacuum polarization (HVP) contribution, there is no direct ex-
perimental input for the hadronic light–by–light scattering (HLbL) so one has to rely on theoretical
approaches. Let us start with the massive quark loop contribution which is known analytically,

aHLbL(quark loop) =

(
α

π

)3

NcQ
4
q

{
[
3

2
ζ(3) −

19

16

]

︸ ︷︷ ︸

0.62

m2
µ

m2
q

+ O

[

m4
µ

m4
q

log2
m2

µ

m2
q

] }

, (5)

where Nc is the number of colors and mq ≫ mµ is implied. It gives a reliable result for the heavy
quarks c , b , t with mq ≫ ΛQCD. Numerically, however, heavy quarks do not contribute much. For
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Short distance QCD constraints

  Operator Product Expansion leads to constraints

means that the bulk of the contribution does not come from small virtual momenta ki and, therefore,
chiral perturbation theory should not be applied. In other words, the term c3 in Eq. (8) with no chiral
enhancement is comparable with c2(m2

ρ/m2
π). It means that loops with heavier mesons should also

be included.
Breaking of the chiral perturbation theory looks surprising at first sight. Indeed, the inverse chiral

parameter m2
ρ/m2

π ≈ 30 is much larger than Nc = 3. What happens is that the leading terms in the

chiral expansion are numerically suppressed, which makes chiral corrections governed not by m2
π/m2

ρ

but rather by ≈ 40 m2
π/m2

ρ . This can be checked analytically in the case of the HVP contribution

to the muon anomaly. The charged pion loop is also enhanced in this case by a factor m2
ρ/m2

π but

the relative chiral correction due to the pion electromagnetic radius (evaluated with a cutoff at m2
ρ in

the ππ spectral function) is ∼ 40 m2
π/m2

ρ ln(mρ/2mπ). Of course, if the pion mass (together with
the muon mass) would be, say, 5 times smaller than in our real world, the charged pion–loop would
dominate both in the HVP and the HLbL contributions to the muon anomalous magnetic moment.

In concluding this Section, we see that the 1/Nc expansion works reasonably well, so one can use
one–particle exchanges for the HLbL amplitude. On the other hand, chiral enhancement factors are
unreliable, so we cannot limit ourselves to the lightest Goldstone–like states, and this is the case both
for the leading and next–to–leading order in the 1/Nc expansion.

3. Short–Distance QCD Constraints.

The most recent calculations of aHLbL in the literature [1, 6, 8, 9] are all compatible with the QCD
chiral constraints and large–Nc limit discussed above. They all incorporate the π0–exchange contri-
bution modulated by π0γ∗γ∗ form factors F(k2

i , k2
j ), correctly normalized to the π0 → γγ decay

width. They differ, however, in the shape of the form factors, originating in different assumptions:
vector meson dominance (VMD) in a specific form of Hidden Gauge Symmetry (HGS) in Refs. [4, 5, 6];
a different form of VMD in the extended Nambu–Jona-Lasinio model (ENJL) in Ref. [7, 8]; large–Nc

models in Refs. [1, 9]; and on whether or not they satisfy the particular operator product expansion
(OPE) constraint discussed in Ref. [9], upon which we next comment.

Let us consider a specific kinematic configuration of the virtual photon momenta k1, k2, k3 in
the Euclidean domain. In the limit q = 0 these momenta form a triangle, k1 + k2 + k3 = 0,
and we consider the configuration where one side of the triangle is much shorter than the others,
k2
1 ≈ k2

2 ≫ k2
3 . When k2

1 ≈ k2
2 ≫ m2

ρ we can apply the known operator product expansion for the
product of two electromagnetic currents carrying hard moments k1 and k2,

∫

d4x1

∫

d4x2 e−ik1·x1−ik2·x2 jν(x1) jρ(x2) =
2

k̂2
ϵνρδγ k̂δ

∫

d4z e−ik3·z jγ
5 (z) + O

(
1

k̂3

)

. (10)

Here jγ
5 =

∑

q Q2
q q̄γγγ5q is the axial current where different flavors are weighted by squares of their

electric charges and k̂ = (k1 − k2)/2 ≈ k1 ≈ −k2 . As illustrated in Fig. 3 this OPE reduces the
HLbL amplitude, in the special kinematics under consideration, to the AVV triangle amplitude.
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Figure 3: OPE relation between the HLbL scattering and the AVV triangle amplitude.

There are a few things we can learn from the OPE relation in Eq. (10). The first one is that the
pseudoscalar and pseudovector meson exchanges are dominant at large k1,2. Indeed, only 0− and
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fact that chiral perturbation theory does not work in this case. To see that this is indeed what hap-
pens is su�cient to compare the point–like loop result with the model dependent calculations where
form factors are introduced. Two known results, aHLbL(⇡⇡) = �(0.4 ± 0.8) ⇥ 10�10 [4, 5] and
aHLbL(⇡⇡) = �(1.9 ± 0.5) ⇥ 10�10 [7, 8], show a 100% deviation from the point–like number. It
means that the bulk of the contribution does not come from small virtual momenta ki and, therefore,
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vector meson dominance (VMD) in a specific form of Hidden Gauge Symmetry (HGS) in Refs. [4, 5, 6];
a di↵erent form of VMD in the extended Nambu–Jona-Lasinio model (ENJL) in Ref. [7, 8]; large–Nc

models in Refs. [1, 9]; and on whether or not they satisfy the particular operator product expansion
(OPE) constraint discussed in Ref. [9], upon which we next comment.

Let us consider a specific kinematic configuration of the virtual photon momenta k1, k2, k3 in
the Euclidean domain. In the limit q = 0 these momenta form a triangle, k1 + k2 + k3 = 0,
and we consider the configuration where one side of the triangle is much shorter than the others,
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q̄���5q is the axial current where di↵erent flavors are weighted by squares of their

electric charges and k̂ = (k1 � k2)/2 ⇡ k1 ⇡ �k2 . As illustrated in Fig. 3 this OPE reduces the
HLbL amplitude, in the special kinematics under consideration, to the AVV triangle amplitude.

