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Preface

Particle physics discoveries at the end of the 20th century confirmed an amaz-
ingly simple, yet powerful theory that describes fundamental interactions of
elementary particles. This theory is usually referred to as the Standard Model
of particle physics. It postulates the existence of three generations of quarks
and leptons, four electroweak and eight strongly interacting gauge bosons and
one scalar particle, the Higgs boson. Apart from the Higgs boson, the exis-
tence of all other particles has been unambiguously established. The Standard
Model withstood numerous experimental tests during the last fifteen years,
and has been tested at the level of precision sensitive to quantum loop cor-
rections.

Given the fact that the Standard Model is so successful in describing Na-
ture, is there any reason to believe that this theory is incomplete? There
are different answers to this question, depending upon how seriously one
takes certain theoretical prejudices. Most severe phenomenological problems
appear when the Standard Model of particle physics is confronted with cos-
mological observations. For example, most of the matter in our Universe is
in the form of a cold nonbaryonic dark matter that is not possible to de-
scribe within the Standard Model. The Standard Model has difficulties ex-
plaining observed baryon asymmetry in the Universe because the Cabbibo–
Kobayashi–Maskawa mechanism of CP violation is too weak to produce a
sufficient matter-antimatter asymmetry during the cosmological phase transi-
tion. Although neutrino oscillations can be easily incorporated into the Stan-
dard Model, such a solution is not considered theoretically appealing.

In addition to these problems rooted in experimental facts, there are short-
comings of the Standard Model of a theoretical nature. For example, it does
not explain the fermion mass spectrum; there is a hierarchy and naturalness
problem; gravity is not included in the Standard Model, and so on. Many the-
oretical ideas to address these issues have been proposed in the past; among
them, the most prominent and well-developed is the “supersymmetry”. Even-
tually, the experiment will decide which of these ideas are correct; luckily, a
robust experimental program in particle physics, planned for the next decade,
allows us to address these issues.

The Standard Model is studied experimentally at low and high energies.
A typical experiment consists of a precise measurement of an observable
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and a comparison of the result of the measurement to a Standard Model
prediction. At particle accelerators, one may hope to produce new particles
directly if the energy of an accelerator is high enough. Whenever possible,
this is a wonderful way to search for new physics and, once it is discovered, to
explore it. On the other hand, searches for deviations caused by new physics
in low-energy observables are complimentary to collider experiments. Such
new physics effects are usually small; the essential part of any low-energy
test is therefore a solid Standard Model prediction for a given observable.

The muon anomalous magnetic moment plays a special role in low-energy
tests. It was first measured in the early sixties and, since then, several mea-
surements of this quantity have been performed with increasing precision.
The muon magnetic anomaly is interesting because (i) it can be precisely
measured; (ii) it can be precisely computed in the Standard Model; and (iii)
given the current level of precision on the muon anomalous magnetic moment,
new physics with a mass scale of several hundred GeV can be detected.

It should be stressed, however, that both, measuring and computing the
muon magnetic anomaly, becomes more and more difficult as the required
precision increases. This happens because various subtle effects that could
have been neglected earlier, start to play a role. On the theory side, this
problem becomes especially acute when the muon magnetic anomaly calcu-
lation becomes sensitive to low-energy hadron physics, where our knowledge
is limited.

It would not be much of an exaggeration to say that the physics of the
muon anomalous magnetic moment is the contemporary particle physics in
a nutshell. To arrive at the prediction sufficiently accurate for the current
experimental effort, we require four-loop calculations in Quantum Electrody-
namics, computation of two-loop electroweak effects in the Standard Model,
analysis of the isospin symmetry breaking effects in hadronic decays of the
τ lepton, precise measurement of the e+e− → hadrons annihilation cross-
section, and an accurate estimate of the hadronic light-by-light scattering.
Theoretical tools that are used for the analysis include advanced techniques
for perturbative calculations, the operator product expansion in QCD, chi-
ral perturbation theory, large-Nc QCD, renormalization group analysis and,
since very recently, even lattice gauge theories. A discrepancy between the
experimental result and the Standard Model prediction can be explained by
invoking new physics effects that may include supersymmetry, extra dimen-
sions, anomalous gauge boson interactions, modifications of the Higgs sector
of the Standard Model, etc. Mastering the physics of the muon magnetic
anomaly requires dealing with all these issues, which makes the anomalous
magnetic moment quite an interesting observable from a theoretical view-
point.

The purpose of this book is to provide a review of the physics of the muon
anomalous magnetic moment. The time for such a review is perhaps appropri-
ate because the most recent experiment at Brookhaven National Laboratory,
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E821, has now been completed. Its legacy, the 2 − 3 σ discrepancy between
the experimental and the theoretical (Standard Model) results for the muon
magnetic anomaly is inconclusive but intriguing. In spite of the fact that
the final results of E821 do not tell us if the physics beyond the Standard
Model is required to understand the muon magnetic anomaly, in recent years
this experiment stimulated a great deal of theoretical studies of the muon
anomalous magnetic moment. Our goal here is to summarize them. We try
to do that in a pedagogical, yet thorough fashion. The theory of the muon
magnetic anomaly has reached a new stage in recent years; we hope that by
reviewing it, we might contribute to stimulating further progress.

A few words about the layout of the book. Besides the Introduction and
the Summary, it contains eight chapters that discuss various contributions
to the muon magnetic anomaly. Each chapter deals with a specific contri-
bution to the muon anomalous magnetic moment, and hence, can be read
independently.

We begin by reviewing the QED contribution to the muon anomalous
magnetic moment in Chap. 2. Then, in Chap. 3, we deal with the hadronic
vacuum polarization component of the muon magnetic anomaly. In that
chapter, we introduce theoretical methods such as large-Nc approximation
in QCD as well as the operator product expansion, which are used exten-
sively throughout the book. An important (and controversial) topic in recent
studies of hadronic vacuum polarization contribution to the muon magnetic
anomaly is the use of data on hadronic decays of τ lepton. We provide a
detailed discussion of the relation between the data on e+e− → hadrons and
τ → ντ + hadrons in Chap. 3.

In Chap. 4 we discuss electroweak corrections to the muon magnetic anom-
aly. We show that some of those corrections are sensitive to nonperturbative
hadronic effects. A more careful discussion of hadronic effects in weak cor-
rections to the muon anomalous magnetic moment is given in Chap. 5. Cal-
culation of the hadronic light-by-light scattering contribution to the muon
magnetic anomaly is described in Chap. 6.

In Chap. 7 the Standard Model prediction for the muon anomalous mag-
netic moment is given and its relation to other precision observables is dis-
cussed. We show that the Standard Model value for the muon magnetic anom-
aly differs from the experimental result by 2–3 standard deviations. A pos-
sible explanation of this discrepancy beyond the Standard Model physics is
discussed in Chap. 8.

The notations used throughout the text are summarized in Appendix A.1.
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1 Introduction

1.1 Preliminary Remarks

The motion of the classical particle with the angular momentum L = r × p
generates the magnetic moment µ,

µ =
e

2mc
L , (1.1)

where e is the charge of the particle and m is its mass. In quantum mechanics,
the angular momentum L becomes an operator, L = �l = −i� r ×∇, whose
eigenvalues are quantized in units of the Planck constant �. The magnetic
moment associated with the orbital motion is quantized accordingly.

Besides the orbital motion, an elementary particle may have internal ro-
tation characterized by the spin S = �s. The magnetic moment associated
with this rotation can be presented in the form similar to (1.1),

µ = g
e�

2mc
s , (1.2)

with an additional factor g which is called the gyromagnetic factor. While for
the orbital motion this factor is equal to 1, the Dirac equation for a charged
elementary fermion with spin s = 1/2 implies g = 2. The anomalous magnetic
moment refers to a deviation of the gyromagnetic factor from the g = 2 value
and is parametrized by a = (g−2)/2. It appears due to radiative corrections.
The leading contribution to a, calculated by Schwinger in 1949,

a =
α

2π
, (1.3)

is the same for the electron and the muon. Higher order effects are not uni-
versal and are affected by weak and strong interactions in addition to elec-
tromagnetism.

Recent results [1] from the experiment E821 at Brookhaven National Lab-
oratory (BNL) might indicate a disagreement between the experimental value
for the muon magnetic anomaly and the theoretical expectation based on the
Standard Model. There are two experimental results from E821 with the pre-
cision better than one part per million. They are

K. Melnikov and A. Vainshtein: Theory of the Muon Anomalous Magnetic Moment
STMP 216, 1–6 (2006)
c© Springer-Verlag Berlin Heidelberg 2006



2 1 Introduction

aµ+ = 116 592 039(84) × 10−11 ,

aµ− = 116 592 143(83) × 10−11 .
(1.4)

The errors are dominated by statistical uncertainties and hence can be further
reduced, in principle.

Theoretical predictions for aµ differ from these experimental results by
an amount that is larger than the experimental uncertainty. Depending on
the details on how corrections to Schwinger’s formula (1.3) are implemented,
the theoretical prediction for aµ may disagree with the experimental results
(1.4) by up to three standard deviations. Leaving the discrepancy aside for
the time being, we stress that the precision of the theoretical prediction is
very high. The current uncertainty in atheory

µ is of the order of 100 × 10−11;
this implies that the Standard Model (SM) prediction for aµ is accurate at
the level of one part per million, an extraordinary result by itself. Achieving
such a precision required advances in perturbative calculations in QED and
electroweak physics and improvements in understanding the non-perturbative
hadronic effects that influence the muon anomalous magnetic moment.

To a large extent, both QED and electroweak corrections to aµ are cur-
rently understood at the level required by the experimental precision. The
major contribution to the theoretical uncertainty comes from hadronic com-
ponent of the muon magnetic anomaly. There are two distinct parts of the
hadronic contribution – the hadronic vacuum polarization and the hadronic
light-by-light scattering. Currently, they enjoy different level of understand-
ing and, as a consequence, require somewhat different expertise for further
improvements.

As we discuss in Chap. 3, hadronic vacuum polarization contribution to
the muon anomalous magnetic moment is large, ∼ 7000×10−11. Comparison
with the current uncertainty of about 100 × 10−11 shows that calculations
of the hadronic vacuum polarization should be controlled at the level of one
percent.

The hadronic vacuum polarization contribution to the muon magnetic
anomaly has traditionally been computed by using data on e+e− annihi-
lation into hadrons, accumulated over many years at different accelerators
worldwide. More recently, it was suggested to incorporate data on hadronic
decays of the τ lepton, τ → ντ +Xhadr, collected and analyzed by ALEPH and
OPAL collaborations at LEP and by CLEO collaboration at CESR. The gist
of this idea is that the decay rate of the τ lepton and the e+e− annihilation
cross-section for a given invariant mass of the produced hadronic state are
related by the isospin symmetry. While the isospin symmetry is violated by
both the mass and the electric charge differences of up and down quarks, this
effect is small and confronting the analyses based on the e+e− and the τ data
helps in elucidating potential deficiencies. However, the benefits of incorpo-
rating the τ data are less clear if reaching high precision is required. Then, the
isospin violation correction has to be applied to the τ data; unfortunately,
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as we discuss in Chap. 3, computation of such corrections is a non-trivial
problem by itself.

The situation with the hadronic light-by-light scattering is different. Al-
though this contribution is numerically small, we have to rely on theoretical
considerations for its evaluation since there is no data on low-energy photon-
photon scattering. As we discuss in Sect. 6, model-independent approaches
to the hadronic light-by-light scattering based on, e.g., chiral perturbation
theory, are insufficient; as a consequence, some degree of model dependence
of theoretical calculations can not be avoided. Typically, such a modeling
involves an approximate description of strong interactions. Unfortunately, it
is difficult to improve on the current situation given a limited understanding
of low-energy hadron physics. As a consequence, the hadronic light-by-light
scattering can become a principal obstacle for further improvements in pre-
cision of the theoretical description of the muon magnetic anomaly.

As we mentioned earlier, currently there is a 2 − 3σ discrepancy when
experimental results are confronted with theoretical expectations. By itself,
this is not very exciting since in the history of particle physics many 2σ
discrepancies appeared only to be resolved later by mundane explanations.
It is conceivable that the discrepancy in the muon magnetic anomaly will
follow the same fate. However, if the discrepancy persists and no explanation
within the Standard Model is found, our last resort – the physics beyond the
Standard Model – is invoked. Quite generally, new physics associated with
the energy scale Λ is expected to change the anomalous magnetic moment of
the muon by 1

aBSM
µ ∼

(α

π

) m2

Λ2
≈ 230

(
100 GeV

Λ

)2

× 10−11 , (1.5)

Taking aBSM
µ to be of the same order as the current experimental uncertainty,

∼ 100 × 10−11, we find that the muon anomalous magnetic moment probes
Λ ∼ 100 GeV. This is exactly the range of energies where particle physicists
expect new phenomena to occur. The order of magnitude estimate (1.5) is
corroborated in Chap. 8 where various scenarios of beyond the Standard
Model physics are discussed in connection with the muon magnetic anomaly.

Since the muon anomalous magnetic moment has been studied for, ap-
proximately, fifty years, there is substantial body of literature devoted to
theoretical and experimental aspects of the physics of the muon magnetic
anomaly. Reviews on the subject, both old and more recent, can be found in
[2, 3, 4, 5, 6, 7, 8, 9].

1 The notations used throughout the text are summarized in Appendix A.1.
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1.2 Muon Spin Precession in the Storage Ring

Let us recall how the muon anomalous magnetic moment is measured in
contemporary experiments. Our discussion here is sketchy; for more details
we refer to two reviews [3, 4] were all the experiments on the muon magnetic
anomaly are discussed in great detail.

If the muon is placed in a magnetic field B, the muon spin precesses
around the direction of this field. The spin precession frequency is given by

ωspin = −g
e

2mc
B . (1.6)

Provided that all entries but g in (1.6) are known precisely, measuring the
spin precession frequency gives us the muon g-factor. Since g = 2 + 2aµ and
aµ ∼ 10−3, measuring aµ to a relative precision of 10−6 requires measuring g
to one part per billion, which is an utopian goal. Note that in this discussion
we completely ignored the fact that a muon is an unstable particle with a
short lifetime; accounting for that, introduces additional complications.

For a high precision measurement of the muon magnetic anomaly, we
must measure aµ directly; this would give us an improvement in sensitivity
by three orders of magnitude right from the start. A special feature of the
Dirac equation comes to rescue: a projection of the spin on the velocity of the
particle, s(p − (e/c)A), is conserved. This leads to the observation [10] that
the cyclotron frequency of the muon in a magnetic field coincides with the
muon spin precession frequency if aµ = 0. Hence, if the muon moves along
a circular orbit in a magnetic field, the angle between its velocity and spin
oscillates with the frequency

ωa = −aµ
e

mc
B , (1.7)

which enables the direct measurement of aµ.
To have a realistic experimental method, we have i) to know the initial

direction of the muon spin; ii) to ensure that the experiment allows for suf-
ficiently many spin oscillations during the muon lifetime; and iii) to find a
way to analyze the direction of the muon spin at the end of the measurement.
Solutions to those problems were suggested by Farley in 1961 [11]; this her-
alded the beginning of the contemporary era in experimental studies of the
muon magnetic anomaly.

The idea of the method is easy to explain. Colliding a proton beam with
a hadronic target creates energetic pions that are captured in a storage ring.
The pions decay into muons; the muons remain in the storage ring. The
muons are relativistic and hence live long; in BNL experiment, a typical
muon life time is ∼ 60 µs. Since muons from pion decays are polarized, at
t = 0 the directions of the muon spin and the muon momentum coincide. The
clock stops with the decay of the muon; at that moment we want to know the
direction of the muon spin. For this purpose, we use the property of the muon
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decay; the V −A structure of the charged weak current ensures that electrons
from the muon decay µ → eν̄eνµ prefer to follow the direction opposite to
the direction of the muon spin. In the laboratory frame, the direction of the
muon spin oscillates with the frequency ωa; therefore, the number of electrons
arriving into the solid angle dΩ as a function of time is

dNe(t)
dΩ

∼ e−Γt (1 + A cos(ωat + φ)) . (1.8)

Hence, the number of electrons that are registered by a detector positioned
at a given angle exhibits modulated oscillations with the frequency ωa. By
measuring these oscillations, we determine the frequency ωa and, using (1.7),
the muon anomalous magnetic moment.

The above discussion provides the gist of the idea behind the contempo-
rary measurements of the muon anomalous magnetic moment. However, in
an experiment that aims at the precision of one part per million, many sub-
tle issues have to be carefully addressed. Some of those issues are discussed
below; further details can be found in [3, 4].

The muons are injected into the storage ring with different momenta; to
keep them in a plane transverse to the magnetic field, the quadrupole electric
field E is applied. However, the electric field interacts differently with the
muon spin and the muon orbital momentum and therefore changes the spin
precession frequency,

ωa = −aµ
e

mc
B − e

mc2

(
1

γ2 − 1
− aµ

)
v × E . (1.9)

In this formula, v is the muon velocity and γ = Eµ/m, where Eµ is the energy
of the muon. The last term in (1.9) would have had disastrous consequences
for measuring aµ since it would require a very precise knowledge of the electric
field E. Fortunately, one can cancel this term altogether, by choosing the
appropriate energy for the muons. Indeed, if the muon energy is such that
(γ2 − 1)−1 = aµ, the term proportional to the electric field in (1.9) vanishes.
Numerically, the “magic” energy works out to be

Eµ = m

√
1
aµ

+ 1 ≈ 3 GeV . (1.10)

Once the spin precession frequency ωa is measured, the value of the anom-
alous magnetic moment has to be extracted. To do so, we need to know the
magnetic field with the precision of one part per million. This is achieved
by measuring the proton spin precession frequency with nuclear magnetic
resonance technique and using the ratio of the muon to proton magnetic mo-
ments measured in experiments with muonium [12]. Let us stress that if the
hyperfine structure of muonium has not been measured with the required
precision, there is no way to extract the value of the muon anomalous mag-
netic moment from measured spin precession frequency. This is an interesting
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connection of the frontier experiment in particle physics with experiments in
atomic spectroscopy, often considered rudimentary by the high-energy physics
community.

Because CP symmetry is broken, elementary particles may have, in addi-
tion to the magnetic moment, the electric dipole moment. In the Standard
Model CP symmetry is violated by the Cabbibo–Kobayashi–Maskawa mix-
ing matrix in the quark sector. The discovery of neutrino oscillations makes
it conceivable that CP violation exists in the lepton sector of the Standard
Model as well. Supersymmetry provides an explicit realization of this possi-
bility.

The presence of the electric dipole moment modifies equations of motion
for the muon spin in two different ways [13]. First, the spin precession fre-
quency increases and, second, the component of the spin precession frequency
along the v × B axis appears. Because of that, the electric dipole moment
leads to the appearance of the “out of plane” component of the muon spin
precession that can be measured if detectors are placed above and below the
storage plane. A new dedicated experiment to search for the muon electric
dipole moment is now being planned at J-PARC [14].
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2 QED Effects in the Muon Magnetic Anomaly

2.1 General Considerations

In the context of Quantum Electrodynamics (QED), interactions of muons
and photons are described by the Lagrangian

L = −1
4
FµνFµν + ψ̄

(
i∂̂ − m

)
ψ − eJµAµ , (2.1)

where ψ(x) is the muon field, Aµ = (ϕ,A) is the vector potential of the
electromagnetic field, Fµν = ∂µAν − ∂νAµ is the field-strength tensor of
the electromagnetic field, Jµ(x) = ψ̄(x)γµψ(x) is the electric current and
e = −|e| is the muon electric charge.

Consider a situation when the muon with four momentum p1 scatters off
the external electromagnetic potential Aµ, Fig. 2.1. The momentum of the
muon in the final state is p2. To first order in the external field, the interaction
is described by the scattering amplitude

M = −ie〈µp2 |Jµ(0)|µp1〉Aµ(q) , (2.2)

where q = p2 − p1. Thanks to current conservation ∂µJµ(x) = 0 and parity
conservation in QED, the most general parametrization of the matrix element
reads

〈µp2 |Jµ(0)|µp1〉 = ūp2Γ
µ(p2, p1)up1 = ūp2

[
FD(q2)γµ + FP (q2)

iσµνqν

2m

]
up1 ,

(2.3)

p1 p2

q = p2 − p1

Fig. 2.1. Muon interaction with the external electromagnetic field

K. Melnikov and A. Vainshtein: Theory of the Muon Anomalous Magnetic Moment
STMP 216, 7–32 (2006)
c© Springer-Verlag Berlin Heidelberg 2006
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where σµν = (i/2)(γµγν − γνγµ). The two form factors, FD and FP , are
known as the Dirac and Pauli form factors. We need to know the connection
of these form factors to the muon anomalous magnetic moment.1

In the non-relativistic quantum mechanics, the muon in the electric and
magnetic fields is described by the Hamiltonian

H =
(p − eA)2

2m
− µB + eϕ , (2.4)

where B = ∇×A is the external magnetic field and µ is the muon magnetic
moment operator

µ = 2µ s = µσ . (2.5)

The proportionality coefficient µ in (2.5) is referred to as the muon magnetic
moment.

To find the relation between the muon magnetic moment µ and the Dirac
and Pauli form factors, we consider the scattering of the muon off the ex-
ternal vector potential Aµ in the non-relativistic approximation, using the
Hamiltonian (2.4), and compare the result to (2.2).

The non-relativistic scattering amplitude in the Born approximation is
given by

f = − m

2π

∫
d3r Ψ∗(p2)V Ψ(p1) , (2.6)

where Ψ(p1,2) = χ1,2 eip1,2r is the muon wave function in the non-relativistic
approximation including spin degrees of freedom described by the Pauli spinor
χ and

V = − e

2m
(pA + Ap) − µσB + eϕ . (2.7)

Computing f in (2.6) reduces to taking the Fourier transform; we obtain

f = − m

2π
χ+

2

(
− e

2m
Aq (p2 + p1) + eϕq − iµ σ[q × Aq]

)
χ1 , (2.8)

where ϕq and Aq stand for the Fourier components of the electric potential
ϕ and the vector potential A and q = p2 − p1.

We should be able to derive (2.8) starting from the relativistic expression
for the scattering amplitude (2.2) and taking the non-relativistic limit. If the
Dirac spinors are normalized to 2m, the relation between the two scattering
amplitudes in the non-relativistic limit is [1]

− i lim
|p|�m

M = 4πf . (2.9)

To derive the non-relativistic limit of the amplitude M, (2.2), we use the
explicit representation of the Dirac matrices
1 We emphasize that the parametrization of the matrix element (2.3) is the most

general one if an only if the external fermions are on the mass-shell p2
1 = p2

2 = m2.
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γ0 =
(

I 0
0 −I

)
, γi =

(
0 σi

−σi 0

)
, (2.10)

and the Dirac spinors

up =
√

E + m

(
χ

pσ
E + mχ

)
, (2.11)

where E =
√

p2 + m2. Using these expressions in (2.2) and working through
first order in |p1,2|/m, we obtain

M = −2iemχ+
2

[
FD(0)

(
ϕq −

Aq (p2+p1)
2m

)
− i

FD(0)+FP (0)
2m

σ[q×Aq]
]
χ1 .

(2.12)
Using (2.9, 2.8) and (2.12) we find

FD(0) = 1 , µ =
e

2m
(FD(0) + FP (0)) . (2.13)

Comparing (1.2, 2.5, 2.13), we find the gyromagnetic factor of the muon

g = 2
(
1 + FP (0)

)
. (2.14)

Hence, if the Pauli form factor FP (q) does not vanish for q = 0, the gyro-
magnetic ratio of the muon is different from two, the value predicted by the
Dirac equation. It is conventional to call this difference the muon anomalous
magnetic moment and write

g − 2
2

= aµ = FP (0) . (2.15)

In QED, aµ can be computed in the perturbative expansion in the fine
structure constant α = e2/(4π),

aµ =
∞∑

i=1

a(i)
µ =

∞∑
i=1

ci

(α

π

)i

. (2.16)

The first term in the series is O(α) since, when radiative corrections are ne-
glected, the Pauli form factor vanishes. This is easily seen from the QED
Lagrangian (2.1) which implies that, through leading order in α, the inter-
action between the external electromagnetic field and the muon is given by
−ieup2γ

µup1Aµ.
In QED, a naive application of the perturbative expansion leads to a

confusing situation since results often appear to be divergent. Such diver-
gences are removed by a procedure known as the “renormalization”. The
idea is to view all the entries in the QED Lagrangian (2.1) as “bare”
quantities, whereas all physically meaningful results are expressed through
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“renormalized” quantities. The renormalization is multiplicative, e.g. e =
Zeephys, m = Zmmphys, ψ = Z1/2ψphys, etc. The renormalization con-
stants are fixed by requiring that Green’s functions, computed with the QED
Lagrangian, satisfy certain conditions. For example, the mass renormalization
constant Zm is determined from the requirement that mphys is the physical
mass of the muon and therefore the muon propagator should have a pole at
p2 = m2

phys. Similarly, the charge renormalization constant Ze is determined
by requiring that ephys gives the strength of the interaction of an on-shell
photon with a fermion. A consequence of the current conservation is the fact
that the Dirac form factor satisfies the condition FD(0) = 1 to all orders in
the perturbative expansion. The renormalization constants influence the Pauli
form factor only indirectly, through the mass, charge and the fermion wave
function renormalization, because there is no corresponding tree-level oper-
ator in the QED Lagrangian. Therefore, the anomalous magnetic moment is
the unique prediction of QED; moreover, the O(α) contribution to aµ has to
be finite without any renormalization.

The QED radiative corrections provide the largest contribution to the
muon anomalous magnetic moment. The one-loop result was computed by
Schwinger in 1949 [2]; currently, QED calculations have been extended to
the four-loop order and even some estimates of the five-loop contribution
exist. It is interesting to remark that Schwinger’s calculation was performed
before the renormalizability of QED was understood in detail. Historically,
this provides an interesting example of a fundamental physics result derived
from a theory that was considered ambiguous at that time [3].

2.2 Features of the Radiative Corrections
to the Muon Magnetic Anomaly

Before describing the computation of the muon anomalous magnetic moment
in QED, we discuss general features of the radiative corrections to this quan-
tity. When QED, electroweak or hadronic corrections to aµ are considered,
the anomalous magnetic moment receives contributions from all the existing
particles. It is therefore useful to understand how the contribution of a par-
ticle with the mass mp to the anomalous magnetic moment depends on its
mass. First, consider the case mp ≥ m . Then, in general,

δap
µ ∼

(α

π

)np m2

m2
p

lnkp
mp

m
, (2.17)

where np, kp depend on the order of the perturbative expansion in the fine
structure constant at which this contribution appears. The power of the log-
arithm kp can not be determined on general grounds.

To understand the m2/m2
p suppression factor in (2.17), we note that when

a contribution of a particle with the mass mp � m to the muon anomalous
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magnetic moment is considered, the loop momenta k ∼ mp provide the dom-
inant contribution. In this situation it is natural to consider the limit of the
vanishing muon mass m. QED interactions conserve the muon helicity in that
limit. Note, however, that the term FDσµνqν in the scattering amplitude (2.3)
changes the muon helicity, whereas the term proportional to the Dirac form
factor conserves the helicity. It follows that at m = 0, loops with heavy parti-
cles contribute to the Dirac, but not to the Pauli form factor. Corrections to
the Pauli form factor and, hence, to the muon anomalous magnetic moment,
require helicity flip; this can be achieved by a single mass insertion into one
of the muon lines. Using the fact that the vertex function Γµ(p1, p2) in (2.3)
is dimensionless, we arrive at

Γµ
aµ∼
(α

π

)np mσµνqµ

m2
p

, (2.18)

from where (2.17) immediately follows.
If mp 	 m, the correction to aµ can be estimated as

δap
µ ∼

(α

π

)np

lnkp
m

mp
, (2.19)

where the power of the logarithm kp satisfies kp < np but, otherwise, can
not be determined without detailed analysis. Specific examples that lead to
(2.19) are discussed in the following sections.

Equations (2.17, 2.19) are useful for understanding a very different struc-
ture of higher order corrections to the electron and the muon anomalous
magnetic moments. Since electron is the lightest charged particle, the correc-
tions to the electron anomalous magnetic moment are governed by powers
of α/π; contributions due to heavier particles are all power-suppressed by
at least m2

e/m2 ∼ 10−4. Hadronic contributions that are mostly determined
by the mass of the ρ meson and are responsible for a large fraction of the
uncertainty in the theoretical prediction for the muon anomalous magnetic
moment, are tiny for the electron magnetic anomaly because of m2

e/m2
ρ sup-

pression. On the contrary, in case of the muon anomalous magnetic moment
the expansion parameter in QED is (α/π) ln(m/me) and, also, the hadronic
corrections are significant since the mass of the ρ meson is not too different
from the mass of the muon.

There are two interesting consequences of these considerations. First, since
both hadronic and potential new physics effects on the electron anomalous
magnetic moment are strongly suppressed, the measured value of the electron
anomalous magnetic moment can be used to determine the value of the fine
structure constant α with high precision [4].

Second, the beyond the Standard Model physics should contribute much
stronger to the muon anomalous magnetic moment, making this observable
an attractive laboratory for low-energy tests of the Standard Model. This
feature was recognized already in late fifties [5] when it was pointed out
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that if QED is modified at some energy scale Λ, there is a correction to the
anomalous magnetic moment of the muon of the order of m2/Λ2. At that
time, the goal was to test QED up to the energies around 4 GeV; currently,
the goal is to detect contributions of particles with masses of the order of a
few hundred GeV through the measurement of the muon magnetic anomaly.
This illustrates a tremendous progress that the high energy physics made in
the past half a century.

2.3 One-loop QED Contribution: Schwinger Correction

The Schwinger correction can be obtained by direct evaluation of the Feyn-
man diagram shown in Fig. 2.2. The expression for Γµ(p2, p1) in the Feynman
gauge reads

Γµ(p2, p1) = −ie2

∫
d4k

(2π)4
γα(k̂ + p̂2 + m)γµ(k̂ + p̂1 + m)γα

k2[(k + p2)2 − m2][(k + p1)2 − m2]
, (2.20)

where we use k̂ = γαkα. In principle, (2.20) is divergent both in the ultra-
violet k → ∞ and in the infra-red k → 0. However, it is easy to see that those
divergences affect the Dirac form factor only.

p1 p2

q = p2 − p1

Fig. 2.2. A one-loop QED diagram that leads to the muon anomalous magnetic
moment

Consider first the ultra-violet divergence; since it originates from large
values of k, the dependence on p1 and p2 in (2.20) can be neglected. We
obtain

Γµ(p2, p1)
UV−→ −ie2

∫
d4k

(2π)4
γαk̂γµk̂γα

k6
= −ie2γµ

∫
d4k

(2π)4k4
, (2.21)

which implies that the ultra-violet divergence is only present in the Dirac
form factor.

The infra-red divergence originates from small virtual momenta k → 0; in
that case, we can neglect the dependence of the numerator in (2.20) on k. We
then use the fact that the vertex function Γµ is needed in the combination
with two on-shell spinors ūp2Γµup1 . This allows us to write
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Γµ(p2, p1)
IR−→ −ie2

∫
d4k

(2π)4
γα(p̂2 + m)γµ(p̂1 + m)γα

k2(2p2k)(2p1k)

= −ie2γµ

∫
d4k

(2π)4
p2p1

k2(p2k)(p1k)
, (2.22)

and proves that the infra-red divergence occurs in the Dirac form factor only.
As the consequence of the fact that the divergencies do not affect the Pauli

form factor, we may compute the anomalous magnetic moment without any
regulator. Starting from (2.20), we combine the denominators using Feynman
parameters, integrate over the loop momentum and drop all the terms that
are proportional to γµ and hence do not contribute to the Pauli form factor.
We obtain

Γµ(p1, p2)
aµ=

α

2π

∫
[dx]3

P̂γµP̂ + p̂1P̂γµ + γµP̂ p̂2

P2
, (2.23)

where [dx]3 = dx1dx2dx3δ(1 − x1 − x2 − x3) and P = p1x1 + p2x2 .
To derive aµ, we only have to compute (2.23) through linear terms in the

momentum transfer q. Then, the dependence on q2 in P2 can be neglected

P2 = m2(x1 + x2)2 − q2x1x2 → m2(x1 + x2)2. (2.24)

We can also simplify the numerator in (2.23) by systematically projecting out
the Dirac structure γµ and keeping q through first order. Then, for example,

p̂1P̂γµ =
(
m2x1 + x2p̂1p̂2

)
γµ → x2p̂1p̂2γµ → −x2mp̂1γµ → x2mq̂γµ .

Performing similar manipulations with other terms in the numerator of (2.23),
we obtain the following expression for the part of Γµ that gives rise to the
muon anomalous magnetic moment

Γµ
aµ=

α

2πm

∫
[dx]3

q̂γµ(x2(1 − x1) − x2
1) − γµq̂(x1(1 − x2) − x2

2)
(x1 + x2)2

. (2.25)

The integration in (2.25) is easily performed with the change of variables
x1 = yz and x2 = y(1− z); this leads to x1 +x2 = y and [dx]3 = ydydz, with
integrations over y, z from 0 to 1. We then obtain

Γµ
aµ=

α

2π

iσµνqν

2m
. (2.26)

Comparing (2.26) to (2.3), we find

a(1)
µ = FP (0) =

α

2π
. (2.27)

Equation (2.27) is the celebrated Schwinger correction [2]. Historically,
Schwinger derived this result for the electron, rather than the muon, to ex-
plain the measurement of the hyperfine splittings in gallium atoms by Foley
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and Kusch [6]. However, as it is seen from (2.27), the one-loop QED contri-
bution to the anomalous magnetic moment does not depend on the mass of
the fermion and is, therefore, the same for muons and electrons.

Although Feynman parameters can be used efficiently in one-loop calcula-
tions, they are not very practical for computations in higher orders. The tech-
nique that is used successfully for cutting edge calculations in perturbative
QED is based on the integration-by-parts identities for Feynman diagrams
[7], developed for applications in perturbative Quantum Chromodynamics.
Below, we introduce this technique by re-calculating the one-loop QED con-
tribution to aµ.

As we said earlier, the anomalous magnetic moment does not require the
renormalization in QED; once perturbative calculations are performed and
the result is expressed through the physical charge and mass of the muon, the
anomalous magnetic moment is finite. However, for practical computation of
QED corrections in higher orders, it is convenient to introduce both an ultra-
violet and an infra-red regularizations. This is required because in higher
orders of perturbation theory, where many Feynman diagrams contribute,
individual Feynman graphs become divergent and the finite result for aµ

is obtained only after contributions of individual Feynman graphs in a given
order of perturbation theory are summed up. For practical reasons, it is more
convenient to deal with one diagram at a time; this necessitates introducing
the regularization at intermediate steps.

Although there are different ways to regularize ultra-violet and infra-red
divergences in QED, it is convenient to choose dimensional regularization
[8, 9, 10], analytically continuing the space-time dimensionality to d = 4−2ε.
A consistent implementation of the dimensional regularization leads to a set
of rules for Feynman integrals [11] that imply that those integrals, in general,
can not be understood as Lebesque integrals; however, the new definition
of the integrals enables simultaneous regularization of both ultra-violet and
infra-red divergencies. As a consequence, the dimensional regularization is
very economical from the computational viewpoint but requires care when a
physical interpretation of divergent expressions is attempted.

We consider the one-loop vertex function (2.20) and continue it to
d dimensions; this leads to the modification of the integration measure
d4k/(2π)4 → ddk/(2π)d. If the integration over the loop momentum k is
performed, the result contains both the Dirac and the Pauli form factors,
(2.3). Since we are not interested in the Dirac form factor, this is inconve-
nient, especially when higher order corrections to the anomalous magnetic
moment are considered. The standard way to deal with this issue is to con-
struct an operator that projects the vertex function Γµ(p2, p1) on to the Pauli
form factor. Such operator reads

Πµ =
2m2(p̂1 + m)

(d − 2)q2(4m2 − q2)

(
γµ +

((4 − 2d)q2 − 8m2)
(4m2 − q2)

Pµ

4m

)
(p̂2 + m) ,

(2.28)
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where q = p2 − p1 and P = p2 + p1. The Pauli form factor is obtained if the
trace of Γµ(p2, p1) with Πµ is computed and the sum over Lorentz index µ is
performed

Tr [ΠµΓµ(p2, p1)] = FP (q2) , (2.29)

Because the anomalous magnetic moment is given by FP (0), the left hand
side of (2.29) has to be evaluated at q2 = 0. Here, care should be exercised
since there is an explicit 1/q2 factor in the expression for Πµ, (2.28). To
elucidate how this “singularity” disappears, consider the limit of (2.28, 2.29)
for small values of q; the approximate expression for Πµ reads

Πµ

q�m
≈ tµν

q2
qν , tµν = − i(p̂1 + m)σµν (p̂2 + m)

4m(d − 2)
. (2.30)

It follows from this asymptotics that when (2.29) is computed for a Feynman
diagram that contributes to the muon anomalous magnetic moment and the
limit of small q is taken, the result is finite because of the on-shell conditions
for the external muon that imply p1q = −q2/2, p2q = q2/2. Hence, each
Feynman diagram provides a non-singular contribution to FP (q2), in the limit
q2 → 0.

To expand (2.29) in powers of q2 for the one-loop Feynman diagram (2.20),
we compute the trace and substitute p2 = p1 + q, both in the numerator and
in the appropriate propagators. Expanding the propagators in powers of q,
we arrive at the expression that can symbolically be written as

FP (q2) ∼ 1
q2

∫
ddk

(2π)d

∞∑
n=2

Numn(q2, kq, p1q)
k2[(k + p1)2 − m2]n

, (2.31)

where the numerator scales as first power of q, for q → 0. We remove the
scalar product p1q using the on-shell condition.

To remove the scalar product kq, we write

q = − q2

2m2
p1 + q⊥ , p1q⊥ = 0 , (2.32)

and observe that the left hand side of (2.31) is a function of q2
⊥ only. We there-

fore can average (2.31) over the directions of the vector q⊥. The averaging is
performed easily with the help of the following formula

(kq⊥)n →





(k2
⊥q2

⊥)n/2 n!
2n(n/2)!

Γ ((d − 1)/2)
Γ ((d − 1)/2 + n/2)

, n even ,

0 , n odd ,

(2.33)

where k2
⊥ = k2 − (kp1)2/m2 and q2

⊥ = q2(1− q2/(4m2)). After the averaging,
the right hand side of (2.31) becomes a function of q2; the factor 1/q2 cancels
out and, taking the limit q2 → 0, we arrive at the expression for FP (0). It
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is easy to see that FP (0) can be expressed through a linear combination of
integrals

SM (a1, a2) =
∫

ddk

πd/2

1
(k2)a1(k2 + 2kp)a2

, (2.34)

with p2 = m2. It is convenient to perform the Wick rotation and deal with
the integrals

S1(a1, a2) =
∫

ddk

πd/2

1
(k2)a1(k2 + 2kp)a2

, (2.35)

defined in Euclidean space with p2 = −m2.
Those integrals can be separated into three different classes. The first

class consists of integrals S1(a1, a2) with the second argument a2 ≤ 0. It is
easy to see that all such integrals vanish since, in dimensional regularization,

∫
ddk(k2)a = 0 , (2.36)

for any a .
The second class consists of integrals S1(a1, a2) with a1 ≤ 0. For these

integrals, we shift the integration momenta k → k − p. Upon the shift,

S1(a1 ≤ 0, a2) =
∫

ddk

πd/2

(k2 − 2pk − m2)−a1

(k2 + m2)a2
. (2.37)

We now expand the numerator, average over directions of the vector k and use
k2 = (k2+m2)−m2, to remove k2 from the numerator. Upon doing so, we see
that all the integrals S1(a1 ≤ 0, a2) can be expressed as linear combinations
of the integrals S1(0, a2) with various values of the second argument a2. We
will discuss computation of those integrals shortly.

The last class we have to consider consists of integrals S1(a1 ≥ 0,
a2 ≥ 0). Such integrals are conveniently studied with the help of the
integration-by-parts identities [7]. The derivation of the integration-by-parts
identities is based on the observation that, in dimensional regularization, the
integral of the total derivative vanishes. Therefore,

0 =
∫

ddk

πd/2

∂

∂kµ

lµ
(k2)a1(k2 + 2pk)a2

, (2.38)

for any vector l. It is convenient to take l = k. Then

(d − 2a1 − a2)S1(a1, a2) − a2S1(a1 − 1, a2 + 1) = 0 . (2.39)

This equation relates two integrals with different values of a1. For a1 > 0, we
can solve (2.39) for the first term to reduce a1 by one unit. Repeating this
operation, we can express all the integrals S1(a1 ≥ 0, a2 ≥ 0) through a set
of integrals S1(0, a2).
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We are thus left with the integrals S1(0, a2). For those integrals, we shift
k → k − p, removing the dependence on the momentum p, and write

S1(0, a2) =
∫

ddk

(π)d/2

1
(k2 + m2)a2

. (2.40)

Constructing the integration-by-parts equation for these integrals we obtain

(d − 2a2)S1(0, a2) + 2a2m
2S1(0, a2 + 1) = 0 . (2.41)

By solving for the second term on the left hand side of this equation, we
obtain the recurrence relation that allows us to reduce the argument a2 by
one unit. Repeated application of this recurrence relation maps any integral
S1(0, a2) on to S1(0, 1).

As a consequence, we can express any integral S1(a1, a2), that appears in
the expression for aµ, through S1(0, 1) in an entirely algebraic way. For the
anomalous magnetic moment, we derive

a(1)
µ = −α

π

(d − 5)(d − 2)(d − 4)
8(d − 3)

S1(0, 1)
(4π)(d−4)/2m2

. (2.42)

The integral S1(0, 1) is easy to compute by integrating over the loop
momentum k; the result reads

S1(0, 1) = md−2Γ (1 − d/2) = −m2−2ε Γ (1 + ε)
ε(1 − ε)

. (2.43)

Using (2.42, 2.43) we recover the muon anomalous magnetic moment through
first order in the perturbative expansion in QED in (2.27).

Alternatively, we could have expressed aµ through the integral S1(0, 3)
which is finite for d = 4, S1(0, 3) = Γ (1 + ε)/(2m2+2ε). We then obtain

a(1)
µ = −α

π

(d − 5)
(d − 3)

m2S1(0, 3)
(4π)(d−2)/2

=
α

2π
. (2.44)

2.4 Two-loop QED Corrections to aµ

In this section we discuss the two-loop QED corrections to the muon anom-
alous magnetic moment. It is much harder to compute those corrections than
the one-loop ones. In addition, at this order in the perturbative expansion a
new qualitative feature appears – the anomalous magnetic moment becomes
dependent on the masses of all charged particles through vacuum polarization
diagrams. It is conventional to include electrons, muons and τ leptons when
discussing the QED radiative corrections; the contribution of other particles,
e.g. quarks and electroweak gauge bosons, is relegated to hadronic and elec-
troweak corrections, respectively. We write the O(α2) contribution to aµ as
the sum of three terms
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e τ,

Fig. 2.3. Vacuum polarization contribution to the muon anomalous magnetic
moment due to electron and tau loops

a(2)
µ =

(α

π

)2

[wvp,e
2 + wvp,τ

2 + w2] . (2.45)

Here, w
vp,e(τ)
2 refers to the vacuum polarization diagrams due to electron and

τ loops, Fig. 2.3; the term w2 contains the contributions of all the diagrams
where only muons appear, Fig. 2.4. The two-loop QED corrections to aµ were
computed in [12, 13, 14], approximately half a century ago.

We begin the discussion of the two-loop corrections to the muon anom-
alous magnetic moment with the vacuum polarization diagrams Fig. 2.3
where electron and τ loops are considered. The muon vacuum polarization
contribution will be treated later, alongside with other diagrams Fig. 2.4 that
only depend on the muon mass. Because of the mass hierarchy, me 	 m 	
mτ , the electron and τ contributions to a

(2)
µ are quite different, as we explain

below.
The vacuum polarization contribution to aµ is computed by applying the

projection operator (2.28) to the vertex function Γµ(p2, p1) corresponding to
the Feynman diagram Fig. 2.3. The vertex function can be written as

Γµ = −e4

∫
d4k

(2π)4
ū(p2)γα(p̂2 + k̂ + m)γµ(p̂1 + k̂ + m)γβu(p1)

k4((p2 + k)2 − m2)((p1 + k)2 − m2)
Παβ(k) ,

(2.46)
where

Παβ(k) = −i
(
gαβk2 − kαkβ

)
Π(k2) ,

is the general form of the photon self-energy consistent with the electro-
magnetic gauge invariance. The photon self-energy satisfies the subtracted
dispersion relation

Π(k2) =
k2

π

∞∫

s0

ds

s(s − k2 − i0)
ImΠ(s) , (2.47)

where s0 refers to the lowest invariant mass squared of the fermion pair that
can be produced in a decay of a virtual photon with the invariant mass k2.
For the diagram Fig. 2.3, s0 = 4m2

e or 4m2
τ .
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Using the optical theorem [1], the imaginary part of the photon self-energy
can be expressed through the e+e− annihilation cross-section into a lepton
pair

ImΠ(s) =
Rlept(s)

12π
, Rlept(s) =

σlept(s)
σpoint(s)

, (2.48)

where

σlept = σpoint

√
1 −

4m2
lept

s

(
1 +

2m2
lept

s

)
, σpoint =

4πα2

3s
. (2.49)

We insert the photon self-energy (2.47) into (2.46) and integrate over the
loop momentum k. This is easily done, since the factor (−gµν+kµkν/k2)/(k2−
s + i0) introduced to the integrand (2.46) by the dispersion representation
(2.47) is the propagator of a gauge boson with the mass

√
s. Hence, the in-

tegration over the loop momentum is standard and can be easily performed
by introducing e.g. the Feynman parameters. Integrating over the loop mo-
mentum, we arrive at the following representation for the hadronic vacuum
polarization contribution to aµ

wvp,lept
2 =

π

3α

∞∫

4m2
lept

ds

s
Rlept(s) a(1)

µ (s) . (2.50)

Here, a
(1)
µ (s) refers to the one-loop contribution to the muon anomalous mag-

netic moment of a neutral vector boson with the mass
√

s and the electro-
magnetic coupling to the muon. The corresponding expression reads

a(1)
µ (s) =

(α

π

)[1
2
− ρ +

ρ(ρ − 2) ln(ρ)
2

−
(

1 − 2ρ +
ρ2

2

)
f(s)

]
, (2.51)

where

f(s) =

[
θ(s − 4m2)

1
β

ln
1 + β

1 − β
+ θ(4m2 − s)

2arctan(β̃)
β̃

]
, (2.52)

with ρ = s/m2, β =
√

1 − 4/ρ, β̃ =
√

4/ρ − 1. In the limits of small and
large values of s/m2, (2.51) reads

a(1)
µ (s) ≈ α

π
×





m2

3s
, s � m2;

1
2
− π

√
s

2m
, s 	 m2 .

(2.53)

Using the explicit form of the function a
(1)
µ (s), the integration over s in

(2.50) can be performed analytically [15]. The result of [15] in a simplified
form [16] reads
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wvp,lept
2 = −25

36
− ln r

3
+ r2(4 + 3 ln r) + r4

(
π2

6
+ 2 ln2r + Li2(1 − r2)

)

+
r

2
(
1 − 5r2

) [π2

3
+ ln r ln(1 + r) + Li2(1 − r) + Li2(−r)

]
,(2.54)

where r = mlept/m and Li2(r) = −
r∫
0

(dt/t) ln(1 − t) is the dilogarithmic func-

tion.
Knowledge of the exact result (2.54) is important for deriving the Stan-

dard Model prediction for aµ. However, the limiting cases mlept 	 m and
mlept � m can be easily obtained from the integral representation (2.50);
such a derivation is instructive since it offers useful insights into the under-
lying physics.

First, consider the case mlept = me 	 m. It is easy to see that wvp,e
2

contains a logarithmic enhancement factor ln(m/me) which can only appear
from the integration over s in (2.50) if m2

e 	 s 	 m2. In that limit a
(1)
µ (s)

can be approximated by a
(1)
µ (0) = α/(2π) and R(s) can be approximated by

its value at s = ∞, R(s) = 1. This gives

wvp,e
2 ≈ 1

6

4m2∫

4m2
e

ds

s
=

1
3

ln
m

me
. (2.55)

We could have guessed this result without any calculation. Indeed, in
QED, as in any other field theory, the coupling constant depends on the
momentum scale and satisfies the renormalization group equation [17]

µ
d
dµ

(
α(µ)

π

)
=

1
π

β(α) =
2
3

(
α(µ)

π

)2

+ O(α3) . (2.56)

Through O(α2), the solution to this equation yields

α(µ)
α

= 1 +
2α

3π
ln

µ

me
, (2.57)

where α = α(me) is the conventional fine-structure constant α ≈ 1/137.06.
When studying a physical process, it is beneficial to choose the parameter
µ to be of the order of energy or momentum that are characteristic for the
process. For the muon anomalous magnetic moment, the typical virtuality of
the photon in the one-loop diagram Fig. 2.1 is clearly of order m2. To avoid
large logarithms in the perturbative expansion for aµ, we should have written

a(1)
µ =

α(m)
2π

, (2.58)

for the one-loop result. Expanding this equation to second order in α using
(2.57) for µ = m and comparing the result with (2.55), we find the complete
agreement, as expected.
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It is instructive to consider further terms in the expansion of wvp,e
2 in the

ratio me/m. Expanding (2.54) around r = 0, we find

wvp,e
2 =

1
3

ln
m

me
− 25

36
+

π2

4
me

m
+ O

(
m2

e

m2

)
. (2.59)

An interesting term in this equation is the linear term in the mass ratio since
it is non-analytic in the mass of the electron squared m2

e and, therefore, can
only appear from a peculiar momentum configuration. We may approach the
computation of the O(me/m) term in (2.59) starting from the convolution
integral (2.50). Then, we require a

(1)
µ (s) in the limit of small s beyond the

leading term a
(1)
µ (0). In particular, we are interested in all terms that behave

like
√

s/m, for s 	 m2. It is easy to see from (2.50) that if such terms appear,
the integration over s produces me/m contribution to wvp,e

2 .
We now describe a calculation of the

√
s/m correction to a

(1)
µ . At small

values of s, the asymptotics of the anomalous magnetic moment is shown
in (2.53); since we are interested in the term O(

√
s/m), it is convenient to

compute the derivative of the anomalous magnetic moment with respect to
s. To this end, consider the derivative of the vertex function

dΓµ

ds
= −ie2

∫
d4k

(2π)4
γα(k̂ + p̂2 + m)γµ(k̂ + p̂1 + m)γβ

(
gαβ − kαkβ/k2

)
(k2 − s)2[(k + p2)2 − m2][(k + p1)2 − m2]

.

(2.60)
We are interested in such terms in (2.60) that lead to dΓµ/ds ∼ 1/

√
s. From

(2.60) it is easy to see that this is only possible if the loop momenta are
small, k ∼ √

s. In that limit the muon propagators become static, since
k2 + 2p1,2k + i0 ≈ 2p1,2k + i0 ≈ 2m(k0 + i0). Note that this is very similar
to the heavy quark limit in physics of B-mesons which is studied using the
so-called Heavy Quark Effective Theory [18].

Simplifying the numerator in (2.60) and keeping only such terms that
contribute to the muon anomalous magnetic moment, we obtain

dΓµ

ds

aµ=
e2σµνqν

2m2

∫
d4k

(2π)4
1

(k2 − s)2(k0 + i0)
. (2.61)

Comparing (2.61) with (2.3), we derive

da
(1)
µ (s)
ds

= − ie2

m

∫
d4k

(2π)4
1

(k2 − s)2(k0 + i0)
. (2.62)

To integrate over k0, we write

1
k0 + i0

= P
[

1
k0

]
− iπδ(k0) , (2.63)

and note that the principal value term can be dropped in (2.62) since the
photon propagator is an even function of k0. Hence, we obtain
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da
(1)
µ (s)
ds

= − α

4π2m

∫
d3k

(k2 + s)2
= −

(α

π

) π

4m
√

s
. (2.64)

On account of the boundary condition a
(1)
µ (0) = α/(2π), (2.64) leads to

a(1)
µ (s) ≈ α

π

(
1
2
− π

√
s

2m

)
. (2.65)

Equation (2.65) implies that for the momentum configuration in the loop
integrals where the muon is close to the mass shell, the expansion parameter
is α, rather than conventional (α/π). This happens because in that momen-
tum configuration, the muon is the source of the time-independent Coulomb
(or Yukawa) potential; (2.63) shows explicitly how additional factor of π is
generated.

We may now integrate the last term in (2.65) over s using (2.50). The
integral diverges quadratically and, therefore, is ill-defined. However, the de-
pendence of the integral on a linear term in the mass of the electron me is
unambiguous. We obtain

δwvp,e
2 = −πme

3m

[
B

(
−1

2
,
3
2

)
+

1
2

B

(
1
2
,
3
2

)]
=

π2me

4m
, (2.66)

that coincides with the linear term in the mass ratio in (2.59).
These examples show that diagrams with electron loops, that contribute

to the muon anomalous magnetic moment, are sensitive to loop momenta
smaller than the mass of the muon. Such momenta configurations produce
contributions that are often enhanced by either logarithms of the muon to
electron mass ratio or large numerical factor (cf. π2 in (2.66)). As we will show
in the next section, such terms become of particular importance starting from
the three-loop order in the perturbative expansion of the muon anomalous
magnetic moment.

Consider now the vacuum polarization due to the τ lepton. In this case
we have the opposite situation. Since mτ � m, we must study (2.50) in the
limit

√
s ∼ mτ � m. Using (2.53), we find in this limit,

aµ
1 (s) ≈

(α

π

) m2

3s
, s � m2. (2.67)

With this approximation, we derive

wvp,τ
2 ≈ m2

9

∞∫

4m2
τ

ds

s2

√
1 − 4m2

τ

s

(
1 +

2m2
τ

s

)
=

m2

45m2
τ

. (2.68)

This result shows that the τ lepton contribution to aµ is mass-suppressed in
accord with the discussion in Sect. 2.2.
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Fig. 2.4. Two-loop diagrams that contribute to w2. Symmetric diagrams are not
shown. The vacuum polarization diagram refers to the muon contribution only

The next step is the calculation of the term w2 in (2.45). The correspond-
ing Feynman diagrams are shown in Fig. 2.4. To compute w2 we generalize
the method discussed in connection with the computation of the Schwinger
correction in the previous section. It is not difficult to see that all Feynman
integrals needed to compute w2 belong to one of the two classes

Sp
2 =

∫
π−dddk1ddk2

k2a1
1 k2a2

2 (k1 − k2)2a3(k2
1 + 2pk1)a4(k2

2 + 2pk2)a5
,

(2.69)

Snp
2 =

∫
π−dddk1ddk2

k2a1
1 k2a2

2 (k2
1 + 2pk1)a3((k1 + k2 + p)2 − m2)a3(k2

2 + 2pk2)a5
.

Similar to the one-loop case, these integrals can be studied using identities
obtained by the integration-by-parts method. There are six independent lin-
ear equations for each of Sp,np

2 that follow from differentiating with respect to
k1,2 and contracting with p, k1,2. These relations were studied in [19] where
it was shown that any Sp,np

2 integral can be expressed through three master
integrals. We present these integrals as an expansion in ε = (4 − d)/2 to the
order that is needed in the calculation of the anomalous magnetic moment

I1 = Sp
2 (0, 0, 0, 1, 1) = S1(0, 1)S1(0, 1) , (2.70)

I2 = Sp
2 (1, 0, 1, 1, 0) = Γ 2(1 + ε)m2−4ε

[
− 1

2ε2
− 5

4ε
− π3

3
− 11

8

+
(
−5π2

6
− 4ζ3 +

55
16

)
ε

]
, (2.71)

I3 = Snp
2 (0, 0, 1, 1, 1) = Γ 2(1 + ε)m2−4ε

[
− 3

2ε2
− 17

4ε
− 59

8

+
(
−4π2

3
− 65

16

)
ε +

(
8π2 ln 2 − 28ζ3 +

1117
32

− 26π2

3

)
ε2
]

, (2.72)

where S1(0, 1) is given in (2.43).
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In terms of those integrals, the contribution of the diagrams shown in
Fig. 2.4 to w2 reads

wbare
2 =

1
(4π)−2ε

[
I1

m4

(
− 3

32ε2
+

9
32ε

− 45
32

+
41ε

96
+

143ε2

36

)

+
I2

m2

(
1
4ε

+
1
8
− 5ε2

4

)
(2.73)

+
I3

m2

(
− 1

16ε2
+

5
32ε

− 109
96

+
53ε

144
+

305ε2

216

)]
.

Using expressions for the master integrals Eq. (2.70, 2.71, 2.72), we find

wbare
2 =

Γ 2(1 + ε)m−4ε

(4π)−2ε

(
23
24ε

+
641
144

+
3
4

ζ3 −
π2

2
ln 2 +

π2

12

)
. (2.74)

The result is divergent. The finite result is obtained once the renormal-
ization of the fine structure constant, the muon field and the muon mass are
taken into account. We define

m0 = Zmm , ψ0 =
√

Z2ψ , α0 = αZα , (2.75)

where the subscript 0 denotes bare quantities. We emphasize that all the
renormalization constants are computed in the on-shell scheme. Through
O(α) the renormalization constants read

Z2 = Zm = 1 +
(α

π

) Γ (1 + ε)m−2ε

(4π)−ε

(
− 3

4ε
− 1

1 − 2ε

)
,

Zα = 1 +
(α

π

) Γ (1 + ε)m−2e

3ε(4π)−ε
.

(2.76)

There are two types of counterterms that we have to consider. The first one
is the insertion of the mass counterterm into the one-loop diagram Fig. 2.5.
The result reads

δwct,1
2 =

Γ (1 + ε)m−2ε

(4π)−ε

(
3
4

+ ε

)
S1(0, 1)

m2
=

Γ 2(1 + ε)m−4ε

(4π)−2ε

(
− 3

4ε
− 7

4

)
.

(2.77)

δm

Fig. 2.5. The mass counter-term insertion into the one-loop diagram; the sym-
metric diagram is not shown
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The second contribution comes from the multiplicative renormalization of the
one-loop result; we write

a(1)
µ =

(α

π

)
ZαZ2

Γ (1 + ε)m−2ε

(4π)−ε

(
1
2

+ 2ε

)
, (2.78)

from where we find

δwct,2
2 =

Γ 2(1 + ε)m−4ε

(4π)−2ε

(
− 5

24ε
− 4

3

)
. (2.79)

The final result for w2 is obtained as the sum of (2.74, 2.77, 2.79). We
derive

w2 =
197
144

+
3
4

ζ3 −
π2

2
ln 2 +

π2

12
, (2.80)

where ζ3 is given by the Riemann zeta-function ζp =
∑∞

n=1
1

np .

2.5 Three-loop QED Corrections to aµ

At the third order in the perturbative expansion in QED, the technical diffi-
culties become enormous. In addition, diagrams of the light-by-light scatter-
ing type, Fig.2.6, where, similar to hadronic vacuum polarization, all charged
particles contribute, appear at this order. Traditionally, only light-by-light
scattering diagrams with electron, muon and τ loops are included in the
QED part of the muon magnetic anomaly. The light-by-light scattering dia-
grams mediated by the electron loops turn out to be particularly important;
not only those diagrams are enhanced by lnm/me, but also coefficients of the
logarithms are large, ∼ π2. This interesting feature leads to a strong domi-
nance of the light-by-light scattering contribution, mediated by the electron
loop, in the three-loop QED contribution to aµ, and indicates that similar
diagrams are important in fourth and higher orders.

For our discussion, we split the three-loop QED correction to the muon
anomalous magnetic moment into several components

k

e, µ, τ

Fig. 2.6. The diagram with the light-by-light scattering loop
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a(3)
µ =

(α

π

)3 [
wlbl,e

3 + wlbl,τ
3 + wvp

3 + w3

]
, (2.81)

where the abbreviations should be clear from the preceding discussion. The
component w3 accounts for all the diagrams that depend on the muon mass
only.

We begin with the computation of w3. Although numerically w3 is smaller
than the light-by-light and the vacuum polarization components, it required
the largest effort to be derived analytically. The calculations started around
1970 [20] and were completed in 1995 by Laporta and Remiddi [21]. Because
it took more than twenty years to finalize the project, different parts of the
calculations were done using different techniques. From today’s perspective, a
convenient way to approach the problem is through the integration-by-parts
identities for the three-loop massive on-shell integrals. To a certain extent,
this approach was adopted by Laporta and Remiddi in the final stages of
their work on w3. A complete recursive solution of the integration-by-parts
identities for the three-loop massive on-shell integrals can be found in [22, 23].

We briefly describe technical aspects of the calculation. There are forty
distinct diagrams that contribute to w3. To compute those, we first repeat
all the steps discussed in connection with the one- and two-loop QED con-
tributions to the muon anomalous magnetic moment. Upon removing the
dependence on the momentum transfer q, w3 is expressed through the three-
loop on-shell massive integrals. Those integrals can be separated into eleven
classes. For each of these classes, we write down a set of integration-by-parts
identities and solve them iteratively. The solution shows that any on-shell
three-loop massive integral is a linear combination of the seventeen master
integrals. Analytic expressions for these integrals as well as some details about
their evaluation can be found in [20, 21, 22]. The result reads

w3 =
83π2

72
ζ3 −

215
24

ζ5 +
100
3

[
a4 +

ln42
24

− π2

24
ln22

]
− 239

2160
π4

+
139
18

ζ3 −
298
9

π2 ln 2 +
17101
810

π2 +
28259
5184

, (2.82)

where a4 =
∑∞

n=1
1

2nn4 .
The second component of a

(3)
µ that we have to discuss is the vacuum po-

larization correction. Since it receives contributions from fermions of different
masses, it is convenient to split it up further

wvp
3 = wvp,e

3 + wvp,τ
3 + wvp,eτ

3 . (2.83)

Here, wvp,i
3 receives contributions from all diagrams that contain at least one

vacuum polarization insertion of the fermion of type i. In addition wvp,eτ
3

refers to the diagram that contains both electron and τ vacuum polarization
loops.
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All contributions to wvp
3 are known analytically. The wvp,eτ

3 was obtained
in [24] confirming earlier numerical result [25]. We do not present the full an-
alytic result for wvp,eτ

3 since a simple estimate is sufficient, given the current
level of precision for aµ. The major three-loop effect related to the mixed
vacuum polarization contribution is the combination of the two effects dis-
cussed in connection with the electron and τ vacuum polarization loops in the
previous section; the electron loop changes the strength of the fine structure
constant while the τ loop contributes m2

µ/m2
τ power suppression term. If we

write a
(2)
µ = (α(m)/π)2m2/(45m2

τ ) for the two-loop τ vacuum polarization
contribution and expand this expression in powers of α using (2.57), we ob-
tain the ln(m/me) enhanced three-loop contribution to aµ from the diagram
with mixed electron-tau vacuum polarization loops

wvp,eτ
3 ≈ 4m2

135m2
τ

ln
m

me
. (2.84)

The three-loop shift in aµ induced by wvp,eτ
3 is ∼ 0.7× 10−11, well below the

current experimental precision.
Similarly, the τ vacuum polarization contribution is very small. We give

the corresponding result here for completeness

wvp,τ
3 =

m2

m2
τ

(
− 23

135
ln

mτ

m
− 2π2

45
+

10117
24300

)
. (2.85)

More terms in the expansion of wvp,τ
3 in powers of m/mτ can be found in

[25].
The important vacuum polarization correction is again associated with

the electron loops, wvp,e
3 ; in this case the corrections enhanced by two powers

of the large logarithm ln(m/me) are generated, as it is easy to understand
from the running of the coupling constant, (2.57).

The result for wvp,e
3 is known in an analytic form [25] but it is more

convenient to present it as the series expansion in powers of me/m

wvp,e
3 =

2
9

ln2 m

me
+
(

ζ3 −
2π2

3
ln 2 +

π2

9
+

31
27

)
ln

m

me

+
11π4

216
− 2π2

9
ln2 2 − 8

3
a4 −

ln4 2
9

− 3ζ3 +
5π2

3
ln 2 − 25π2

18
+

1075
216

+
me

m

(
−13π3

18
− 16π2

9
ln 2 +

3199π2

1080

)
(2.86)

+
(me

m

)2
(

10
3

ln2 m

me
− 11

9
ln

m

me
− 14π2

3
ln 2 − 2ζ3 +

49π2

12
− 131

54

)

+
(me

m

)3
(

4π2

3
ln

m

me
+

35π3

12
− 16π2

3
ln 2 − 5771π2

1080

)
+ O

(
m4

e

m4

)
.
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The O(ln2 m/me) term in (2.86) is easy to obtain from the renormalization
group equation for the coupling constant, (2.56).

We now turn to the light-by-light scattering contributions due to electron
and τ loops computed in [26]. The τ contribution is quite small. Taking the
leading term from [26] we find

wlbl,τ
3 =

(
3
2

ζ3 −
19
16

)
m2

m2
τ

+ O
(

m4

m4
τ

)
. (2.87)

The corresponding shift in the anomalous magnetic moment is 2.7 × 10−11,
approximately.

On the contrary, the light-by-light scattering contribution mediated by
the electron loop is very significant. The result derived in [26] reads

wlbl,e
3 =

2π2

3
ln

m

me
+

59π4

270
− 3ζ3 −

10π2

3
+

2
3

+
me

m

(
4π2

3
ln

m

me
− 196

3
π2 ln 2 +

424
9

π2

)

+
(me

m

)2
(
−2

3
ln3 m

me
+
(

π2

9
− 20

3

)
ln2 m

me
(2.88)

−
(

16
135

π4 + 4ζ3 −
32π2

9
+

61
3

)
ln

m

me

+
4π2

3
ζ3 −

61π4

270
+ 3ζ3 +

25π2

18
− 283

12

)
+ O

(
m3

e

m3

)
.

An interesting feature of this result is the appearance of the logarithmically
enhanced term with large coefficient ∼ π2 ln(m/me) Numerically, this term
gives a large fraction of wlbl,e

3 and originates [27] from the region of small loop
momenta with the muon propagators on the mass shell. This mechanism of
enhancing radiative corrections by factors of π was discussed in detail in the
previous section.

Consider the integration over virtual momentum k in the light-by-light
scattering diagram shown in Fig. 2.6 and assume that me 	 k 	 m. Since
the virtual momentum is smaller than the mass of the muon, the muon serves
as a source of time-independent electromagnetic field. This observation leads
to the expectation that the logarithmically enhanced contribution might be
enhanced by additional factors of π2. Indeed, in the rest frame of the muon,
its propagator reads

1/(k0 + i0) −→ −iπδ(k0) , (2.89)

where the delta-function ensures that there is no energy transfer from the
muon line to the electron light-by-light scattering loop. Simultaneously, we
see that such a contribution has two additional factors of π, each coming from
one of the static muon lines going on the mass shell. The calculation along
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these line was performed in [27]; although it is important for understanding
the structure of wlbl,e

3 , it is of little relevance numerically, since the full result
is known. However, this observation is used to estimate the four- and five-loop
QED corrections to aµ, as we discuss in the next section.

2.6 Four- and Five-loop QED Corrections

The four-loop QED contribution to aµ is the last known term in the pertur-
bative expansion. We stress that, given the current experimental precision on
the muon anomalous magnetic moment, the O(α4) correction is important
for the comparison between theory and experiment.

The computation of the four-loop diagrams for aµ represents the current
frontier of perturbative calculations in Quantum Field Theory; it was being
pursued by Kinoshita with collaborators over the last two decades. The most
recent results are summarized in [28]. We comment on some aspects of the
four-loop calculation below.

First, in contrast to calculations in lower orders, the four-loop computa-
tions are fully numerical; this concerns, for example, the renormalization of
sub-divergences. Because of that, large cancelations between different pieces
are involved and, as the authors of [28] point out, there appears the so-called
digit deficiency problem that requires using real*16 Fortran arithmetics to
arrive at a stable result.

Second, so far there is no cross-check of the four-loop correction to aµ

by an independent group. Partial results [29] were used to elucidate some
problems with earlier numerical work leading to the discovery of the digit
deficiency problem. Currently, the calculation of a

(4)
µ is performed with two

somewhat different methods and the results are consistent [28] .
Third, it is important to emphasize that, in spite of these problems, the

four-loop QED contribution to the muon anomalous magnetic moment is
known sufficiently well for phenomenological purposes. This happens because
the four-loop correction to the muon magnetic anomaly is strongly dominated
by the electron light-by-light scattering diagrams with the additional electron
vacuum polarization insertion in one of the photon lines, Fig. 2.7. Those
diagrams were computed independently by two groups [28, 30] with consistent
results.

It is quite easy to understand why diagrams of the type shown in Fig. 2.7
dominate. Recall, that the most important contribution to the three-loop
corrections discussed in the previous section comes from the electron light-by-
light scattering diagram, Fig. 2.6; the contribution of this diagram is enhanced
by the logarithm ln(m/me) with the large coefficient ∼ π2. This feature
also makes the diagrams with the electron light-by-light scattering sub-loop
dominant in the fourth order. Among the QED corrections to such diagrams,
diagrams similar to Fig. 2.7 have an additional enhancement factor ln(m/me),
so that the four-loop result can be estimated as
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e

e

Fig. 2.7. The dominant four-loop diagram. Symmetric diagrams are not shown

a(4)
µ ∼

(α

π

)4 π2

2
ln2 m

me
. (2.90)

The four-loop contribution to the muon magnetic anomaly reads

a4 =
(α

π

)4 (
wlbl+vp,e

4 + w4

)
, (2.91)

where we neglect the contribution of the tau lepton at this order. The mass-
independent term w4 has been computed in [28]

w4 = −1.7502(384) . (2.92)

The term wlbl+vp, e
4 that includes the electron loop in vacuum polarization

and the light-by-light scattering diagrams reads

wlbl+vp, e
4 = 132.6823(72) . (2.93)

This value should be compared with 117.4(5) [30], that is obtained upon
evaluating the contribution to aµ due to the diagrams shown in Fig. 2.7.
It follows, that approximately ninety percent of wlbl+vp, e

4 come from a few
diagrams that are very well understood. It is precisely this feature of the four-
loop result that makes it robust; this implies that any discrepancy between
the experimental result for aµ and the theoretical expectation at the level of
100×10−11 is very unlikely to be caused by deficiencies in QED computations.

The full calculation of the five-loop contribution to aµ is not available.
Nevertheless, it is reasonable to assume that electron light-by-light scattering
diagrams dominate there and existing estimates of the five-loop contribution
[27, 31, 32] are based on this assumption.

Following our explanation of how such diagrams contribute at the three-
and four-loop level, it is easy to understand that there are two possibilities
to obtain large contributions at the five-loop level. An additional electron
loop insertion into one of the photons in the four-loop diagram Fig. 2.7 gives
additional logarithms so that its contribution to w5 can be estimated as
w5 ∼ π2 ln3 m/me ≈ 103. Alternatively, the light-by-light scattering diagram
with no electron vacuum polarization loops has four muon propagators that
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can go on-shell, hence w5 ∼ π4 ln(m/me) ∼ 500. This discussion shows that
a value of w5 ∼ 103 can be expected, which is confirmed by a more careful
estimate [32]

w5 = 930(170) . (2.94)

Very recently an explicit computation of the leading contributions to w5 was
reported by Kinoshita [33]; he finds

w5 = 677(40) . (2.95)

We will use this value in our estimate of the full QED contribution to the
muon magnetic anomaly discussed in the next section.

2.7 Complete QED Contribution
to the Muon Magnetic Anomaly

In this section we combine the results discussed above to obtain complete
QED contribution to the muon magnetic anomaly; for this we need the values
of the fine structure constant α and the electron, muon and tau masses.

Given the experimental uncertainty on aµ, the current precision on all
those quantities is sufficient and their imprecise knowledge does not induce
an appreciable uncertainty in the muon magnetic anomaly. We use values
recommended by the National Institute of Standards [34],

1
α

= 137.03599911(46) ,
m

me
= 206.7682838(54) ,

mτ

m
= 16.8183(27) .

(2.96)
With this, we derive the following result for the QED contribution to the

muon magnetic anomaly

aQED
µ = 116 584 719(1) × 10−11 , (2.97)

where all QED effects through five-loops (2.95) have been included. Numer-
ically, the five-loop corrections ∼ 6× 10−11 are not significant. Nevertheless,
it became customary to include those terms into the estimate of aQED

µ . The
error in (2.97) is entirely due to the uncertainty in the five-loop contribution;
the uncertainty caused by the imprecise knowledge of the input parameters
is at the level of 10−12.
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3 Hadronic Vacuum Polarization

3.1 Hadronic Vacuum Polarization: The Basics

The hadronic vacuum polarization, Fig. 3.1, is the largest hadronic effect
on the muon anomalous magnetic moment; it has to be known with high
precision to match the existing experimental effort. Given the low value of
the muon mass, this task seems formidable because at low energies hadronic
interactions are strong. We are rescued by a dispersion representation of the
photon propagator that relates hadronic vacuum polarization contribution
to aµ and the experimentally measured e+e− annihilation cross section into
hadrons. In principle, this allows to account for the effects of strong interac-
tions exactly. Such an approach puts, however, a significant burden on the
experiment, requiring high precision measurement of the e+e− annihilation
cross section.

We begin by giving a crude estimate of the hadronic vacuum polarization
contribution to aµ. Following the discussion in Sect. 2.4, it is easy to see that
a hadronic state with the invariant mass Mhadr changes aµ by

ahvp
µ ∼

(α

π

)2 m2

M2
hard

. (3.1)

Taking Mhard ∼ 1 GeV as a typical scale for hadron masses, we arrive at the
estimate

ahvp
µ ∼ 6000 × 10−11. (3.2)

hadrons

Fig. 3.1. The hadronic vacuum polarization contribution to the muon anomalous
magnetic moment

K. Melnikov and A. Vainshtein: Theory of the Muon Anomalous Magnetic Moment
STMP 216, 33–87 (2006)
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Although this estimate is in the correct range, one may wonder if pions, whose
masses are close to the mass of the muon, change this estimate significantly.
We describe a refined estimate in Sect. 3.3 where we demonstrate that the
contribution to ahvp

µ of the two-pion state with an invariant mass close to its
minimal value 2mπ is fairly small indeed.

To derive a useful representation for the hadronic vacuum polarization
contribution to the muon anomalous magnetic moment, we consider Feyn-
man diagram Fig. 3.1. This diagram can be computed by following the steps
described in Sect. 2.4 in connection with the computation of the lepton vac-
uum polarization contribution to aµ. An obvious modification of (2.50) leads
to the result

ahvp
µ =

α

3π

∞∫

s0

ds

s
Rhadr(s) a(1)

µ (s) , (3.3)

where a
(1)
µ (s) can be found in (2.51) and

Rhadr(s) =
σhadr(s)
σpoint(s)

, (3.4)

with σpoint given in (2.49) and σhadr being the e+e− hadronic annihilation
cross section.

In (3.3), s0 refers to the lowest invariant mass squared of the hadronic
system that can be produced in the e+e− annihilation. We use s0 = 4m2

π,
the threshold for the production of the two pions; however, strictly speaking,
s0 = 0, since such “hadronic” states as 3γ and π0γ are produced in the
e+e− annihilation as well. In practice, the contribution of the energy region
0 ≤ s ≤ 4m2

π to ahvp
µ is less than 1 × 10−11 [1] and, therefore, can be safely

neglected.
It is easy to see that the integral in (3.3) is dominated by hadronic states

with relatively low invariant masses. Indeed, for large s, Rhadr(s) becomes
s-independent, whereas a

(1)
µ (s) ∼ m2/s. Hence, for s � m2, the integrand in

(3.3) decreases as 1/s2 and the integral converges rapidly.
Equations (3.3, 3.4) as well as (2.51) are sufficient to compute the hadronic

vacuum polarization contribution to the muon anomalous magnetic moment;
given the experimental result for σhadr(s), it is straightforward to evaluate the
integral in (3.3) and obtain ahvp

µ . In practice, however, this task is complicated
by the need to combine data from many experiments and analyze systematic
uncertainties associated with each data set.

Before discussing these issues in detail, in Sect. 3.3 we describe a way
to estimate ahvp

µ . Such an estimate is instructive for two reasons. It allows
us to develop an intuitive understanding of the physics behind the hadronic
vacuum polarization contribution to the muon anomalous magnetic moment
and, in addition, to introduce theoretical arguments that are used in Chaps. 5,
6 where other hadronic contributions are discussed. The theoretical tools that
we extensively use in the discussion of hadronic effects in the muon magnetic
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anomaly, are the operator product expansion and the limit of QCD where
the number of colors Nc is considered large; we describe them in the next
section.

3.2 Theoretical Methods

3.2.1 Large-Nc Approximation in QCD

In QCD the number of colors Nc equals three. However, it was pointed out
by ’t Hooft [2] that generalizing SU(3) gauge group of QCD to SU(Nc) and
considering Nc as a free parameter, provides a useful tool for the theoretical
analysis of non-perturbative aspects of QCD. In particular, ’t Hooft showed
that in the limit Nc → ∞ with Ncαs fixed, the two-dimensional QCD can be
solved exactly. In spite of significant effort, the four-dimensional generaliza-
tion of this solution has not yet been found. Nevertheless, important general
features of large-Nc QCD in four dimensions are known.

The key to understanding large-Nc QCD are the counting rules that es-
tablish dependence of Green’s functions on Nc. A detailed discussion of these
rules can be found in [2, 3]; here we briefly sketch it. Starting from the original
QCD Lagrangian

L = − 1
4g2

0

Ga
µνGa,µν + ψ̄

(
iD̂ − M

)
ψ , (3.5)

where ψ denotes the quark field with its flavor, color and Dirac indices and M
is the diagonal mass matrix, M = Diag(mu,md, . . .), and redefining the cou-
pling constant g0 → g/

√
Nc and the quark field ψ =

√
Ncψ̃, the Lagrangian

is cast into a form suitable for the large-Nc analysis

L = Nc

(
− 1

4g2
Ga

µνGa,µν + ¯̃
ψ
(
iD̂ − M

)
ψ̃

)
. (3.6)

This form of the Lagrangian implies that, in a given Feynman diagram, each
propagator contributes a factor 1/Nc and each vertex contributes a factor
Nc, to an overall Nc-scaling.

This is not the whole story, however, since internal lines in Feynman
diagrams are charged under SU(Nc) and, therefore, sums over internal color
indices generate powers of Nc. A useful way to determine the leading power
of Nc that originates from such sums is the double-line notation for the
gluon propagator, suggested by ’t Hooft [2]. In this picture, a gluon line in
a Feynman diagram is represented by a pair of lines, one that corresponds
to a color index and the other one that corresponds to an anti-color index;
once the gluon line splits into a quark and an anti-quark lines, the color
index of a gluon is absorbed by a quark, and an anti-color index, by an anti-
quark. Such representation turns an ordinary Feynman diagram with quark
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and gluon lines into a collection of polygons glued together to form surfaces;
each closed color loop forms the edge of the polygon and is the face of the
surface. The total number of edges is equal to the number of propagators in a
given Feynman diagram. Each color loop provides a single power of Nc to an
overall Nc-scaling. Hence, the leading Nc-dependence of a Feynman diagram
with V vertices, E edges and F faces is

NV −E+F
c = Nχ

c , (3.7)

The parameter χ is a topological invariant of a two-dimensional surface that
is obtained from a Feynman diagram; it is called the Euler character. Instead
of vertices, edges and faces, the Euler character can be expressed through the
number of holes (boundaries) b and handles h, of a two-dimensional surface
that corresponds to a given Feynman diagram

χ = 2 − 2h − b . (3.8)

The maximal value of χ is two; it is obtained for a two-dimensional surface
without holes and handles – the sphere.