There are a few things we can learn from the OPE relation in Eq. (10). The first one is that the
pseudoscalar and pseudovector meson exchanges are dominant at large k1,2. Indeed, only 0� and
1+ states are coupled to the axial current. It also provides the asymptotic behavior of form factors
at large k2
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. In particular, we see that the ⇡0�⇤�⇤ form factor F(k2, k2) goes as 1/k2 and

similar asymptotics hold for the axial–vector couplings. The relation in Eq. (10) does not imply that
other mesons, like e.g. scalars, do not contribute to HLbL, it is just that their �⇤�⇤ form factors
should fall o↵ faster at large k2
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The AVV triangle amplitude consists of two parts: the anomalous, longitudinal part and the non–
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  In the range where                     and

Contribution to aHLbL from scalar exchanges

The ENJL–model should give a good estimate for these contributions. We keep, therefore, the result of
Ref. [7, 8] with, however, a larger error which covers the e↵ect of other unaccounted meson exchanges,

aHLbL(scalars) = �(0.7 ± 0.7) ⇥ 10�10 . (14)

Contribution to aHLbL from a dressed pion loop

Because of the instability of the results for the charged pion loop and unaccounted loops of other
mesons, we suggest using the central value of the ENJL result but wit a larger error:
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Perturbative and nonperturbative
triangle amplitudes  

II. HADRONIC CORRECTIONS TO QUARK TRIANGLES

We follow Ref. [1] in notations and definitions. Let us start with a definition of vector,
jµ , and axial, j5

ν, currents,

jµ = q̄ V γµq, j5
ν = q̄ Aγνγ5q , (1)

where the quark field qi
f has color (i) and flavor (f ) indices and the matrices V and A are

diagonal matrices of vector and axial couplings acting on flavor indexes. To avoid dealing
with the U(1) anomaly in respect to gluon interactions we assume that Tr A = 0 . In the
case of electroweak corrections one can view the vector current as an electromagnetic one
with V being the matrix of electric charges and j5

ν as the axial part of the Z boson current
with matrix A given by the weak isospin projection.

The amplitude for the triangle diagram in Fig. 1 involving the axial current j5
ν and two
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(a) (b)

FIG. 1: Quark triangle, diagram (a), and a gluon correction to it, diagram (b) .

vector currents jµ and j̃γ = q̄ Ṽ γµq (for generality we use a different matrix Ṽ for the soft
momentum current) can be written as

Tµγν = −
∫

d4xd4y eiqx−iky ⟨0| T{jµ(x) j̃γ(y) j5
ν(0)}|0⟩ . (2)

We can view the current j̃γ as a source of a soft photon with the momentum k . Introducing
a polarization vector of a soft photon eγ(k) we come to the amplitude Tµν

Tµν = Tµγνeγ(k) = i
∫

d4x eiqx ⟨0| T{jµ(x) j5
ν(0)}| γ(k)⟩ , (3)

which can be viewed as a mixing between the axial and vector currents in the external
electromagnetic field.

It is clear that the expansion of Tµν in the small momentum k starts with linear terms
and we neglect quadratic and higher powers of k. There are only two Lorentz structures for
Tµν which are linear in k and consistent with the conservation of electromagnetic current,

Tµν = −
i

4π2

[
wT(q2)

(
−q2f̃µν + qµqσf̃σν − qνqσf̃σµ

)
+ wL(q2) qνqσf̃σµ

]
, (4)

f̃µν =
1

2
ϵµνγδf

γδ , fµν = kµeν − kνeµ .
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Both structures are transversal with respect to vector current, qµTµν = 0. As for the axial
current, the first structure is transversal with respect to qν while the second is longitudinal.

The one-loop result for the invariant functions wT and wL can be taken from the classic
papers by Bell and Jackiw [6], Adler [7] and Rosenberg [8] (it simplifies considerably in the
limit of the small photon momentum [9]),

w1−loop
L = 2 w1−loop

T = 2Nc Tr A V Ṽ
∫ 1

0

dα α(1 − α)

α(1 − α)Q2 + m2
, (5)

where Q2 = q2 , the factor Nc accounts for the color of quarks and m is the diagonal
quark mass matrix, m = diag{mq1

, mq2
, . . .}. In the chiral limit, m = 0, the invariant

functions wT,L are

w1−loop
L [m = 0] = 2 w1−loop

T [m = 0] =
2Nc Tr (A V Ṽ )

Q2
. (6)

Nonvanishing in the chiral limit, m = 0 , the longitudinal part qνTµν represents the axial
anomaly [6, 7],

qνTµν =
i

4π2
Q2wL qσf̃σµ =

i

2π2
Nc Tr (A V Ṽ ) qσf̃σµ , (7)

and its nonrenormalization implies that the one-loop result (6) for wL stays intact when
interaction with gluons is switched on.

A. Nonrenormalization theorem for the transversal part of the triangle

We claim that the relation

wL[m = 0] = 2 wT [m = 0] (8)

which holds at the one-loop level, see Eq. (6), gets no perturbative corrections from gluon
exchanges. This follows from the following line of argumentation.

In the chosen kinematics the fermion triangle with m = 0 possesses a special feature:
namely, a symmetry under permutation of indexes of axial and vector currents, µ ↔ ν .
Indeed, in the triangle diagrams (a) and (b) in Fig. 1 one can move γ5 from the axial vertex
γνγ5 to the vector vertex γµ . In the chiral limit it moves via even number of gamma
matrices in any order of perturbation theory. Together with the change of the momentum
q → −q (which does not affect Tµν) it shows the symmetry of the amplitude Tµν .