The fact that the leading power of Nc is related to a topological property
of a Feynman diagram, permits an easy proof of the following powerful result.
The leading contribution to connected vacuum-to-vacuum transition ampli-
tude scales like N2

c and corresponds to planar diagrams made up of gluons
only. Planar diagrams with an additional quark loop have a single bound-
ary b = 1; hence χ = 1 and the scaling is Nc. The quark loop has to form a
boundary of the graph. Note, that the above analysis and the power-counting
applies to the re-scaled coupling constant g and the quark field ψ̃.

We will be particulary interested in what large-Nc QCD has to say about
properties of hadrons; we assume that confinement persists in the large-Nc

limit and, hence, analysis in terms of hadrons is appropriate. To analyze me-
son properties, we require Green’s functions composed of quark bilinears with
the quantum numbers that correspond to mesons of interest. Considering the
vacuum-to-vacuum transition amplitude in the presence of external currents
and using results for the vacuum-to-vacuum transition amplitude described
above, it is easy to derive the large-Nc counting rule for the Green’s functions
composed of quark bilinears. Denoting such bilinears by J̃ ∼ ¯̃

ψΓJ ψ̃, where
the matrix ΓJ is a generic notation for the Lorentz and flavor structure of
the current, we derive

〈J̃1J̃2....J̃n〉 ∝ N1−n
c , (3.9)

where 〈...〉 denotes the vacuum average of the time-ordered product.
We can understand some interesting features of the large-Nc QCD using

(3.9). First, it implies an Nc-scaling rule for meson-meson coupling constants.
Consider, for example, the ρππ vertex. The coupling constant can be obtained
from the Green’s function of the interpolating currents for the ρ meson and
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the two pions. In terms of non-rescaled quark fields ψ, these interpolating
currents have the form ψ̄ΓJψ/

√
Nc since mesons are color singlets and their

wave functions are normalized in an Nc-independent way. Hence, the coupling
constant is deduced from the following set of equations

gρππ ∝ 1

N
3/2
c

〈
ψ̄Γρψ ψ̄Γπψ ψ̄Γπψ

〉
= N3/2

c

〈 ¯̃
ψΓρψ̃

¯̃
ψΓπψ̃

¯̃
ψΓπψ̃

〉

∝ N3/2
c N1−3

c ∝ 1√
Nc

. (3.10)

This result is, of course, more general than just the ρππ coupling as can
be seen from the derivation. Hence, we conclude that interactions between
mesons in the large-Nc limit vanish, which implies that all mesons in that
limit are stable.

In a similar fashion, we can estimate the Nc-scaling of Green’s functions
that involve external quark currents. Consider, for example, the axial current
ψ̄T−γµγ5ψ = d̄γµγ5u, whose matrix element between the vacuum and the
pion gives the pion decay constant Fπ. Using (3.9), we derive the following
scaling

Fπ ∝
〈
ψ̄T−γµγ5ψ

1√
Nc

ψ̄Γπψ
〉

= N3/2
c

〈 ¯̃
ψT−γµγ5ψ̄

¯̃
ψΓπψ̃

〉
∝
√

Nc . (3.11)

Clearly, nothing in this result is particular to the pion decay constant; any
matrix element of that type has similar scaling. An important case for our
purposes is the contribution of the ρ-meson to the e+e− annihilation cross
section. Such contribution is proportional to the square of the matrix element
of the electromagnetic current Jem

µ between the vacuum and the ρ-meson,
〈0|Jem

µ (0)|ρ〉 = mρgρε
ρ
µ. Generalizing (3.11), we find that the contribution of

the ρ-meson to the hadronic e+e− annihilation cross section is proportional
to Nc. In addition to the ρ-meson contribution to the e+e− annihilation cross
section, we also require the π+π− contribution in what follows. It is easy to
estimate it using the example above; as compared to (3.11), the presence of
an additional pion leads to an extra factor of 1/

√
Nc. Hence, we find that the

e+e− → π+π− annihilation cross section is Nc-independent.
The results discussed above can be used to constrain the functional form

of Green’s functions in the large-Nc QCD. As an example, consider the cor-
relation function of two electromagnetic hadronic currents 〈Jem

µ Jem
ν 〉; we are

interested in this quantity since its imaginary part gives the e+e− annihilation
cross section into hadrons. The large-Nc counting rules discussed above imply
that 〈Jem

µ Jem
ν 〉 ∼ Nc. We may try to understand this result by considering

contributions of mesons to this Green’s function. Then, from the discussion
above it follows that a single meson contribution to 〈Jem

µ Jem
ν 〉 scales like Nc,

the contribution of an intermediate two-meson state scales like N0
c ∼ 1 and

contributions of intermediate states with even higher meson multiplicities are
even stronger suppressed. Hence, we conclude that in the large-Nc limit only
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one-meson intermediate states contribute to the correlation function of two
electromagnetic currents. We write

i

∫
d4xeiqx〈T{Jem

µ (x)Jem
ν (0)}〉 = (qµqν − gµνq2)

∞∑
i

g2
i

m2
i − q2

, (3.12)

where g2
i ∝ Nc refers to the coupling of i-th vector meson to the electromag-

netic current. It is easy to see that the resulting linear Nc dependence holds
for any number of external currents.

In contrast to large-Nc QCD spectrum, real-world mesons are unstable.
However, this difference becomes largely irrelevant once integrals of Green’s
functions are considered. A good example is a determination of meson prop-
erties from QCD sum rules when mesons are often approximated by delta-
functions δ(s − M2) in phenomenological spectral densities.

We note that Green’s functions constructed as infinite sums over meson
propagators have to match perturbative QCD description at short distances.
Once this is achieved, we obtain the Green’s function that satisfies basic QCD
constrains and is defined for all values of q2 because of the large-Nc Anzats.
We use this approach extensively to study strong interaction effects in the
muon magnetic anomaly.

3.2.2 The Operator Product Expansion

The operator product expansion (OPE) states that in Quantum Field Theory
a time-ordered product of two local operators A(y) and B(y + x) can be
expanded into a sum of local operators Oi(y) in the limit x → 0,

T {A(x)B(y + x)} =
∑

i

ci(x)Oi(y) , (3.13)

where summation over i may include Lorentz indices. The OPE was suggested
by Wilson in 1969 [4]. Since then it found applications in a variety of topics in
high energy physics, from factorization in deep-inelastic scattering and weak
nonleptonic decays of K and π mesons and hyperons, to QCD sum rules
and the theory of B meson decays. The OPE helps to separate contributions
of large and small distances or, alternatively, small and large momenta, to a
given physical process and to deal with the two components almost separately.
We introduce the operator product expansion through an example, relevant
for our discussion of the hadronic vacuum polarization. Our presentation
follows original publications [5] where the hadronic vacuum polarization was
studied in the context of QCD sum rules.

Consider the electromagnetic hadronic current

Jem
µ (x) =

∑
q=u,d,s

Qq q̄(x)γµq(x) , (3.14)
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where Qq stands for the electric charge of the quark q in units of the positron
charge |e|. We are interested in the Fourier transform of the product of two
such currents

Π̂µν = i

∫
d4xeiqxT

{
Jem

µ (x)Jem
ν (0)

}
, (3.15)

in the limit when momentum q is large and space-like, q2 = −Q2, Q2 �
Λ2

QCD. In this limit Π̂µν(q2) in (3.15) receives appreciable contribution from
the small integration region, x ∼ 1/Q → 0; the contribution of the integration
region where x � 1/Q cancels out due to a rapidly oscillating exponential
factor. Then, the general OPE expansion (3.13) leads to

Π̂µν =
∑

i

ci
µνα1...αi

(q)Oα1...αi
i (0) . (3.16)

In this equation the OPE coefficients ci
µνα1...αi

(q) are some c-valued tensors
that depend on q.

Indices αk of the operator Oα1...αi
i are associated with its Lorentz spin;

Lorentz spins of relevant operators depend on a particular process under con-
sideration. For example, when the OPE is applied to deep inelastic processes,
we average Oα1...αi

i over hadronic target so that the momentum and the spin
of the target define the tensor structure. In case of the vacuum polarization,
we average (3.16) over the vacuum state; as a consequence, only operators
that are scalars under Lorentz transformations contribute. These operators
have no uncontracted indices and the tensor structure of their coefficients,

ci
µν(q) = (qµqν − gµνq2)ci(Q2) , (3.17)

is fixed by the Lorentz invariance and the conservation of the electromagnetic
current. Hence, the spin zero part of the OPE can be written as

Π̂µν = (qµqν − gµνq2)Π̂(Q2) , Π̂(Q2) =
∑

i

ci(Q2)Oi(0) . (3.18)

Within the OPE, the coefficient functions ci(Q2) are determined by short
distances and, consequently, large virtual momenta, while physics at large
distances enters matrix elements of operators Oi. To make the separation
between the operators and the coefficient functions unambiguous, we require
an introduction of the normalization point µ. Then, the coefficient functions
ci account for the contribution of virtual momenta larger than µ while mo-
menta that are smaller than µ, contribute to the matrix elements of opera-
tors. Because physical results have to be µ-independent, the µ-dependence of
the OPE coefficient functions is canceled by the µ-dependence of the matrix
elements.

The features of the operator product expansion that are discussed above,
are quite general; they are valid in any theory. Specific to QCD is the fact
that the coupling constant decreases with momentum growth [6, 7], αs(Q) ∼
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1/ ln(Q/ΛQCD) 	 1 when Q � ΛQCD. For large values of Q, this feature
allows the computation of the dominant part of the coefficient functions in
perturbation theory.

Because Π̂(Q2) is dimensionless, the mass dimension of the operator Oi

determines the power behavior of the corresponding coefficient function. De-
noting the mass dimension of the operator Oi by di, we derive

ci(Q2) =
c̃

Qdi
. (3.19)

We can construct local operators by taking products of quantum fields and
covariant derivatives; since each of these ingredients has positive mass dimen-
sion, more complicated operators have larger mass dimensions and, hence,
give smaller contributions to Π̂(Q2). Therefore, for a sufficiently large value
of Q2, there is just a handful of operators with smallest mass dimension that
should be accounted for.

In addition to canonical mass dimensions, operators are also characterized
by anomalous dimensions γi, which determine the dependence of operators
on the normalization point µ. This dependence is governed by the renor-
malization group evolution equations [8] and is of the form (lnµ)γi . Since
µ-independent physical quantities are given by products of coefficient func-
tions and matrix elements of operators, the dependence of the coefficient
functions on µ can be deduced,

c̃i ∝
(

ln
Q

µ

)−γi

. (3.20)

The operator product expansion is important because it allows us to de-
scribe physical processes beyond the perturbation theory [5]. Indeed, in our
example, the vacuum average of the product of two electromagnetic currents
gives the hadronic vacuum polarization

Π(Q2) = 〈0|Π̂(Q2)|0〉 =
∑ c̃i

Qdi
〈Oi〉 . (3.21)

The vacuum averages 〈Oi〉, that are also referred to as condensates, scale as
Λdi

QCD where di is the canonical mass dimension of the operator Oi. Hence,
as we explained earlier, taking Q � ΛQCD allows us to truncate the sum in
(3.21) and consider a limited number of local operators.

A word of caution is appropriate here. In the simplified picture presented
above, the factorization of short and large distance physics into the OPE
coefficient functions and the operators is equivalent to the factorization of
perturbative and non-perturbative phenomena; the coefficient functions are
given by the perturbative expansion in αs(Q) while the matrix elements, pro-
portional to powers of ΛQCD = Q exp[−Const/αs(Q)], are non-perturbative.
In reality, things are somewhat different. First, because of the µ-dependence,
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the matrix elements contain perturbative contributions. Second, nonpertur-
bative physics exists even at short distances; small-size instantons serve as
an example. Such contributions show up as power corrections to the OPE
coefficient functions, of the form Λ2

QCD/Q2, providing a new source of non-
perturbative phenomena. In practical applications it is often assumed that the
non-perturbative part of the OPE coefficient functions is numerically small
and can be neglected; however, this may not always be a safe assumption.

We now list local operators that contribute to the right hand side of
(3.21). As we already know, we have to start with those operators that have
the lowest possible mass dimension. Because we take the matrix elements
between the two vacuum states, the operators should be Lorentz scalars; in
addition, they should be gauge invariant.

The simplest operator is the identity operator O0 = Î, with the mass
dimension zero. To construct operators of higher mass dimension, we should
consider quark and gluon fields as well as covariant derivatives. The quark
field has the mass dimension 3/2, the covariant derivative – the mass dimen-
sion one and the gluon field-strength tensor Gµν – the mass dimension two.
Then, it is easy to see that the identity operator is followed by the dimension-
three operators q̄q where q = u, d, s and contraction of color indices is implied.
In the chiral limit, mq = 0, the OPE coefficient functions of these operators
vanish because of the chiral properties of q̄q. Indeed, these operators involve
a helicity flip, q̄q = q̄RqL + q̄LqR, while the electromagnetic currents preserve
helicity, q̄γµq = q̄LγµqL + q̄RγµqR. When small quark masses are introduced,
the operators q̄q appear in the OPE in the combination

Oq
4 =

∑
q=u,d,s

Q2
qmq q̄q . (3.22)

The mass dimension of the operator Oq
4 is four; this implies that the cor-

responding OPE coefficient function is proportional to 1/Q4. Note that
the anomalous dimension of the operator Oq

4 , (3.22), is zero since the µ-
dependence of mq(µ) is canceled by the µ-dependence of the operator q̄q.
There is no other dimension-four operator composed of the quark fields; the
operator q̄γµDµq reduces to mq q̄q by equations of motion. However, an addi-
tional d = 4 operator can be composed using the gluon field-strength tensors

Ogl
4 =

αs

π
Ga

µνGa,µν . (3.23)

The coupling constant αs is included into the definition of Ogl
4 for convenience

since, in the leading logarithmic approximation, the operator Ogl
4 is indepen-

dent of the normalization scale µ. Hence, the operator product expansion for
Π(Q2) reads

Π(Q2) = c0 +
c̃q

Q4

〈
Oq

4

〉
+

c̃gl

Q4

〈
Ogl

4

〉
+ O

(
Q−6

)
. (3.24)
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p1

p2
q q

a b

Fig. 3.2. Sample diagrams for computing the operator product expansion of two
electromagnetic currents

An interesting feature of the OPE of the correlator of two electromagnetic
currents, (3.24), is the absence of the 1/Q2 correction which follows from the
fact that no dimension two Lorentz invariant local operator exists in QCD.1

We use this feature in Sect. 3.3 to construct the theoretical model for the
hadronic vacuum polarization contribution to the muon anomalous magnetic
moment.

We now turn to the discussion of how the coefficient functions in the OPE
can be computed. The key observation is that (3.18) is the operator equality,
which implies that we can take matrix elements of both sides of that equation
with respect to any set of states. A convenient set of states is provided by
the perturbation theory; it contains perturbative vacuum, quarks and gluons.
Upon considering the matrix elements of (3.18) with respect to those states,
we find the coefficient functions of the corresponding operators.

As an example, consider the calculation of the coefficient function of the
identity operator. To compute its coefficient function c0, we have to average
the time-ordered product of the two electromagnetic currents over the pertur-
bative vacuum state |0), different from the true vacuum |0〉. In perturbation
theory, this correlator appears at the one-loop order and is given by a familiar
diagram, Fig. 3.2a, while from the OPE perspective (0|Π̂µν |0) = c0 because
matrix elements of operators of higher mass dimension with respect to per-
turbative vacuum vanish thanks to our normalization conditions. Hence, a
straightforward computation of the one-loop diagram Fig. 3.2a leads to the
coefficient function of the unity operator c0

c0 =
Nc

12π2

∑
Q2

q ln
(

M2
UV

Q2

)
, (3.25)

where Nc = 3 is the number of colors and MUV is the ultra-violet cut-off.
Because, in what follows, we consider dΠ/dQ2, the divergent constant in c0

will be of no relevance for us.
Another example is the calculation of the coefficient function of the opera-

tor Oq. To this end, we consider the average (p|Π̂µν(q)|p) of the time-ordered
product of two electromagnetic currents in (3.15) over the perturbative

1 The absence of the 1/Q2 correction is related to the assumption that short-
distance contributions to c0 do not generate non-perturbative Λ2

QCD/Q2 terms.
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one-quark state |p) described by the Dirac spinor up. We assume that the
quark momentum p and the quark mass mq are much smaller than the mo-
mentum q. The average is given by the forward Compton scattering ampli-
tude, Fig. 3.2b, and reads

(p|Π̂µν(q)|p) = −Q2
qūp

(
γµ

1
q̂ + p̂ − mq

γν − γν
1

q̂ − p̂ + mq
γµ

)
up . (3.26)

On the other hand, this matrix element can be computed from the operator
product expansion

(p|Π̂µν(q)|p) = (qµqν − gµνq2)
c̃q

q4
(p|Q2

qmq q̄q|p)

= (qµqν − gµνq2)
c̃q

q4
Q2

qmqūpup . (3.27)

Equations (3.26), (3.27) should coincide in the limit q � p,mq for Lorentz
scalar operators. The comparison between the two equations can be easily
accomplished if we expand (3.26) in powers of p/q,mq/q, contract both equa-
tions with gµν and average over directions of the vector q. From (3.27) we
obtain

(p|Π̂µ
µ (q)|p) = −3c̃q

mqQ
2
q

q2
ūpup , (3.28)

while simple algebraic manipulations with (3.26) lead to

(p|Π̂µ
µ (q)|p) = −6

mqQ
2
q

q2
ūpup . (3.29)

Comparing (3.28, 3.29), we derive the coefficient function c̃q = 2 .
The coefficient functions can also be computed in a related, but slightly

different way that elucidates important physics of the operator product ex-
pansion. It is based on the analysis of momentum flow in Feynman diagrams.
Consider the one-loop Feynman diagram that describes the correlator of two
electromagnetic currents Fig. 3.2a. The large momentum q can flow through
this diagram in three different ways; i) p1 ∼ p2 ∼ Q; ii) p1 	 p2 ∼ Q and
iii) p2 	 p1 ∼ Q. In the first case, all the quark lines are far off-shell and
perturbative computations are applicable. This momentum region gives the
coefficient function of the unity operator, (3.25). To investigate the contribu-
tion of the two regions where one quark line is soft, we proceed as follows.
Writing the expression for the one-loop contribution to the current correlator
in momentum space and contracting it with gµν we obtain

3q2Π(q2) = −i
∑

Q2
qTr

∫
d4p1

(2π)4
γµ

1
q̂ + p̂1 − mq

γµ 1
p̂1 − mq

, (3.30)

where Tr refers to trace over both, Lorentz and color indices.
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To extract the contributions of regions ii) and iii), we assume that p1 ∼
mq 	 q or p1 − q ∼ mq 	 p1. Focusing on the first region, we expand to first
order in p1 and mq and obtain

Π(ii)(q2)=−
∑ Q2

q

3q2
Tr
∫

p1<µ

d4p1

(2π)4

{
γµ

1
q̂

γµ− γµ
1
q̂

(p̂1 − mq)
1
q̂

γµ

}
i

p̂1 − mq
.

(3.31)
When the contribution of region iii) is added, the first term in the integrand
cancels out and the second term gets multiplied by a factor two. We obtain

Πsoft(q2) = 2
∑ Q2

q

3q2
Tr
∫

p1<µ

d4p1

(2π)4
γµ

1
q̂
(p̂1 − mq)

1
q̂

γµ i

p̂1 − mq
. (3.32)

Upon averaging over directions of q, we find

Πsoft(q2) =
∑ Q2

q

12q4
Tr
∫

p1<µ

d4p1

(2π)4
(8p̂1 − 32mq)

i

p̂1 − mq
(3.33)

=
∑ Q2

q

12q4

(
−8〈0|q̄iD̂q|0〉 + 32〈0|mq q̄q|0〉

)
=

2
q4

〈0|
∑

Q2
qmq q̄q|0〉,

which confirms the result c̃q = 2 obtained earlier. We have used

i

∫
d4p

(2π)4
δik(p̂ − m)−1

βαe−ipx = 〈0|T{qi
α(x)q̄k

β(0)}|0〉 , (3.34)

where i, k = 1, . . . , Nc are color indices, and also the equation of motion
iD̂q = mqq to get 〈0|q̄iD̂q|0〉 = mq〈0|q̄q|0〉 in the second line of (3.33). The
limitation p1 < µ implies that the operators that appear in the derivation of
the OPE are normalized at µ; in other words, only distances larger than 1/µ
contribute to their matrix elements. We note that the validity of equations of
motion is imposed on the calculation of the OPE; this allows us to deal with
divergent expressions that appear in (3.33) in the unique way.

The coefficient function of the operator Ogl
4 is computed from diagrams

similar to the one shown in Fig. 3.3b. To perform such computation, it is con-
venient to start with the expression for the quark propagator in the external

q q

a b

Fig. 3.3. Sample diagrams for computing the operator product expansion of two
electromagnetic currents
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field and to use the fixed-point gauge xµAµ = 0 for the vector potential. The
details of this approach can be found in [9]. The result of the calculation is
c̃gl =

∑
Q2

q/12. We note that this result can also be obtained from the analy-
sis of momentum flow in two-loop Feynman diagrams shown in Fig. 3.3a. If all
the lines in such diagrams are hard, the result is the O(αs) correction to the
coefficient function of the unity operator c0. However, if the loop momentum
flowing through the gluon line in Fig. 3.3a is soft, the resulting contribution
is described in terms of the operator Ogl

4 ; integration over remaining hard
lines in the diagram provides the coefficient function cgl.

For the correlator of the electromagnetic hadronic currents we finally de-
rive

Π(Q2) = c0(Q2) +
2

Q4

∑
Q2

q〈mq q̄q〉

+
1

12Q4

∑
Q2

q

〈αs

π
Ga

µνGµν,a
〉

+ O(Q−6) . (3.35)

The values of the vacuum condensates are determined from QCD sum rules
[5]. The summary of most recent results can be found in [10].

We mentioned earlier that Π(Q2) requires renormalization; it contains the
ultra-violet divergence. Working with divergent expressions is inconvenient; a
simple way to avoid that is to consider derivative of the vacuum polarization
function Π(Q2). The corresponding function is the Adler function D(Q2),
defined as

D(Q2) = −Q2 ∂Π(Q2)
∂Q2

. (3.36)

Using (3.35), we derive the operator product expansion for the Adler function

D(Q2) =
Nc

12π2

∑
Q2

q +
4

Q4

∑
Q2

q〈mq q̄q〉

+
1

6Q4

∑
Q2

q

〈αs

π
Ga

µνGµν,a
〉

+ O(Q−6) . (3.37)

Equation (3.37) is important because it provides a useful constraint on
the e+e− hadronic annihilation cross section. To see this, we use the disper-
sion representation for the photon vacuum polarization Π(Q2), discussed in
Sect. 2.4, and derive the following representation for the Adler function

D(Q2) =
1

12π2

∞∫

0

ds
Q2

(s + Q2)2
Rhadr(s) . (3.38)

In Sect. 3.3, we employ (3.37, 3.38) to constrain a simple model for the
e+e− hadronic annihilation cross section that we use to estimate the hadronic
vacuum polarization contribution to the muon anomalous magnetic moment.
Before that, however, we discuss a simple example where the ideas of the
large-Nc QCD and the operator product expansion are used to estimate the
mass difference of the charged and neutral pions.
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3.2.3 An Example: The Charged-neutral Pion Mass Difference

The pions, the lightest mesons in QCD, are the Goldstone bosons that origi-
nate from the spontaneous breaking of the SU(2)L×SU(2)R chiral symmetry
to SU(2)L+R. Because true Goldstone bosons are massless, pion masses are
the consequence of the explicit symmetry breaking in the Lagrangian. The
mass quark terms

∑
mq q̄q in the QCD Lagrangian break the SU(2)L×SU(2)R

symmetry and lead to the Gell-Mann–Oakes–Renner relation between the
mass of the pion, the quark masses and the quark condensate [11]

m2
π = −mu + md

2F 2
π

〈ūu + d̄d〉 , (3.39)

where Fπ ≈ 92 MeV is the pion decay constant, 〈0|d̄γµγ5u|π+
p 〉 = i

√
2Fπpµ.

This relation predicts equal masses for charged and neutral pions; in reality,
however, the masses are slightly different

mπ± − mπ0 ≈ 4.6 MeV . (3.40)

The mass difference of the charged and neutral pions can be understood
[12] by invoking electromagnetic interactions which is yet another source of
explicit SU(2)L×SU(2)R symmetry violation in the QCD Lagrangian. In the
context of large-Nc QCD the charge-neutral pion mass difference is discussed
in [13].

Using Dashen’s formula for the masses of the pseudo-Goldstone bosons
[14] and the effective Hamiltonian in the one-photon exchange approximation,
one can show that the π±-π0 mass difference is given by

m2
π± − m2

π0 =
e2

2F 2
π

∫
d4q

(2π)4
gµν

q2
ΠV −A

µν , (3.41)

where ΠV −A
µν is the difference of correlators of the vector and axial currents

V −
µ = d̄γµu and A−

µ = d̄γµγ5u

ΠV −A
µν =

∫
d4xeiqx〈0|T

{
V −

µ (x)V +
ν (0)

}
− T

{
A−

µ (x)A+
ν (0)

}
|0〉 . (3.42)

Since we work through first order in the electromagnetic coupling α and
zeroth order in the chiral symmetry breaking due to quark mass terms, we
need to know the correlators of currents in (3.42) in the limit when the chiral
symmetry is exact and the electromagnetic interactions are switched off.

We now discuss constraints on the correlator ΠV −A
µν . First, since in the

limit of the exact chiral symmetry the vector and axial currents are conserved,
the correlator ΠV −A

µν is transversal

ΠV −A
µν = i (qµqν − gµνq2)ΠV −A(q2) . (3.43)
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To find constraints on ΠV −A at large q2, we use the results of the previous
section. Then, it is easy to see that, in the chiral limit, the difference between
vector and axial current correlators appears only at 1/q6. This difference is
determined by a four-fermion operator that originates from an exchange of a
single hard gluon. We write the large-q2 constraint as

ΠV −A(q2)
Q2�Λ2

QCD−→ αs
〈ψ̄Γψψ̄Γψ〉

q6
. (3.44)

Another constraint follows from the fact that spontaneous breaking of the
chiral symmetry leads to the appearance of the massless states in the spec-
trum of the theory. These Goldstone states are identified with the triplet of
pions. It is then easy to see that the correlator ΠV −A receives a contribution
from a one-pion intermediate state that is singular in the limit q2 → 0

ΠV −A q2→0−→ −2F 2
π

q2
. (3.45)

We may now invoke the large-Nc discussion presented earlier. The mass
difference of the charged and neutral pions is Nc-independent, in the limit
Nc → ∞; this is consistent with Fπ ∼

√
Nc and ΠV −A

µν ∼ Nc. In the large-Nc

limit any Green’s function is represented as an infinite sum over resonances;
hence, we write

ΠV −A(q2) =
∑
V

2g2
V

q2 − m2
V

−
∑
A

2g2
A

q2 − m2
A

− 2F 2
π

q2
. (3.46)

In (3.46) the summation extends over vector V i and axial-vector Ai reso-
nances whose couplings are defined as

〈0|V −
µ |Vi〉 =

√
2 mVi

gVi
εVi
µ , 〈0|A−

µ |Ai〉 =
√

2 mAi
gAi

εAi
µ . (3.47)

The last term in (3.46) reflects the contribution of massless pions. We require
that the large-Nc QCD Anzats for ΠV −A, (3.46), complies with the QCD
constraint, (3.44). Clearly, (3.46) automatically fulfills the low-q2 constraint
(3.45), but the large-q2 constraint imposes non-trivial relations between var-
ious input parameters.

The large-q2 constraints are obtained by expanding (3.46) in series of 1/q2

and equating the resulting series to the large-q2 asymptotics in (3.44). From
the absence of 1/q2 and 1/q4 terms in (3.44), we derive two equations

∑
V

g2
V −

∑
A

g2
A = F 2

π ,
∑
V

g2
V m2

V −
∑
A

g2
Am2

A = 0 , (3.48)

which are the Weinberg sum rules [15]. These equations constrain the cou-
plings gV,A; if we truncate the infinite series in (3.46) to include one vector
ρ(770) and one axial vector a1(1260) mesons, we can solve (3.48) for gV,A
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explicitely. Assuming that such truncation is a reasonable approximation, we
get for the correlator

ΠV −A(q2) = − 2F 2
πm2

V m2
A

q2(q2 − m2
V )(q2 − m2

A)
. (3.49)

Substituting this ΠV −A in (3.41), we obtain

m2
π± − m2

π0 =
3
4

(α

π

) m2
Am2

V

m2
A − m2

V

ln
m2

A

m2
V

, (3.50)

which translates into a 5 MeV mass difference, in good agreement with the
experimental value of 4.6 MeV.

While the agreement with the experimental value is gratifying, we note
that the truncation of the infinite sum of resonances to just three terms is
non-parametric and is not guaranteed to work. For example, the coupling
gρ computed in the three-meson model, leads to the partial decay width
Γ (ρ → e+e−) = 4 keV, which considerably deviates from the experimental
value of 7 keV.

Another way to test the validity of the three-meson model is to observe
that (3.49) predicts the large-q2 asymptotic of ΠV −A(q2)

ΠV −A(q2)
Q2�Λ2

QCD−→ − 2F 2
πm2

V m2
A

q6
, (3.51)

which, if the model is viable, should agree with the OPE constraint, (3.44).
We will not pursue this analysis further for the charged-neutral pion mass
difference, but we note that similar tests of the validity of the large-Nc models
are considered in Chap. 5, where the influence of strong interactions on weak
corrections to the muon magnetic anomaly is discussed. Finally, we emphasize
that a combination of the large-Nc arguments with the OPE constraints at
small distances, is a powerful tool to compute Green’s functions in QCD. We
use this tool in the following section to discuss strong interaction effects in
the physics of the muon magnetic anomaly.

3.3 Hadronic Vacuum Polarization:
The Theoretical Estimate

We can refine the crude estimate of the hadronic vacuum polarization con-
tribution to the muon anomalous magnetic moment, (3.1, 3.2) by modeling
essential features of the hadronic final states produced in the e+e− anni-
hilation [16]. To this end, we use the fact that only light hadronic states
contribute significantly to ahvp

µ and construct a model for the e+e− annihila-
tion into hadrons that captures essential features of this process for energies
below 1 GeV; the rest is described in a crude approximation.
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Specifically, for energies smaller than 1 GeV the model includes i) the
threshold production of two pions – the contribution potentially enhanced
by the small pion mass mπ± = 139.57 MeV and ii) the production of vector
mesons, i.e. the ρ-meson with the mass mρ = 776 MeV, the ω-meson with
mω = 782 MeV and the φ-meson with mφ = 1020 MeV. For energies above
mφ, we use perturbative QCD to estimate the annihilation cross section.

Since the integrand in (3.3) decreases rapidly for large values of s, we
expect that it is the two-pion threshold production that delivers the largest
contribution. This expectation is based on the parametrical enhancement of
the threshold contribution, aµ ∼ (α/π)2m2/m2

π, in the chiral limit when
m2

π → 0. Numerically, however, this expectation turns out to be incorrect
and the largest contribution to ahvp

µ comes from the ρ-meson. This can be
explained by recognizing that the ρ-meson contribution is enhanced by an-
other “large” parameter in QCD – the number of colors Nc = 3. Note, that
in an imaginable world with pion and muon masses ten times smaller than
their actual values, the chirally enhanced threshold production of the two
pions would certainly prevail over all other contributions to ahvp

µ .
Consider first the two-pion contribution to the muon magnetic anomaly.

The cross section σ(e+e− → π+π−) computed in scalar QED reads

σe+e−→π+π− =
πα2

3s

(
1 − 4m2

π

s

)3/2

. (3.52)

This cross section is a good approximation to the actual two-pion production
cross section close to the two-pion threshold. When s approaches the mass of
the ρ meson, the cross section starts to deviate from (3.52). To avoid double
counting, we restrict the integration over the invariant masses in (3.3) by
smax = m2

ρ/2; Substituting (3.52) into (3.3) and integrating over s in the
interval 4m2

π < s < m2
ρ/2, we obtain

ahvp,2π
µ ≈ 400 × 10−11 . (3.53)

The contribution of vector mesons to ahvp
µ is computed in the narrow

width approximation. This is not an accurate approximation for the ρ-meson
whose width is, approximately, one fifth of its mass, but for our purposes it
is sufficient. The production cross section of a narrow spin-one resonance V
in the e+e− annihilation reads

σe+e−→V (s) =
12π2ΓV →e+e−

mV
δ(s − m2

V ) , (3.54)

where Γ (V → e+e−) is the leptonic partial decay width of the vector meson
V . We use Γ (ρ → e+e−) = 7.02 keV, Γ (ω → e+e−) = 0.60 keV and Γ (φ →
e+e−) = 1.27 keV. Substituting (3.54) into (3.3) and integrating over s, we
derive
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ahvp,vect
µ =

∑
V =ρ,ω,φ

3ΓV →e+e−

αmV
a(1)

µ (m2
V )

≈ (4732|ρ + 395|ω + 387|φ) × 10−11 = 5514 × 10−11. (3.55)

Finally, we approximate the remainder of the hadronic spectrum using
perturbative QCD with three massless flavors. The e+e− annihilation cross
section in this case reads

σhadr =
4πα2

3s
Nc

∑
q=u,d,s

Q2
q =

8πα2

3s
, (3.56)

where we use Qu = 2/3, Qd = Qs = −1/3. Substituting (3.56) into (3.3) and
integrating over s from 1 GeV2 to infinity, we obtain

ahvp,cont
µ = 1240 × 10−11 . (3.57)

Adding the three contributions together, we arrive at the estimate

ahvp,est
µ = ahvp,2π

µ + ahvp,vect
µ + ahvp,cont

µ = 7160 × 10−11 . (3.58)

What are the implications of the above calculation? First, we note that for
such a crude estimate, the result (3.58) is astonishingly accurate. A typical
recent value for ahvp

µ , obtained by processing large amount of data on the
e+e− annihilation into hadrons, is [17]

ahvp
µ = 6963(80) × 10−11 ; (3.59)

it agrees with the estimate (3.58) to within three percent! Clearly, the degree
of agreement between the two results is accidental; however, it shows that
relatively few features of the hadronic spectrum in the e+e− annihilation
determine the bulk of ahvp

µ .
Another important lesson from the above computation is that it is diffi-

cult to estimate the uncertainty that has to be assigned to it. In particular,
the choice of m2

ρ/2 as the upper integration limit for the two-pion contribu-
tion and the choice of 1 GeV as the lower integration limit for the continuum
contribution are arbitrary. In both cases there is a strong sensitivity to the
cut-off, so that our estimate (3.58) can change by ∼ 10 percent. Unfortu-
nately, this is a common problem of model-based calculations – even when
central values that are derived are reasonable, accurate uncertainty estimates
are difficult.

In spite of that, there is an instructive way to determine the proper value
of the lower limit of integration in the integral over continuum contribution,
s0; we will use a similar approach in a forthcoming discussion of electroweak
and hadronic light-by-light scattering contributions to the muon anomalous
magnetic moment. The constraint on s0 comes from the fact that there is
an additional requirement for our model of the e+e− hadronic annihilation
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cross section that we failed to utilize so far. It comes from the short-distance
properties of QCD. Using our model for σhadr, we can compute the large-
Q2 asymptotics of the photon vacuum polarization and compare it with the
results based on the operator product expansion, discussed in Sect.3.2.2. For
such a comparison, it is convenient to work with the Adler function (3.36).

We use our model for σhadr(s) to compute the Adler function D(Q2), in
the limit Q2 → ∞. In doing so, we neglect the pion threshold production
which turns out to be small. We derive

12π2Dmod = 2 +
1

Q2

( ∑
V =ρ,ω,φ

9πΓV →e+e−mV

α2
− 2s0

)
+ O(Q−4) . (3.60)

There is a striking difference between the two results for the Adler function
(3.60) and (3.37). The OPE-based calculation predicts 2 the absence of the
1/Q2 term in the Adler function whereas our model (3.60) fails to agree with
this result, unless we identify

s0 =
∑

V =ρ,ω,φ

9πΓV →e+e−mV

2α2
≈ (1.38 GeV)2 . (3.61)

With this choice of the parameter s0, our estimate of the hadronic vacuum
polarization contribution becomes

ahvp,est
µ ≈ 6571 × 10−11 . (3.62)

The difference between the estimate (3.62) and the data-based calculations is
about six percent. We emphasize that, although this is too large a difference
to make the theoretical computation of the hadronic vacuum polarization to
be of practical use for aµ phenomenology, it is remarkably accurate for the
quantity that, almost entirely, is determined by non-perturbative dynamics.

An important lesson to draw from the above discussion concerns the hi-
erarchy of different contributions to ahvp

µ . We have found that

ahvp,2π
µ � ahvp,cont

µ 	 ahvp, vect
µ , (3.63)

which implies that the chirally enhanced contribution – the two-pion thresh-
old production – is, in fact, the smallest. We therefore see that the smallness
of the pion mass and, consequently, the chiral enhancement, is of little rel-
evance for ahvp

µ . On the other hand, large contributions due to the ρ-meson
and the continuum can be understood since they are enhanced by another
important QCD parameter, the number of colors Nc. We will see a very sim-
ilar pattern of chirally-enhanced vs. Nc-enhanced contributions in Chap. 6
where the hadronic light-by-light scattering component of the muon magnetic
2 See, however, a warning in the footnote on page 42.
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anomaly is discussed. In that case, there is no data to cross-check our under-
standing of the low-energy hadron physics; hence, the intuition developed in
connection with the hadronic vacuum polarization will be of great help there.

Before discussing the data-driven evaluation of the hadronic vacuum po-
larization component of the muon anomalous magnetic moment, we mention
that, recently, the first lattice calculation of ahvp

µ was undertaken [18]. While
the current result of the quenched calculation ahvp

µ = 4600(780)×10−11 is far
from high precision required for this contribution, it is pointed out in [18] that
the improvement in precision is possible. Apart from obvious lattice issues,
such as finite lattice spacing and finite volume effects, the quenched approx-
imation has to be given up entirely to arrive at a meaningful result. The
attempts to compute ahvp

µ beyond the quenched approximation are currently
underway [19].

The theoretical estimate of the hadronic vacuum polarization contribution
to aµ discussed in this section shows that it is quite significant numerically.
Because of that, its precise evaluation is required. In the next section we
discuss basics of the data-driven analysis that is the primary source of our
knowledge of the hadronic vacuum polarization contribution to aµ.

3.4 Basics of the Data-driven Analysis

3.4.1 Preliminary Remarks

As we explained in the previous sections, computation of ahvp
µ is contingent

upon the knowledge of the e+e− annihilation cross section into hadrons.
Therefore, making theoretical predictions for ahvp

µ requires dealing with ex-
perimental data. Experiments at e+e− colliders started in late sixties and
continue ever since; over this time, a tremendous wealth of data was accu-
mulated. These data are of different quality; later experiments have access to
better technology and build upon the experience of their predecessors. Since
new experimental data are continuously produced, theoretical predictions for
the hadronic vacuum polarization contribution to aµ evolve in time (see Ta-
ble 3.1). In general, later analyses have access to more recent and better
experimental data and, for this reason, naturally supersede the older ones.