At first glance the symmetry under the µ ↔ ν permutation seems to be in contradiction
with the general decomposition (4): the transversal part of Tµν is antisymmetric, the longi-
tudinal part has no symmetry, and there is no way to choose wT and wL which makes the
Tµν symmetric. Note, however, that the term q2f̃µν in the transversal structure in Eq. (4)
actually produces a term in Tµν which does not depend on q. It is because wT ∝ 1/q2.
The µ ↔ ν symmetry holds for a singular in q part of Tµν when the condition (8) relating
wT to wL is fulfilled. The constant in q part is then fixed by the conservation of the vector
current, qµTµν = 0 . An independence on q for the antisymmetric part provides, in fact,
an alternative proof of the Adler-Bardeen theorem. Indeed, gluon corrections would lead to
logarithmic dependence on q instead of the constant.

3
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Hadronic corrections for quark triangles

How good is the one-loop approximation for wL and wT? This question pertains to

strong interaction effects for quark loops.

j ν

γ ν γ 5 µγ

jµ

γj
~

5

First, about perturbative corrections at Q⇥ mq.

The longitudinal function wL is protected by

Adler-Bardeen nonrenormalization theorem.

What about the transversal function wT? It

turn out that the �s corrections in wT are

also absent at Q ⇥ mq due to the new non-

renormalization theorem based on

wT [mq = 0] =
1
2

wL[mq = 0] A.V. ’02

No �s corrections in chiral limit ! For heavy quarks perturbative corrections show up

at Q � mq, they are regulated by small �s(mq) in aµ .

No pertubative corrections both in 
longitudinal and transversal parts in 
the chiral limit. Pole in the longitudinal
part corresponds to massless pion.

Nonrenormalization theorem 

Czarnecki, Marciano, AV ‘02
AV ‘02

Knecht, Peris, Perrottet, de Rafael ’03

But it should be no massless pole in the transversal part. 
A shift from zero is provided by nonperturbative effects.
Four-fermion operators in OPE.

! Z

q q

due to the explicit breaking of the chiral symmetry by quark masses,1

wL[u, d] =
2

Q2 + m2
�

. (54)

To find the contribution of wL[u, d] to aEW
µ one needs to use the more accurate Eq. (16),

rather than Eq. (17), because the integral is dominated by momenta Q ⇥ m� comparable
with mµ,

�aL
µ[e, u, d] = �

�

⇥

Gµm2
µ

8⇥2
⇤

2

⇧
 

⌥2 ln
m2

�
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+
8

3
+

4

3

↵ 1

0
d�(1 + �) ln A

+4
m2

�

m2
µ

�

⇤
↵ 1

0
d�(1 � �)2 ln A �

1

3
ln

m2
�

m2
µ

+
2

9

⇥

⌅

⌃
⌦

� , (55)

where A = � + (1 � �)2(m2
µ/m2

�). Numerically it gives

�aL
µ[e, u, d] = �

�

⇥

Gµm2
µ

8⇥2
⇤

2
· 2.58 = �0.7 · 10�11 . (56)

The transversal function wT [u, d] can be modeled as a linear combination of two pole
terms: one is due to the ⇤(770) vector meson, another due to the a1(1260) axial vector
meson,

wT [u, d] =
1

m2
a1

� m2
⇥

�

⇤m2
a1

� m2
�

Q2 + m2
⇥

�
m2

⇥ � m2
�

Q2 + m2
a1

⇥

⌅ . (57)

The residues in this expression are fixed by two conditions at large Q which follow from
the OPE expression (50) plus the d = 3 terms (41) breaking chiral symmetry. The first
condition is on the coe�cient of the leading 1/Q2 term, the second condition is for the
coe�cient of 1/Q4 . The term 1/Q6 in (50) allows for an extra test of the model. The
expression (57) gives �(0.96 GeV)4 to be compared with �(0.71 GeV)4 in the OPE
based (50). Agreement is not extremely good but the right sign and order of magnitude are
encouraging. Since the OPE 1/Q6 estimate is very approximate, we use (57) for numerical
estimates.

For the integral over Q defining the contribution of wT [u, d], we can use the simpler
expression (17) neglecting m2

µ/m2
⇥ corrections,

�aT
µ[e, u, d] = �

�
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Gµm2
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8⇥2
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ln
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+
3

2

⌃
⌦

� , (58)

which gives numerically

�aT
µ[e, u, d] = �

�

⇥

Gµm2
µ

8⇥2
⇤

2
· 4.88 = �1.32 · 10�11 . (59)

1 It is just this shift which allows one to derive [23] the expression in (44) by comparison of the 1/Q4 terms
with the OPE.
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Dispersive approach and pion exchange 

The one-pion exchange is represented by the diagram

Pion transition FFs are input for a numerical analysis of the master formula: 
formulation of a dispersive framework in 

From the unitarity relation with only π0 intermediate state, the pole residues in 
each channel are given by products of doubly-virtual and singly-virtual pion 
transition form factors (         and          )

Intro HLbL: gauge & crossing HLbL dispersive Conclusions Master Formula Dispersive calc. π
0 TFF π-box π-resc.

Setting up the dispersive calculation
We split the HLbL tensor as follows:

Πµνλσ = Ππ0-pole
µνλσ + ΠFsQED

µνλσ + Π̄µνλσ + · · ·

Pion pole: known
Projection on the BTT basis: done
Our master formula=explicit expressions in the literature

4 Mandelstam Representation

Pion pole

• input: doubly-virtual and
singly-virtual pion transition form
factors F����⇥0 and F���⇥0

• dispersive analysis of transition
form factor:
� Hoferichter et al., EPJC 74 (2014) 3180

25
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Hoferichter et al. (2014)
In application to g-2 we take the limit           ,  so come to

a way to uncover renormalization of a given theory. Moreover, the supercurrent
supermultiplet (to be referred to as hypercurrent) starts from the U(1)R current;
therefore the overall anomaly is determined by the index theorem for the appropriate
Dirac operator.

To explain the nature of heterotic modifications let us start with reminding ge-
ometry of unmodified N =(2, 2) sigma models. It was pointed out by Zumino [18]
that the target space of these models should have the Kähler geometry. Moreover, to
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Let me comment on the procedure of dispersion recon-
struction suggested by Colangelo, Hoferichter, Procura and 
Stoffer.
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On the other hand, if we put          at the beginning and 
use dispersion relations in the variable     ,  we come to

Contribution to aHLbL from scalar exchanges

The ENJL–model should give a good estimate for these contributions. We keep, therefore, the result of
Ref. [7, 8] with, however, a larger error which covers the e↵ect of other unaccounted meson exchanges,

aHLbL(scalars) = �(0.7 ± 0.7) ⇥ 10�10 . (14)

Contribution to aHLbL from a dressed pion loop

Because of the instability of the results for the charged pion loop and unaccounted loops of other
mesons, we suggest using the central value of the ENJL result but wit a larger error:

aHLbL(⇡�dressed loop) = �(1.9 ± 1.9) ⇥ 10�10 . (15)

From these considerations, adding the errors in quadrature, as well as the small charm contribution
in Eq. (6), we get

aHLbL

µ
= (105 ± 26) ⇥ 10�11 , (16)

as our final estimate.
ki ⌧ mh

k2(J�2)

J > 2

1+, 1�

0+, 0�, 2+, 2�

q ! 0

fµ⌫

i
= kµ

i
✏⌫
i
� k⌫

i
✏µ
i

A=
4

k2

3
k̂2

{f2f̃1}{f̃f3}

�
4

k2

3
k̂4

✓
{k2f2f̃1f̃f3k3}+{k1f1f̃2f̃f3k3}+

k2

1
+ k2

2

4
{f2f̃1}{f̃f3}

◆
+· · · (17)

Z
d4x1

Z
d4x2 e

�iq1·x1�iq2·x2 T{j⌫(x1), j⇢(x2)} =
2

q̂2
✏⌫⇢�� q̂

�

Z
d4z e�i(q1+q2)·z j�

5
(z)+O

✓
1

q̂3

◆
.

q4 = 0

k2

1
⇡ k2

2
� k2

3

k2

3
� ⇤2

QCD

lnm⇢/m⇡

M = ⇡0, ⌘, ⌘0, a0, a1, . . .

Large number of colors, Nc

⇡+⇡�

�4 ⇥ 10�11

�19 ⇥ 10�11

aHLbL

µ
(charged pion loop) = �71 ⇥ 10�11 , (18)

9

Contribution to aHLbL from scalar exchanges

The ENJL–model should give a good estimate for these contributions. We keep, therefore, the result of
Ref. [7, 8] with, however, a larger error which covers the e↵ect of other unaccounted meson exchanges,

aHLbL(scalars) = �(0.7 ± 0.7) ⇥ 10�10 . (14)

Contribution to aHLbL from a dressed pion loop

Because of the instability of the results for the charged pion loop and unaccounted loops of other
mesons, we suggest using the central value of the ENJL result but wit a larger error:

aHLbL(⇡�dressed loop) = �(1.9 ± 1.9) ⇥ 10�10 . (15)

From these considerations, adding the errors in quadrature, as well as the small charm contribution
in Eq. (6), we get

aHLbL

µ
= (105 ± 26) ⇥ 10�11 , (16)

as our final estimate.
ki ⌧ mh

k2(J�2)

J > 2

1+, 1�

0+, 0�, 2+, 2�

q ! 0

fµ⌫

i
= kµ

i
✏⌫
i
� k⌫

i
✏µ
i

A=
4

k2

3
k̂2

{f2f̃1}{f̃f3}

�
4

k2

3
k̂4

✓
{k2f2f̃1f̃f3k3}+{k1f1f̃2f̃f3k3}+

k2

1
+ k2

2

4
{f2f̃1}{f̃f3}

◆
+· · · (17)

Z
d4x1

Z
d4x2 e

�iq1·x1�iq2·x2 T{j⌫(x1), j⇢(x2)} =
2

q̂2
✏⌫⇢�� q̂

�

Z
d4z e�i(q1+q2)·z j�

5
(z)+O

✓
1

q̂3

◆
.

q4 = 0

q2

3

k2

1
⇡ k2

2
� k2

3

k2

3
� ⇤2

QCD

lnm⇢/m⇡

M = ⇡0, ⌘, ⌘0, a0, a1, . . .

Large number of colors, Nc

⇡+⇡�

�4 ⇥ 10�11

�19 ⇥ 10�11

9
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where suppression due to the transitional form factor is 
absent.  The difference 
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The ENJL–model should give a good estimate for these contributions. We keep, therefore, the result of
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is the smooth function near the pion pole but should be 
explained. I’ll return to an explanation a bit later.  
    We can use the short distance constraints from OPE to 
verify the absence of the transition form factor in the 
vertex with the soft photon.



We discuss the isovector part of the axial current     
relevant to the pion exchange.  We also implying the chiral 
limit            .