A glance at Table 3.1 reveals that the current precision on hadronic vac-
uum polarization contribution to aµ is higher by a factor 2− 3, compared to
the analyses twenty years ago [20, 21]. Significant part of the improvement
comes from new data on the e+e− annihilation; in addition, various theoret-
ical ideas on how to increase the precision of ahvp

µ are being explored. These
ideas include an aggressive use of perturbative QCD at fairly low energies
as well as incorporating data on hadronic decays of τ -leptons, corrected for
isospin violations, into the computation of ahvp

µ . While the use of these ideas
became wide-spread in recent years, virtues of such approaches are question-
able. Substituting experimental data by theoretical analysis may lead to an
illusion of the error reduction; however, in the long run such improvements
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Table 3.1. Computations of the hadronic vacuum polarization contribution to aµ

since 1985. As indicated, some of the analyses use data on hadronic τ -decays or
partially rely on perturbative QCD

Ref. ahvp
µ × 1011 Comments

Ref.[20] 6840(110) e+e−

Ref.[21] 7070(180) e+e−

Ref.[22] 7100(115) QCD and e+e−

Ref.[23] 7048(115) QCD and e+e−

Ref.[24] 7024(153) e+e−

Ref.[25] 7026(160) e+e−

Ref.[26] 6950(150) e+e−

Ref.[26] 7011(94) e+e− and τ

Ref.[27] 6951(75) e+e−, τ and pQCD

Ref.[28] 6924(62) e+e−, τ , pQCD and sum rules

Ref.[17] 6963(71) e+e−

Ref.[17] 7110(57) τ

Ref.[1] 6924(64) e+e−

Ref.[29] 6934(63) e+e−, incl. KLOE

Ref.[30] 6948(86) e+e−

Ref.[31] 6944(49) e+e−

usually result in a controversy which requires new experimental input to sort
things out.

In the remainder of this section various aspects of the data-driven cal-
culations of ahvp

µ are summarized. Before we dive into this discussion, a few
general remarks are appropriate. We pointed out in the previous section that
only relatively light hadronic states substantially contribute to ahvp

µ . This is
illustrated in Tables 3.2 and 3.3, where full hadronic contribution to ahvp

µ is
split by channels and by energy regions. The results given in those Tables are
approximate and do not always incorporate the most up to date data.
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Table 3.2. Contributions of various channels to ahvp
µ . The last column refers to

the precision with which a particular channel is claimed to be known. The results
given in the Table are approximate and do not always incorporate the most up to
date data

channel ahvp
µ × 1011 Precision achieved

π+π− 5060 ≤ 1%

ω → 3π 380 3%

φ 357 5%

4π 310 5%

3π 66 10%

K+K− 46 10%

2 GeV ≤ √
s ≤ 5 GeV 200 5%

√
s ≥ MΥ 40 ≤ 1%

It is apparent from Table 3.2 that the largest contribution to ahvp
µ comes

from the two-pion channel which, in turn, is dominated by the ρ-meson res-
onance. Because of that, the two-pion production in the e+e− annihilation
has to be known with very high precision. Since other hadronic channels con-
tribute much less than the e+e− → π+π−, the precision requirements for
them are more modest.

From Table 3.3 it follows that approximately ninety percent of the
hadronic vacuum polarization contribution to aµ comes from low energies,√

s ≤ 2 GeV. Since mτ ≈ 1.8 GeV, the most important channels such as
2π, 4π, etc. can be studied in hadronic decays of the τ lepton. As we explain
below, this is non-trivial since, with the current precision on ahvp

µ , theoretical
corrections have to be applied to data on hadronic τ decays for the purpose
of ahvp

µ evaluation.
Important issues that have to be discussed in connection with the data-

driven evaluations of ahvp
µ include i) validity of theoretical improvements

suggested in recent years; ii) QED radiative corrections; iii) combination
of data from different experiments; iv) contributions to ahvp

µ from different
energy regions; v) a special role of the e+e− → π+π− channel; vi) consistency
of different data-driven analyses. We describe those issues in the remainder
of this section.



3.4 Basics of the Data-driven Analysis 55

Table 3.3. Contributions of various energy regions to ahvp
µ , from [1]

Energy region, GeV ahvp
µ × 1011 δahvp

µ × 1011

2mπ − 1.4 6089 ±52

1.4-2.0 319 ±24

2.0 -11 420 ±11.4

J/ψ 73 ±4

Υ 1.09 ±0

11 −∞ 21 ±0

Total 6924 ±59

3.4.2 Theoretical Issues

There are some theoretical aspects of the data-driven analysis that became
important in recent years. They can be divided into two broad categories:
i) theoretical suggestions on how the precision of ahvp

µ can be further im-
proved and ii) issues that have to be addressed because the precision of ahvp

µ

evaluations has increased greatly.
An example of the first kind is an aggressive use of the operator product

expansion down to fairly low energies, pioneered in [22], and used recently in
[1, 27] to estimate contributions of energy regions where the quality of the
data is poor. As we explained in Sect. 3.2, the operator product expansion
in its standard form is based on the assumption that non-perturbative con-
tributions to the coefficient functions of the operators could be neglected.
While this assumption is plausible, it can not be justified from first princi-
ples; hence, the operator product expansion can not be used as a substitute
for the experimental data.

Yet another example of a similar sort is the suggestion by Alemany, Davier
and Höcker [26] to use data on hadronic τ decays as a complimentary source
of information about hadronic vacuum polarization. While [26] claimed a
substantial reduction of the theoretical uncertainty in ahvp

µ as the result of
including the τ data, this issue was marred almost from the very beginning.
Immediately after the suggestion of [26], a more precise data on the e+e− an-
nihilation into hadrons [32] showed systematic differences between the e+e−

and the τ data [33]. While, originally, the problem was not statistically sig-
nificant, further experimental studies [34, 35] only reinforced the conclusion
that there is a conflict between the e+e− and the τ data. At the moment,
the difference in the hadronic vacuum polarization contributions to the muon
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anomalous magnetic moment evaluated with the e+e− data and the τ data
is, approximately, two standard deviations.

Currently, there is no resolution of the e+e−−τ puzzle. The experimental
data on both the e+e− annihilation and the hadronic τ decays are confirmed
by more than one experiment [34, 35, 36, 37, 38, 39], so it seems that the
experimental origin of the problem may be excluded. However, such conclu-
sion is somewhat premature. Indeed, while all recent e+e− experiments have
comparable precision, the situation with the data on τ decays is different.
In particular, large disagreement between the e+e− and the τ data occurs
because of a very high precision claimed by the ALEPH collaboration [36];
the two other results on hadronic τ decays by CLEO and OPAL have larger
errors and, hence, are much less inconsistent with the e+e− data.

In addition, there is an important conceptual difference between the e+e−

and the τ data for the purpose of the ahvp
µ evaluation. While the e+e−

hadronic annihilation cross section directly enters the dispersion integral
(3.4), the τ data can be used there only after the isospin symmetry break-
ing corrections are applied. As we discuss in Sects. 3.5, 3.6, computation of
such correction is non-trivial and brings in significant theoretical input into,
otherwise, experimentally driven analysis. Because of potential caveats with
using the τ data and since the e+e− data is on the solid footing, the use
of the τ data for ahvp

µ computation is somewhat downplayed in most recent
analyses [29].

As we mentioned earlier, since the precision on ahvp
µ is high, new issues

become important. An example is provided by the QED radiative correc-
tions to the reaction e+e− → Xh, where Xh is a hadronic state. Although
such corrections are proportional to α/π ∼ 10−3 and for this reason may be
considered irrelevant, they are usually dynamically enhanced and, hence, are
quite important for the purpose of ahvp

µ computation. In particular, the pho-
ton radiation from the initial state in e+e− → Xh is enhanced by a logarithm
ln(

√
s/me) which, for

√
s ∼ mρ ∼ 770 MeV is equal to seven, approximately.

Another example concerns the photon radiation off charged particles in the fi-
nal state Xh; experimental constraints applied to identify particular hadronic
state usually cut-off radiation of photons at moderate � 10◦ angles relative
to momenta of charged hadrons. Such constraints also lead to a logarithmic
enhancement of the QED radiative corrections making them of the order of a
few percent. There are other sources of dynamical enhancement of the QED
radiative corrections; we will not discuss them here. However, the bottom
line is that since we require ahvp

µ with the precision of about one percent, it
is important to understand which QED corrections have to be included in
what is called σhadr in (3.4) and how this σhadr is related to a quantity that
is published as the e+e− hadronic annihilation cross section.

The QED radiative corrections to e+e− → Xh can be decomposed into
four pieces – corrections to the initial state, corrections to the final state,
the vacuum polarization correction and the interference effects between the
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initial and final state.3 From the derivation of the convolution integral (3.3),
it is quite obvious that σhadr that enters (3.4) is defined to include the QED
corrections to the final state only. On the other hand, the measured annihila-
tion cross section of e+e− → Xh usually includes the initial state radiation,
vacuum polarization correction and only partially final state QED radiative
corrections since experimental cuts, as a rule, reject the emission of hard,
non-collinear photons off the final state particles. Hence, what is needed the-
oretically in (3.3) is almost exactly the opposite to what is being measured
experimentally, when the QED effects are taken into consideration.

To arrive at the quantity needed to compute ahvp
µ , one has to remove the

initial state radiation and the vacuum polarization QED effects from the mea-
sured e+e− annihilation cross sections. In addition, the luminosity, tradition-
ally measured by considering standard QED processes such as e+e− → µ+µ−

and large/small angle Bhabha scattering, must be determined with the ad-
equate precision as well. While these issues were largely ignored in earlier
calculations of ahvp

µ , the two latest computations [1, 17] include the correc-
tion factors to account for QED effects if such effects are not considered in
original publications.

3.4.3 Combining the Data

As a matter of principle, given experimental data on the e+e− hadronic an-
nihilation cross section, it is straightforward to compute the convolution in-
tegral (3.3) and obtain the hadronic vacuum polarization contribution to the
muon anomalous magnetic moment. However, in practice, it is a highly non-
trivial enterprize. Since data from different experiments has to be combined,
the estimate of the uncertainty should be carefully addressed.

Traditionally, data on the e+e− annihilation to hadrons is published for
exclusive channels for center of mass energies

√
s ≤ 2 GeV, whereas the

inclusive cross section is measured at higher energies. In the region 1.4 GeV ≤√
s < 2 GeV there are both, exclusive and inclusive data which may be used

for the analysis.
There are two possible ways to proceed with the computation of the

convolution integral (3.3). One may take the results of different chan-
nels/experiments separately, integrate them over s and then combine the
results of such integrations to obtain ahvp

µ . Unfortunately, this ignores the
issue of errors, correlated between different experiments and is also not prac-
tical for data sets with small number of points.

The second way to obtain the e+e− hadronic annihilation cross section
for

√
s ≤ 2 GeV is to combine data on a given hadronic channel from dif-

ferent experiments and integrate over energy. The estimate of the error on
3 When total cross sections are considered, the interference of photon radiation

from initial and final states at order O(α) vanishes because of the charge conju-
gation symmetry. The interference effects may appear in higher orders in QED
but they are too small to be of any practical relevance.
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the final result becomes a crucial issue. First, there are data sets that are
not compatible, within the quoted errors. Second, systematic errors in differ-
ent experiments and/or different channels are often correlated. For example,
all experiments might have a common systematic error related to the lack
of knowledge of higher order QED radiative corrections that affects the lu-
minosity measurements. Similarly, for multi-hadronic channels, computation
of experimental acceptances relies on Monte-Carlo event generators that are
based on common dynamical models.

The fit to data proceeds in the following way [17, 26]. First, a particular
hadronic channel and the energy range is chosen. The energy interval is then
split into Nb bins. The best value of the cross section, for each bin, is found
by minimizing the function

χ2 =
Nexp∑
n=1

Nb∑
i=1

(σn
i − σ̄i)i C−1

n,ij

(
σn

j − σ̄j

)
, (3.64)

where σn
i is the cross section measured in experiment n for the value of energy

that falls into i-th bin. σ̄i is the cross section averaged between different
experiments. Cn,ij is the covariance matrix between two energy bins in the
experiment n

Cn,ij =

{(
δn
i,stat

)2 +
(
δn
i,sys

)2
, for i = j ;

δn
i,sysδ

n
j,sys , for i = j .

(3.65)

Minimizing (3.64) with respect to Nb variables σ̄i, we obtain the average
cross section. The inverse covariance matrix between the solutions σ̄i,j is
given by

C̃−1
ij =

Nexp∑
n=1

C−1
n,ij . (3.66)

This covariance matrix is used to calculate the uncertainty of ahvp
µ when the

dispersion integral (3.3) is computed.
Unfortunately, this procedure may lead to a situation when χ2 per degree

of freedom is larger than one; this signals that experimental data used in the
computation are mutually inconsistent. When this happens, errors reported
by original experiments are enlarged to allow those data sets to be combined
consistently. In [1] a different procedure based on the non-linear χ2 function is
adopted. In addition to σ̄i, relative normalization of data points from different
experiments is determined from the fit. In this way, the necessity to re-scale
the errors is avoided.

Average values of cross sections for a given channel σ̄i and their uncer-
tainties given by the covariance matrix Cij permit the computation of the
dispersion integral (3.3) with the help of the trapezoidal rule. While this
method is reliable when the function changes slowly and/or the energy bins
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are sufficiently fine, care has to be exercised when the trapezoidal rule is
applied to integrate rapidly changing functions with sparse data points as,
for example, is the case when narrow resonances are treated. An alternative,
adopted in early studies of the hadronic vacuum polarization contribution to
aµ is to assume a certain functional form of σhadr(s), determine parameters
of the function by fitting the data and then integrate the function over s.
While this approach offers certain advantages, it was mostly discarded as too
prone to “prejudices” concerning the functional form of σhadr(s).

3.4.4 Specific Contributions to the Convolution Integral

We now discuss specific contributions to the convolution integral (3.3). The
areal view of Rhadr(s), (3.4), is shown in Fig. 3.4. Since the e+e− annihilation
cross section is a rapidly changing function of the center of mass energy, it
is necessary to split the computation of the convolution integral into several
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Fig. 3.4. Areal view of R(s). The cross-hatched band gives the prediction from
perturbative QCD, which is found to be in good agreement with the measurements
in the continuum above 2 GeV [41]
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components and to treat each of them separately. The following components
are usually identified.

(1) The energy range
√

s ≥ 11.5 GeV. In this energy range, we expect the per-
turbative QCD to be applicable for the evaluation of σhadr(s). In the approx-
imation that quarks in the final state are massless, σhadr is known through
O(α3

s) [42]. If quark masses are retained, the O(α2
s) result is available [43].

Those perturbative results can be supplemented by non-perturbative contri-
butions derived in the context of the operator product expansion in QCD,
Sect. 3.2.2. The contribution from this energy domain,

√
s > 11.5 GeV, to

ahvp
µ is approximately 20 × 10−11 and the error is negligible.

(2) Narrow heavy quark resonances J/ψ, ψ′, Υ . These narrow resonances re-
quire a separate treatment and there are various ways to do that. In [17],
the Breit-Wigner approximation is adopted, while [1] treats those resonances
in the narrow width parametrization where the production cross section of
a resonance of mass Mr in the e+e− annihilation is proportional to a delta
function δ(s − M2

r ). While there is a few percent difference in the results of
[17] and [1], this discrepancy is irrelevant in practice since the contribution
of narrow heavy quark resonances to ahvp

µ is small, ∼ 70 × 10−11.

(3) The energy range 2 GeV ≤ √
s ≤ 11.5 GeV. In this energy range, the

inclusive data on R(s) is used. For a while, there was a problem with the
quality of the data in the energy ranges 2 GeV ≤ √

s ≤ 3.7 GeV. The sit-
uation has improved dramatically thanks to recent BES measurements [44]
that are systematically lower and much more precise than the Mark I and
γγ2 results [45, 46]. It is interesting to note that the first indication that
the e+e− hadronic annihilation cross section measured by Mark I and γγ2
collaborations is too high came from confronting it with perturbative QCD
estimates [24, 27].4

(4) The energy range 1.4 GeV ≤ √
s ≤ 2 GeV. The peculiar feature of this

energy region is the fact that both, the inclusive measurement of Rhadr as
well as measurements of individual hadronic channels are available. This of-
fers the possibility to compare the sum over exclusive modes to the inclusive
measurement. When this is done, there appears to be a problem since the
sum over exclusive modes is larger than the inclusive result; in terms of their
contribution to ahvp

µ , the difference of the exclusive and inclusive approaches
is about 40 × 10−11. In [1] there is a dedicated discussion of this issue; the
authors concluded that the results of the inclusive measurements are more
appropriate. We will discuss this issue in Sect. 3.4.6.

(5) The energy range 0.5 GeV ≤ √
s ≤ 1.5 GeV: multi-particle hadronic

channels. In this energy range various exclusive channels are traditionally
4 The Mark I data in the energy range 5 GeV ≤ √

s ≤ 7 GeV was also known
to be significantly higher than the Crystal Ball data [47] as well as perturbative
QCD predictions [24].
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measured. For example, there are measurements of the e+e− → nπ cross
sections, up to n = 6. There is also data on K+K−, KSKL, KKπ as well
as 2K2π cross sections. Some of those channels are actually saturated by
decays of ω and φ mesons. This happens, for example, in case of π+π−π0,
which receives major contributions from ω → π+π−π0, with both continuum
production and φ → π+π−π0 playing only a minor role. A similar situation
happens for the K+K− and KSKL channels that are saturated by φ decays.

Hadronic channels dominated by resonances can be treated easily since
high-quality data is available. On the contrary, the four-pion channels are
dominated by the continuum and the quality of the data is poor. The pro-
duction of five and six pions in the e+e− annihilation gives a small, yet
non-negligible contribution to ahvp

µ .

(6) The energy range 0.5 GeV ≤ √
s ≤ 0.9 GeV: the two-pion channel. This

energy range gives by far the largest contribution to ahvp
µ . Because of that,

σ(e+e− → π+π−) has to be known with the precision better than one per-
cent. The new data from CMD-2, SND and, to a certain extent, from KLOE
satisfy this requirement and allow accurate determination of the two-pion
contribution to ahvp

µ . We discuss the two-pion contribution in more details
below.

(7) The energy range 2mπ ≤ √
s ≤ 0.5 GeV. Due to the fact that, close

to the threshold, the pions are produced in a P -wave, the cross section
σ(e+e− → π+π−) is proportional to the third power of the relative velocity of
the two pions and vanishes rapidly once the threshold is approached. Conse-
quently, there is not much data for

√
s ∼ 2mπ and the e+e− → π+π− annihi-

lation cross section in this region has to be estimated from other sources. This
is usually done by adopting the polynomial parametrization for the pion form
factor inspired by chiral perturbation theory; the parameters are determined
from a fit to data on the pion form factor for both time-like and space-like
momentum transfers.

3.4.5 The Two-pion Channel

The reaction e+e− → π+π− provides the largest contribution to the hadronic
vacuum polarization component of the muon magnetic anomaly and, hence,
requires special attention. From Table 3.3 we see that this channel con-
tributes up to seventy percent of ahvp

µ ; the major part comes from the pro-
duction of the ρ resonance that decays into π+π−. Because the two-pion
production gives such a large contribution to ahvp

µ it has to be computed
very precisely; this requires high quality data for e+e− → π+π−. Such
data recently appeared from three sources; the CMD-2 and SND collabo-
rations measured the pion form factor using traditional energy scan [34, 39],
while the KLOE collaboration measured [35] the production of the two
pions by the radiative return method [40]. The results of these measure-
ment are in fair agreement with each other although some inconsistencies
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Fig. 3.5. The comparison of the e+e− → π+π− annihilation cross sections mea-
sured by CMD-2, SND and KLOE in the energy region around the ρ-resonance.
From [39]

are present. In as much as the two-pion contribution to the muon magnetic
anomaly is concerned, the results of integrating the experimental data over
0.6GeV <

√
s < 1GeV are 3856(52)× 10−11(SND), 3823(36)× 10−11(CMD-

2) and 3750(50)× 10−11(KLOE). Note that the CMD-2 results were recently
updated. A reasonable agreement of the results of the different measurements
is overshadowed by the fact that there is a significant difference in the shape
of the e+e− → π+π− annihilation cross section in the energy region around
the ρ peak, Fig. 3.5. However, it is clear a priori that an agreement of spectral
densities is a more demanding subject than the agreement of the integrals
over spectral densities because such integrals are more stable against various
effects that may cause significant disagreement in a point-wise comparison.
In particular, the shape difference between the results by KLOE and the di-
rect measurements in e+e− annihilation by CMD-2 and SND is reminiscent
of the radiative corrections to the production of a narrow resonance.

For the two-pion channel, the correct inclusion of the QED radiative cor-
rections is very important; this concerns both the exact definition of the “two-
pion” final state and the luminosity measurement. Recall, that the final state
radiation off the pions has to be included into the “two-pion” channel, for the
purpose of ahvp

µ evaluation. However, traditionally, in e+e− experiments the
two-pion final state is defined as the two energetic pions whose momenta are
back-to-back to an extent specified by an acollinearity cut. This cut therefore
rejects kinematic configurations when a hard photon is emitted off the pion at
a relatively large angle. The rejected contribution is added back theoretically,
using scalar QED to estimate the photon emission rate at large angles. While
the large angle photon emission is not a big effect and so most likely the
error introduced in this way is insignificant, it should be kept in mind that
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this treatment introduces a model-dependence into, otherwise, data-driven
analysis. In the long run, there is a need to better understand the range
of validity of applying scalar QED to describe the radiative corrections for
the two-pion final state. First steps in this direction are taken by the KLOE
collaboration that uses the charged pion forward-backward asymmetry, lin-
early sensitive to the final state radiation amplitude, to investigate potential
deviations from the scalar QED model. In addition, theoretical analysis of
the two-pion channel is being extended to account for the “pion structure”,
albeit in the framework of chiral perturbation theory [48].

3.4.6 Comparative Analysis

It should be clear from the above discussion that many details have to be
taken into account when the compilation of data and the subsequent eval-
uation of the dispersion integral (3.3) is attempted. To a large extent, the
authors of such analyses have to make choices that are subjective. How does
such subjectivity influence the results of the analyses? To answer this ques-
tion it is instructive to compare two recent evaluations of ahvp

µ , [17] (DEHZ)
and [1] (HMNT). From Table 3.1 we see that the difference 5 between the
two results is ∼ 40 × 10−11 or, approximately, 0.6%. Given the error bars of
the two analyses, this should be regarded as the perfect agreement. Never-
theless, it is interesting to compare the two evaluations to understand where
this difference comes from.

Surprisingly, almost the entire difference comes from the region 1.4 GeV ≤√
s ≤ 2 GeV, where DEHZ use the sum of exclusive channels to evaluate σhadr

whereas HMNT use the results of the inclusive measurements. Have the sum
over exclusive channels been used in HMNT analysis, their result would go
up by ∼ 43 × 10−11 and would then be in complete agreement with DEHZ.

There are other appreciable differences in the analyses of [17] and [1] that,
to a large extent, cancel out when the sum over all contributions to ahvp

µ is
computed. Since the cancelation is accidental, it is instructive to discuss the
differences. There are essentially two channels where such a disagreement
occurs – the threshold production of the two pions and the production of
four pions in the reaction e+e− → π+π−2π0.

The difference in the two-pion channel occurs, surprisingly, in estimating
the small contribution to aµ from the threshold pion production. Both DEHZ
and HMNT use the chiral expansion of the pion form factor and fit the pa-
rameters of the expansion using the available data. Although the approaches
of the two groups are similar, the results disagree. Part of the reason is that
DEHZ do not use data from NA7 experiment [49], claiming that those data
suffer from a bias in the energy scale determination. Unfortunately, the NA7
data is quite important since it is the only direct measurement of the two-pion
production cross section all the way down to the two-pion threshold.
5 From [17] we take the result based on the e+e− data.
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The other channel where uncomfortably large disagreement between [17]
and [1] exists is the π+π−2π0. There, part of the disagreement is also ex-
plained by the difference in the input data; in contrast to DEHZ, HMNT
include the γγ2 data [46] into their analysis. It should be pointed out, how-
ever, that experimental data on π−π+2π0 is not very accurate and significant
discrepancies are observed between different experiments. The problems are
related to systematic uncertainties in computing a fairly small, ∼ 20 − 30%,
acceptance for this channel.

Finally, we return to the discussion of the inclusive vs. exclusive measure-
ments in the region 1.4 GeV ≤ √

s ≤ 2 GeV; this is the single major source of
the difference between DEHZ and HMNT results. As we mentioned earlier,
the measured inclusive e+e− annihilation cross section in this energy range is
smaller than the sum over all exclusive channels.6 The difference between the
inclusive and the exclusive measurements in this energy range is, formally,
about 2 standard deviations, with the precision for each of the measurements
of the order of five to ten percent. While this level of disagreement is not
disastrous, it is quite puzzling.

The ambiguity can be resolved [1] if one invokes the duality argument
which implies that suitable quantities averaged over sufficiently broad energy
domain can be computed using the operator product expansion in QCD. One
may then consider the integral

I[f ] =

s2∫

s1

dsf(s)Rhadr(s) , (3.67)

for a sufficiently smooth function f(s). Evaluating (3.67) using the operator
product expansion in QCD one gets a theoretical estimate for I[f ] which
is compared to the data-based evaluation. HMNT showed that the theoret-
ical estimate is much closer to what is obtained when data from inclusive
measurements is used to evaluate I[f ]. These perturbative QCD calculations
should be considered as a strong evidence that there are potential problems
with exclusive measurements in this energy range. Recall, that an earlier ap-
plication of perturbative QCD in the energy range 2 GeV ≤ √

s ≤ 3.7 GeV
in [27] was quite successful; the predicted deficiency of the data from Mark
I and γγ2 in this energy range was later confirmed by recent measurements
at BES.

Nevertheless, it is important to keep in mind that only experimental mea-
surements can provide a model-independent determination of ahvp

µ and for
this reason we feel that the discrepancy in data should lead to an uncertainty
in the final result that is large enough to incorporate both data sets. In this
6 Traditionally, the “inclusive” measurement of the cross section in this energy

range is defined as the measurement from where all the two-particle final states,
e.g. π+π−, K+K−, etc. are omitted. Those channels have to be added back to
arrive at what is usually understood under the inclusive cross section.
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regard, the significance of the proximity of the inclusive result to perturbative
QCD estimates should not be overstated.

3.4.7 Final Remarks

The comparison between the most recent and up-to-date evaluations of ahvp
µ

[1, 17, 29, 30, 31] shows that different data-driven computations essentially
converged. Issues that remain problematic merely reflect preferences of the
authors of a given analysis, as far as the quality of existing data is concerned.
Further improvement in the data-driven evaluations of ahvp

µ is only possible
if new data for problematic channels and/or energy regions appear. Potential
sources of such new data are B-factories, operating at the center of mass
energy

√
sb ∼ 11 GeV. Using the radiative return method [40], it is possible to

measure the e+e− hadronic annihilation cross section for
√

s <
√

sb. Studies
at BaBar indicate that this is a viable possibility [50, 51].

3.5 Hadronic Vacuum Polarization: Inclusion
of the τ -data

In 1998, Alemany, Davier and Höcker suggested [26] to improve the precision
of the hadronic vacuum polarization contribution to the muon anomalous
magnetic moment by incorporating high-quality data on hadronic τ -decays.
Since then, for a few years, the τ data was the major force driving the increase
in precision of ahvp

µ ; it was a standard practice to average ahvp
µ computed using

the e+e− and the τ data and to reduce the uncertainty in that way.
Unfortunately, the inclusion of the τ data is not straightforward theoreti-

cally since in τ decays hadrons are produced by a charged current. To relate
these data to the hadroproduction by an electromagnetic current, needed
for ahvp

µ calculation, we use the isospin symmetry. Since this symmetry is
not exact, we need to account for isospin violations. It turns out that the
isospin violation corrections are difficult to compute since they are sensitive
to hadron dynamics; existing estimates of these corrections [52] do not ex-
plain systematic differences between precise e+e− and τ data. Because of that,
most recent analyses of the hadronic vacuum polarization contribution to the
muon anomalous magnetic moment rely on the e+e− data [1, 17, 29, 30, 31].
Nevertheless, since the τ data played significant role in the recent history of
aµ and, since, it continues to serve as a useful cross-check for the e+e− data,
it is appropriate to describe how the τ data is incorporated into the analysis
of the hadronic vacuum polarization correction to the muon anomalous mag-
netic moment. We begin with a general discussion of the relation between the
hadronic τ decays and the e+e− annihilation and then focus on τ decays into
two pions since the role of the τ data in reducing the theoretical uncertainty
in ahvp

µ is most prominent in the two-pion channel.
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Consider the decay of the τ lepton into hadrons. We limit ourselves to
processes where the total strangeness S of the hadronic state is zero. The
∆S = 0 interaction of τ leptons with hadrons is described by the Lagrangian

L∆S=0 = −V ∗
udGF√

2
ν̄τγµ(1 − γ5)τ d̄γµ(1 − γ5)u + h.c. , (3.68)

where GF is the Fermi constant and Vud is the element of the Cabbibo–
Kobayashi–Maskawa mixing matrix. The amplitude for the decay τ− → ντ +
Xh is given by the matrix element

M = − iV ∗
udGF√

2
ūνγµ(1 − γ5)uτ 〈Xh|Jhadr

µ |0〉 , (3.69)

where
Jhadr

µ = V −
µ − A−

µ (3.70)

is the charged hadronic current. Following Sect. 3.2, we use V −
µ = d̄γµu and

A−
µ = d̄γµγ5u to denote its vector and axial components.

To compute the differential decay rate dΓτ/ds, where
√

s is the hadronic
invariant mass, we square the matrix element in (3.69) and integrate over all
final states with the constraint p2

Xh
= s. The result can be written as

dΓτ−

ds
=

G2
F m3

τ |Vud|2
16π2

(
1 − s

m2
τ

)2 [(
1 +

2s

m2
τ

)
ImΠT(s) + ImΠL(s)

]
,

(3.71)
where

ΠT,L(s) = ΠV
T,L(s) + ΠA

T,L(s) , (3.72)

and the functions ΠV,A
T,L (s) are defined through correlators of vector and axial

currents

i

∫
d4xeiqx〈0|T

{
I−

µ (x)I+
ν (0)

}
|0〉 = (qµqν − q2gµν)ΠI

T(q2) + qµqνΠI
L (q2) ,

(3.73)
with I = V,A. The imaginary parts of the correlators ImΠV,A

T,L are propor-
tional to the corresponding spectral functions vV,A

T,L (s),

vI
T,L(s) = 2π ImΠI

T,L(s) . (3.74)

In terms of these functions, the differential decay rate for τ → hadrons reads

dΓτ−

ds
=

G2
F m3

τ |Vud|2
32π3

(
1 − s

m2
τ

)2 ∑
I=A,V

[(
1 +

2s

m2
τ

)
vI
T(s) + vI

L(s)
]

.

(3.75)
The τ data is useful for computing the hadronic vacuum polarization con-

tribution to the muon anomalous magnetic moment because spectral func-
tions measured in τ decays can be employed to predict the hadronic e+e−
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annihilation cross section. Such relation appears because of the isospin sym-
metry.

The isospin symmetry is the symmetry of the Lagrangian of strong inter-
actions under rotations in flavor space of up and down quarks. Specifically,
consider a doublet of quark fields

ψ =
(

u
d

)
(3.76)

that transforms in a standard way under flavor SU(2), ψ′ = Uψ, U ∈ SU(2).
This transformation leaves the low-energy Lagrangian invariant, provided
that masses of up and down quarks are equal and the electromagnetic and
weak interactions are switched off.

A global symmetry of the Lagrangian implies the existence of con-
served currents. In case of the isospin symmetry, these currents are V ±,3

µ =
ψ̄T±,3γµψ, where T± = T 1±iT 2 and T i = τi/2 (i = 1, 2, 3) are 2×2 matrices
of SU(2) generators with standard commutation relations [T a, T b] = iεabcT

c.
The isospin symmetry leads to a host of relations between matrix ele-

ments connected by isospin transformations. We are interested in relating
the hadronic τ decays and the e+e− annihilation into hadrons. To this end,
note that the current V −

µ = d̄γµu is just the vector part of the charged
hadronic current that enters the calculation of the hadronic decay rate of the
τ lepton. Then, using the fact that the vacuum state is the isospin singlet, it
is easy to see that

〈0|T{V +
µ (x)V −

ν (0)}|0〉 = 2 〈0|T{V 3
µ (x)V 3

ν (0)}|0〉 . (3.77)

We observe that the right hand side of (3.77) is the isovector I = 1 part of
the electromagnetic current Jem

µ since

Jem
µ =

2
3

ūγµu − 1
3

d̄γµd =
1
6

ψ̄γµψ + ψ̄T 3γµψ =
1
6

ψ̄γµψ + V 3
µ . (3.78)

Hence, we may write

〈0|T{V +
µ (x)V −

ν (0)}|0〉 = 2 〈0|T{Jem,I=1
µ (x)Jem,I=1

ν (0)}|0〉 . (3.79)

We stress that this equation holds in the exact isospin limit when the charged
vector current V −

µ is conserved. The current conservation implies that the lon-
gitudinal structure function vV

L vanishes. Equation (3.79) relates the transver-
sal spectral function vV

T to the spectral function of the I = 1 part of the
electromagnetic current, Jem,I=1

µ ,

vV
T (s) = v0,I=1(s) , (3.80)

where v0,I=1 is defined as

v0,I=1(s) = 4π ImΠI=1(s) . (3.81)
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Finally, we note that, for final states consisting of pions, the contribution of
vector and axial currents into the τ decay widths dΓτ/ds can be separated
in a simple way: final states with even number of pions are produced by the
vector current while final states with odd number of pions are produced by the
axial current. This follows from the so-called G-conjugation, a combination
of the charge conjugation and the isospin rotation around the second axis by
π radians. Pions are eigenstates of the G-conjugation, G|π±,0〉 = −|π±,0〉.
Also, G = 1 for the charged vector current and G = −1 for the charged axial
current. In case of the electromagnetic current, G = ±1 for its isovector and
isoscalar components, respectively.

Hence, we conclude that in the limit of exact isospin symmetry, the mea-
surement of the differential rate dΓ (τ → ντ + nπ)/ds, where the number of
pions n is even, may be used to predict the e+e− annihilation cross section
σ(e+e− → nπ).7 If isospin breaking effects are sufficiently small and if the
precision of the τ data is higher than or comparable to the precision of the
e+e− data, we obtain a useful tool for reducing theoretical uncertainty of the
hadronic vacuum polarization contribution to the muon anomalous magnetic
moment. This is the essence of the suggestion by Alemany, Davier and Höcker
[26].

Those arguments play a particular important role for the two-pion final
state since, as we explained in Sect. 3.4, it gives the largest contribution to
ahvp

µ . Because of that, we specialize to the decay of the τ lepton into two
pions, τ− → ντ + π− + π0, in what follows. As we mentioned earlier, the
two-pion final state is produced by the charged vector current.

Consider the matrix element of the vector current V −
µ between the vacuum

and the two-pion state. In the limit of exact isospin symmetry, the current
V −

µ is conserved and the matrix element can be described by a single form
factor

〈π−
p3

, π0
p4
|V −

µ |0〉 =
√

2 F−(s)(p3 − p4)µ , (3.82)

where s = q2 = (p3 + p4)2. The transversality of the matrix element (3.82)
follows from qp3−qp4 = m2

π−−m2
π0 = 0, in the limit of the isospin symmetry.

As a consequence, in that limit, the pions are produced in a P -wave only.
Assuming exact isospin symmetry, F−(s) satisfies the normalization con-

dition F−(0) = 1. Indeed, since the integral
∫

d3xV −
0 (x) is the lowering

generator of flavor SU(2), we may write

〈π−
p |
∫

d3xV −
0 (x)|π0

p〉 = 〈π−
p |L3V −

0 |π0
p〉 =

√
2 〈π−

p |π−
p 〉 = 2

√
2p0L

3 , (3.83)

7 Note that this classification applies to truly multipion final states. When
processes with the production of η meson in association with n pions are consid-
ered, the G-parity violating decay η → 3π leads to the (n + 3)π final state with
G-parity opposite to G-parity of the η + nπ state. Therefore, final states with
η-meson require special consideration.
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where L3 is the three-dimensional normalization volume. Comparing this
relation with the crossing-continued version of (3.82) at q = 0, we verify that
F−(0) = 1.

Using the parametrization of the matrix element (3.82), it is straight-
forward to compute the contribution of the two-pion state to the spectral
function vV

T (s). We obtain

vV,2π
T (s) =

β3
−

12
|F−(s)|2 , (3.84)

where

β−(s) =
2|p|√

s
=

√
1 −

2m2
π− + 2m2

π0

s
+

(m2
π− − m2

π0)2

s2
. (3.85)

The third power of the momentum |p| in (3.84) reflects the fact that the
two-pion state produced by a vector current is a P -wave.

For the electromagnetic current, we introduce the pion form factor F 0(s)

〈π−
p3

π+
p4
|Jem

µ |0〉 = −F 0(s)(p3 − p4)µ , (3.86)

which is also normalized to unity at s = 0 by virtue of its relation to the
generator of the electric charge Q =

∫
d3xJem

0 (x). The two-pion contribution
to the electromagnetic spectral function is

v0,2π(s) =
β3

0

12
|F 0(s)|2 , (3.87)

where β0 =
√

1 − 4m2
π−/s. As we already mentioned, only isovector I = 1

part V 3
µ of Jem

µ contributes to the matrix element (3.86) due to G-parity. As
the result, the isospin symmetry leads to the equality of the form factors and
the two-pion spectral functions,

F−(s) = F 0(s) , vV,2π
T (s) = v0,2π(s) . (3.88)

As we see, the isospin symmetry allows us to use data on hadronic τ
decays as an independent source of information on the e+e− annihilation
into hadrons. However, currently, the claimed precision of both the e+e− and
the τ data is such that a very accurate comparison of these data is possible. To
make such comparison quantitative, we need to account for isospin violation
effects.

3.6 Hadronic Vacuum Polarization:
The τ Data and the Isospin Symmetry Violations

The isospin symmetry of strong interactions is not exact. It is broken by the
mass splitting of up and down quarks as well as their electromagnetic inter-
actions. Because of the isospin symmetry violation, masses and decay widths
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of hadrons that form isospin multiplets are split, form factors of charged
and electromagnetic currents are different and QED radiative corrections to
isospin-connected hadronic final states in the e+e− annihilation and τ decays
are unrelated. All this significantly complicates the use of data on τ decays as
a substitute for the e+e− annihilation data; in particular, this concerns the
two-pion final state where a percent precision is required. A priori, a magni-
tude of the isospin violating effects is at the percent level; hence, developing
the theory of isospin violations for the two-pion final state is important.

Consider the decay τ− → ντ +π−+π0. The differential decay rate is given
by (3.75) with vV

T → vV,2π
T and vV

L , vA
T,L → 0. It is conventional to normalize

the differential decay rate to the total decay width Γτ−→ν−
τ π−π0 ≡ Γπ−π0 .

We obtain

1
Γπ−π0

dΓπ−π0

ds
=

6|Vud|2
m2

τ

Γ
(0)

τ−→ν−
τ eν̄e

Γπ−π0

(
1 − s

m2
τ

)2(
1 +

2s

m2
τ

)
vV,2π
T (s) ,

(3.89)
where we used

Γ
(0)

τ−→ν−
τ eν̄e

=
G2

F m5
τ

192π3
, (3.90)

for the tree-level leptonic decay width of the τ lepton.
If all the isospin violating effects are neglected, we extract the spectral

function vV,2π
T (s) from (3.89), use (3.88) to obtain the spectral density of

the electromagnetic current and arrive at the prediction for the e+e− an-
nihilation cross section into the two-pion state. This leads to the two-pion
contribution to the hadronic vacuum polarization component of the muon
anomalous magnetic moment

ahvp,τ−

µ (2π) =
α

π

∞∫

4m2
π

ds

s
a(1)

µ (s) vV,2π
T,exp(s) , (3.91)

where the spectral function vV,2π
T follows from the τ data as defined by (3.89).

We have put an extra subscript on vV,2π
T in (3.91) to emphasize that this

spectral function represents data from τ decays, that are not corrected for
isospin violations. When the isospin violating effects are taken into account,
(3.91) is modified; our goal in this section is to derive the correction that has
to be applied to (3.91).