Then the longitudinal part of the axial current associated 
with pion exchange is fixed by the ABJ anomaly, 

Contribution to aHLbL from scalar exchanges

The ENJL–model should give a good estimate for these contributions. We keep, therefore, the result of
Ref. [7, 8] with, however, a larger error which covers the e↵ect of other unaccounted meson exchanges,

aHLbL(scalars) = �(0.7 ± 0.7) ⇥ 10�10 . (14)

Contribution to aHLbL from a dressed pion loop

Because of the instability of the results for the charged pion loop and unaccounted loops of other
mesons, we suggest using the central value of the ENJL result but wit a larger error:

aHLbL(⇡�dressed loop) = �(1.9 ± 1.9) ⇥ 10�10 . (15)

From these considerations, adding the errors in quadrature, as well as the small charm contribution
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Contribution to aHLbL from scalar exchanges

The ENJL–model should give a good estimate for these contributions. We keep, therefore, the result of
Ref. [7, 8] with, however, a larger error which covers the e↵ect of other unaccounted meson exchanges,

aHLbL(scalars) = �(0.7 ± 0.7) ⇥ 10�10 . (14)

Contribution to aHLbL from a dressed pion loop

Because of the instability of the results for the charged pion loop and unaccounted loops of other
mesons, we suggest using the central value of the ENJL result but wit a larger error:

aHLbL(⇡�dressed loop) = �(1.9 ± 1.9) ⇥ 10�10 . (15)

From these considerations, adding the errors in quadrature, as well as the small charm contribution
in Eq. (6), we get
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Contribution to aHLbL from scalar exchanges

The ENJL–model should give a good estimate for these contributions. We keep, therefore, the result of
Ref. [?, ?] with, however, a larger error which covers the e↵ect of other unaccounted meson exchanges,

aHLbL(scalars) = �(0.7 ± 0.7) ⇥ 10�10 . (14)

Contribution to aHLbL from a dressed pion loop

Because of the instability of the results for the charged pion loop and unaccounted loops of other
mesons, we suggest using the central value of the ENJL result but wit a larger error:

aHLbL(⇡�dressed loop) = �(1.9 ± 1.9) ⇥ 10�10 . (15)

From these considerations, adding the errors in quadrature, as well as the small charm contribution
in Eq. (??), we get

aHLbL
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= (105 ± 26) ⇥ 10�11 , (16)

as our final estimate.
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It means that the longitudinal part of the axial current 
matrix element                          is completely fixed at any   
         . No transition form factor present! It is just 
nonrenormalization of the axial anomaly. 

Note, that another form factor                   is represented 
by      factor in the OPE which is just the asymptotic of this 
form factor.            

Contribution to aHLbL from scalar exchanges

The ENJL–model should give a good estimate for these contributions. We keep, therefore, the result of
Ref. [7, 8] with, however, a larger error which covers the e↵ect of other unaccounted meson exchanges,

aHLbL(scalars) = �(0.7 ± 0.7) ⇥ 10�10 . (14)

Contribution to aHLbL from a dressed pion loop

Because of the instability of the results for the charged pion loop and unaccounted loops of other
mesons, we suggest using the central value of the ENJL result but wit a larger error:

aHLbL(⇡�dressed loop) = �(1.9 ± 1.9) ⇥ 10�10 . (15)

From these considerations, adding the errors in quadrature, as well as the small charm contribution
in Eq. (6), we get

aHLbL

µ
= (105 ± 26) ⇥ 10�11 , (16)

as our final estimate.
ki ⌧ mh

k2(J�2)

J > 2

1+, 1�

0+, 0�, 2+, 2�

q ! 0

fµ⌫

i
= kµ

i
✏⌫
i
� k⌫

i
✏µ
i

A=
4

k2

3
k̂2

{f2f̃1}{f̃f3}

�
4

k2

3
k̂4

✓
{k2f2f̃1f̃f3k3}+{k1f1f̃2f̃f3k3}+

k2

1
+ k2

2

4
{f2f̃1}{f̃f3}

◆
+· · · (17)

Z
d4x1

Z
d4x2 e

�iq1·x1�iq2·x2T{j⌫(x1), j⇢(x2)}=

2

q̂2
✏⌫⇢�� q̂

�

Z
d4z e�i(q1+q2)·z j�

5
(z)+O

✓
1

q̂3

◆
.

q4 = 0

m2

⇡
= 0

@�j
�

5
= CFµ⌫F̃

µ⌫

h0| j�
5
|�(q3), �(q4)i

q2

3

q2

1
⇠ q2

2
� s, t, q2

3
, q2

4

F�⇤�⇤⇡(q
2

1
, q2

2
)

1

q2

3
� m2

⇡

F�⇤�⇡(m
2

⇡
, 0)

9

Contribution to aHLbL from scalar exchanges

The ENJL–model should give a good estimate for these contributions. We keep, therefore, the result of
Ref. [7, 8] with, however, a larger error which covers the e↵ect of other unaccounted meson exchanges,

aHLbL(scalars) = �(0.7 ± 0.7) ⇥ 10�10 . (14)

Contribution to aHLbL from a dressed pion loop

Because of the instability of the results for the charged pion loop and unaccounted loops of other
mesons, we suggest using the central value of the ENJL result but wit a larger error:

aHLbL(⇡�dressed loop) = �(1.9 ± 1.9) ⇥ 10�10 . (15)

From these considerations, adding the errors in quadrature, as well as the small charm contribution
in Eq. (6), we get

aHLbL

µ
= (105 ± 26) ⇥ 10�11 , (16)

as our final estimate.
ki ⌧ mh

k2(J�2)

J > 2

1+, 1�

0+, 0�, 2+, 2�

q ! 0

fµ⌫

i
= kµ

i
✏⌫
i
� k⌫

i
✏µ
i

A=
4

k2

3
k̂2

{f2f̃1}{f̃f3}

�
4

k2

3
k̂4

✓
{k2f2f̃1f̃f3k3}+{k1f1f̃2f̃f3k3}+

k2

1
+ k2

2

4
{f2f̃1}{f̃f3}

◆
+· · · (17)

Z
d4x1

Z
d4x2 e

�iq1·x1�iq2·x2T{j⌫(x1), j⇢(x2)}=

2

q̂2
✏⌫⇢�� q̂

�

Z
d4z e�i(q1+q2)·z j�

5
(z)+O

✓
1

q̂3

◆
.

q4 = 0

m2

⇡
= 0

@�j
�

5
= CFµ⌫F̃

µ⌫

q3, q4

h0| j�
5
|�(q3), �(q4)i

q2

3

q2

1
⇠ q2

2
� s, t, q2

3
, q2

4

F�⇤�⇤⇡(q
2

1
, q2

2
)

1

q2

3
� m2

⇡

F�⇤�⇡(m
2

⇡
, 0)

9

Contribution to aHLbL from scalar exchanges

The ENJL–model should give a good estimate for these contributions. We keep, therefore, the result of
Ref. [7, 8] with, however, a larger error which covers the e↵ect of other unaccounted meson exchanges,

aHLbL(scalars) = �(0.7 ± 0.7) ⇥ 10�10 . (14)

Contribution to aHLbL from a dressed pion loop

Because of the instability of the results for the charged pion loop and unaccounted loops of other
mesons, we suggest using the central value of the ENJL result but wit a larger error:

aHLbL(⇡�dressed loop) = �(1.9 ± 1.9) ⇥ 10�10 . (15)

From these considerations, adding the errors in quadrature, as well as the small charm contribution
in Eq. (6), we get

aHLbL

µ
= (105 ± 26) ⇥ 10�11 , (16)

as our final estimate.
ki ⌧ mh

k2(J�2)

J > 2

1+, 1�

0+, 0�, 2+, 2�

q ! 0

fµ⌫

i
= kµ

i
✏⌫
i
� k⌫

i
✏µ
i

A=
4

k2

3
k̂2

{f2f̃1}{f̃f3}

�
4

k2

3
k̂4

✓
{k2f2f̃1f̃f3k3}+{k1f1f̃2f̃f3k3}+

k2

1
+ k2

2

4
{f2f̃1}{f̃f3}

◆
+· · · (17)

Z
d4x1

Z
d4x2 e

�iq1·x1�iq2·x2T{j⌫(x1), j⇢(x2)}=

2

q̂2
✏⌫⇢�� q̂

�

Z
d4z e�i(q1+q2)·z j�

5
(z)+O

✓
1

q̂3

◆
.

q4 = 0

m2

⇡
= 0

@�j
�

5
= CFµ⌫F̃

µ⌫

q3, q4

h0| j�
5
|�(q3), �(q4)i

q2

3

q2

1
⇠ q2

2
� s, t, q2

3
, q2

4

F�⇤�⇤⇡(q
2

1
, q2

2
)

1

q2

3
� m2

⇡

F�⇤�⇡(m
2

⇡
, 0)

9
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difference between different limits.  The difference should 
be attributed to the transversal part of the axial current, 
i.e., it is a part of axial vector particles exchange. This, 
actually, was discussed long ago in our with Prades and de 
Rafael Glasgow white paper of 2008. In difference with the 
longitudinal part corrections to the transversal part of the 
AVV triangle do exist.



Summary for LbL 
In our ’08 mini-review with Prades, de Rafael we 
combined different calculations with some educated 
guesses about possible errors to come to:

Ref. [7, 8] with, however, a larger error which covers the effect of other unaccounted meson exchanges,

aHLbL(scalars) = −(0.7 ± 0.7) × 10−10 . (14)

Contribution to aHLbL from a dressed pion loop

Because of the instability of the results for the charged pion loop and unaccounted loops of other
mesons, we suggest using the central value of the ENJL result but wit a larger error:

aHLbL(π−dressed loop) = −(1.9 ± 1.9) × 10−10 . (15)

From these considerations, adding the errors in quadrature, as well as the small charm contribution
in Eq. (6), we get

aHLbL = (105 ± 26) × 10−11 , (16)

as our final estimate.
We wish to emphasize, however, that this is only what we consider to be our best estimate at

present. In view of the proposed new gµ−2 experiment, it would be nice to have more independent
calculations in order to make this estimate more robust. More experimental information on the decays
π0 → γγ∗, π0 → γ∗γ∗ and π0 → e+e− (with radiative corrections included) could also help to
confirm the result of the main contribution in Eq. (12).

More theoretical work is certainly needed for a better understanding of the other contributions
which, although smaller than the one from pseudoscalar exchanges, have nevertheless large uncertain-
ties. This refers, in particular, to pseudovector exchanges in Eq. (13) but other C-even exchanges are
also important. Experimental data on radiative decays and two-photon production of C-even reso-
nances could be helpful. An evaluation of 1/Nc–suppresed loop contributions present even a more
difficult task. New approaches to the dressed pion loop contribution, in parallel with experimental in-
formation on the vertex π+π−γ∗γ∗, would be very welcome. Again, measurement of the two-photon
processes like e+e− → e+e−π+π− could give some information on that vertex and help to reduce
the model dependence and therefore the present uncertainty in Eq. (15).
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However the error estimates are quite subjective and 
further study of different exchanges is certainly needed.
Experimental data on two-photon production and 
radiative decays can be a help.
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Figure 2: Diagrams for HLbL: (a) meson exchanges, (b) the charged pion loop, the blob denotes the full
γ∗γ∗ → π+π− amplitude.

Here the π0γγ coupling is fixed by the Adler–Bell–Jackiw anomaly in terms of the pion decay constant
Fπ ≈ 92 MeV. This constant is O

(√
Nc

)

, therefore Nc/F 2
π behaves as a constant in the large–Nc

limit . The mass of the ρ plays the role of an ultraviolet scale in the integration over ki in Eq. (4)
while the pion mass provides the infrared scale. Of course, the muon mass is also important at low
momenta but one can keep the ratio mµ/mπ fixed in the chiral limit.