To this end, we have to consider the possibility that isospin symmetry
violations modify the relation between the differential decay rate dΓπ−π0 and
the spectral density vV,2π

T . To find those modifications, we need to consider
the difference of up and down quark masses and the QED corrections. We
note that the QED corrections can be both explicit and implicit – for example,
the charged-neutral pion mass difference is of the electromagnetic origin but
we do not need to derive the splitting and may use the masses of π± and π0

as the input parameters.
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Consider the impact of the inequality of up- and down-quark masses on
the relation between the τ decay rate and the e+e− annihilation cross section.
In the derivation of Γ (τ− → ν̄−

τ + π− + π0) described earlier, the equality of
quark masses was used to argue that the charged vector current is conserved.
When quark masses are not equal, this assumption becomes invalid. Never-
theless, it turns out that the matrix element 〈π−π0|Jhadr

µ |0〉 is transversal
through first order in mu −md. To see that, consider the divergence of Jhadr

µ .
We find

qµ
〈
π−

p3
π0

p4
| Jhadr

µ | 0
〉

= −i
〈
π−

p3
π0

p4
| ∂µJhadr

µ | 0
〉

= (md − mu)
〈
π−

p3
π0

p4
| d̄u | 0

〉
= 0 , (3.92)

where we used the symmetry under G-conjugation to show that 〈π−π0|d̄u|0〉 =
0. Therefore, even when quark masses are not equal, the longitudinal spectral
function vV

L scales as vV
L ∝ (md − mu)4 and can be neglected. In addition,

the longitudinal spectral function can also appear due to QED corrections,
for example because of the π±,0 mass difference. These corrections affect vV

L

only in second order in α and can be safely neglected.
A similar consideration shows that corrections to the transversal spectral

function due to unequal quark masses are small, ∆vV
T ∝ (md −mu)2. Indeed,

since the G-parity of the perturbation (md −mu)(d̄d− ūu) is −1, it can only
contribute in second order. The effect linear in mu−md appears, however, in
the e+e− → π+π− annihilation where the I = 0 part of the electromagnetic
current starts to contribute. This isospin breaking effect shows up via ρ − ω
mixing which is enhanced by the factor mρ/Γρ, thanks to the proximity of ρ
and ω masses.

We now turn to explicit QED corrections. Some of them are obvious. For
example, (3.89) contains the tree-level leptonic decay width of the τ lepton; it
is however conventional to use the experimentally measured value for the lep-
tonic decay width when evaluating (3.89). Then, we should rewrite Γ

(0)
τ→ντ eν̄e

through Γ exp
τ→ντ eν̄e

, taking into account the QED radiative corrections. Those
corrections are known from earlier computations of the muon life time [53];
we find

Γ exp

τ−→ν−
τ eν̄e

= Γ
(0)

τ→ν−
τ eν̄e

(1 + δlep) , δlep =
α

2π

(
25
4

− π2

)
. (3.93)

To account for this effect one needs to multiply the structure function ex-
tracted from τ data using (3.89) by the factor 1 + δlep,

vT(s) ∼ 1

Γ
(0)
τ→ντ eν̄e

Γπ−π0

dΓπ−π0

ds
∼ 1 + δlep

Γ exp
τ→ντ eν̄e

Γπ−π0

dΓπ−π0

ds
. (3.94)

Another obvious source of corrections is the mass splitting of charged and
neutral pions [54]. These masses enter the factors β3

−,0 in (3.84, 3.87), and by
multiplying the τ spectral function with β3

0/β3
−, we account for that effect.
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The remaining QED corrections are more involved. To evaluate those
corrections, we separate them into virtual and real emission components. The
real emission corrections describe the process with an additional photon in the
final state, τ− → ν−

τ +π− +π0 +γ. Since such processes can be distinguished
experimentally, if the energy of the emitted photon is not too small, the QED
radiative corrections depend on the experimental set-up. In case of τ decays
into two pions, the experimental procedure for both ALEPH and CLEO is
inclusive with respect to photons; therefore, we have to include the radiative
τ decays without restrictions on energies and angles of the emitted photon,
when computing QED corrections to the two-pion final state.

Consider first the virtual QED correction to τ− → ν−
τ + π− + π0 decay.

The τ lepton mass divides the virtuality of the photon k2 into two regions,
k2 > m2

τ and k2 < m2
τ . When the photon virtuality is large, the QED cor-

rections are determined by the short-distance properties of the theory since
photons with large virtualities resolve the quark structure of the pion. This
feature permits a model-independent computation of the QED corrections.
The opposite case of small photon virtuality is more complex; we have to
deal with pions and other hadrons as degrees of freedom.

Photons with large virtualities renormalize the four-quark operator in the
effective weak Lagrangian (3.68). We will show below that their effects are
enhanced by the logarithm of the ratio of the W -boson mass to the τ mass
and, hence, provide enhanced isospin violating corrections [55].

To compute the renormalization of the effective Lagrangian (3.68) by
highly virtual photons, we choose the Landau gauge; the photon propagator
reads

Dαβ(k) = − i

k2
Pαβ(k) , Pαβ = gαβ − kαkβ

k2
. (3.95)

In this gauge, the vertex corrections as well as the muon and quark wave
function renormalization constants are ultra-violet finite; therefore, the only
potential source of large logarithms are the two box diagrams where the pho-
ton connects the τ lepton with either up or down quark lines, see Fig. 3.6.

τ
W −

γ
ū

d

Fig. 3.6. The box diagram that leads to the QED correction to τ decay rate,
enhanced by ln(mW /mτ )
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Thanks to the W -boson propagator, the integral over Euclidean loop mo-
mentum k converges at k > mW ; however, the logarithmic sensitivity to mW

remains. To compute the coefficient of the logarithm of the W mass, it is
sufficient to assume that the loop momentum k is in the range µ1 < k < µ2,
where mτ 	 µ1 	 µ2 	 mW . For the loop momentum in that interval,
we may neglect all external momenta in Feynman diagrams that describe
virtual corrections to the hadronic decay rate of the τ lepton and consider
weak interactions as local, approximating the propagator of the W -boson by
igµν/m2

W .
Among the two box diagrams, only the diagram Fig. 3.6 where the virtual

photon is exchanged between the τ lepton and the up anti-quark line con-
tributes; the other box diagram does not produce logarithmically enhanced
correction. To see that, we apply the Fiertz transformation to the Lagrangian
(3.68)

ν̄τγµ(1 − γ5)τ ⊗ d̄γµ(1 − γ5)u = ν̄τγµ(1 − γ5)u ⊗ d̄γµ(1 − γ5)τ , (3.96)

and transform the Lorentz structure of the τ−− d box diagram into that
of a vertex. Since vertex corrections in the Landau gauge are ultra-violet
finite, the τ−− d box diagram does not produce logarithmically enhanced
corrections.

The τ−− ū box diagram, Fig. 3.6, is easy to compute. Within the approx-
imation described above, the expression reads

M =
αGF V ∗

udQuQτ√
2π

∫
d4k

4π2

Pαβ(k)
k2

ν̄τγµ(1−γ5)
k̂

k2
γατ d̄γµ(1−γ5)

k̂

k2
γβu .

(3.97)
Averaging over directions of the loop momentum and using the identity for
the Dirac matrices

γµ(1 − γ5)γαγβ ⊗ γµ(1 − γ5)γαγβ = 16γµ(1 − γ5) ⊗ γµ(1 − γ5) , (3.98)

we derive

M = −3QuQτα

2π

µ2∫

µ1

dk

k
M0 = −3QuQτα

2π
ln

µ2

µ1
M0 , (3.99)

where M0 = −iV ∗
udGF /

√
2 ν̄τγµ(1 − γ5)τ d̄γµ(1 − γ5)u is the tree-level am-

plitude for the semileptonic decay τ− → ντ ūd .
From (3.99) we see that the QED corrections due to photons with large

virtualities µ1 	 k 	 µ2 do not depend on the kinematics of the process
and, effectively, change the coupling constant of the four-fermion operator in
the Lagrangian (3.68). It is clear that, with the logarithmic accuracy, we may
take µ1 = mτ , µ2 = mW . The result is a multiplication of the four-fermion
operator in (3.68) by the short-distance QED Wilson coefficient [55]
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SEW = 1 +
α

π
ln

mW

mτ
. (3.100)

As a consequence, the hadronic decay rate of a τ lepton is increased by S2
EW.

Numerically,
S2

EW ≈ 1.018 , (3.101)

which implies that the short-distance QED effects increase the τ decay rate
into any hadronic channel by, approximately, two percent. Apart from the lim-
itations of the logarithmic accuracy, (3.101) is one of a few model-independent
results related to QED corrections to hadronic decays of the τ -lepton.

We point out that the QED corrections to the total hadronic decay width
of a τ -lepton can be reliably calculated beyond the logarithmic accuracy. Such
possibility occurs because in the inclusive width the long-distance effects in
emission of real photons cancel against long-distance effects in the virtual
corrections, so that the QED corrections to the total hadronic decay rate
are determined by photons with large, ∼ m2

τ , virtualities. This cancelation
of infra-red logarithms in the inclusive width follows from Kinoshita–Lee–
Nauenberg theorem [56, 57]. The QED corrections to the total decay rate
were computed in [58]; they read

Γτ−→ντ+hadr = Γ
(0)
τ−→ντ +hadr

[
1 +

α

π

(
ln

m2
Z

m2
τ

+
85
24

− π2

2

)]
. (3.102)

Although long-distance effects cancel in the total decay width, this does
not necessarily happen in less inclusive observables. For example, the hadronic
invariant mass distribution, (3.89), is affected by the long-distance effects.
The weights with which this distribution is integrated are different for the
inclusive widths and for the hadronic corrections to the muon magnetic anom-
aly; in the latter case, the small mass region is emphasized so that the can-
celation of long-distance effects is, in general, destroyed. For this reason it is
not possible to compute the QED corrections to the hadronic invariant mass
distribution in a fully model-independent way since hadronic dynamics has
to be accounted for. However, it is possible to understand essential features
of the QED corrections in a way that is model-independent, to a large extent.
The most comprehensive analysis of the QED effects in τ decays is given in
[52]. While we do not follow the discussion in that reference, we comment on
essential features of that analysis below.

Before diving into that discussion, we note that a theoretical limit exists
when the cancelation of long-distance effects in QED corrections occurs in
ahvp

µ so that the QED corrections that have to be applied to τ data to derive
the e+e− annihilation cross section can be computed exactly. This situation
occurs if the total decay rate of the τ lepton is dominated by the two-pion
channel which, in turn, is dominated by the ρ meson contribution. We fur-
ther assume that the ρ meson is narrow. In such a limit, hadronic invariant
mass distribution becomes a delta-function, δ(s − M2

ρ ), even when the QED
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corrections are accounted for. The coefficient of this delta function is uniquely
determined from the QED corrections to the total decay rate of the τ -lepton,
(3.102). It is then obvious that the long-distance effects cancel in the cal-
culation of the muon magnetic anomaly in the same way as they do in the
calculation of the inclusive width. This argument implies small QED correc-
tions since the possible enhancement factors associated with long-distance
physics do not play a role under such circumstances. In a realistic case of a
finite ρ meson width, the situation is, clearly, more complex. We discuss be-
low the long-distance enhancement in the hadronic invariant mass spectrum
in hadronic τ decays and the degree of cancelation of long-distance effect in
a calculation of ahvp

µ in models where the width of the ρ meson has its actual
value.

An enhancement of long-distance effects in QED radiative corrections to
dΓπ−π0/ds, where s is the invariant mass of the charged and neutral pions, is
seen from the fact that these corrections are logarithmically sensitive to the
mass of the pion; interestingly, they can be derived in a model-independent
way. This happens because the terms enhanced by lnmπ originate entirely
from collinear photon emissions off the external pion leg; since the emission
is collinear, the pion remains very close to the mass-shell and there is no
influence of the pion structure on the radiation pattern.

It is easy to write down a formula for the QED radiative corrections in
the logarithmic approximation. Define z = (s−4m2

π)/(m2
τ −4m2

π). Then, the
QED corrections read

dΓ
(1)
π−π0

dz
=

α

π
ln

〈Eπ〉
mπ

1∫

z

dξ

ξ
Pππ (z/ξ)

dΓ
(0)
π−π0

dξ
, (3.103)

where the average energy of the charged pion in the decay τ → ντ + π− + π0

is estimated to be

〈Eπ〉 =
m2

τ + s

4mτ
. (3.104)

The function Pππ, given by

Pππ(z) =
[

2
1 − z

]

+

− 2 + 2δ(1 − z) , (3.105)

describes the collinear splitting π → π +γ. The plus-distribution [1/(1−z)]+
is defined as

1∫

0

dzf(z)
[

1
1 − z

]

+

=

1∫

0

dz
f(z) − f(1)

1 − z
, (3.106)

for an arbitrary smooth function f(z). Thanks to that relation, the loga-
rithmically enhanced terms in (3.103) disappear once the integral over z is
performed,
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1∫

0

dz Pππ(z) = 0 . (3.107)

As a consequence, there are no ln(mπ) - enhanced corrections to the total
decay rate of the τ lepton, as required by the Kinoshita-Lee-Nauenberg the-
orem [56, 57]. On the other hand, (3.103) shows that the QED corrections
can significantly distort the invariant mass spectrum of the two pions.

Since the ln(mπ) enhancement factor is not large, the non-logarithmic
corrections neglected in (3.103) may be important numerically. Nevertheless,
it is useful to isolate ln(mτ/mπ)-enhanced QED corrections to the two-pion
decay rate of the τ lepton because i) they are model-independent and ii) the
presence of ln(mπ) - enhanced terms is the feature that distinguishes QED
radiative corrections to the two-pion final state in τ decays and in e+e−

annihilation. The expression for the QED radiative corrections (3.103) allows
us to understand qualitative features of these corrections.

To quantify the impact of the QED corrections on the differential decay
rate, we define the function GEM(s) through

dΓπ−π0

ds
=

dΓ
(0)
π−π0

ds
GEM(s) , (3.108)

where dΓ (0) is the differential decay rate without QED corrections, (3.89).
The function GEM(s) depends on the parametrization of the pion form factor;
we use the Gounaris–Sakurai parametrization obtained from a combined fit
to the e+e− and τ data [59]. The explicit form of the form factor as well as
the input parameters are given in Appendix A.2.

We plot the function GEM(s) in Fig. 3.7. The behavior of the QED cor-
rections is typical to a situation when the tree-level matrix element de-
scribes the production of a narrow resonance; the correction, negative for
s ≈ m2

ρ ≈ 0.6 GeV2, rapidly becomes positive for
√

s smaller than the mass
of the ρ-meson. Away from the resonance peak, the corrections can be as
large as a few percent.

Our result for GEM(s) reproduces fairly well the complete calculation
of the QED radiative corrections to the two-pion decay rate of the τ lep-
ton reported in [52]; the agreement gets unsatisfactory for small values of
s where the O(ln mπ) correction overestimates the full result. Since, as we
mentioned already, it is not expected that keeping only terms enhanced by
ln mπ gives an accurate description of the spectrum, we use GEM(s) derived
in [52] for evaluating the impact of the QED corrections on the charged pion
form factor. Nevertheless, the proximity of the two calculations ensures that
the shape of the two-pion invariant mass distribution in τ decays is governed
by the collinear QED radiation that does not depend on the pion structure
and, therefore, can be understood within the framework of scalar QED. The
fact that the structure-dependent radiation does not significantly contribute
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Fig. 3.7. The function GEM(s). The solid line is the complete calculation [52], the
dashed line is the approximation (3.103)

to the QED radiative corrections to τ decays into two pions was explicitly
demonstrated in [52].

The results for the QED corrections to semileptonic τ decays into two
pions allow us to derive the form factor F−(s) from the differential decay
rate. Using (3.89, 3.108), we find

|F−(s)|2 = |F−
exp(s)|2 1 + δlep

S2
EWGEM(s)

. (3.109)

As we already mentioned, this formula is slightly misleading, since the elec-
tromagnetic correction factor GEM(s) depends on F−(s). However, because
this dependence is weak, we may ignore it to the first approximation.

Equation (3.109) gives the form factor of the charged hadronic current
with the isospin I equal to one. To compute the e+e− annihilation cross sec-
tion, we need the pion form factor that contains both isovector and isoscalar
components. The major contribution to the I = 0 component is the isospin
violating mixing of ρ and ω mesons; it can be accounted for by using parame-
ters of the ω resonance determined from the e+e− annihilation. In addition,
there are internal isospin violating effects in I = 1 form factor related, for
example, to differences in masses and widths of the charged and neutral ρ-
mesons. To indicate the presence of such effects, we introduce a function
Rf (s) and write

|F 0(s)|2 = |F−(s)|2
∣∣∣∣1 + δ

s

M2
ω

BWω(s)
∣∣∣∣
2

Rf (s) , (3.110)



78 3 Hadronic Vacuum Polarization

where BWω(s) is the Breit-Wigner parametrization of the ω resonance (see
Appendix A.2).

We now use (3.87) that defines the neutral spectral density v0 and
(3.109, 3.110, 3.89) to derive the relation between the “experimental” form
factor F−

exp(s) and the e+e− annihilation cross section into two pions. Note
that the cross section derived in this way is the bare cross section, with all
the QED corrections to γ∗ → π+π− excluded. However, as we explained at
the beginning of this chapter, this is not sufficient; the QED corrections to
e+e− → π+π−, including processes with an additional photon in the final
state, have to be included for the two-pion channel. We parametrize those
corrections by a function Λfs(s) and write

σπ+π− =
πα2

3s
β3

0 |F 0(s)|2
(
1 +

α

π
Λfs(s)

)
. (3.111)

Using this equation together with (3.110), we derive the result for the two-
pion contribution to ahvp

µ

ahvp
µ (2π) =

α

12π

∞∫

4m2
π

ds

s
a(1)

µ (s)β3
−(s)|F−

exp(s)|2C(s) , (3.112)

where the function C(s) reads

C(s) =
β3

0

β3
−

1 + δlep

S2
EWGEM(s)

∣∣∣∣1 + δ
s

M2
ω

BWω(s)
∣∣∣∣
2

Rf (s)
(
1 +

α

π
Λfs(s)

)
.

(3.113)
Comparing (3.91, 3.112), we find the correction that has to be applied to

the evaluation of the two-pion contribution to the hadronic vacuum polar-
ization component of aµ if the τ data uncorrected for the isospin violating
effects is used in the original derivation

δahvp,τ
µ (2π) =

α

12π

∞∫

4m2
π

ds

s
a(1)

µ (s)β3
−(s)|F−

exp(s)|2 (C(s) − 1) . (3.114)

Before discussing numerical implications of the isospin violation correc-
tion (3.114), some clarifications are in order. As we already mentioned, for
numerical evaluations we use Gounaris–Sakurai parametrization of the pion
form factor. The explicit parametrization of the form factor as well as nu-
merical values for the masses of vector resonances, their widths etc. are given
in Appendix A.2. The function Λfs(s) is known in scalar QED [60]
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Λfs(s) =
1 + β2

β

{
4Li2

(
1 − β

1 + β

)
+ 2Li2

(
−1 − β

1 + β

)

− 3 ln
(

2
1 + β

)
ln

1 + β

1 − β
− 2 ln β ln

1 + β

1 − β

}
− 3 ln

4
1 − β2

− 4 ln β

+
1
β3

(
5
4
(1 + β2)2 − 2

)
ln

1 + β

1 − β
+

3
2

1 + β2

β2
, (3.115)

where β = β0(s). It turns out that the QED radiative corrections described
by Λfs(s) are large; to see this, note that setting mπ = 0 leads to Λfs(s) =
3. Since the major contribution to ahvp

µ comes from s ≈ M2
ρ � m2

π, it is
unlikely that scalar QED accurately describes radiative corrections at such
virtualities. A possible way to check the sensitivity of Λfs(s) to the pion
structure is to compute it using the vector meson dominance model where
the coupling of photons to pions is modified by introducing a form factor.
Such calculation, for zero pion mass, was reported in [61]; the result is a small
suppression of the asymptotic value of the function Λfs(s) = 3 → 9/4. Note,
however, that the validity of the above estimates can be questioned if we
assume that the two-pion contribution to aµ is saturated by the narrow ρ-
meson. In that case, the e+e− → π+π− contribution to aµ is determined by an
integral of the e+e− → π+π− annihilation cross section over sufficiently large
energy range. Because of the quark-hadron duality, the latter quantity can be
calculated by integrating the e+e− → quarks annihilation cross-section. In
that case, the QED correction to the annihilation cross-section is computed
with quarks. Keeping only the isovector part of the electromagntic current,
we derive

Λfs =
3
4

∑
q=u,d

Q2
q =

5
12

≈ 0.5 , (3.116)

which is much smaller than Λfs ≈ 3 obtained in the point-pion approxima-
tion. Keeping in mind that the main contribution to aµ indeed comes from√

s ≈ mρ, the mismatch of the two estimates implies breaking of quark-
hadron duality at (marginally) short distances.

Given the differences in Λfs computed with point-like pions and quarks,
we have to decide which of the two estimates is more appropriate; we argue
that it is a combination of the two. A good way to estimate the correction
that needs to be applied to the τ data due to the final state interaction in
e+e− → π+π− is the following. We may use (3.115) to describe the final state
interaction of the π+π− pair in the two-pion threshold region, s ≤ m2

ρ/2 and
use (3.116) in the region s > m2

ρ/2. This leads to the contribution to δahvp,τ
µ

of about 20 × 10−11; we use this result in Table 3.4 below.
Finally, we need to specify the function Rf (s) that is introduced to ac-

count for isospin violating effects in the I = 1 part of the pion form factor. A
possible approach is to compute the form factors F−,0(s) in unitarized chiral
perturbation theory [52, 62]; then, the isospin violating effects in the form
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Table 3.4. Various contributions to δahvp
µ

Source of isospin violation δahvp,τ−
µ × 1011

(1 + δlep) S−2
EW −119

G−1
EM −10

β3
0/β3

− −90

ρ − ω mixing 24

final state O(α) 20

Γρ− �= Γρ0 5

mπ− �= mπ0 in F (s) −8

mρ0 �= mρ− 7

factors appear explicitly and are given in terms of the mass and width differ-
ences of charged and neutral ρ mesons and some low-energy constants of chiral
perturbation theory [52]. Unfortunately, those effects can not be estimated
theoretically in a reliable way. Indeed, the mass difference of charged and neu-
tral ρ is estimated theoretically [63] to be −0.7 MeV < mρ+−mρ0 < 0.4 MeV,
but, as pointed out in [64], this is not supported by the latest experimental
data. For example, Davier [59] finds from a combined fit to the e+e− and the
τ data that mρ+ −mρ0 = (2.3± 0.8) MeV. In addition, with the parameters
used in [52], the theoretical difference between the widths of charged and
neutral ρ-mesons is about 2 MeV, whereas experimental data seems to point
out to a negligible width difference.

Hence, it appears difficult to give an accurate theoretical description of
the isospin violating effects in the pion form factor. We therefore model those
effects by assuming Gounaris–Sakurai parametrization of the form factor and
using masses and widths for charged and neutral ρ-mesons, obtained from fits
to the e+e− and the τ data. Of course, doing so defies the goal of computing
ahvp,τ

µ without the e+e− data, since we need these data to estimate Rf (s).
However, it is instructive to do so, to get an idea about the magnitude of the
effect.

We turn to numerical estimates of the isospin violating corrections. To
exhibit the relative importance of various isospin violation corrections, it is
convenient to display different contributions to δahvp,τ

µ (2π) separately; this
is done in Table 3.4. As we remarked earlier, for F−

exp(s), we use Gounaris–
Sakurai parametrization; the explicit form of the form factor and numerical
values of masses and widths are given in Appendix A.2. Adding the entries
in Table 3.4, we derive δahvp,τ

µ (2π) = −170 × 10−11 which is the shift that
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one has to apply if the τ data is used to evaluate the two-pion contribution
to the hadronic vacuum polarization correction to the anomalous magnetic
moment. Note that this correction is rather close to the correction in the
first row in Table 3.4, which is an unambiguous short-distance result. This
proximity of the two numbers implies that there are significant cancelations
of different long-distance effects that affect the relation between the two-pion
decay rate of the τ lepton and the e+e− → π+π− annihilation cross section.
In particular, it is reflected in the small correction due to G−1

EM which, as we
argued earlier, can be understood in the limit when the ρ meson width is
small.

To estimate the uncertainty in δahvp,τ
µ we have to analyze how well differ-

ent isospin symmetry corrections shown in Table 3.4 are known. While some
of them, such as the kinematic correction β3

0/β3
− and the correction caused

by the ρ − ω mixing are known accurately, the others are not. For example,
the evaluation of the short distance correction (1 + δem)S−2

EW is done with
the choice of the factorization scale µ = mτ (cf. (3.100)). However, we point
out that, in spite of the fact that the scale µ is an arbitrary separation scale
and, hence, the dependence on it must cancel, in practice it does not. We
can estimate the uncertainty in the short distance correction by evaluating
it at µ = mτ/2. This choice leads to (1 + δem)S−2

EW = −136 × 10−11, a shift
by −17 × 10−11. To estimate the uncertainty in the evaluation of the long-
distance QED corrections to hadronic invariant mass distribution in τ -decays,
we note that if we treat ρ as a narrow resonance and utilize the corrections
to the total decay rate (3.102), we find that the G−1

EM(s) contribution to
δahvp,τ

µ turns out to be +14× 10−11. On the other hand, if the long-distance
QED corrections to hadronic invariant mass spectrum are computed with
the function GEM(s) calculated in the logarithmic approximation, (3.103),
the contribution to δahvp,τ

µ turns out to be ∼ −30 × 10−11. We consider the
differences between these estimates and the result −10 × 10−11 in Table 3.4
to be indicative of the accuracy with which the long-distance QED effects in
hadronic invariant mass spectrum can be computed; as the result, we take
±20 × 10−11 as the uncertainty estimate.

Another source of uncertainty is the final state O(α) correction. As we
discussed earlier, calculations with point-like pions differ from calculations
where the pion structure is introduced through vector meson dominance by,
approximately, 12 × 10−11. An even stronger discrepancy occurs when the
calculation of Λfs with point-like pions is compared with a similar calculation
that utilizes quarks as degrees of freedom. To estimate the uncertainty on this
contribution we assume that the quark-based calculation may be incorrect up
to a factor of two and also assign ±5× 10−11 uncertainty to the contribution
due to two-pion threshold region to O(α) correction in e+e− annihilation. The
uncertainty on the final state radiative correction then becomes 10 × 10−11.
Finally, note that the width difference between Γρ− and Γρ0 of 1 MeV leads
to a shift of δahvp,τ

µ by 30 × 10−11.
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To estimate the total uncertainty in δahvp,τ
µ , we note that the uncertainties

described above are systematic; hence, adding those uncertainties in quadra-
tures may underestimate the total uncertainty while adding them linearly,
likely, overestimates it. We choose δahvp,τ

µ = ±60 × 10−11 as an uncertainty
estimate; this value is between the two extreme cases. Hence, we arrive at
the result δahvp,τ

µ = −170(60) × 10−11.
Our result for δahvp,τ

µ differs somewhat from similar results reported in
e.g. [52, 17]; for example, in [17] δahvp,τ

µ was estimated to be −93(20)×10−11;
the major reason for this difference is the latest fit to the e+e− and the τ
data [59] that shows that the widths of charge and neutral ρ mesons are,
practically, the same.

Up to now, we have been discussing the influence of the τ data on the
hadronic vacuum polarization contribution to aµ. On the other hand, it is
possible to compare directly the charged and neutral pion form factors for
various values of s, after all the isospin violation effects have been accounted
for. The result of such a comparison is shown in Fig. 3.8. It follows that the
difference between the e+e− and the τ data is not uniform and that large
∼ 10% difference occurs to the right of s = m2

ρ ≈ 0.6 GeV2. Usually, Fig. 3.8
is presented as the strong evidence that the τ and the e+e− data are not
compatible even after the isospin violation effects are taken into account.

CMD-2
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Fig. 3.8. The comparison of the pion form factors obtained from the e+e− and
the τ data with all the known isospin corrections applied. The band shows the un-
certainties in the τ -data, [65]. The significant mass difference of charge and neutral
ρ mesons was not considered in this plot
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However, there is a very significant difference between computing integrated
quantities, like ahvp

µ and making the point-by-point comparison of the charged
and neutral pion form factor. This is so because, in the latter case, the result
depends very strongly on possible mass and width differences of the charged
and neutral ρ-mesons [64], whereas in case of ahvp

µ , as follows from Table 3.4,
the mass difference of the ρ-mesons leads to a minor effect, only.

Finally, we note that our calculation of δahvp,τ
µ essentially removes the ten-

sion between the e+e−- and τ -based calculations of hadronic vacuum polariza-
tion contribution to ahvp

µ . For example, [41] gives ahvp,τ
µ (2π)−ahvp,e+e−

µ (2π) =
(119 ± 60) × 10−11; this result is obtained with δahvp,τ

µ = −93(20) × 10−11.
With our result for δahvp,τ

µ , the difference between the two computations of
ahvp

µ is, practically, removed

ahvp,τ
µ (2π) − ahvp,e+e−

µ (2π) = (40 ± 50exp ± 60th) × 10−11 . (3.117)

The two errors in (3.117) reflect the experimental uncertainty in the data as
well as the theoretical uncertainty related to the application of the isospin
symmetry violation correction to the τ data.

Before concluding this section, we stress that, in spite of the fact that
(3.117) indeed resolves the disagreement between the e+e− and the τ data,
the τ data still should not be used as independent data for the purpose of ahvp

µ

evaluation. The reason is that the isospin violation effects in the pion form
factor are significant. Existing theoretical calculations of isospin violating
corrections capture large long-distance effects but these effects cancel out
when δahvp,τ

µ is computed. What remains are the O(α/π) effects that can
not be reliably computed from first principles. Although these effects are
not enhanced, with the current level of precision they lead to considerable
uncertainties when τ data, corrected for isospin violation, is confronted with
e+e− data. Therefore, even if we gain in experimental precision by using
the τ data, we loose in theoretical clarity which is indispensable for making
convincing calculation of ahvp

µ .

3.7 Higher Order QED Corrections to Hadronic
Vacuum Polarization Contribution to aµ

An interesting conclusion from the discussion in the previous section is the
fact that the QED corrections to ahvp

µ are indeed at the percent level, which
is approximately 50 × 10−11. Since this number is comparable to the exper-
imental uncertainty in the muon anomalous magnetic moment, we have to
account for all the QED effects that might affect the hadronic contribution to
aµ. There are two such effects that we have not considered so far; the hadronic
light-by-light scattering contribution to aµ that is studied in Chap. 6 and the
two-loop QED diagrams with hadronic vacuum polarization insertion, shown
in Fig. 3.9. We discuss those diagrams in this section.
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a b c
e, µ, τ−

Fig. 3.9. QED corrections to hadronic vacuum polarization contribution to the
muon anomalous magnetic moment

There are three classes of diagrams that are usually considered separately;
they are shown in Fig. 3.9. The first class, Fig. 3.9a, includes diagrams that
have a single hadronic vacuum polarization insertion on one of the photons
lines in two-loop QED corrections to the muon magnetic anomaly and that
do not have any additional vacuum polarization insertion due to either elec-
tron or tau lepton. The diagrams with single electron, muon or tau vacuum
polarization and the hadronic vacuum polarization form the second class,
Fig. 3.9b. The diagram with two hadronic vacuum polarizations is referred
to as the third class. The contribution of those diagrams to the muon anom-
alous magnetic moment can be computed using representations of the form

ahvp,NLO,(i)
µ =

α3

3π

∞∫

4m2
π

ds

s
Rhadr(s)Ki(s) , i = a, b ;

ahvp,NLO,(c)
µ =

α3

9π

∞∫

4m2
π

∞∫

4m2
π

ds

s

ds′

s′
Rhadr(s)Rhadr(s′)Kc(s, s′) .

(3.118)

The analytic results for the kernels in a form convenient for numerical
integration can be found in [66]. We quote numerical values from a recent
evaluation [1]

ahvp,NLO
µ = [−207.3(1.8)a + 106(1)b + 3.4(1)c] × 10−11 = −98(1) × 10−11 ,

(3.119)
where the contributions from classes a, b, c are displayed separately. As we
see, the NLO QED corrections to hadronic vacuum polarization are close to
1.5%; the contribution of class c, the double hadronic vacuum polarization
contribution to aµ, is very small, as expected.

3.8 Total Hadronic Vacuum Polarization Contribution

In this section we summarize the results of our discussion of the hadronic
vacuum polarization contribution. For reasons explained in the main body
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of this chapter, we will not use the results based on the τ data. We point
out, however, that the e+e− and the τ based evaluations of ahvp

µ seem to be
consistent within the uncertainties related to the experimental data and the
lack of theoretical understanding of the isospin symmetry violations.

The results for ahvp
µ are compiled in Table 3.1. It is clear that the most

recent evaluations [1, 29, 17, 31, 30] produce results that overlap very well
within the assigned error bars. Reference [29] is an update of [17], that in-
cludes the recent e+e− → π+π− data from KLOE that shifts the result of
[17] by −27 × 10−11 and makes it closer to [1]. As we explained in the text,
the difference between [17] and [1] is not related to the e+e− → π+π− chan-
nel and, hence, the complete agreement of [29] and [1] is misleading. For the
Standard Model value of the muon anomalous magnetic moment, we employ
the leading order hadronic vacuum polarization contribution from [29],

ahvp
µ = 6934(63) × 10−11 . (3.120)

However, note that new results on e+e− → π+π− by SND collaboration
as well as updated results of CMD-2 collaboration were not included in the
analysis of [29]. As follows from the discussion in Sect. 3.4.5, inclusion of these
data is likely to increase ahvp

µ in (3.120) by about one standard deviation.
For the NLO QED corrections to the hadronic vacuum polarization, we

use [1]
ahvp,NLO

µ = −98(1) × 10−11 . (3.121)

The total hadronic vacuum polarization contribution is given by the sum of
(3.120, 3.121).
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41. M. Davier, S. Eidelman, A. Höcker and Z. Zhang, Phys. Lett. B 582, 27 (2004).
42. S. G. Gorishny, A. L. Kataev and S. A. Larin, Phys. Lett. B 259, 144 (1991);

L.R. Surguladze and M. A. Samuel, Phys. Rev. Lett. 66, 560 (1991).
43. K. G. Chetyrkin, A. H. Hoang, J. H. Kühn, M. Steinhauser and T. Teubner,
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4 Electroweak Corrections to aµ

4.1 Weak Corrections to aµ

In this chapter we discuss electroweak corrections to the muon anomalous
magnetic moment in the Standard Model. Their study started approximately
thirty years ago, when the Standard Model was still raising to prominence.

At the one-loop level, there are three contributions to the electroweak
correction to aµ, Fig. 4.1; they appear due to exchanges of the W -boson, the
Z-boson and the Higgs boson. Since the masses of all of these particles are
large, compared to the muon mass, the structure of the one-loop electroweak
correction is simple; apart from the coupling constants, it depends on the
ratios m2/m2

Z,W,H . In addition, since the muon Yukawa coupling is small,
the Higgs boson exchange is negligible. The one-loop result reads [1]

aew,1l
µ =

GF m2

8
√

2π2

×
[

10
3

+
1
3

(
− 5 + (1 − 4 sin2 θW )2

)
+ O

(
m2

m2
W,H

)]
, (4.1)

where the first term in square brackets in (4.1) refers to the W -boson and
the second one to the Z-boson contribution to aµ. Using GF = 1.16639(1)×
10−5 GeV2 and sin2 θW = 0.224, it evaluates to

aew,1l
µ = 194.9 × 10−11 . (4.2)

The magnitude of the one-loop electroweak correction to aµ, (4.2), sug-
gests that at the current level of precision, the two-loop electroweak correc-
tions to aµ, suppressed by α/π ∼ 2× 10−3, are not needed. However, as was

µ

Z, H

W −

ν

Fig. 4.1. Weak contributions to the muon anomalous magnetic moment
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pointed out by Kukhto et al. [2], this estimate is too naive since the two-loop
corrections are enhanced by large logarithms of the ratio of the Z boson mass
to the muon mass, ln(mZ/m) ∼ 6.8. Nevertheless, it is natural to expect that
even such a logarithmic enhancement by itself would not lead to a significant
two-loop effect since an estimate aew,2l

µ ∼ aew,1l
µ (α/π) ln(mZ/m), leads to a

correction to the muon anomalous magnetic moment of about 3×10−11. Sur-
prisingly, this estimate fails completely; explicit calculation of the two-loop
electroweak corrections to aµ [2, 3, 4, 5] shows that they change the one-
loop result (4.2) by about −40 × 10−11. Interestingly, those corrections are
that large accidentally; the two-loop electroweak contribution to the muon
magnetic anomaly can, approximately, be written as

aew,2l
µ ∼ −10

(α

π

)
aew,1l

µ

(
ln

mZ

m
+ 1

)
, (4.3)

and the factor ten in the above equation appears since many “order one”
contributions from individual diagrams add up coherently.

There is an additional peculiarity associated with the two-loop elec-
troweak effects. Among various two-loop diagrams that contribute to the
muon anomalous magnetic moment, there are diagrams that involve light
quarks as intermediate particles. Some of those diagrams receive contribu-
tions from the region of small loop momenta where perturbative description
of strong interactions breaks down and the use of quarks as degrees of freedom
is unjustified; this situation is analogous to the hadronic vacuum polarization
contribution to the muon anomalous magnetic moment discussed in Chap. 3.

There are two types of the light-quark diagrams where perturbative ap-
proach fails. The first one is the hadronic vacuum polarization contribution
due to γ − Z mixing. The contribution of the second type is due to graphs
where a quark triangle subgraph formed by one axial and two vector currents
is present. Such triangle diagrams are related to the axial anomaly of QCD
and, for this reason, are sensitive to both the ultra-violet and the infra-red
structure of the theory that is determined by hadronic interactions at low
energies.

In the calculation of [3], the non-perturbative effects in diagrams with
light quarks were modeled by introducing constituent quark masses. Being
a reasonable and easy-to-implement way to account for non-perturbative ef-
fects, this method violates the chiral structure of hadronic interactions at low
energies and, hence, introduces the theoretical uncertainty in the calculation.
It is reasonable to expect that this theoretical uncertainty is comparable to
the magnitude of the non-logarithmic term in (4.3). Note also, that even per-
turbative QCD effects in quark diagrams can be quite sizable; this happens
because, numerically, (αs/π) ln(mZ/m) ∼ 1, which implies that the three-
loop mixed QCD-electroweak corrections to aµ are naturally of the same
magnitude as the two-loop electroweak correction without the logarithmic
enhancement. Hence, we conclude that the full two-loop calculation of the
electroweak effects can be justified and used if an only if, both perturbative
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and non-perturbative, QCD effects in two-loop electroweak corrections are
better understood. Fortunately, a refined treatment of those effects recently
became available [6, 7, 8]; we describe it in Chap. 5.

Our discussion of the two-loop electroweak corrections to the muon mag-
netic anomaly in the remainder of this chapter is restricted to the loga-
rithmic approximation. We may do that because i) the computation of the
logarithmically-enhanced two-loop electroweak corrections to the muon mag-
netic anomaly is relatively simple and, hence, can be discussed in a concise
manner and ii) as follows from the complete calculation of the two-loop elec-
troweak effects [3, 4, 5], the logarithmically-enhanced terms dominate the
two-loop result. However, before discussing the two-loop electroweak correc-
tions in the logarithmic approximation, we briefly explain how the complete
calculation [3] was performed.

The calculation of the two-loop electroweak corrections to aµ is plagued
by technical difficulties; first, the number of diagrams is large (∼1700 in the
’t Hooft-Feynman gauge) and, second, these diagrams depend on a variety
of particle masses. Those two facts make an analytic computation of a tradi-
tional pen-and-paper type impossible. Instead, one uses symbolic manipula-
tion programs, such as FORM [9], to handle large algebraic expressions. In
addition, the problem of computing two-loop diagrams that involve different
masses is solved with the help of the asymptotic expansion of Feynman dia-
grams [10]. For further discussion of the calculation, the reader is referred to
the original publication [3].