Equation (9) provides the result for aHLbL for the term leading in the 1/Nc expansion in the
chiral limit where the pion mass is much less than the next hadronic scale. In this limit the dominant
neutral pion exchange produces the characteristic universal double logarithmic behavior with the exact
coefficient given in Eq. (9). Testing this limit was particularly useful in fixing the sign of the neutral
pion exchange.

Although the coefficient of the ln2(mρ/mπ) term in Eq. (9) is unambiguous, the coefficient of the
ln(mρ/mπ) term depends on low–energy constants which are difficult to extract from experiment [2,
3] (they require a detailed knowledge of the π0 → e+e− decay rate with inclusion of radiative
corrections). Model dependent estimates of the single logarithmic term as well as the constant term
show that these terms are not suppressed. It means that we cannot rely on chiral perturbation theory
and have to adopt a dynamical framework which takes into account explicitly the heavier meson
exchanges as well.

Note that the overall sign of the pion exchange, for physical values of the masses, is much less
model dependent than the previous chiral perturbation theory analysis seems to imply. In fact, if the
π0γ∗γ∗ form factor does not change its sign in the Euclidean range of integration over ki, the overall
sign is fixed even without knowledge of the form factor. This implies the same positive sign without
use of the chiral limit, i.e. the same sign for exchanges of heavier pseudoscalars, JP C = 0−+, where
no large logarithms are present. Moreover, one can verify the same positive sign for exchanges by
mesons with JP C = 1++, 2−+ with an additional assumption about dominance of one of the form
factors. Exchanges with JP C = 0++, 1−+, 2++ give, however, contributions with a negative sign
to aHLbL under similar assumptions, but they are much smaller.

Next–to–leading terms in the large Nc limit

Now let us turn to the next–to–leading terms in 1/Nc expansion. Generically these terms are due
to two–particle exchanges in the HLbL amplitude, see the diagram in Fig. 2(b) with π+π− substi-
tuted by any two meson states. What is specific about the charged pion loop is its strong chiral
enhancement which is not just logarithmic but power–like in this case. In Eq. (8) it is reflected in the
term c2 m2

ρ/m2
π . The point–like pion loop calculation which gives aHLbL(ππ) = −4.6 × 10−10

corresponds to c2 = −0.065. The rather small value of c2 can be contrasted with the one of the
coefficient c1 which is not suppressed: c1 ≈ 1.7. As we will see the smallness of c2 is related to the
fact that chiral perturbation theory does not work in this case. To see that this is indeed what hap-
pens is sufficient to compare the point–like loop result with the model dependent calculations where
form factors are introduced. Two known results, aHLbL(ππ) = −(0.4 ± 0.8) × 10−10 [4, 5] and
aHLbL(ππ) = −(1.9 ± 0.5) × 10−10 [7, 8], show a 100% deviation from the point–like number. It

4

the c quark, with mc ≈ 1.5 GeV,

aHLbL(c) = 0.23 × 10−10 . (6)

To get a very rough estimate for the light quarks u, d, s let us use a constituent mass of 300 MeV
for mq . This gives aHLbL(u, d, s) = 6.4 × 10−10. QCD tells us that the quark loop should be
accurate in describing large virtual momenta, ki ≫ ΛQCD, i.e. short–distances. What is certainly
missing in this constituent quark loop estimate, however, is the low–momenta piece dominated by
a neutral pion–exchange in the light–by–light scattering. Adding up this contribution, discussed in
more detail below, approximately doubles the estimate to aHLbL ≈ 12 × 10−10. While the ballpark
of the effect is given by this rough estimate, a more refined analysis is needed to get its magnitude
and evaluate the accuracy. Details and comparison of different contributions will be discussed below,
but it is already interesting to point out that all existing calculations fall into a range:

aHLbL = (11 ± 4) × 10−10 , (7)

compatible with this rough estimate. The dispersion of the aHLbL results in the literature is not too
bad when compared with the present experimental accuracy of 6.3 × 10−10. However the proposed
new gµ − 2 experiment sets a goal of 1.4 × 10−10 for the error, which calls for a considerable
improvement in the theoretical calculations as well. We believe that theory is up to this challenge;
a further use of theoretical and experimental constraints could result in reaching such accuracy soon
enough.

The history of the evaluation of the hadronic light–by–light scattering contribution is a long one
which can be found in the successive review articles on the subject. In fact, but for the sign error in
the neutral pion exchange discovered in 2002 [1, 2], the theoretical predictions for aHLbL have been
relatively stable over more than ten years.

Here we are interested in highlighting the generic properties of QCD relevant to the evaluation of
Eq. (4), as well as their connection with the most recent model dependent estimates which have been
made so far.

2. QCD in the Large Nc and Chiral Limits

For the light quark components in the electromagnetic current (q = u , d , s) the integration of
the light–by–light scattering over virtual momenta in Eq. (4) is convergent at characteristic hadronic
scales. We choose the mass of the ρ meson mρ to represent that scale. Of course, hadronic physics
at such momenta is non–perturbative and the first question to address is what theoretical parameters
can be used to define an expansion. Two possibilities are: the large number of colors, 1/Nc ≪ 1,
and the smallness of the chiral symmetry breaking, m2

π/m2
ρ ≪ 1. Their relevance can be seen from

the expansion of aHLbL as a power series in these parameters,

aHLbL ∼
(α

π

)3 m2
µ

m2
ρ

[

c1 Nc + c2

m2
ρ

m2
π

+ c3 + O(1/Nc)
]

, (8)

where mπ > mµ is implied. Only the power dependencies are shown; possible chiral logarithms,
ln(mρ/mπ), are included into the coefficients ci.

Terms leading in the large Nc limit

The first term, linear in Nc , comes from the one–particle exchange of a meson M in the HLbL
amplitude, see Fig. 2(a). In principle, the meson M is any neutral, C–even meson. In particular this
includes pseudoscalar mesons π0, η, η′; scalars f0, a0; vectors π0

1 ; pseudovectors a0
1, f1, f∗

1 ; spin 2
tensor and pseudotensor mesons f2, a2, η2, π2 .

The neutral pion exchange is special because of the Goldstone nature of the pion; its mass is much
smaller than the hadronic scale mρ. In aHLbL(π0) this leads to an additional enhancement by two
powers of a chiral logarithm [2],

aHLbL(π0) =
(α

π

)3
Nc

m2
µNc

48π2F 2
π

[

ln2 mρ

mπ

+ O
(

ln
mρ

mπ

)

+ O(1)
]

. (9)
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for mq . This gives aHLbL(u, d, s) = 6.4 × 10−10. QCD tells us that the quark loop should be
accurate in describing large virtual momenta, ki ≫ ΛQCD, i.e. short–distances. What is certainly
missing in this constituent quark loop estimate, however, is the low–momenta piece dominated by
a neutral pion–exchange in the light–by–light scattering. Adding up this contribution, discussed in
more detail below, approximately doubles the estimate to aHLbL ≈ 12 × 10−10. While the ballpark
of the effect is given by this rough estimate, a more refined analysis is needed to get its magnitude
and evaluate the accuracy. Details and comparison of different contributions will be discussed below,
but it is already interesting to point out that all existing calculations fall into a range:

aHLbL = (11 ± 4) × 10−10 , (7)

compatible with this rough estimate. The dispersion of the aHLbL results in the literature is not too
bad when compared with the present experimental accuracy of 6.3 × 10−10. However the proposed
new gµ − 2 experiment sets a goal of 1.4 × 10−10 for the error, which calls for a considerable
improvement in the theoretical calculations as well. We believe that theory is up to this challenge;
a further use of theoretical and experimental constraints could result in reaching such accuracy soon
enough.

The history of the evaluation of the hadronic light–by–light scattering contribution is a long one
which can be found in the successive review articles on the subject. In fact, but for the sign error in
the neutral pion exchange discovered in 2002 [1, 2], the theoretical predictions for aHLbL have been
relatively stable over more than ten years.

Here we are interested in highlighting the generic properties of QCD relevant to the evaluation of
Eq. (4), as well as their connection with the most recent model dependent estimates which have been
made so far.

2. QCD in the Large Nc and Chiral Limits

For the light quark components in the electromagnetic current (q = u , d , s) the integration of
the light–by–light scattering over virtual momenta in Eq. (4) is convergent at characteristic hadronic
scales. We choose the mass of the ρ meson mρ to represent that scale. Of course, hadronic physics
at such momenta is non–perturbative and the first question to address is what theoretical parameters
can be used to define an expansion. Two possibilities are: the large number of colors, 1/Nc ≪ 1,
and the smallness of the chiral symmetry breaking, m2

π/m2
ρ ≪ 1. Their relevance can be seen from

the expansion of aHLbL as a power series in these parameters,

aHLbL ∼
(α

π

)3 m2
µ

m2
ρ

[

c1 Nc + c2

m2
ρ

m2
π

+ c3 + O(1/Nc)
]

, (8)

where mπ > mµ is implied. Only the power dependencies are shown; possible chiral logarithms,
ln(mρ/mπ), are included into the coefficients ci.

Terms leading in the large Nc limit

The first term, linear in Nc , comes from the one–particle exchange of a meson M in the HLbL
amplitude, see Fig. 2(a). In principle, the meson M is any neutral, C–even meson. In particular this
includes pseudoscalar mesons π0, η, η′; scalars f0, a0; vectors π0

1 ; pseudovectors a0
1, f1, f∗

1 ; spin 2
tensor and pseudotensor mesons f2, a2, η2, π2 .

The neutral pion exchange is special because of the Goldstone nature of the pion; its mass is much
smaller than the hadronic scale mρ. In aHLbL(π0) this leads to an additional enhancement by two
powers of a chiral logarithm [2],

aHLbL(π0) =
(α

π

)3
Nc

m2
µNc

48π2F 2
π

[

ln2 mρ

mπ

+ O
(

ln
mρ

mπ

)

+ O(1)
]

. (9)
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Do we see NP in the muon g-2? 

QED                       116 584 718.85(0.36)

PITT–CMU SEMINAR, 02/27/03 A. Vainshtein Hadronic effects in aEW
µ 2

Muon anomalous magnetic moment

The anomalous magnetic moment of muon is measured with a very high

precision

aexp
µ =

gµ � 2
2

= 116 592 030(80)⇥ 10�11 E821 at BNL

The Standard Model prediction for aµ can be represented as a sum

aSM
µ = aQED

µ + ahad
µ + aEW

µ

The QED part involving only leptons and photons is the main one,

aQED
µ = 116 584 706(3)⇥ 10�11

Electroweak            154(2)
Hadronic LO           6 901(35)(21)
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Experimental a         116 592 080 (63)

PITT–CMU SEMINAR, 02/27/03 A. Vainshtein Hadronic effects in aEW
µ 2

Muon anomalous magnetic moment

The anomalous magnetic moment of muon is measured with a very high

precision

aexp
µ =

gµ � 2
2

= 116 592 030(80)⇥ 10�11 E821 at BNL

The Standard Model prediction for aµ can be represented as a sum

aSM
µ = aQED

µ + ahad
µ + aEW

µ

The QED part involving only leptons and photons is the main one,

aQED
µ = 116 584 706(3)⇥ 10�11

Δa                          300 (82)                  3.6 σ
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Both experimental and theoretical uncertainty should 
be reduced to be sure of NP.
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Conclusions 

Having in mind the new g-2 experiment in Fermilab 
more theoretical efforts are going on to improve 
accuracy for the hadronic light-by-light contribution.

It should also involve new measurements of hadronic 
two-photon production which provide a good test of 
theoretical models for HLbL.