4.2 Two-loop Electroweak Effects:
The Logarithmic Approximation

4.2.1 Effective Field Theory

In this section we describe the computation of the two-loop electroweak cor-
rections to the muon anomalous magnetic moment in the logarithmic ap-
proximation, retaining terms O(GF m2α ln(mW,Z/m)). Our discussion fol-
lows closely [7]. The calculation can be performed in an effective field theory,
where all particles with masses comparable to or heavier than the weak scale
∼ mZ ∼ 100 GeV, are integrated out. The resulting theory is the Fermi
theory of weak interactions supplemented with the muon magnetic dipole
operator. The degrees of freedom in the effective theory are leptons, photons
and quarks with mq 	 mZ , i.e. all the quarks besides the top quark.

The effective theory at the scale µr such that m 	 µr 	 mZ is described
by the Lagrangian,

Leff(µr) = − GF

2
√

2

(
h(µr)H(µr) +

∑
i

ci(µr)Oi(µr)

)
, (4.4)
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where the sum extends over dimension six four-fermion operators.
The operator H(µr) is the magnetic dipole operator

H(µr) =
m(µr)
16π2

e(µr)
[
Fµν µ̄σµνµ

]
µr

, (4.5)

where m(µr) and e(µr) = −
√

4πα(µr) are the running (e.g. MS) muon mass
and electric charge. These factors appear naturally in the Wilson coefficient
of dimension 5 operator Fµν µ̄σµνµ because only Euclidean momenta larger
than µr contribute to this coefficient; however, it is convenient to include
those factors into the definition of the magnetic dipole operator H because,
for example, the product eFαβ is µr-independent.

The electroweak contribution to the muon magnetic anomaly aew
µ is given

by the Wilson coefficient h(µr) at the low normalization point µr = m,

aew
µ =

GF m2

8π2
√

2
h(m). (4.6)

The one-loop contribution to aew
µ , (4.1), arises because of the Z and W ex-

changes; hence, it is determined by virtual momenta of order mW,Z and fixes
the value of h at a high normalization point,

h(mZ) = hW + hZ =
10
3

+
1
3

(
− 5 (gµ

A)2+ (gµ
V )2

)
. (4.7)

Here gµ
A,V are the axial and the vector couplings of the Z-boson to the muon

gµ
A = −1 , gµ

V = −1 + 4 sin θ2
W . (4.8)

Higher order corrections to the one-loop expressions (4.7) for hW (mW ) and
hZ(mZ) are of order α and do not contain large logarithms of the type
log(mZ/m) because at high normalization point only large virtual momenta
∼ mZ contribute. The logarithmically enhanced electroweak corrections to
the muon magnetic anomaly, ∼ α log(mZ/m), appear because of the running
of the Wilson coefficient h(µr) from µr = mZ to µr = m.

The running of h(µr) is governed by the renormalization group equation

µr
dh(µr)

dµr
= −α(µr)

2π

[
γ

H
h(µr) +

∑
i

βi ci(µr)
]

, (4.9)

where γH and βi are elements of the anomalous dimension matrix for op-
erators H and Oi. In particular, γH represents the anomalous dimension of
the magnetic dipole operator H while βi is determined by the mixing of the
four-fermion operator Oi with H. In general, the anomalous dimensions are
computed as series in the fine structure constant α. However, since we re-
strict ourselves to the two-loop corrections, γH and βi are just numbers; we
compute them below. To calculate h(µr) through O(α2), we integrate (4.9)
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over µr and approximate the Wilson coefficients and the coupling constant
in the right-hand side of that equation by their values at µr = mZ , i.e.
h(µr) = h(mZ), ci(µr) = ci(mZ), and α(µr) = α(mZ). We obtain

h(µr) =
(
1 + γ

H

α(mZ)
2π

ln
mZ

µr

)
h(mZ) +

α(mZ)
2π

ln
mZ

µr

∑
i

βi ci(mZ) .

(4.10)
The dimension six four-fermion operators in the effective Lagrangian (4.4)

originate from the Z and W exchanges between fermions. The exchange of
the Z-boson between fermions f1 and f2 gives

Ld=6
Z (mZ) = − GF

4
√

2
jZ
µ jZ,µ , jZ

µ =
∑

f

[
gf

V f̄γµf + gf
Af̄γµγ5f

]
, (4.11)

where the vector and axial couplings are defined as

gf
V = 2If

3 − 4Qf sin θ2
W ; gf

A = 2If
3 . (4.12)

Here If
3 is the third component of the weak isospin of the fermion f and Qf

is its electric charge. For example, Iµ,e,τ
3 = −1/2, Iu

3 = 1/2, Id
3 = −1/2 and

Qe,µ,τ = −1, Qu = 2/3, Qd = −1/3.
Since the magnetic dipole operator H conserves parity, only vector-vector

and axial-axial components of a generic four-fermion operator can mix with
H. Therefore, the part of the Ld=6

Z Lagrangian, that is relevant for the com-
putation of the muon anomalous magnetic moment, can be written as

Ld=6,P=+1
Z (mZ) = − GF

2
√

2

∑
f1,f2;Γ=V,A

cΓ ;f (mZ)OΓ ;f1,f2 , (4.13)

where cΓ ;f1,f2(mZ) = gf1
Γ gf2

Γ and

OV ;f1,f2 =
1
2

f̄1γ
µf1 f̄2γµf2 , OA;f1,f2 =

1
2

f̄1γ
µγ5f1 f̄2γµγ5f2 . (4.14)

Finally, we point out that in order to mix with H, at least one of the fermi-
ons f1,2 in a four-fermion operator OV (A);f1,f2 should be a muon. For this
reason, the four-fermion operators produced by an exchange of the W -boson
do not contribute. Indeed, the product of two charged currents containing
muons involves a muon neutrino which does not interact with electromag-
netic fields. Hence, it is not possible to construct a two-loop diagram in the
effective field theory that contributes to the muon magnetic anomaly and
involves any of the four-fermion operators that originate from the W ex-
changes. Note, however, that this becomes possible starting from the three-
loop order. We conclude that (4.13, 4.14) contain all operators and Wilson
coefficients, required to compute the two-loop electroweak corrections to the
muon magnetic anomaly in the logarithmic approximation; what is missing
are the anomalous dimensions γH and βi. We discuss their computation in
what follows.
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a b c

Fig. 4.2. Renormalization of the dipole magnetic operator

4.2.2 Anomalous Dimension and Mixing of Effective Operators

Calculation of the anomalous dimension of the magnetic dipole operator H is
straightforward. Consider the matrix element 〈µ|H(mZ)|µγ〉 in the one-loop
approximation. The soft photon in the final state imitates the external mag-
netic field. Three contributing diagrams are shown in Fig. 4.2. It is convenient
to use the Landau gauge (3.95) for the computation, since the muon wave
function renormalization in this gauge is finite. The matrix element reads

〈µ|H(mZ)|µγ〉 =
em(mZ)

8π2
εµūp′

[
iσµνqν + e2

(
Γ (a)

µ + Γ (b)
µ + Γ (c)

µ

)]
up ,

(4.15)
where ε and q are the polarization vector and the momentum of the external
photon and

Γ (a)
µ =

∫
d4k

(2π)4
γα(p̂′ + k̂)σµνqν(p̂ + k̂)γβ

k2(k2 + 2pk)(k2 + 2p′k)
Pαβ(k) ,

Γ (b)
µ =

∫
d4k

(2π)4
σαβkβ(p̂′ + k̂)γµ(p̂ + k̂)γα

k2(k2 + 2pk)(k2 + 2p′k)
, (4.16)

Γ (c)
µ = −

∫
d4k

(2π)4
γα(p̂′ + k̂)γµ(p̂ + k̂)σαβkβ

k2(k2 + 2pk)(k2 + 2p′k)
.

The integration over the loop momentum k in (4.16) is restricted to the
Euclidean range µr < k < mZ . Since we work in the logarithmic approxima-
tion, we may choose µr � m and neglect the muon mass m in Γ

(a,b,c)
µ .

We begin with the computation of Γ
(a)
µ that corresponds to the diagram

Fig. 4.2a. This diagram is easy to compute, since it is explicitly proportional
to first power of q, the momentum of the external photon. As a consequence,
we neglect p and p′ in Γ

(a)
µ and obtain

Γ (a)
µ =

∫
d4k

(2π)4
γαk̂σµνqν k̂γβ

k6
Pαβ(k) . (4.17)

Averaging over directions of the vector k and using γρσµνγρ = 0, we arrive
at
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Γ (a)
µ = −

∫
d4k

(2π)4
σµνqν

k4
= − i

8π2
σµνqν

mZ∫

µr

dk

k
= − i

8π2
σµνqν ln

mZ

µr
.

(4.18)
A somewhat more involved algebra is required to compute Γ

(b,c)
µ , that

correspond to diagrams b and c in Fig. 4.2. To extract the logarithmic con-
tribution, we have to expand Γ

(b,c)
µ in (4.16) to first order in p and p′. Upon

doing so and averaging over directions of the momentum k, we obtain

Γ (b)
µ = Γ (c)

µ = − i

4π2
σµνqν ln

mZ

µr
. (4.19)

The final step in deriving a relation between the magnetic dipole opera-
tors normalized at different points, H(mZ) and H(µr), involves expressing
m(mZ), that appears in the definition of H(mZ), through m(µr). With the
logarithmic accuracy, the relation between the two masses reads

m(mZ) = m(µr)
(

1 − 3
α

2π
ln

mZ

µr

)
. (4.20)

Using (4.15, 4.18, 4.19, 4.20) to collect all the ingredients, we arrive at

〈µ|H(mZ)|µγ〉 =
[
1 − 8

α

2π
ln

mZ

µr

]
〈µ|H(µr)|µγ〉 . (4.21)

Comparing this result to (4.10), we find the anomalous dimension of the
magnetic dipole operator,

γ
H

= −8 . (4.22)

4.2.3 Mixing of Four-fermion Operators; Triangle Diagrams

Having discussed the radiative corrections to the matrix element of the mag-
netic dipole operator, we turn our attention to four-fermion operators. There
are different cases that have to be considered. The simplest one involves the
matrix element of the operator OV ;µf , where f is different from µ. The cor-
responding two-loop diagram is shown in Fig. 4.3. It is convenient to write
the matrix element 〈µ|OV ;µf |µγ〉 in the following way 1

〈µ|OV ;µf (mZ)|µγ〉 = i e3QfNf εµ ūp′ΓV
µ up , (4.23)

ΓV
µ =

∫
d4k

(2π)4
γα(p̂′ + k̂ + m)γµ

(
p̂ + k̂ + m

)
γβ

(k2 + 2p′k)(k2 + 2pk)
Pαβ(k)Π(k2) ,

1 Note that when discussing the mixing of four-fermion operators with the mag-
netic dipole operator, we compute the contribution of OΓ ;µf , rather than the
contribution of OΓ ;µf + OΓ ;fµ. The missing symmetry factor is restored in the
final result for the two-loop electroweak correction to the muon anomalous mag-
netic moment, (4.47).
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f

Fig. 4.3. Mixing of the operator OV ;µf with the magnetic dipole operator. The
symmetric diagram is not shown

where Nf accounts for color degrees of freedom (Nf = 3(1) for quarks
(leptons)) and Π(k2) is the polarization operator

iΠ(k2)k2Pαβ =
∫

d4xeikx〈0|T{jα(x)jβ(0)}|0〉 , (4.24)

for the current jα = f̄γαf . We have multiplied (4.23) by a factor 2, to account
for the symmetric diagram where the operator OV ;µf is inserted into the
outgoing muon line.

The matrix element in (4.23) can be easily computed because the function
Π(k2) is the correlator of two vector currents for which the unsubtracted
dispersion representation reads

Π(k2) =
1

12π2

∞∫

4m2
f

ds ρ(s)
s − k2

, ρ(s) =

√
1 −

4m2
f

s

(
1 +

2m2
f

s

)
. (4.25)

Substituting (4.25) into (4.23) and changing the order of integration, we
obtain

ΓV
µ =

1
12π2

∞∫

4m2
f

ds ρ(s) Tµ(s), (4.26)

Tµ(s) = −
∫

d4k

(2π)4
γα

(
p̂′ + k̂ + m

)
γµ

(
p̂ + k̂ + m

)
γβ

(k2 + 2p′k)(k2 + 2pk)(k2 − s)
Pαβ(k).

It is easy to see that Tµ(s) is proportional to the one-loop correction to the
matrix element of the vector current due to an exchange of a “photon” with
the mass s. The exchange of such “photon” generates a correction to the
anomalous magnetic moment of the muon that scales as 1/s for s � m2.
Using (2.67), we obtain

Tµ(s) =
m

24π2s
σµνqν . (4.27)

A subsequent integration over s leads to a logarithmically enhanced correction
to the muon anomalous magnetic moment. Using (4.26, 4.23), we arrive at
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〈µ|OV ;µf (mZ)|µγ〉 =
4
9

NfQf
α

2π
ln

mZ

µr
〈µ|H(µr)|µγ〉 , (4.28)

which implies that the mixing coefficient βV ;µf for f = µ is

βV ;µf =
4
9

NfQf . (4.29)

Next, we consider the mixing of the operator OA,µf , for f = µ with the
magnetic dipole operator. The corresponding diagram is shown in Fig. 4.4.

k
q

p + k

Fig. 4.4. Mixing of the operator OA;µf with the magnetic dipole operator

The fermion-loop sub-graph of that diagram involves the correlator of two
electromagnetic vector currents and an axial current; it is the famous fermion
triangle associated with the anomaly in the divergence of the axial current.
For this reason it was thoroughly studied in the literature. We require this
sub-graph in a particular kinematics, where the momentum q of one of the
vector currents is small and we only retain terms linear in q. In that case, the
triangle amplitude can be represented as the matrix element of the correlator
of the electromagnetic current Jµ and the axial current Aν = f̄γνγ5f , between
the soft photon with momentum q and the vacuum,

Tµν = 〈0|T̂µν |γ(q)〉 , T̂µν = i

∫
d4x eikxT{Jµ(x)Aν(0)} . (4.30)

Physically, the limit of small photon momentum q means that we probe the
muon magnetic moment with the homogeneous magnetic field.

The particular kinematic limit described above allows us to use Schwinger
operator methods to compute the correlator in (4.30). The leading contribu-
tion to that correlator comes from the fermion loop, with fermion propagators
computed in the external constant electromagnetic field. Since we are inter-
ested in the matrix element of T̂µν between a single soft photon and the vac-
uum, we only require the correlator through first order in the external field.
In the fixed-point gauge xµAµ = 0, the vector potential Aµ can be expressed
through the electromagnetic field-strength tensor Fµν = ∂µAν − ∂νAµ; the
relation reads Aµ(x) = −1/2Fµνxν +O(x2). We use 1/(i∂̂−m−eQfAµ(x)γµ)
for the fermion propagator, expand in the external electromagnetic field
through first order and arrive at the following expression for the fermion
propagator [12, 13]
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S(p) =
1

p̂ − mf
− 1

(p2 − m2
f )2

eQf F̃ρδ

(
pργδ − i

2
mf σρδ

)
γ5 + O(F 2) ,

(4.31)
where F̃ρδ = (1/2)ερδαβFαβ is the dual electromagnetic field-strength tensor.
We are now in position to compute the contribution of a fermion f to T̂µν ,

T̂µν = i

∫
d4p

(2π)4
Tr [γµS(p + k)γνγ5S(p)] . (4.32)

At zeroth order in Fαβ , the integral over p vanishes while at first order in
Fαβ we obtain

T̂µν = −2ieQ2
fNf

∫
d4p

(2π)4
Tr
[
γµ(p̂+k̂+mf )γνγ5F̃ρδ

(
pργδ− i

2 mf σρδ
)
γ5

]

[(p + k)2 − m2
f ](p2 − m2

f )2
.

(4.33)
The operator nature of T̂µν is reflected in the presence of the electromag-
netic field-strength tensor Fαβ in (4.33). Introducing Feynman parameters,
computing the trace and integrating over p, we arrive at

T̂µν = −
eQ2

fNf

4π2

∫ 1

0

dξ
ξ(1 − ξ)

(
kµkρF̃ρν + kνkρF̃ρµ

)
− m2

f F̃µν

m2
f − ξ(1 − ξ)k2

. (4.34)

While (4.34) looks legitimate, in reality it is not because it does not sat-
isfy the vector current conservation condition kµT̂µν = 0. We restore the
conservation of the vector current by adding a polynomial counterterm to
(4.34); this counterterm can be constructed from the contribution to T̂µν of
an infinitely heavy Pauli-Villars regulator field

T̂ phys
µν = T̂µν(mf ) − lim

mf→∞
T̂µν(mf ) = T̂µν(mf ) −

eQ2
f

4π2
F̃µν , (4.35)

where we used (4.34) to find Tµν(mf ) in the limit mf → ∞. In this way we
obtain

T̂ phys
µν = −

eQ2
fNf

4π2

(
− k2F̃µν + kµkρF̃ρν + kνkρF̃ρµ

) ∫ 1

0

dξ
ξ(1 − ξ)

m2
f − ξ(1 − ξ)k2

=
eQ2

fNf

4π2 k2

(
− k2F̃µν + kµkρF̃ρν + kνkρF̃ρµ

)(
1 +

2m2
f

βk2
ln

β + 1
β − 1

)
.

(4.36)

In (4.36), we use β =
√

1 − 4m2
f/k2. In what follows, we omit the superscript

in the tensor Tµν that we used in (4.36) to denote properly regulated physical
expression.
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Contracting T̂µν in (4.36) with kµ, we observe that kµT̂µν = 0 which
implies that the conservation of the vector current is maintained. On the
other hand, the divergence of the axial current does not vanish even in the
chiral mf = 0 limit, as can be seen from the following expression

kν T̂µν =
eQ2

fNf

2π2
kρF̃ρµ

(
1 +

2m2
f

βk2
ln

β + 1
β − 1

)
. (4.37)

This is in accord with the operator equation for the divergence of the axial
current

∂µAµ = −
αQ2

fNf

2π
FαβF̃αβ + 2imf f̄γ5f , (4.38)

where the first term represents the axial anomaly.
We can use (4.38, 4.37) to compute the fermion triangle diagram where

the axial current is substituted by the pseudoscalar current P = f̄γ5f . The
first term at the right-hand side of (4.37) matches the first term at the right-
hand side of (4.38); matching the remaining terms in these equations leads
to

T̂P
µ = i

∫
d4x eikxT{Jµ(x)P (0)} = mf

eQ2
fNf

2π2

kρF̃ρµ

βk2
ln

β + 1
β − 1

. (4.39)

We will need this result in what follows. In addition, we will require the result
for the fermion triangle where the axial vector current is substituted by the
scalar current S = f̄f . We compute it along the lines described above and
obtain

T̂S
µ = i

∫
d4x eikxT{Jµ(x)S(0)} = −imf

eQ2
fNf

2π2

kρFρµ

k2

[
1+β2

2β
ln

β+1
β−1

− 1
]

.

(4.40)
We now have all the ingredients that are needed to discuss the mixing of the
remaining four-fermion operators with the magnetic dipole operator.

First, we finalize the computation of the mixing of the operator OA;µf

for f = µ, with the magnetic dipole operator, Fig. 4.4. The fermion triangle
subgraph is described by the amplitude Tµν , computed above. We use this
amplitude to write the full matrix element

〈µ|OA;µf (mZ)|µγ〉 = ie2

∫
d4k

(2π)4
ūp′γµ

(
p̂ + k̂ + m

)
γνγ5up

k2(k2 + 2pk)
Tµν(k) ,

(4.41)
where we introduced a factor of two to account for a similar diagram where
the virtual photon couples to the incoming muon. Since we are only interested
in the logarithmically enhanced corrections, we require the amplitude Tµν ,
(4.36), in the limit −k2 � m2. Expanding the integrand in (4.41) through
first order in p and m and integrating over k we derive
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〈µ|OA;µf (mZ)|µγ〉 = −6NfQ2
f

α

2π
ln

mZ

µr
〈µ|H(µr)|µγ〉 , (4.42)

which translates into the mixing coefficient

βA;µf = −6NfQ2
f , f = µ . (4.43)

Finally, we have to compute the mixing of the operators OV,A;µµ with the
magnetic dipole operator. In variance with the operators considered previ-
ously, there are two possibilities for the fermion pairing; µ and µ̄ from either
the same or different currents can be Wick-contracted.

When µ and µ̄ from the same current are contracted, the results can
be read off from (4.29, 4.43). To this end, we use Qf → Qµ = −1 and
Nf → Nµ = 1; we also multiply the results by a combinatorial factor two
due to two ways of pairing.

When muons from different currents are contracted, the calculation can
be simplified using the Fiertz transformation; it reads

ψ̄1γµψ2ψ̄3γµψ4 =
1
2

ψ̄1γµψ4ψ̄3γµψ2 +
1
2

ψ̄1γµγ5ψ4ψ̄3γµγ5ψ2

− ψ̄1ψ4ψ̄3ψ2 + ψ̄1γ5ψ4ψ̄3γ5ψ2,

ψ̄1γµγ5ψ2ψ̄3γµγ5ψ4 =
1
2

ψ̄1γµγ5ψ4ψ̄3γµγ5ψ2 +
1
2

ψ̄1γµψ4ψ̄3γµψ2

+ ψ̄1ψ4ψ̄3ψ2 − ψ̄1γ5ψ4ψ̄3γ5ψ2.

(4.44)

Operators in (4.44) that involve products of vector and axial currents can
be treated in the same way as what has been discussed above. Terms with
scalar and pseudoscalar currents in (4.44) lead to additional contributions to
the matrix elements of the operators OV (A);µµ. Since insertions of scalar and
pseudoscalar operators in the diagram Fig. 4.3 vanish in the Landau gauge,
we only have to consider diagrams where scalar and pseudoscalar operators
are inserted into fermion triangles. Those contributions read

∆S+P 〈µ|OV ;µµ|µγ〉 = −∆S+P 〈µ|OA;µµ|µγ〉

= 2ie2

∫
d4k

(2π)4
1

(k2)2
ūp′γµk̂(TS

µ − γ5T
P
µ )up

= 4 · α

2π
ln

mZ

µr
〈µ|H|µγ〉.

(4.45)

where we used (4.40, 4.39) for TS
µ and TP

µ at −k2 � m2. We combine all the
ingredients and derive the mixing coefficients for the operators OV,A;µµ with
the magnetic dipole operator

βV ;µµ = −4
9
· 3 − 6 + 4 = −10

3
, βA;µµ = −4

9
− 6 · 3 − 4 = −202

9
. (4.46)
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4.2.4 The Two-loop Electroweak Correction

The full two-loop electroweak correction to the muon anomalous magnetic
moment in the logarithmic approximation is given by the value of the Wilson
coefficient h at the normalization point µr = m, (4.6). Using the results for
entries of the anomalous dimension matrix, it is straightforward to obtain
h(m). The only subtlety is that the running of h(µr), described by (4.10),
changes once a particle threshold is passed; in other words, once the renormal-
ization scale µr becomes smaller than the mass of the fermion f , this fermion
decouples and stops to participate in the running. As the consequence, for
muon and electron components, the running continues all the way down to
µr = m but, for heavier fermions, it terminates at µr = mf . The entries of
the anomalous dimension matrix can be found in (4.22, 4.29, 4.43, 4.46). We
obtain

aew,2l
µ =

GF m2

8π2
√

2

(α

π

){
−
(

215
9

+
31
9

(gµ
V )2

)
ln

mZ

m

+
∑

f 
=e,µ,t

(
6gf

ANfQ2
f +

4
9

gµ
V gf

V NfQf

)
ln

mZ

mf

}
.

(4.47)

In (4.47) the first term accounts for the muon and electron contributions. Note
that in deriving (4.47) we have accounted for the symmetry factor related to
the appearance of the operators OΓ ;µf and OΓ ;fµ in the effective Lagrangian
(4.4), where appropriate.

We can now check that the logarithmically enhanced terms indeed strongly
dominate the two-loop electroweak correction to the muon magnetic anomaly.
Numerically, the two-loop electroweak correction evaluates to ∼ −40×10−11

[3]. Evaluating (4.47) with mu = md = ms = 300 MeV, we find that the
two-loop electroweak corrections to aµ in the logarithmic approximation are
∼ −33 × 10−11.

Given the fact that the two-loop electroweak corrections are significant,
one may wonder about the possible impact of three-loop logarithmically en-
hanced corrections to the muon magnetic anomaly. Such corrections are dis-
cussed in [7, 14]. The results of these analyses show that the three-loop elec-
troweak corrections are extremely small. For example, if the two-loop result,
(4.47) is written through the fine structure constant evaluated at the scale
µ = m, the three-loop leading logarithmic correction to aµ is 0.4×10−11 and,
for this reason, can be safely neglected at the current level of precision.

Finally, we note that the two-loop electroweak correction, (4.47), depends
upon the light quark masses. Such a dependence is unphysical and may sig-
nal that some calculations discussed in this chapter fail to correctly account
for the effects of strong interactions. The next chapter is dedicated to the
analysis of hadronic effects in electroweak corrections. After that, we give the
full result for the electroweak contribution to the muon anomalous magnetic
moment that we use to derive the Standard Model value of aµ, in Chap. 7.
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5 Strong Interaction Effects
in Electroweak Corrections

5.1 Anomalous Quark Triangles: Effects
of Strong Interactions

We have seen in the previous chapter that the calculation of the two-loop
electroweak corrections to the muon anomalous magnetic moment involves
correlators of an axial current with two vector currents. Studies of such corre-
lators in late sixties lead to the discovery of the anomaly of the axial current
[1, 2]; implications of this phenomenon include computation of the decay
amplitude for π0 → γγ, ’t Hooft consistency condition [3], solution of the
U(1) problem etc. In case of the muon magnetic moment, such “anomalous”
current correlators are important as well.

To illustrate that, we return to the calculation of the mixing of the four-
quark operator OA;µf , (4.14), with the magnetic dipole operator H(µr), (4.5),
described by the graph in Fig. 4.4. Such graphs contain a correlator of an
axial current with two vector currents. We have seen that integration over
momentum of the virtual photon in diagram Fig. 4.4 produces a logarithm
ln(mZ/mmax), where mmax = max{m,mq} with mq being the mass of the
quark in the triangle subgraph. When the quark is heavy, mq � ΛQCD � m,
its treatment in perturbation theory is justified since loop integrals are cut
off in the infra-red at the mass of the heavy quark. However, for light, e.g. u
and d, quarks the logarithmic integration extends all the way down to very
small virtualities where effects of strong interactions invalidate perturbative
calculations.

The simplest modification of the perturbative computation of the dia-
grams Fig. 4.4, that accounts for some effects of strong interactions, is the use
of constituent masses for light quarks, whereby mu ∼ md ∼ ms ∼ 300 MeV.
In this case, even for light quarks, the integration over loop momentum is cut
off at the scale ∼ ΛQCD which is of the order of the pion mass. Such an ap-
proach has been taken in the original calculation of the two-loop electroweak
corrections to the muon anomalous magnetic moment [4].

While approximating quark masses by their constituent values is likely to
be reasonable in as much as numerical results are concerned, it is not well-
founded theoretically since it violates chiral structure of QCD. Therefore, it
is interesting to ask if a consistent account of strong interaction effects in

K. Melnikov and A. Vainshtein: Theory of the Muon Anomalous Magnetic Moment
STMP 216, 103–120 (2006)
c© Springer-Verlag Berlin Heidelberg 2006
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electroweak corrections is possible. Such a possibility was first pointed out
in [5, 6]. The forthcoming discussion follows [7], where some flaws in the
analyses of [5, 6] are identified and corrected.

The centerpiece of our discussion is the correlator of the axial and two
vector currents. For the computation of the muon magnetic anomaly, we re-
quire this correlator in a particular kinematic limit where one of the vector
currents, that describes the external magnetic field, carries vanishing momen-
tum q. We need to study such correlator through first order in q; all higher
order terms can be neglected for our purposes.

Because we are interested in the correlator of three currents in a particular
kinematic limit, it is convenient to work with the operator T̂µν representing
the T -product of two “hard” currents,

T̂µν =
∑

f

2If
3 T̂ f

µν = i

∫
d4xeikxT

{
Jµ(x)J5

ν (0)
}

, (5.1)

where
Jµ =

∑
f

Qf f̄γµf , J5
ν =

∑
f

2If
3 f̄γνγ5f , (5.2)

and T̂ f
µν is defined in (4.30) of the previous section. In (5.2), Jµ is the usual

electromagnetic current and J5
ν describes the axial part of the Zf̄f coupling.

The anomalous fermion triangle Fig. 5.1 corresponds to the matrix ele-
ment of T̂µν between the vacuum and the on-shell photon with momentum q
and polarization ε,

Tµν =
∑

f

2If
3 T f

µν = 〈0|T̂µν |γ(q)〉 . (5.3)

We are interested in Tµν in the limit of small photon momentum q → 0.
Thanks to gauge invariance, the expansion of Tµν in powers of q starts
with a linear term that appears in the form of the field-strength tensor
of the electromagnetic field fαβ = qαεβ − qβεα. Since under parity trans-
formation Tµν transforms as a pseudo-tensor, we may write it as a linear
combination of three Lorentz structures f̃µν , kµkαf̃αν and kνkαf̃αµ, where
f̃αβ = (1/2)εαβρσfρσ is the dual of the electromagnetic field-strength tensor.
It is possible to reduce the number of independent Lorentz structures us-
ing the transversality of Tµν with respect to the Lorentz index of the vector
current, kµTµν = 0. We may choose two independent Lorentz structures in
such a way that one of them is transversal and the other is longitudinal with
respect to the Lorentz index of the axial current ν. We therefore write

Tµν =
−i|e|
4π2

[
wT(k2)

{
− k2f̃µν + kµkαf̃αν− kνkαf̃αµ

}
+ wL(k2)kνkαf̃αµ

]
.

(5.4)
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The parametrization in terms of the functions wL,T is convenient since, once
those functions are computed, the correction to the anomalous magnetic mo-
ment is obtained from the integral

aew,∆
µ = 2

√
2GF m2

(α

π

)∫ d4k

(2π)4
i

k2 + 2kp

×
[
1
3

(
1 +

2(kp)2

k2m2

)(
wL − m2

Z

m2
Z − k2

wT

)
+

m2
Z

m2
Z − k2

wT

]
.

(5.5)

Here p denotes the four-momentum of the on-shell muon, p2 = m2. To es-
timate aew,∆

µ with the logarithmic accuracy, a much simpler expression is
sufficient

aew,∆
µ ≈ GF m2

8π2
√

2

(α

π

)∫ ∞

0

dK2
(
wL +

m2
Z

m2
Z + K2

wT

)
. (5.6)

Here we use Euclidean momentum K, i.e. K2 = −k2. Note that in case of a
heavy, mf � m, fermion contribution to wL,T, (5.6) can be used to derive
aew,∆

µ with a power accuracy, O(m2/m2
f ).

As we see, the structure functions wL,T are important for computing elec-
troweak corrections to the muon anomalous magnetic moment. As it turns
out, computation of those functions requires careful consideration of both
perturbative and non-perturbative effects of strong interactions. The follow-
ing discussion is dedicated to such an analysis.

5.1.1 Perturbative Calculations

At lowest order in the strong coupling constant, the functions wL,T are ob-
tained by calculating the one-loop triangle diagram, Fig. 5.1. For a general
kinematics, this diagram was first computed in [8]; the result was later sim-
plified [9] in the limit of the vanishing photon momentum q. In Chap. 4 we
derived the expression for T̂ f

µν , (4.36); comparing it to (5.4), we find

q

AV

k

Fig. 5.1. Quark triangle diagram that determines the functions wL,T in the one-
loop approximation. Diagram with opposite direction of the fermion lines, is not
shown
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wf
L = 2wf

T = 2NfQ2
f

∫ 1

0

dξ
ξ(1 − ξ)

ξ(1 − ξ)K2 + m2
f

=
2NfQ2

f

K2

(
1 −

2m2
f

βK2
ln

β + 1
β − 1

)
,

(5.7)

where Nf = 3(1) for quarks (leptons) and β =
√

1 + 4m2/K2 . From (5.7),
it is easy to derive asymptotic expressions for wL,T in the limit of small and
large K2,

wf
L = 2wf

T = 2NfQ2
f ×





1
K2

(
1 −

2m2
f

K2
ln

K2

m2
f

)
, K2 � m2

f ;

1
6m2

f

(
1 − K2

5m2
f

)
, K2 	 m2

f .

(5.8)

Recall, that the anomaly in the divergence of the axial current is seen from
the fact that wf

L = 0 for mf = 0.
At large K2, the structure functions decrease as 1/K2; then, for the

transversal structure function wf
T the integral in (5.6) converges thanks to

the presence of m2
Z/(K2 + m2

Z) factor, while for the longitudinal structure
function wf

L the result appears to be divergent. This divergence, however,
disappears, once the sum over quarks and leptons in a given generation is
performed. Indeed, retaining O(K−2) terms, we obtain the large-K2 asymp-
totics of the longitudinal structure function

wL =
∑

generation

2If
3 wf

L −→ 4
K2

∑
generation

If
3 NfQ2

f = 0 . (5.9)

The last equality in (5.9) follows from the relation
∑

generation

If
3 NfQ2

f = 0 , (5.10)

which is nothing but the anomaly cancelation condition in the Standard
Model, required for the internal consistency of the theory.

If masses of all fermions in a generation are the same, the contribution of
such generation to wL vanishes. When fermions in a given generation have
substantially different masses, the corrections to the anomalous magnetic
moment contain logarithms of the mass ratios, e.g. ln(mt/mτ ) for the third
and ln(mc/mµ) for the second generation, etc.

For the contribution of the transversal function wT to the muon mag-
netic anomaly, the situation is similar up to a clarification. Thanks to the
factor m2

Z/(K2 + m2
Z), that multiplies wT in (5.6), the contribution of

the transversal structure function to aµ depends on the hierarchy between
fermion masses in a given generation and the mass of the Z-boson. Clearly,
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this issue only concerns the third generation; for the first two generations,
the factor m2

Z/(K2 + m2
Z) in (5.6) can be set to one, with the accuracy

m2
f/m2

Z . Then, similar to the longitudinal structure function, the dependence
on ln(mZ) cancels out due to (5.10) and logarithms of the fermion mass ratios
appear in the final result.

As we see, the disappearance of ln mZ terms in aew,∆
µ is intimately related

to the cancelation between lepton and quark contributions at large values of
the loop momentum K2 � m2

f . Since quark contributions may be modified
by gluon exchanges, it is appropriate to ask if this cancelation between lepton
and quark loops holds beyond the one-loop approximation to wL,T?

In general, gluon exchanges may produce O(αs) corrections to quark con-
tribution to the structure functions. Even if such corrections are present
in wL, the integral in (5.6) still diverges as

∫
dK2αs(K2)/K2, in spite

of the logarithmic decrease of the strong coupling constant αs(K2) ∝
1/ log(K2/Λ2

QCD). The Adler-Bardeen theorem [2] protects wL from such
corrections; the theorem states that, in the chiral limit mq = 0, there are
no QCD corrections to wL. Hence, for large values of the loop momen-
tum, K2 � m2

q, the QCD corrections to wL have to be mass-suppressed
δwL/wL ∼ αs(K2)m2

q/K2, which is sufficient for the ultra-violet conver-
gence. On the other hand, the heavy quark loop integration converges in the
infra-red, so that the major contribution to wL comes from the virtualities
K2 ∼ m2

q � Λ2
QCD.

Thus, for light quarks, the Adler–Bardeen theorem implies that QCD cor-
rections to wL vanish in the chiral limit. For heavy quarks, QCD corrections
to wL do not vanish; they are proportional to αs(mq)/π. However, relative
corrections are even smaller since leading terms are enhanced by logarithms of
fermion mass ratios but those logarithms do no appear in O(αs) corrections.

In case of the transversal structure function wT, the problem of the
ultra-violet divergence of the integral in (5.6) is absent, thanks to the fac-
tor m2

Z/(K2+m2
Z). Nevertheless, if O(αs) corrections to wT are present at

large K2 � m2
q, they lead to a logarithmic sensitivity to the Z-boson mass,

∼ log log mZ ; fortunately, as was recently shown by Vainshtein [10], this does
not happen since, in the chiral limit, the transversal structure function wT

does not receive perturbative QCD corrections.
To prove this statement, we note that the amplitude Tµν possesses certain

symmetry properties under the permutation of indices µ and ν that refer to
vector and axial currents, respectively. This symmetry follows from the fact
that, in the chiral limit mq = 0, the Dirac matrix γ5 from the axial current can
be anti-commuted through even number of γ-matrices to the vector current.
Changing also the direction of the momentum, k → −k, which does not affect
Tµν , we observe that the amplitude Tµν is symmetric under the permutation
of µ and ν.

This symmetry seems to be in contradiction with the perturbative result,
(5.4, 5.7), evaluated at mf = 0. The calculation of T̂µν , described in the
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previous chapter, demonstrates, however, that this symmetry is broken by
the regularization, cf. (4.34, 4.36) for mf = 0. To avoid the necessity to deal
with the regularization, we apply the symmetry argument to the imaginary
part of Tµν . Then, the following equality holds

Im Tµν = Im Tνµ . (5.11)

When (5.11) is combined with the parametrization for Tµν (5.4), we obtain
the system of equations for the functions wL,T:

k2Im[wT(k2)] = 0, 2 Im[wT(k2)] = Im[wL(k2)] . (5.12)

Once the imaginary parts of the functions wL,T are calculated, we restore the
real parts of these functions using dispersion representation

wL,T(k2) =
1
π

∞∫

0

ds
Im[wL,T(s)]
s − k2 − i0

. (5.13)

Note, that no subtraction term in (5.13) is allowed on dimensional grounds.
A possible solution to (5.12) is Im [wL,T] = 0, but this implies that wL,T =

0, due to (5.13). The only nontrivial solution is then

2 Im[wT(k2)] = Im[wL(k2)] = cδ(k2) , (5.14)

and the constant c can be fixed from the one-loop computation since, as
follows from the Adler-Bardeen theorem, the longitudinal structure function
is not renormalized by higher order perturbative QCD effects. We derive

c = 2πNfQ2
f . (5.15)

Hence, in the chiral mf = 0 limit,

wf
L = 2wf

T =
2NfQ2

f

K2
, (5.16)

to all orders in the strong coupling constant [2, 10].

5.1.2 Non-perturbative Effects and the OPE

While perturbatively, to all orders in the strong coupling constant, the longi-
tudinal and transversal functions wL,T for massless quarks differ only by an
overall factor, this can not hold at the non-perturbative level. Indeed, in per-
turbation theory, these functions have poles at k2 = 0. Provided that these
poles survive the transition from perturbation theory to the real world with
hadrons as degrees of freedom, they should describe propagation of massless
hadrons. Pions and η mesons are the only non-strange massless particles in
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the chiral limit mu = md = ms = 0. The isospin numbers of the combination
of the longitudinal structure functions

wI=1
L = wu

L − wd
L =

2
K2

, (5.17)

coincide with the isospin quantum numbers of a neutral pion. Therefore, we
may interpret the pole at K2 = 0 in (5.17) as corresponding to a mass-
less pion that is emitted from the axial current and then decays into two
photons. This duality between perturbative result, (5.17), and the possibil-
ity to interpret it using hadronic degrees of freedom, is the basis of the ’t
Hooft consistency condition [3] which states that non-perturbative correc-
tions to wI=1

L , (5.17), are absent. There is yet another combination of the
longitudinal structure functions, with the SU(3) quantum numbers of the η
meson, wu

L + wd
L − 2ws

L, that does not receive non-perturbative corrections
in the chiral limit. Because, in the chiral limit, there are no other neutral
strangeless massless mesons besides π0 and η, all other combinations of wq

L

as well as all transversal structure functions wq
T should not have singularities

at K2 = 0; hence, they must receive non-perturbative corrections. Below we
discuss these non-perturbative effects using the method of operator product
expansion (OPE), described in Sect. 3.2.2.

Consider the correlator Tµν , (5.1), in the limit of large Euclidean momen-
tum K2 → ∞. In that limit, the T -product of the vector and axial currents
obeys an expansion in powers of 1/K2

T̂µν =
∑

i

c(i)α1...αi
µν O(i)

α1...αi
. (5.18)

Operators O(i)
α1..αi are ordered by their mass dimension. If the mass dimension

of an operator is di, its Wilson coefficient scales like

c(i)α1...αi
µν ∝ 1

Kdi−2
. (5.19)

The amplitude Tµν is then derived from the matrix elements of the operators
Oα1..αi

between the vacuum and the soft photon with the momentum q

Tµν =
∑

c(i)α1...αi
µν 〈0|O(i)

α1...αi
|γ(q)〉 . (5.20)

As we mentioned earlier, the T -product of the axial and vector currents T̂µν

is a pseudotensor. If we require the coefficients c
(i)α1...αi
µν to be tensors un-

der Lorentz transformations, the operators Oα1...αi
have to be pseudotensors.

Their matrix elements 〈0|Oα1...αi
|γ(q)〉 are linear in f̃αβ ; as a consequence,

the operators Oα1...αi
should transform as (1, 0)− (0, 1) under Lorentz trans-

formations. Since we work to first order in the momentum of the soft photon,
only operators O(i)

αβ with two antisymmetric indices contribute. It is conve-
nient to parametrize their matrix elements as follows
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〈0|O(i)
αβ |γ(q)〉 = − i|e|

4π2
κif̃αβ . (5.21)

The coefficients κi are determined by non-perturbative dynamics; in general,
they are not computable. Parametrically, these constants scale as κi ∼ Λdi−2

QCD,
where di is the mass dimension of the operator Oi.

We can simplify the notation for the Wilson coefficients using the transver-
sality of Tµν with respect to the Lorentz index µ of the vector current. We
write

T̂µν =
∑

i

{
c
(i)
T (k2)

(
−k2gα

µgβ
ν + kµkαgβ

ν − kνkαgβ
µ

)
+ c

(i)
L (k2)kνkαgβ

µ

}
O(i)

αβ .

(5.22)
Finally, in terms of the Wilson coefficients cL,T, the functions wL,T are written
as

wL,T(k2) =
∑

i

c
(i)
L,T(k2)κi , (5.23)

where the sum is over all operators that contribute to the OPE of the ampli-
tude Tµν .

To compute the operator product expansion for T̂µν , we follow the strategy
described in Sect. 3.2.2. To this end, we consider Feynman diagrams that
describe a correlator of the vector and axial currents with a possible emission
of a photon and study different routes for the large momentum k to travel
from vector to axial current. Integrating over the loop momenta associated
with these “hard” lines, we obtain the Wilson coefficients; the operators O(i)

αβ

are then read off from the soft lines in a diagram.
The leading contribution to the functions wL,T is obtained from the trian-

gle diagram Fig. 5.1 where all lines are considered to be hard. The operator
that is produced by this momentum configuration is the dual of the field-
strength tensor of the electromagnetic field OF = |e|/(4π2)F̃αβ of the mass
dimension two; its matrix element between the vacuum and the single photon
state is

〈0| |e|
4π2

F̃αβ |γ(q)〉 = − i|e|
4π2

f̃αβ , (5.24)

so that κF = 1 (cf. (5.21)).
To study how operators of higher dimension contribute to the matrix el-

ement Tµν , we have to distinguish between hard and soft gluon exchanges.
First, consider the case when all gluon exchanges in the diagrams that de-
scribe the correlator of vector and axial currents are soft and the large mo-
mentum k flows through the quark line that connects the axial and vec-
tor vertices. Such diagrams generate bilinear fermion operators. The Wilson
coefficients of these operators are obtained by considering diagrams of the
Compton scattering type in a soft external field, see Fig. 5.2.

It is easy to see that Wilson coefficients cL,T for such diagrams vanish in
the chiral limit. This follows from the symmetry of the matrix element Tµν
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1 2 n 1 2 n

V A V A

k k

Fig. 5.2. Compton scattering amplitude in the external color field

with respect to µ and ν permutations; the argument is identical to the one,
used earlier to prove that perturbative corrections to the structure functions
wL,T are absent in the chiral limit.

Since there is a continuous fermion line in the diagram Fig. 5.2, we can
commute γ5 from the axial current to the vector current; changing the direc-
tion of the momentum k, we derive

Tµν(k) = Tνµ(−k) . (5.25)

Using (5.22) and the antisymmetry of f̃αβ , we see that the Wilson coefficients
of the operators produced by diagrams Figs.5.2 satisfy the following equations

ci
T(k2) = −ci

T(k2) , 2ci
T(k2) = ci

L(k2) . (5.26)

It follows that ci
T(k2) = ci

L(k2) = 0, for all fermion bilinears, independent of
the number of soft gluons.

The same argument applies to diagrams shown in Fig. 5.3 that produce
operators of the form f̄Γ fF̃ and F̃GaGa with Ga

µν being the field-strength
tensor of the gluon field. Since those diagrams do not require regularization,
our argument applies and their Wilson coefficients vanish in the chiral limit.

Another way to arrive at the same conclusion is to use the flavor
U(3)L × U(3)R symmetry of the massless theory for non-anomalous Wilson
coefficients. To contribute to the operator product expansion of Tµν , the op-
erator should be non-singlet with respect to both U(3) groups; hence, it must
contain both left- and right-handed quarks. But, for the operators f̄Γ fF̃ this
is not possible since along the fermion line the chirality is conserved and the
operators F̃GaGa contain no fermions.

q

AV

q

AV

Fig. 5.3. Other non-perturbative contributions to Tµν that vanish in the chiral
limit
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V A V A
k

k

Fig. 5.4. Sample diagrams for the leading non-perturbative contribution to Tµν

Therefore, to get a non-vanishing contribution to Tµν in the chiral limit,
we need to consider diagrams with no fermion line connecting the vector
current and the axial current; since the large momentum still has to flow
from one vertex to the other, this requires an exchange of at least one hard
gluon [6]. The leading contribution comes from diagrams with a single hard
gluon exchange; they are shown in Fig. 5.4. These diagrams lead to a non-
perturbative contribution given by dimension six four-fermion operators.

Consider first the non-perturbative contribution generated by a quark q.
The part of T̂µν due to diagrams shown in Fig. 5.4 reads

∆T q
µν = −8παsQq

k6
q̄ ta

(
γαk̂γµ−γµk̂γα

)
q ⊗ q̄ ta

(
γν k̂γα−γαk̂γν

)
γ5q , (5.27)

where ta are the generators of the SU(3) color group. Note that ∆T q
µν is

transverse with respect to Lorentz indices of both vector and axial currents;
this immediately implies that only the transversal function wT receives the
corresponding non-perturbative contribution. This is an illustration of a gen-
eral situation with non-perturbative corrections to the longitudinal structure
function wL mentioned earlier – similar to perturbative corrections, the non-
perturbative corrections to wL are absent in the chiral limit,1in accord with
the ’t Hooft consistency condition for the axial anomaly [3].

To simplify (5.27), we use

γαk̂γµ − γµk̂γα = −2iεαµρβkργβγ5 , (5.28)

and rewrite ∆T q
µν as

∆T q
µν = −16παsQq

k6

(
−k2gµαgνβ + kµkαgνβ − kνkαgµβ

)

×
(
q̄ taγαγ5f ⊗ q̄ taγβq − α ↔ β

)
,

(5.29)

where only antisymmetric part of the matrix element with respect to indices
α, β is shown. We introduce the dimension six operator

O6
αβ = q̄ taγαγ5q ⊗ q̄ taγβq − α ↔ β , (5.30)

1 Note, that the flavor singlet longitudinal function wu
L + wd

L + ws
L does receive

the non-perturbative contribution. It appears at the level where the anomalous
triangle with axial current and two gluons enters the OPE coefficient.
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and, using (5.29), find its coefficient function

c6,q
T (k2) = −8Qqπαs(K2)

K6
. (5.31)

To determine the non-perturbative contribution to the transversal func-
tion wT(K2), we have to estimate the matrix element 〈0|O6

αβ |γ(q)〉, which is
easy to do in the vacuum saturation approximation. Using

〈0|q̄i
σqj

ρ|0〉 =
δijδσρ

4Nc
〈0|q̄q|0〉 , (5.32)

with i(j) and α(β) being SU(3) color and Lorentz indices respectively, we
derive

〈0|O6
αβ |γ〉 = −N2

c − 1
2N2

c

〈0|q̄q|0〉 〈0|iq̄σαβγ5q|γ〉 . (5.33)

The matrix element 〈0|iq̄σαβγ5q|γ〉 was discussed in [11] where nucleon mag-
netic moments were studied using QCD sum rules. The numerical results are
presented in terms of the quantity called magnetic susceptibility of the quark
condensate χ = −(350 ± 50 MeV)−2 defined as

〈0|iq̄σαβγ5q|γ〉 = −i|e|χ Qq〈0|q̄q|0〉f̃αβ . (5.34)

With the help of (5.21, 5.33, 5.34), we obtain

κq
6 = −2π2χ Qq

N2
c − 1
N2

c

〈0|q̄q|0〉2 . (5.35)

Combining (5.23, 5.31) and (5.35), we derive the leading non-perturbative
contribution to the function wT(K2) for the first generation in the chiral limit

∆(6)wT[u, d] =
∑

q=u,d

2Iq
3∆(6)wq

T =
256π3αs(K2)

9K6

∑
q=u,d

Iq
3Q2

q χ 〈0|qq̄|0〉2 .

(5.36)
For numerical estimates, we use 〈0|qq̄|0〉 = −(235 MeV)3. We then find

∆(6)wT[u, d] = −αs(K2)
(0.7 GeV)4

K6
(5.37)

Equation (5.37) illustrates a striking difference between the longitudinal
and the transversal structure functions in the chiral limit. The longitudinal
structure function is known exactly in the chiral limit,

wL[u, d] =
2

K2
; (5.38)
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there are no perturbative or non-perturbative corrections to this result. On the
other hand, the transversal function receives non-perturbative corrections; its
large-K2 asymptotics is given by

wT[u, d] =
1

K2

[
1 − αs(K2)

(0.7 GeV)4

K4

]
. (5.39)

The results discussed so far are derived in the chiral limit, which is not
realized in Nature. It is therefore important to study the consequences of
the fact that the chiral symmetry is explicitly violated by non-zero quark
masses. To this end, we repeat the OPE analysis of the product of the ax-
ial and vector currents T̂µν , allowing for non-zero quark masses. It is then
easy to see that diagrams with soft gluon exchanges shown in Fig. 5.2 give
non-vanishing contribution to the OPE once non-zero quark masses are al-
lowed. Hence, the leading non-perturbative contribution to T q

µν for a massive
quark is obtained from the diagram Fig. 5.2 in the absence of soft gluon ex-
changes. The non-perturbative operator, generated in this way is −iq̄σαβγ5q;
its Wilson coefficients are

cq
L = 2cq

T =
4Qqmq

K4
. (5.40)

The corresponding contribution to the longitudinal and transversal functions
wL,T is

∆(3)wL = 2∆(3)wT =
8

K4

∑
q

I3
fQqmqκq , (5.41)

where κq is related to the magnetic susceptibility χ

κq = −4π2Qq χ 〈0|q̄q|0〉 . (5.42)

Using the Gell-Mann–Oakes–Renner relation [12] (mu+md)〈0|q̄q|0〉 = F 2
πm2

π

we find
∆(3)wL[u, d]

wL[u, d]
= − (0.18 GeV)2

K2
. (5.43)

5.1.3 Models of the Structure Functions

Although the results for the non-perturbative corrections to the longitudinal
and transversal structure functions wL,T discussed so far, are derived for large
values of K2, we may use them to model the behavior of those functions for
arbitrary K2, including K2 ∼ Λ2

QCD. To this end, we adopt the logic of large-
Nc QCD , discussed in Sect. 3.2, and describe Green’s functions by infinite
sums of narrow hadronic resonances. Hence, we make an Anzats

wL,T =
∑

i

gi,L(T)

K2 + m2
i,L(T)

, (5.44)
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where gi,L(T) and mi,L(T) are couplings and masses of known hadrons. We
choose those hadrons in such a way that their spin, parity and isospin or
SU(3)-flavor quantum numbers match those quantum numbers of the func-
tions wL,T. This implies that pseudoscalar mesons contribute to the longitu-
dinal structure function wL, whereas the transversal structure function wT

receives contributions from pseudovector mesons. In addition, vector mesons
can contribute to both structure functions in the spirit of vector meson dom-
inance. In general, the axial and electromagnetic currents are given by a
combination of terms with different isospin and SU(3)-flavor quantum num-
bers. On the other hand, those quantum numbers are good characteristics
of light hadrons. Hence, when constructing hadronic models for the struc-
ture functions, it is convenient to decompose the currents into components
with definite isospin and/or SU(3) quantum numbers and to deal with those
components separately. Finally, any hadronic model has to satisfy the OPE
constraints when extrapolated to large values of K2. Since we derived only
a few terms in the OPE in the previous section, we model the structure
functions using minimal number of hadrons in (5.44).

Formally expanding (5.44) in power series in 1/K2, and comparing the
results with the large-K2 asymptotics of the structure functions, we derive
sum rules that the couplings {gi} and the masses of the resonances {mi}
should satisfy. For the longitudinal structure function wL[u, d], we know two
terms in the operator product expansion; hence we derive two equations

∑
i

gi,L = 2 ,

∑
i gi,Lm2

i,L∑
i gi,L

= (180 MeV)2 . (5.45)

In case of the first generation, the model for the longitudinal structure
function where only the exchange of the pion is retained,

wL[u, d] =
2

K2 + m2
π

, (5.46)

fits the two sum rules (5.45) reasonably well. Hence, we can use the expression
for wL[u, d] (5.46) as a model for the longitudinal structure function valid for
arbitrary K2. This model smoothly interpolates between perturbative and
non-perturbative regimes since it satisfies the constraints from the operator
product expansion and is consistent with the expectation that at K ∼ ΛQCD

the major consequence of the explicit chiral symmetry breaking is a shift of
the pion mass to a non-zero value.

In a similar way we construct a non-perturbative model for the function
wT[u, d]. In this case, we know the large-K2 expansion through terms O(K−6)
and, therefore, can fix three parameters. We write

wT =
∞∑
i

gi,T

K2 + m2
i,T

. (5.47)
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Expanding wT(K2) at large K2, and comparing the subsequent terms in the
expansion with the asymptotics (5.39), we derive
∑

i

gi,T = 1,
∑

i

gi,Tm2
i,T = (180 MeV)2,

∑
i

gi,Tm4
i,T = −(710 MeV)4.

(5.48)
Note that we have set αs(K) = 1 in (5.39).

Instead of solving the three equations in (5.48), we approximate the
transversal structure function by a linear combination of the propagators
that describe exchanges of the ρ and ω vector mesons (neglecting their mass
difference) and the a1(1260) axial vector meson. Note that the isospin quan-
tum numbers of those mesons are identical to the isospin quantum numbers
of the electromagnetic and axial currents. We make an Anzats

wT[u, d] =
1

m2
a1

− m2
ρ

(
m2

a1
− m2

π

Q2 + m2
ρ

−
m2

ρ − m2
π

Q2 + m2
a1

)
. (5.49)

The transversal function wT (5.49) satisfies two first sum rules in (5.48)
by construction. Since (5.49) fully determines the model expression for the
transversal structure function wT, the 1/K6 term in the large-K2 expansion
of wT becomes the prediction of the model that can be compared with the
estimate provided by the OPE. Upon expanding (5.49) in 1/K2, we find
−(0.96 GeV)4 as the coefficient of the 1/K6 term; this should be compared
with the OPE estimate −(0.71 GeV)4, (5.39). Although the agreement is
not perfect, we find it reasonable given rather crude estimate of the matrix
element of the operator O6

αβ , (5.33).
Next, we turn to the second generation where the s quark is the only quark

which can be considered light. We should be careful with the isospin or, more
generally, SU(3) quantum numbers. For the first generation, the weak axial
current is ūγνγ5u− d̄γνγ5d, so that its quantum numbers coincide with that
of the pion. On the contrary, the axial current for the second generation
−s̄γ5γνs is a mixture of the SU(3) octet and singlet,

− s̄γνγ5s =
1
3
(
ūγνγ5u+d̄γνγ5d−2s̄γνγ5s

)
− 1

3
(
ūγνγ5u+d̄γνγ5d+s̄γνγ5s

)
,

(5.50)
Therefore, we write the longitudinal function as

wL[s] =
2
3

(
1

K2 + m2
η

− 2
K2 + m2

η′

)
, (5.51)

where the first, octet, term is normalized at large K2 to (2Nc/3)(Q2
u+Q2

d−
2Q2

s), while the second, singlet, term to (−2Nc/3)(Q2
u +Q2

d +Q2
s), in cor-

respondence with (5.50). The comparison of the O(K−4) term obtained by
expanding (5.51) in powers of 1/K2 with the OPE expectation (5.41) shows
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that the model for the function wL[s] is not very accurate; indeed, the coef-
ficient of the 1/K4 term, obtained from expanding (5.51), is (1 GeV)2 while
the OPE calculation yields (0.55 GeV)2. This problem may be related to
uncalculated terms in the OPE, associated with the mixing of the singlet
axial current with two gluons; such terms are important since they are not
proportional to the mass of the strange quark ms.

For the transversal function wT[s] we use the following model

wT[s] = −1
3

1
m2

f1
− m2

φ

(
m2

f1
− m2

η

K2 + m2
φ

−
m2

φ − m2
η

K2 + m2
f1

)
, (5.52)

where φ(1019) and f1(1426) are isoscalar vector and vector-axial mesons rel-
evant for the ss̄ channel. Upon expanding (5.52) in inverse powers of K2,
we find that the coefficient of the K−6 term evaluates to (0.79 GeV)4 which
should be compared with (0.53 GeV)4, predicted by the operator product
expansion.

We have constructed the structure functions wL,T for the first and sec-
ond quark generations that are consistent with constraints from the OPE in
QCD and are non-perturbative by nature. We can use these structure func-
tions to compute the corrections to the muon anomalous magnetic moment
caused by diagrams with anomalous fermion triangles. Our starting point is
(5.5) that expresses the correction to the muon magnetic anomaly in terms
of the transversal and longitudinal structure functions wL,T. Since we have
determined those functions, either by explicit perturbative computation or
by constructing models that conform with constraints based on the OPE,
it is straightforward to compute aew,∆

µ . Such a computation is described in
[7] and we refer to that reference for details. Here, we restrict ourselves to
logarithmic estimates based on (5.6). We point out that the logarithmic ap-
proximation is too crude to provide accurate results for aew,∆

µ ; because of that
in the final result for aew

µ we employ the results of [7]. However, the logarith-
mic approximation is useful since it illustrates all the physics relevant for the
computation of aew,∆

µ and it is also simple enough so that the details of the
calculation can be presented. It is convenient to address the contribution of
each generation of quarks and leptons to aew,∆

µ separately.
We begin with the third generation where all quark masses are large

compared to the QCD scale ΛQCD; because of that, perturbative calculations
are reliable. Working in the logarithmic approximation, we write

aew,∆
µ [τ, t, b] =

(α

π

) GF m2

8π
√

2

{ m2
t∫

m2

dK2

K2

[
−2θ(K2− m2

τ ) − 2
3

θ(K2− m2
b)
]

−
m2

Z∫

m2

dK2

K2

[
θ(K2− m2

τ ) +
1
3

θ(K2− m2
b)
]

+
2m2

Z

9m2
t

m2
t∫

m2
Z

dK2

K2

}
.

(5.53)
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The last term in (5.53) is the top quark contribution to the transversal func-
tion wT; the range of logarithmic integration in this case is m2

Z 	 K2 	 m2
t

and we used (5.8) for the small-K2 asymptotics of wT. Performing integra-
tions in (5.53), we arrive at the following contribution of the third generation
to the muon anomalous magnetic moment in the logarithmic approximation

aew,∆
µ [τ, t, b] = −GF m2

8π2
√

2

(α

π

)[8
3

ln
m2

t

m2
Z

− 2m2
Z

9m2
t

ln
m2

t

m2
Z

+ 4 ln
m2

Z

m2
b

+ 3 ln
m2

b

m2
τ

]
.

(5.54)

In case of first and second generations, the fermion masses are small com-
pared to the mass of the Z-boson; hence the factor m2

Z/(Q2 + m2
Z) in (5.6)

can be set to one. For the first generation, the longitudinal and transversal
structure functions are given by (5.46, 5.49) for up and down quarks and by

wL[e] = 2wT[e] = − 2
K2

, (5.55)

for the electron. Note that the electron mass can be neglected there since
(5.6) shows that the contribution of (5.55) to the muon magnetic anomaly is
determined by K2 � m2 � m2

e. We can also simplify hadronic longitudinal
structure function to wL[u, d] = 2/K2 since m2

π ∼ m2
µ and the logarithmic

integration in (5.6) is cut off at K2 = m2. It follows that the sum of the
longitudinal functions for the first generation wL[e, u, d] = wL[e] + wL[u, d]
vanishes and, hence, wL[e, u, d] does not contribute to aew,∆

µ in the logarithmic
approximation. For the transversal function wT[u, d] we use (5.49), where we
assume ma1 � mρ � mπ. Then, in the logarithmic approximation, we may
write

aew,∆
µ [e, u, d] =

GF m2

8π2
√

2

(α

π

)∫ dQ2

Q2

(
−θ(Q2 − m2) + θ(Q2 − m2

ρ)
)

= −GF m2

8π2
√

2

(α

π

) m2
ρ∫

m2

dQ2

Q2
= −GF m2

8π2
√

2

(α

π

)
ln

m2
ρ

m2
. (5.56)

How well does this result compare to the calculations with constituent
quarks? In case when the quark masses are taken to be equal to m̄ = 300 MeV,
the contribution of the first generation in the logarithmic approximation reads

aew,∆
µ [e, u, d] = −GF m2

8π2
√

2

(α

π

)
ln
(

m̄2

m2

)
(2 + 1) . (5.57)

The two terms, shown separately in (5.57) refer to the contribution of the
longitudinal and transversal functions, respectively. Note, that in contrast
to the hadronic computation discussed above, in the constituent quark case
the longitudinal structure function gives a larger contribution to aµ than the
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transversal part; this is the consequence of the introduction of constituent
quark masses that fails to properly account for the fact that the pion remains
light if the chiral symmetry breaking is introduced properly. Numerically, the
difference between (5.56) and (5.57) is at the −1 × 10−11 level.

A similar analysis applies to the second generation. Treating the charm
quark as heavy, we cut off its contributions to both wL and wT at Q2 ≈ 4m2

c ≈
m2

J/ψ. The structure functions wL,T[s] are described above. Integrating over
K2 in the logarithmic approximation, we derive

aew,∆
µ [µ, c, s] = −GF m2

8π2
√

2

(α

π

)(
4 ln

m2
J/ψ

m2
φ

+
5
3

ln
m2

φ

m2
η

+ 3 ln
m2

η

m2

)
. (5.58)

We emphasize that the logarithmic estimates presented above are too
crude. For example, the logarithmic approximation for the first generation,
(5.56) gives aµ[e, u, d] = −1 × 10−11, whereas the computation beyond the
logarithmic approximation leads to −2× 10−11. The calculation of aew,∆

µ be-
yond the logarithmic approximation is described in [7], where it is shown
that the difference between the QCD-based analysis of aew,∆

µ and the con-
stituent quark model result is, approximately, 2× 10−11. Although the study
of hadronic effects in electroweak corrections does not lead to large numeri-
cal changes compared to the use of constituent quark masses in perturbative
calculations, the final result becomes much more credible. In addition, the
OPE-based methods for studying hadronic effects discussed in this section
will be used in Chap. 6 to analyze a more difficult problem of hadronic light-
by-light scattering contribution to the muon magnetic anomaly.

5.2 Final Results for the Electroweak Corrections

In this section we summarize the results for the electroweak corrections to
the muon anomalous magnetic moment. We take the numerical value for the
electroweak corrections from [4, 7],

aew
µ = 154(1)(2) × 10−11 . (5.59)

The first error in (5.59) corresponds to the hadronic uncertainty and the sec-
ond to the allowed Higgs mass range, 114 GeV ≤ mH ≤ 250 GeV, the current
uncertainty in the top quark mass and the unknown three-loop electroweak
effects.

Finally, we did not mention yet another electroweak correction to the
muon magnetic anomaly where perturbative calculations require refinements.
Such correction involves γ − Z mixing shown in Fig. 5.5. In principle, the
γ−Z mixing diagram should be studied using the data on e+e− annihilation
to hadrons in a way that we described in Chap. 3, but the modification,
compared to the constituent quark mass estimate in Chap. 4, is negligible
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γ Z

hadr.

Fig. 5.5. Contribution to the muon anomalous magnetic moment from the γ −Z
mixing

for the phenomenology of the muon magnetic anomaly. The reason is that
the magnitude of the γ − Z mixing diagram is strongly suppressed by gµ

V ∼
1 − 4 sin2 θW ∼ 0.1.
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6 Hadronic Light-by-light Scattering
and the Muon Magnetic Anomaly

Among all hadronic contributions to the muon anomalous magnetic moment,
the hadronic light-by-light scattering is the one which is most difficult to
analyze. This is the consequence of two facts. First, the hadronic light-by-
light scattering is largely determined by non-perturbative QCD. Second, it
is difficult to relate the hadronic light-by-light scattering contribution to the
muon magnetic anomaly to experimental data. Because of these problems,
we have to rely on theoretical considerations to estimate the hadronic light-
by-light scattering contribution to the muon anomalous magnetic moment.

For the discussion of the hadronic light-by-light scattering, it is important
to distinguish between model-dependent and model-independent considera-
tions. Model-dependent considerations are based upon low-energy models
that describe interactions of hadrons with photons; quite often, such models
are not rooted in QCD. Unfortunately, since the non-perturbative sector of
QCD is not well understood, there are very few features of the hadronic light-
by-light scattering that can be stated in a model-independent way. Since, in
addition to that, it is not easy to control the accuracy of the model-dependent
considerations, estimating the central value and the theoretical uncertainty
of the hadronic light-by-light scattering contribution to aµ is difficult. It is
conceivable that a fully model-independent calculation of the hadronic-light-
by-light scattering contribution will never be performed and, hence, the prac-
tical issue in connection with albl

µ is to find a way to minimize and control
the model-dependence of the theoretical estimates of albl

µ .
In spite of these difficulties, current understanding of the hadronic light-

by-light scattering contribution to the muon magnetic anomaly is relatively
self-consistent. Both low- and high-energy asymptotics of the light-by-light
scattering amplitude are understood and taken into account, when models
of this amplitude are constructed. It is important that these asymptotics
either follow directly from QCD or reflect well-understood symmetries of
strong interactions. However, it is clear from the onset, that the approach to
the problem based on asymptotics only is intrinsically limited; for example,
improvements in the precision of such an approach beyond certain point are
meaningless.

Calculation of the hadronic light-by-light scattering contribution to the
muon anomalous magnetic moment has long and interesting history [1, 2, 3,

K. Melnikov and A. Vainshtein: Theory of the Muon Anomalous Magnetic Moment
STMP 216, 121–144 (2006)
c© Springer-Verlag Berlin Heidelberg 2006
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4, 5, 6, 7, 8, 9, 10, 11]. Early calculations based on constituent quark approxi-
mation were always treated with caution since the effect of strong interactions
on the result was unclear. Later, application of effective low-energy theories
of strong interactions to the computation of the hadronic light-by-light scat-
tering contribution to aµ received broad recognition. Because such a descrip-
tion of strong interactions is valid at low energies only, somewhere along the
way the lore appeared that hadronic light-by-light scattering contribution to
aµ is determined, almost entirely, by low-energy degrees of freedom. Unfortu-
nately, this is incorrect. In the next two sections we give some arguments that
demonstrate that the hadronic light-by-light scattering contribution to the
muon magnetic anomaly is sensitive to high- and intermediate-momentum re-
gions.1 We then construct the low-energy model of the hadronic light-by-light
scattering [11] that incorporates model-independent constraints that follow
from short-distance properties of QCD and approximate chiral symmetry of
strong interactions. We use this model to estimate the hadronic light-by-light
scattering contribution to aµ.

6.1 Calculating the Hadronic Light-by-light Scattering
Contribution: An Overview

In this section we review, following [11], the calculation of the hadronic light-
by-light scattering contribution to the muon anomalous magnetic moment.
As we explained in the Introduction to this chapter, such calculations are
performed using theoretical models that describe interactions of photons with
hadrons at low energies. It is useful to have a theoretical parameter that
controls the validity of a model. Since perturbation theory is not an option,
we must look for a parameter other than the QCD coupling constant; the two
possibilities are the proximity of the chiral symmetry at low energies and the
large number of colors Nc [3, 4, 12]. The relevance of those parameters can
be seen from the schematic expression for albl

µ ,

albl
µ ∼

(α

π

)3
[
c1

m2

m2
π

+ c2Nc
m2

Λ2
QCD

]
, (6.1)

where it is assumed that mπ > m. Only the power dependence on m2
π is

shown; chiral logarithms ∼ ln mπ are included into the coefficients c1,2. The
first, chirally enhanced term is due to loops of charged pions in the light-by-
light scattering, Fig. 6.1a. The second, Nc–enhanced, term is due to exchanges
of neutral pion or heavier resonances, Fig. 6.1b.

Because the mass of the muon is small, it is natural to expect the chi-
ral parameter m2

π/(4πFπ)2 to be a better expansion parameter for albl
µ . This

1 In this chapter, by “high” and “intermediate” scales we mean energy scales that
are larger than or comparable to the mass of the ρ mesons.
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π0 , a1 , ...

π±

a b

Fig. 6.1. Hadronic contributions to the light-by-light scattering (a) charged pion
loop, (b) exchange of neutral pion and other resonances.

certainly would be valid if the mass of the pion (and the mass of the muon
as well) is an order of magnitude smaller while ΛQCD remains the same. In
the real world, however, a more careful analysis indicates that things work
differently. In what follows, we will show that the chirally enhanced charged
pion contribution is always much smaller than the Nc-enhanced contribu-
tion; although never proven from first principles, this seems to be a common
conclusion to the host of studies of the hadronic light-by-light scattering con-
tribution to the muon magnetic anomaly within various models of low-energy
hadronic interactions [3, 4, 5].

Moreover, we observed a similar situation when discussing the hadronic
vacuum polarization contribution to aµ, Chap. 3. There, we have seen that
the chirally enhanced two-pion contribution is, approximately, 4×10−9 which
should be compared with 50×10−9, the Nc–enhanced contribution due to the
ρ-meson exchange. Although we do not have a clear understanding of why
the chirally enhanced terms are sub-dominant to such an extent, we will take
the dominance of the large-Nc expansion over the chiral expansion as the
working hypothesis and build our description of the hadronic light-by-light
scattering contribution to the muon magnetic anomaly around it.

As we explained in Sect. 3.2.1, the special feature of the large-Nc QCD
is that any scattering amplitude can be written as an infinite sum of reso-
nances. This feature helps in constructing a model for hadronic light-by-light
scattering but it is insufficient. To constrain the model further, we require the
short-distance behavior of the light-by-light scattering amplitude to be con-
sistent with QCD. We derive the corresponding QCD prediction by observ-
ing that at large Euclidean photon momenta the operator product expansion
(OPE) is applicable to the hadronic light-by-light scattering amplitude. In
the following sections, we will show that the leading term in this OPE comes
from the quark box diagram enhanced by Nc; hence, the OPE constraints are
consistent with the large-Nc limit. Therefore, we require that an acceptable
large-Nc hadronic model, extrapolated to large Euclidean photon momenta,
matches the perturbative light-by-light scattering amplitude. We find that
the minimal large-Nc model which satisfies this criterion includes exchanges
of the pseudoscalar 0− mesons π0, η, η′ and the pseudovector 1+ resonances
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a1, f1, f
∗
1 . It is important to emphasize at this point that the model with a

finite number of resonances is consistent with the short-distance constraints
for albl

µ ; it is known that this can not be guaranteed for a generic physical
observable [13].

The short-distance QCD constraints are most restrictive in the pseudo-
scalar isovector channel. This happens for the following reason. The kinemat-
ics of the light-by-light scattering relevant for the muon magnetic anomaly
necessarily involves soft photon that represents the external magnetic field.
Because of that, the four-point function that describes the light-by-light scat-
tering in a most general kinematics, reduces to a three-point function. In a
special kinematic limit of this three-point function, when invariant masses
of two virtual photons are much larger than the invariant mass of the third
one, this channel is fully described by the exchange of the neutral pion. This
description is non-perturbative since it works for an arbitrary small invariant
mass of the third virtual photon, in spite of the fact that, in general, the
OPE applies only when that mass is much larger than ΛQCD.

Before discussing the calculation of the hadronic light-by-light scattering
contribution to the muon magnetic anomaly in detail, we present examples
that illustrate our claim that albl

µ is sensitive to large momenta. We do so
in two steps. First, we revisit the calculation of the light-by-light scatter-
ing in QED and address it in the context of an effective field theory. After
that, we compute albl

µ keeping only terms that are enhanced by both, the fac-
tor Nc and two powers of the chiral logarithm lnmπ. While these examples
are sufficiently simple to be discussed in detail, they demonstrate interest-
ing subtleties associated with the computation of the hadronic light-by-light
scattering contribution to the muon magnetic anomaly.

6.2 The Light-by-light Scattering Contribution
to the Muon Anomaly in QED

To understand the role of the high-momentum region in the computation of
albl

µ , it is useful to revisit QED. In particular, we want to discuss the τ -lepton
contribution to the light-by-light scattering component of aµ, considered in
Chap. 2, from a different perspective.

As we discussed in Chap. 2, the QED light-by-light scattering contribu-
tions to aµ are computed directly, starting from relevant Feynman diagrams,
Fig. 2.6, and using the mass hierarchy mτ � mµ to simplify the calcula-
tion along the way. An alternative way to make use of the mass hierarchy
is to “integrate out” the τ lepton from the QED Lagrangian and to employ
the resulting effective field theory to compute the light-by-light scattering
contribution to the muon magnetic anomaly.

In general, to construct an effective field theory [14] we require matching
calculations where certain Green’s functions are computed in the full theory
and in the effective theory; the Lagrangian of the effective field theory is
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adjusted in such a way that the calculations agree. What makes calculations
in the effective field theory advantageous is the fact that one can determine
the Lagrangian of the effective theory by doing matching calculations for
a limited number of simple Green’s functions. Since we are interested in
computing the τ -lepton contribution to the light-by-light component of the
three-loop QED corrections to aµ using effective field theory methods, we
have to establish what information from the full theory is required. Once this
question is answered, it becomes clear which loop momenta contribute to the
final result.

Let us assume that for the light-by-light scattering diagrams the leading
contribution to albl

µ , computed as an expansion in powers of m/mτ , comes
from the momentum configuration where all photon momenta k are small,
k ∼ m 	 mτ . Integrating out the τ lepton in this case induces the Euler-
Heisenberg Lagrangian

LEH =
α4

360m4
τ

[
4 (FµνFµν)2 + 7

(
FµνF̃µν

)2
]

, (6.2)

where F̃µν = (1/2)εµναβFαβ is the dual of the electromagnetic field-strength
tensor. What is the contribution of LEH to the light-by-light scattering com-
ponent of the muon magnetic anomaly? By dimensional arguments, it is easy
to see that the range of loop momenta k � m produces 2

albl,τ
µ ∼

(α

π

)3 m4

m4
τ

. (6.3)

Comparing this to the exact result in Sect. 2.5, (2.87),

albl,τ
µ =

(α

π

)3
{(

3
2

ζ3 −
19
16

)
m2

m2
τ

+ O
(

m4

m4
τ

)}
, (6.4)

we find the mismatch in powers of mτ . This implies that, upon integrating
out the τ lepton, we relevant missed operators whose mass dimensions are
lower than the mass dimension of LEH .

Upon reflection, it is easy to identify the operator that has been missed.
Somewhat surprisingly, it is the muon magnetic dipole operator itself; its
contribution to the effective low-energy Lagrangian can be written as

L = C
m

m2
τ

µ̄σαβµFαβ , (6.5)

where C is the Wilson coefficient. The Wilson coefficient is determined by
photon virtualities of order mτ and therefore can only be computed in the
full theory (in our case, QED with both τ and µ leptons). Also, there is no

2 The integration is actually divergent at large k; we use m as the upper cut-off.
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observable simpler than the anomalous magnetic moment, from which the
Wilson coefficient C could have been determined.

The example we just considered demonstrates that modes with large virtu-
alities are important for the light-by-light scattering component of the muon
magnetic anomaly. This conclusion will be important when the hadronic light-
by-light scattering contribution to aµ is studied. Since hadrons are strongly
interacting particles, the exact computation of the light-by-light scattering
amplitude is not possible; the only way to approach the problem is to use
chiral perturbation theory at low energies. However, such a description is nec-
essarily insufficient and the effective theory should be extrapolated to larger
virtualities to provide the estimate of the Wilson coefficient C. In the next
section we describe how this is done in the logarithmic approximation. After
that, we construct a model of the hadronic light-by-light scattering amplitude
that interpolates between small and large photon virtualities and, therefore,
enables us to estimate the Wilson coefficient C.

6.3 Hadronic Light-by-light Scattering:
Logarithmic Terms

As we will show in this section, the Nc-enhanced contribution to the hadronic
light-by-light scattering component of the muon anomalous magnetic moment
is additionally enhanced by ln(Λ/mπ), where Λ ∼ 1 GeV is a typical hadronic
scale [15]. Such an enhancement appears because of the mass gap in QCD
between the mass of the pion mπ and the masses of other hadrons ρ, ω, η, φ
etc. that are of order Λ. For our purposes, it is important that the mass of
the muon m is comparable to the mass of the pion and is also much smaller
than the scale Λ.

To describe physics at the energy scale E ∼ mπ ∼ m 	 Λ, we can use an
effective field theory obtained by integrating out heavy degrees of freedom in
QCD. The result is the chiral effective theory [16], extended to include muons
and photons.

As we discussed in Sect. 6.1, there are two parameters that can be used
to organize calculations in this effective theory. The first one is a typical en-
ergy of the process, the standard expansion parameter in chiral perturbation
theory. In addition, there is another parameter, the number of colors Nc = 3
which can be considered to be large. In this section we show that terms en-
hanced by Nc play an important role in the hadronic light-by-light scattering
component of aµ. This can be understood qualitatively if one realizes that
Nc-enhanced contribution of the neutral pion to the muon magnetic anomaly
contains an additional enhancement by chiral logarithms [15],

albl
µ ∼

(α

π

)3 Ncm
2

Λ2
ln2 Λ

mπ
. (6.6)
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It is convenient to approach the calculation of the logarithmically en-
hanced terms from the chiral effective theory; we need part of this theory
that describes the interaction of photons with hadrons. The leading term in
the chiral expansion is the Lagrangian of scalar QED

L = −1
4
FµνFµν + Dµπ†Dµπ − m2

π|π|2 . (6.7)

Here Dµ = ∂µ − ieAµ is the covariant derivative and π is the charged pion
field. If this Lagrangian is used to compute the contribution of the charged
pion loop to aµ, the result is chirally enhanced (i.e. scales as 1/m2

π) but
it is not enhanced by Nc. Also, it does not contain any logarithmic terms,
sensitive to the cut-off scale Λ since QED with both fermions and scalars
is the renormalizable theory. The chirally enhanced contribution to albl

µ is
discussed in Sect. 6.7.

Higher terms in the chiral expansion contain the Wess–Zumino–Witten
term [17]. For a single pion and two photons this is the dimension-5 opera-
tor which describes the interaction of a neutral pion with two photons as a
consequence of the Adler–Bell–Jackiw (ABJ) anomaly [20]

LABJ =
αNc

12πFπ
FµνF̃µνπ0 . (6.8)

This is the only Nc-enhanced term in the chiral Lagrangian that con-
tributes to the hadronic light-by-light component of the muon magnetic
anomaly at order α3. It leads to the following π0γγ interaction vertex

− i
αNc

3πFπ
εµναβqα

1 qβ
2 εµ

1 εν
2 , (6.9)

where ε1,2 are the photon polarization vectors and both photon momenta
are taken to be incoming. Using this interaction vertex, it is easy to con-
struct three Feynman diagrams with a virtual π0 contribution to the hadronic
light-by-light scattering component of the muon magnetic anomaly at order
(α/π)3. Such diagrams, shown in Fig. 6.2, are usually referred to as the “pion-
pole” contribution.

By simple power counting, it is easy to see that the planar diagram,
Fig. 6.2a, diverges while the non-planar diagram Fig. 6.2b is finite. In addi-
tion to an overall divergence in the planar diagram that occurs when both
loop momenta in the diagram are large, there is also a divergent subgraph
that describes radiatively induced pion-muon coupling. Because of this sub-
divergence, the planar pion-pole diagram exhibits a double logarithmic sensi-
tivity to the ultra-violet cut-off of the theory Λ.

It is not difficult to compute the ln2(Λ/mπ)-enhanced terms in the pion-
pole diagram Fig. 6.2a. We begin with the subgraph that describes the one-
loop contribution to π0µ+µ− vertex,
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π0

a b

Fig. 6.2. The “pion-pole” contribution to the hadronic light-by-light scattering
component of aµ. The second planar diagram symmetric to the diagram a is not
shown

M[π0(k1) + µ(p) → µ(p + k1)]

= −4α2Nc

3Fπ

Λ∫
d4k2

(2π)4
εµναβkα

1 kβ
2

k2
2(k1 − k2)2

ūp+k1γ
µ 1

p̂ + k̂2 − m
γνup .

(6.10)

The integration over k2 is simple in the logarithmic approximation,

Λ∫
d4k2

(2π)4
kβ
2

k2
2(k2 − k1)2

1

p̂ + k̂2 − m
≈ i

64π2
γβ ln

( Λ2

−k2
1

)
. (6.11)

Using εαµβνγµγβγν = 3! iγαγ5 and ūp+k1 k̂1γ5up = 2mup+k1γ5up we arrive
at

M[π0(k1) + µ(p) → µ(p + k1)] = −
(α

π

)2 Nc

4Fπ
mūp+k1γ5up ln

( Λ2

−k2
1

)
.

(6.12)
We use this result to get the amplitude for the diagram Fig. 6.2a by

integrating over k1,

Mpl = − ie
(α

π

)3 N2
c m

6F 2
π

Λ∫
d4k1

(2π)4
f̃νβkβ

1

k2
1(k

2
1 − m2

π)
ln
( Λ2

−k2
1

)
ūpγ

ν 1

p̂ + k̂1 − m
γ5up

= − ie
(α

π

)3 N2
c m

192π2F 2
π

ln2 Λ

mπ
f̃νβ ūpσ

νβγ5up .

(6.13)

Here we retain only terms linear in the momentum of the external photon q
which is present implicitly in the dual electromagnetic field-strength f̃νβ =
ενβαµqαεµ.

Using the identity ūpσ
αβγ5upf̃αβ = 2iūpσ

αβupεαqβ , we arrive at the fol-
lowing “pion-pole” contribution to the muon anomalous magnetic moment
[6, 7]
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albl
µ [π0] =

(α

π

)3

3
(Nc

3

)2 m2

(4πFπ)2
ln2 Λ

mπ
+ ... , (6.14)

where the ellipses stands for uncalculated terms that contain at most sin-
gle logarithms of the ultra-violet cut-off, O(ln Λ/m). Note that since Fπ ∼
N

1/2
c , the pion pole contribution to the muon magnetic anomaly scales like

albl
µ [π0] ∼ Nc. It is appropriate to make a few comments at this point.

(1) The double-logarithmic approximation for the pion-pole contribution to
aµ, (6.14), is the unique prediction of QCD that follows from its chiral prop-
erties.

(2) In the context of the low-energy effective field theory, the apparent di-
vergence ln2(Λ) in (6.14) is removed by adding counter-terms to the effective
Lagrangian

Lct = C1im µ̄γ5µπ0 + C2mµ̄σαβµFαβ , (6.15)

where C1 ∝ ln(Λ/µ), C2 ∝ ln2(Λ/µ) and the mass scale µ is associated with
hadron dynamics at around 1 GeV. A peculiar feature of these counter-terms
is that they contain the magnetic dipole operator itself; this implies that the
muon magnetic anomaly can not be computed from the low-energy effective
field theory alone. A similar situation arises in the τ -lepton light-by-light
scattering contribution to aµ considered in the previous section. Because it is
not possible to extract C2 from any observable that is simpler than the muon
anomalous magnetic moment itself, it has to be estimated from full QCD;
this fact makes the theory of the hadronic light-by-light scattering contribu-
tion to aµ highly non-trivial.

(3) Physically, the scale Λ is identified with the mass of the ρ meson
or heavier resonances. Taking Λ = mρ = 770 MeV in (6.14), we obtain
albl

µ [π0] = 120 × 10−11. However, existing calculations [8, 10] of the hadronic
light-by-light scattering contribution seem to indicate that logarithmically
enhanced terms provide too crude an estimate of the hadronic light-by-light
scattering contribution to the muon magnetic anomaly.

(4) Equation (6.14) has been used to check the numerical evaluation of the
hadronic light-by-light scattering contribution to aµ [6, 7] and thus con-
tributed to uncovering the sign error in earlier calculations of the hadronic
light-by-light component of the muon anomalous magnetic moment.

Finally, we mention that it is possible to extend the calculation of albl
µ [π0]

in such a way that terms enhanced by a single logarithm of an ultra-violet cut-
off are included. To achieve that, we need to extend the calculation described
in this section to compute the induced π0µ+µ− coupling, (6.11), up to a
constant term, in the limit of large k1. This can be done only in the model-
dependent way. Once the constant term is fixed, the subsequent integration
over k1 gives both, the O(ln2 Λ) and O(ln Λ) contributions to albl

µ [π0]. Such
a calculation is described in [10].
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6.4 Model for the Hadronic Light-by-light Scattering

In this section, we construct the model for the hadronic light-by-light scat-
tering that we use to compute the muon anomalous magnetic moment. We
begin with the description of the kinematics of the light-by-light scattering
relevant for the muon magnetic anomaly. The light-by-light scattering am-
plitude involves four photons with momenta qi and the polarization vectors
εi. We take the photon momenta to be incoming,

∑
qi = 0. The first three

photons are virtual, while the fourth photon represents the external mag-
netic field and can be regarded as the real photon with the vanishingly small
momentum q4. The amplitude M is defined as

M = α2Nc Tr [Q̂4]A = α2Nc Tr [Q̂4]Aµ1µ2µ3γδε
µ1
1 εµ2

2 εµ3
3 fγδ (6.16)

= −e3

∫
d4xd4y e−iq1x−iq2y εµ1

1 εµ2
2 εµ3

3 〈0|T {jµ1(x) jµ2(y) jµ3(0)} |γ〉 ,

where jµ is the hadronic electromagnetic current, jµ = q̄ Q̂γµq, written in
terms of the three quark flavors q = {u, d, s} with Q̂ being the 3 × 3 diago-
nal matrix of quark electric charges, Q̂ = diag(2/3,−1/3,−1/3). As usual,
fγδ = qγ

4 εδ
4 − qδ

4ε
γ
4 denotes the field-strength tensor of the soft photon; the

light-by-light scattering amplitude is proportional to this tensor due to gauge
invariance. To compute the muon anomalous magnetic moment, we need the
amplitude M through first order in q4; since fαβ ∼ q4, we can set q4 = 0 in
the tensor amplitude Aµ1µ2µ3γδ and calculate it assuming that q1+q2+q3 = 0
for the virtual photons. This equality implies that the momenta q1, q2, q3 form
a triangle; because of that there are just three independent Lorentz invariant
variables that we choose to be the virtualities of the photons q2

1−3.
In general, the light-by-light scattering amplitude is a complicated func-

tion of photon virtualities. However, there are only two distinct kinematic
regimes in the light-by-light scattering amplitude. The first (symmetric) one
occurs when the Euclidean momenta of the three photons are comparable
in magnitude q2

1 ∼ q2
2 ∼ q2

3 ; the second, asymmetric, happens when one of
the photon momenta is much smaller than the other two. The asymmetric
limit can be analyzed in a simple way using the operator product expansion.
In addition, this limit is important because it helps to identify the pole-like
structures in the OPE amplitudes and in this way connect the OPE to phe-
nomenological models of the light-by-light scattering. Schematically,

AOPE ∼ c

q2
→ c

q2 − M2
, (6.17)

where M is the mass of the meson with appropriate quantum numbers.

6.4.1 Operator Product Expansion and Triangle Amplitude

Since the light-by-light scattering amplitude is symmetric with respect to
photon permutations, we can study the asymmetric kinematic configuration
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assuming that q2
1 ≈ q2

2 � q2
3 . In this regime, we begin with the well-known

OPE (see e.g. [18]) for the product of two electromagnetic currents that carry
the largest momenta q1, q2,

∫
d4xd4y e−iq1x−iq2y T {jµ(x)jν(y)} =

∫
d4z eiq3z 2εµνδρ q̂δ

q̂2
jρ
5 (z) + · · · .

(6.18)

Here, jρ
5 = q̄ Q̂2γργ5 q is the axial current, where different flavors enter with

weights proportional to squares of their electric charges, q3 = −q1 − q2 and
q̂ = (q1 − q2)/2 ≈ q1 ≈ −q2 . We retain only the leading (in the limit of large
Euclidean q̂) term in the OPE associated with the axial current jρ

5 ; the ellipsis
in (6.18) stands for sub-leading terms suppressed by powers of ΛQCD/q̂. The
momentum q1 + q2 = −q3 flowing through j5

ρ is assumed to be much smaller
than q̂. As a side remark, note that (6.18) has been applied earlier in various
situations; for example, the matrix element of (6.18) between the pion and
the vacuum states gives the asymptotic behavior of the π0γ∗γ∗ amplitude at
large photon virtualities [19].

In what follows, we use matrix elements of (6.18) to connect the hadronic
light-by-light scattering amplitude with the QCD prediction. For this reason,
it is convenient to write (6.18) in a way that facilitates such connection. To
this end, we express the axial current in (6.18) as a linear combination of axial
currents with definite SU(3) quantum numbers. In particular, we introduce
the isovector, j

(3)
5ρ = q̄λ3γργ5q, hypercharge, j

(8)
5ρ = q̄λ8γργ5q, and the SU(3)

singlet, j
(0)
5ρ = q̄γργ5q, currents, and write

j5ρ =
∑

a=3,8,0

Tr [λaQ̂2]
Tr [λ2

a]
j
(a)
5ρ , (6.19)

where λ0 is the unity matrix.
Since the dependence of the product of the two vector currents on the

largest momenta q1,2 is factored out in (6.18), the next step is to find the
dependence of the light-by-light scattering amplitude on the momentum q3.
This dependence is given by the amplitudes T

(a)
γρ that involve axial currents

j
(a)
5ρ and two electromagnetic currents, one with momentum q3 and the other

one (the external magnetic field) with the vanishing momentum

T (a)
µ3ρ = i 〈0|

∫
d4z eiq3zT{j(a)

5ρ (z) jµ3(0)}|γ〉 . (6.20)

We have discussed the triangle amplitudes for such kinematics in Chap. 5
and much of what has been said there applies to the discussion in this sec-
tion. In Chap. 5 we have shown that T

(a)
µ3ρ can be written in terms of two

independent amplitudes, w
(a)
L and w

(a)
T ,
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T (a)
µ3ρ = − ieNcTr [λaQ̂2]

4π2

{
w

(a)
L (q2

3) q3ρq
σ
3 f̃σµ3

+ w
(a)
T (q2

3)
(
−q2

3 f̃µ3ρ+q3µ3q
σ
3 f̃σρ−q3ρq

σ
3 f̃σµ3

)}
. (6.21)

The first (second) amplitude is related to the longitudinal (transversal) part
of the axial current, respectively. In terms of hadrons, the invariant function
wL(T) describes the exchanges of pseudoscalar (pseudovector) mesons.

In perturbation theory, wL,T are computed from triangle diagrams with
two vector currents and an axial current. For massless quarks, we obtain

w
(a)
L (q2) = 2w(a)

T (q2) = − 2
q2

. (6.22)

An appearance of the longitudinal part is the signature of the axial Adler-
Bell-Jackiw anomaly [20]. Although perturbation theory is only reliable for
q2 � Λ2

QCD, where it coincides with the leading term of the OPE for the time-
ordered product of the axial and electromagnetic currents, expressions for
the longitudinal functions w

(3,8)
L given in (6.22) are exact QCD results in the

chiral limit mq = 0 for non-singlet axial currents. Because both perturbative
[21] and nonperturbative [22] corrections to the axial anomaly are absent,
(6.22) is correct all the way down to small q2, where poles in q2 are associated
with Goldstone pseudoscalar mesons, π0 in w

(3)
L and η in w

(8)
L .

The absence of perturbative and non-perturbative corrections and there-
fore the possibility to use the OPE expressions for vanishing values of q2

is unique for the longitudinal part of the non-singlet axial current. For the
transversal functions wT as well as for the singlet longitudinal function w

(0)
L ,

there are higher order terms in the OPE that, upon summation, generate mass
terms that shift the pole position away from q2 = 0, 1/q2 → 1/(q2 −M2); we
discussed in detail how this happens in Chap. 5. We use such modifications of
the pole-like terms for each channel in what follows. The lightest pseudovec-
tor mesons are the a1(1260), f1(1290) and f∗

1 (1420) mesons. For the singlet
axial current, the pole in w

(0)
L is shifted to m2

η′ .
Consider a triangle amplitude for any isospin channel in the limit of large

q2, where the OPE and the perturbation theory are applicable and (6.22) is
valid. An important consequence of this equation is that triangle amplitudes
are not suppressed at large q2. In terms of hadrons it means that no form
factor is present in the hγ∗γ interaction vertex where the real photon is
soft (external magnetic field). We note that this conclusion contradicts the
common practice [3, 4, 6], rooted in the application of low-energy models to
the hadronic light-by-light scattering amplitude when, for the π0 exchange,
the form factor Fπγ∗γ(q2, 0) is introduced. Such transition form factor has
to be present when one of the photons is virtual, the other photon is on the
mass shell and the pion is on the mass shell as well. However, this is not
the kinematics that corresponds to the fermion triangle diagram in the light-
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by-light scattering amplitudes relevant for aµ computation, where the pion
virtuality is the same as the virtuality of one of the photons.

Combining (6.18–6.21), we write the light-by-light scattering amplitude
Aµ1µ2µ3γδ for q2

1 ≈ q2
2 � q2

3 in the following form

Aµ1µ2µ3γδf
γδ =

8
q̂2

εµ1µ2δρq̂
δ
∑

a=3,8,0

W (a)
{

w
(a)
L (q2

3) qρ
3qσ

3 f̃σµ3

+w
(a)
T (q2

3)
(
−q2

3 f̃ρ
µ3

+q3µ3q
σ
3 f̃ρ

σ−qρ
3qσ

3 f̃σµ3

)}
+ · · · , (6.23)

where no hierarchy between q2
3 and Λ2

QCD is assumed. The weights W (a) refer
to different SU(3) quantum numbers; they read

W (a) =

(
Tr [λaQ̂2]

)2

Tr [λ2
a]Tr [Q̂4]

; W (3) =
1
4

, W (8) =
1
12

, W (0) =
2
3

.

In the limit q2
3 � Λ2

QCD, (6.23) can be simplified using the asymptotic

expressions (6.22) for the invariant functions w
(a)
L,T. Contracting the tensor

amplitude with the photon polarization vectors and analytically continuing
to Euclidean space, we arrive at

A=
4

q2
3 q̂2

{f2f̃1}{f̃f3}−
4

q2
3 q̂4

(
{q2f2f̃1f̃f3q3}+

q2
1+q2

2

4
{f2f̃1}{f̃f3}

)
+ · · · .

(6.24)
Here, fµν

i = qµ
i εν

i − qν
i εµ

i are the field-strength tensors; braces denote either
traces of products of the matrices fµν

i or their contractions with vectors qi.
Starting from (6.24), we use Euclidean notations instead of Minkowskian

ones. The continuation to Euclidean space mostly concerns the change in
sign for all q2

i and the overall change in sign for the amplitude A, since it
involves the product of two Levi-Cevita tensors. We note that for arbitrary
q2
i , the light-by-light scattering amplitude can be written in terms of nine-

teen independent tensor structures and five independent form-factors; the
corresponding expressions can be found in [11].

6.4.2 The Model

Different terms in (6.23) can be identified with exchanges of the pseudoscalar
(pseudovector) mesons described by the functions w

(a)
L(T)(q

2
3). Extrapolating

(6.24) from q2
1,2 � Λ2

QCD to arbitrary q2
1,2, we arrive at the following model

A=APS + APV + permutations , (6.25)

where
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APS =
∑

a=3,8,0

W (a)φ
(a)
L (q2

1 , q2
2)w(a)

L (q2
3){f2f̃1}{f̃f3}, (6.26)

APV =
∑

a=3,8,0

W (a)φ
(a)
T (q2

1 , q2
2)w(a)

T (q2
3)
(
{q2f2f̃1f̃f3q3} + {q1f1f̃2f̃f3q3}

+
q2
1 + q2

2

4
{f2f̃1}{f̃f3}

)
. (6.27)

The form factors φ
(a)
L,T(q2

1 , q2
2) account for the dependence of the amplitude

on q2
1,2. Pictorially, Fig. 6.1b, these form factors can be associated with the

interaction vertex for the two virtual photons on the left hand side of the di-
agram, whereas the meson propagator and the interaction vertex on the right
hand side form the triangle amplitude described by the functions w

(a)
L,T(q2

3).
In the following sections we introduce models for these functions consistent
with the short-distance behavior of the light-by-light scattering amplitude.

Note that our model does not include explicit exchanges of vector or
scalar mesons. This is a consequence of the fact that, to leading order, the
OPE of two vector currents produces an axial vector current only. However,
the vector mesons are present in our model implicitly, through the momentum
dependence of the form factors φ

(a)
L,T as well as the transversal functions w

(a)
T .

6.5 Constraints on the Pseudoscalar Exchange

The π0 exchange provides the largest fraction of the hadronic light-by-light
scattering contribution to aµ. It is therefore important to scrutinize this com-
ponent as much as possible and ensure that it satisfies all the constraints that
follow from first principles.

As we discussed earlier, the longitudinal part of the triangle amplitude
is fixed by the ABJ anomaly. Accounting for explicit violation of the chiral
symmetry given by the small mass of the pion, we derive

w
(3)
L (q2) =

2
q2 + m2

π

. (6.28)

The ABJ anomaly also fixes the form factor φ
(3)
L (0, 0),

φ
(3)
L (0, 0) =

Nc

4π2F 2
π

, (6.29)

so that the model for the pion exchange in the light-by-light scattering am-
plitude takes the form,

Aπ0 =−NcW
(3)

2π2F 2
π

Fπγ∗γ∗(q2
1 , q2

2)
q2
3 + m2

π

{f2f̃1}{f̃f3} + permutations . (6.30)
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In spite of the fact that we refer to (6.30) as the “pion pole” contribution, it
describes the complete, on- and off-shell, light-by-light scattering amplitude
in the pseudoscalar isotriplet channel.

The πγ∗γ∗ form factor Fπγ∗γ∗(q2
1 , q2

2) is defined as

Fπγ∗γ∗(q2
1 , q2

2) =
φ

(3)
L (q2

1 , q2
2)

φ
(3)
L (0, 0)

. (6.31)

The comparison with the OPE constraint given by the relevant term in (6.23)
leads to

lim
q2�Λ2

QCD

Fπγ∗γ∗(q2, q2) =
8π2F 2

π

Nc q2
. (6.32)

Equation (6.32) is the correct asymptotics of the pion transition form factor
[19], as can be easily seen by taking the matrix element of the correlator of two
electromagnetic currents (6.18) between the vacuum and the single pion state
and using (6.35) to compute the matrix element of the axial isovector current.
We therefore conclude that the neutral pion exchange in (6.26) saturates the
corresponding short-distance QCD constraint.

This comparison also proves our previous claim that the form factor
Fπγ∗γ(q2

3 , 0) cannot be present in the amplitude (6.30); if that form factor
is introduced, the asymptotics of the light-by-light scattering amplitude be-
comes 1/q4

3 , in conflict with the 1/q2
3 behavior that follows from perturbative

QCD. This proof is, of course, equivalent to our discussion of the triangle
amplitude in Sect. 6.4.

As we mentioned earlier, the absence of the second form factor in the
amplitude (6.30) distinguishes our approach from all other calculations of
the pion-pole contribution to aµ that exist in the literature. We show below
that this feature has a non-negligible impact on the final numerical result for
the pseudoscalar contribution to the muon magnetic anomaly; the pion-pole
contribution increases, because the absence of the second form factor leads
to a slower convergence of the integral over loop momenta, making the result
larger.

Further constraints on the model follow from restrictions on the pion
transition form factor Fπγ∗γ∗ . The primary role here is played by the CLEO
measurement [23] of the reaction e+e− → e+e−π0 for q2 in the interval from
1 to 9 GeV2. Writing the pion form factor as

Fπγ∗γ∗(q2
1 , q2

2) =
4π2F 2

π

Nc

N(q1, q2)
(q2

1 + M2
1 )(q2

1 + M2
2 )(q2

2 + M2
1 )(q2

2 + M2
2 )

, (6.33)

with

N(q1, q2) = q2
1q2

2(q2
1 + q2

2) − h2q
2
1q2

2 + h5(q2
1 + q2

2) + NcM
4
1 M4

2 /4π2F 2
π ,

and fitting it to the CLEO data, Knecht and Nyffeler found [24] M1 =
769 MeV, M2 = 1465 MeV, h5 = 6.93 GeV4. The parameter h2 was not
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determined in [24] because the dominant contribution to CLEO data comes
from the kinematic configuration where one of the two photons that collide
to produce a neutral pion is quasi-real, q2

1,2 = 0. However, it is possible to
determine h2 using the following consideration.

Consider (6.33) in the symmetric limit q2
1 = q2

2 � Λ2
QCD. It is easy to

see that the non-zero h2 contributes to the 1/q4 correction to the leading
asymptotics of the pion form factor, (6.32). Such correction comes from the
twist 4 operators in the OPE of two electromagnetic currents (6.18). It was
analyzed long ago in [19] using the OPE and the QCD sum rules approaches.
The result of that analysis implies that the coefficient of the O(q−4) term in
the asymptotics of the pion form factor is numerically small; in terms of the
parametrization (6.33), this means that h2 ≈ −10 GeV2 has to be chosen.

Equations (6.30) and (6.33) completely specify the model for the pion pole
contribution that we use for numerical calculations below. Before going into
that, we mention that the numerical results seem to be fairly stable against
small modifications of the model, as long as small- and large-q2 asymptotics
are not violated. A more detailed discussion of this issue can be found in [11].

We turn to numerical consequences of the accurate matching between low-
and high-energy parts of the light-by-light scattering amplitude. A convenient
technique for numerical integration of the pion-pole light-by-light scattering
amplitude is described in [6]. Using the model for the pion-pole contribution
(6.30) with h2 = −10 GeV2, we find albl

µ [π0] = 76.5 × 10−11. Compared to
the central value albl

µ [π0] = 58× 10−11, derived in [6], we observe an increase
by, approximately, 20 × 10−11.

A similar analysis for the isosinglet channels leads to the conclusion that
these channels are saturated by η and η′ mesons; matching to perturbative
QCD asymptotics suggests that no transition form factor is present for the
soft photon interaction vertex in those cases as well. Since the isosinglet con-
tributions are smaller than that of π0, we do not use sophisticated models for
η and η′ transition form factors and estimate them using the simplest possi-
ble vector meson dominance (VMD) form factor.3 The η(η′)γ∗γ∗ interaction
vertex is normalized in such a way that the decay widths of these mesons
into two photons is correctly reproduced; this allows to account for the η−η′

mixing in a simple way. We find albl
µ [η] = albl

µ [η′] = 18 × 10−11. The sum of
the contributions from all pseudoscalar mesons (π0, η, η′) leads to the result

albl
µ [π0, η, η′] = 114(10) × 10−11 . (6.34)

The uncertainty in (6.34) is estimated as follows. We can check the accu-
racy of our model by comparing its predictions for the two-photon couplings
of the η and η′ mesons to experimental results. Because of the η − η′ mix-
ing, we expect that the sum of η(η′)γγ couplings squared is predicted by
3 The VMD form factors are inconsistent with QCD expectations when virtual-

ities of both photons become large; this, however, is largely irrelevant for final
numerical results for η and η′ contributions to the muon magnetic anomaly.
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the model more accurately than each of the couplings separately. To derive
the two-photon couplings to the pseudoscalar, we use (6.21) and (6.22). For
example, in case of the π0 meson, we consider the isovector part of the tri-
angle amplitude T

(3)
γρ . The residue at q2 = 0, corresponding to π0 pole, is the

product of two matrix elements,

〈0|j(3)
5ρ |π0〉 = 2iFπ qρ , 〈π0|jµ3 |γ〉 = −4egπγγqσ f̃σµ3 . (6.35)

Comparing with (6.21), (6.22) we derive the well-known result [20] for the
πγγ coupling

gπγγ =
NcTr [λ3Q̂

2]
16π2 Fπ

. (6.36)

In a similar way, the gη(η′)γγ coupling in the chiral limit can be derived. We
find

r =
g2

ηγγ + g2
η′γγ

g2
πγγ

= 3 , (6.37)

whereas using experimental values for the η(η′)γγ couplings we arrive at
r = 2.5(1). We use this 20% discrepancy as an error estimate on the η + η′

contribution to (6.34); this accounts for eighty percent of the whole uncer-
tainty. However, we note that the comparison between theory and experiment
seems to imply that further increase in albl

µ [π0, η, η′] is likely since the agree-
ment between “experimental” and theoretical asymptotics can be improved
by adding more pseudoscalar mesons to the model.

The central value in (6.34) is almost 40 percent larger than most of the
existing results for albl

µ [3, 4, 6]. The major effect comes from removing the
form factor from the interaction vertex of the soft photon (magnetic field)
with the pseudoscalar meson; the necessity to do that unambiguously follows
from matching the pseudoscalar pole amplitude to the perturbative QCD
expression for the light-by-light scattering. On the contrary, the error esti-
mate in (6.34) is subjective; it is based on the variation of the result when
input parameters of the model are modified. Nevertheless, we believe that
the error estimate in (6.34) adequately reflects the current knowledge of the
pseudoscalar contribution to the muon anomalous magnetic moment.

6.6 Pseudovector Exchange

In this section we discuss the pseudovector contribution to the muon anom-
alous magnetic moment given by the amplitude APV, (6.27). From (6.22),
(6.23), (6.24), we find the asymptotics of φ

(a)
T and w

(a)
T ,

lim
q2�Λ2

QCD

φ
(a)
T (q2, q2) = − 4

q4
, lim

q2�Λ2
QCD

w
(a)
T (q2) =

1
q2

. (6.38)
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As we mentioned earlier, the lightest pseudovector resonances are the a1

meson with the mass Ma1 = 1260 MeV, the f1 meson, with the mass
Mf1 = 1285 MeV and the f∗

1 meson with the mass Mf∗
1

= 1420 MeV. The
contribution of these mesons to albl

µ is cut off at the scales defined by their
masses. This suggests that the pole-like singularities in (6.24) are shifted from
zero to the masses of the corresponding pseudovector and vector mesons.

The simplest estimate of the pseudovector contribution can be obtained by
assigning equal masses to all pseudovector mesons irrespective of their SU(3)
quantum numbers. This leads to the following model for the form factors and
the structure functions, consistent with perturbative QCD constraints (6.38),

φ
(a)
T (q2

1 , q2
2) = − 4

(q2
1 + M2)(q2

2 + M2)
, w

(a)
T (q) =

1
q2 + M2

. (6.39)

Although this model is unrealistic, we use it to derive a simple analytic
result that exhibits the dependence of the pseudovector contribution on the
mass scale M . Assuming that M � m, we obtain

aPV
µ =

(α

π

)3 m2

M2
NcTr [Q̂4]

[
71
192

+
81S2

16
− 7π2

144

]
≈1010

m2

M2
× 10−11 , (6.40)

where S2 = 0.26043. Using M = 1300 MeV as an example, we obtain aPV
µ =

7 × 10−11.
Two comments about this result are appropriate. First, we compare it to

the existing estimates of the pseudovector meson contribution [3, 4]. In those
references, the results 2.5 × 10−11 and 1.7 × 10−11 have been obtained. The
difference between our result (6.40) and the results of [3, 4] can be explained
by the absence of the form factor for the γ∗γh interaction vertex in our model;
when such a form factor is introduced, our result decreases to 2.6× 10−11, in
good agreement with the estimates in [3, 4].

Also, we note that the result (6.40) exhibits strong sensitivity to the mass
of the pseudovector meson and the mass parameter in the form factor. If we
associate the mass scale M in (6.40) with the mass of the ρ-meson, the result
increases roughly by a factor 4 and becomes aPV

µ ∼ 28 × 10−2. Because of
the strong sensitivity to the mass parameter, we have to introduce a more
sophisticated model accounting for the mass differences in different SU(3)
channels.

We start with the isovector function w
(3)
T . This function describes the tri-

angle amplitude that involves the isovector axial current, the virtual photon
and the soft photon. We expect therefore that w

(3)
T (q2

3) contains two poles
with respect to q2

3 ; the first one, that corresponds to the a1(1260) pseudovec-
tor meson and the second one, that corresponds to the vector mesons ρ, ω, φ,
thereby reflecting properties of the virtual photon. Such a model was con-
structed in [25] where it was required that, for large values of q2, the equality
wL(q2) = 2wT(q2), remains valid through O(q−4) terms. This requirement
leads to
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w
((3))
T (q2

3)=
1

m2
a1

− m2
ρ

[
m2

a1
− m2

π

q2 + m2
ρ

−
m2

ρ − m2
π

q2 + m2
a1

]
, (6.41)

where we do not distinguish between the masses of ρ and ω mesons. Corre-
spondingly, the form factor φ

((3))
T (q2

1 , q2
2) becomes

φ
(3)
T (q2

1 , q2
2) = − 4

(q2
1 + m2

ρ)(q2
2 + m2

ρ)
. (6.42)

For the isoscalar pseudovector mesons f1(1285) and f1(1420) we assume
the “ideal” mixing similar to ω and φ; this assumption is consistent with
experimental data for decays of these resonances. Then, instead of the hy-
percharge and the SU(3)-singlet weights W (8) and W (0), we use

W (u+d) =
25
36

, W (s) =
1
18

, (6.43)

and the following expressions for the corresponding functions wT and φT

w
(u+d)
T (q2) =

1
m2

f1
− m2

ω

[
m2

f1
− (m2

η/5)
q2 + m2

ω

−
m2

ω − (m2
η/5)

q2 + m2
f1

]
,

φ
(u+d)
T (q2

1 , q2
2) = − 4

(q2
1 + m2

ω)(q2
2 + m2

ω)
,

w
(s)
T (q2) =

1
m2

f∗
1
− m2

φ

[
m2

f∗
1

+ m2
η

q2 + m2
φ

−
m2

φ + m2
η

q2 + m2
f∗
1

]
,

φ
(s)
T (q2

1 , q2
2) = − 4

(q2
1 + m2

φ)(q2
2 + m2

φ)
.

(6.44)

Note, that these refinements of the simple expression for the function wT

in (6.39) make the effective mass of the pseudovector meson smaller. This
leads to the increase in aPV

µ as compared to (6.40). We obtain the following
estimate

albl
µ [a1, f, f∗] = (5.7 + 15.6 + 0.8) × 10−11 = 22 × 10−11 , (6.45)

where the three terms displayed separately are due to the isovector, u + d
and s exchanges respectively.

To check the stability of the model, we consider an opposite case for the
mixing, assuming that f1 is a pure octet and f∗

1 is an SU(3) singlet meson.
The estimate for aPV

µ becomes

albl
µ [a1, f, f∗] = (5.7 + 1.9 + 9.7) × 10−11 = 17 × 10−11. (6.46)

We see that the SU(3)-singlet contribution is significant, in spite of the fact
that the corresponding masses are the largest. The reason for such a behavior
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is a stronger coupling of the SU(3)-singlet meson to two photons. Also, in
spite of a very strong redistribution between the different SU(3) channels, the
final result for the pseudovector contribution is relatively stable against such
variations of the model. We use the result for the pseudovector contribution
in (6.45) in our final estimate of albl

µ assigning ±5× 10−11 as the uncertainty
estimate.

6.7 The Pion Box Contribution

In this section we discuss another part of albl
µ frequently considered in the lit-

erature, the pion box contribution, Fig. 6.1a. This component of the hadronic
light-by-light scattering amplitude is peculiar because, being independent of
the number of colors Nc, it is enhanced by another large parameter of low-
energy QCD, 4πFπ/mπ ∼ 10.

The results for the pion box contribution to albl
µ were obtained in [3, 4];

they are albl
µ [π±] = −4.5(8.5) × 10−11 [3] and albl

µ [π±] = −19(5) × 10−11 [4].
The difference between the two results is attributed to a different treatment
of subleading terms in the chiral expansion; while the extended Nambu–
Jona-Lasinio (ENJL) model is used in [4] to couple photons to pions, the
so-called hidden local symmetry (HLS) model is used in [3].4 Although the
smallness of albl

µ [π±] shows that the chiral enhancement is not efficient for
albl

µ , strong sensitivity of the final result to a particular method of including
heavier resonances suggests that the chiral expansion per se may not be a
reliable tool to analyze the pion box contribution. If this is true, it is natural
to ask to what extent the above estimates of the pion box contribution can
be trusted. To answer this question, we investigate the pion box contribution
based on the analytic calculation of albl

µ [π±] in the framework of the HLS
model.

The use of the chiral expansion to estimate subleading O(N0
c ) contribu-

tions to albl
µ is motivated by the following considerations. If the pion box

contribution to aµ is determined by small values of virtual momenta, com-
parable to the masses of muon and pion, we can compute it by using chi-
ral perturbation theory. The leading term in the chiral expansion delivers a
parametrically enhanced contribution (α/π)3(m/mπ)2 to albl

µ , which can be
computed using the scalar QED Lagrangian for pions (6.7). The Lagrangian
(6.7) is the leading term in the effective chiral Lagrangian and, hence, terms
neglected in (6.7) are suppressed by the square of the ratio of the pion mass
to the scale of the chiral symmetry breaking. Numerically, these corrections
4 The claim in [26] and [3] that the standard VMD violates the Ward identities for

the γ∗γ∗ππ amplitude is not correct, if the VMD is implemented in the standard
way, by introducing the factor (M2gµν +qµqν)/(M2 +q2) for each photon in any
interaction vertex. The Ward identities, discussed in [3], are then automatically
satisfied.
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are expected to be small since m2
π/m2

ρ ∼ 0.04 and m2
π/(4πFπ)2 ∼ 0.025;

therefore, they should not change the scalar QED prediction by more than a
few per cent.

However, existing computations of the pion box contribution [3, 4] do not
support these expectations. On the contrary, they indicate that the scalar
QED contribution is reduced by a factor ranging from three [4] to ten [3],
when subleading terms in the chiral expansion are included. One is then in-
clined to conclude that the chiral expansion for the pion box contribution
does not work. In order to identify the reason for that, we computed sev-
eral terms of the expansion in mπ/mρ in the framework of the HLS model.
Comparing the magnitude of the subsequent terms in the expansion, we can
determine how fast the chiral expansion converges and estimate a typical
scale of the loop momentum in the pion box diagram.

As we demonstrate below, typical loop momenta in the pion box diagram
are approximately 4mπ ∼ 500 MeV � mρ; this leads to a slow convergence
of the chiral expansion and explains, to a certain extent, a very strong can-
celation between the leading order scalar QED result and the first m2

π/m2
ρ

correction. The remaining terms in the chiral expansion are smaller, although
not negligible.

We point out that large values of typical loop momenta make the use of
both, the scalar QED model (6.7) and its modifications based on the VMD,
unphysical because quality of such models deteriorates rapidly once the loop
momenta exceed the ρ-meson mass. To see that the model fails relatively
early, we consider the deep inelastic scattering of a virtual photon with large
value of q2, on a pion. The Lagrangian (6.7) then implies the dominance of the
longitudinal structure function, while QCD predicts the opposite. Modifying
the scalar QED Lagrangian (6.7) to accommodate the VMD either directly
or through the HLS model, does not fix this problem, since only an overall
factor (M2

ρ /(M2
ρ + q2))2 is introduced in the imaginary part of the forward

scattering amplitude. This mismatch implies that models used to compute
the pion box contribution become unreliable once the energy scale of the
order of the ρ-meson mass is passed. Since 4mπ is only marginally smaller
than mρ, it is hard to tell how big a mistake we make by ignoring the fact
that the hadronic model has an incorrect asymptotic behavior.

The above considerations suggest that while it is most likely that the pion
box contribution to aµ is relatively small, as follows from a strong cancela-
tion of the two first terms in the chiral expansion, the precise value of this
contribution is impossible to obtain, using simple VMD and the like models.

The analytic calculation of the pion box contribution within the HLS
model [3] was performed in [11] and we refer to that reference for details.
Here, we quote the result of that analysis. The pion box contribution to the
muon anomalous magnetic moment is written as

albl
µ [π±] =

(α

π

)3 ∞∑
i=0

fi(m,mπ)
(m2

π

m2
ρ

)i

. (6.47)
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The functions fi for i = 0, ..., 4 can be found in [11]. For numerical estimates
we use mπ = 136.98 MeV, m = 105.66 MeV and mρ = 769 MeV. With these
input values, (6.47) evaluates to

albl
µ [π±] = −0.0058

(α

π

)3

= (−46.37+35.46+10.98−4.70−0.3+...) × 10−11

= −4.9(3) × 10−11 , (6.48)

where subsequent terms in (6.48) correspond to subsequent terms in (6.47).
The feature of the result (6.48) which has to be noticed is the strong

cancelation between the leading and the two subleading terms in the chiral
expansion (6.48); the cancelation is so strong that the final result is almost
entirely determined by the fourth, O(m6

π/m6
ρ), term in the series. It is the

strong cancelation between the leading terms in the chiral expansion that
ensures the smallness of the final value of the pion pole contribution to aµ.

We can use (6.48) to determine typical loop momenta in the pion box
contribution. For simplicity, we assume mπ = m and obtain

albl
µ [π±,mπ = m] ≈ (−69 + 54 + 18 − 8 − 1 + ..) × 10−11 . (6.49)

We also assume that this contribution to aµ can be described by the chiral
expansion with the effective scale µ. This scale characterizes the typical vir-
tual momentum in the pion box diagram. Motivated by chiral perturbation
theory, we make an Ansatz

albl
µ [π±,mπ = m] ≈

(α

π

)3 m2
π

µ2

(
c1 + c2

µ2

m2
ρ

+ c3
µ4

m4
ρ

+ ...
)

. (6.50)

We further assume that all the coefficients in the above series are numbers of
order one. Setting c1 = 1 in the above equation, we determine the value of µ
by comparing it with the first term in (6.49). We obtain µ = 4.25mπ. Then,
(6.50) becomes

albl
µ [π±,mπ = m] ≈ (−69 + 41c2 + 24c3 + 14c4 + ...) × 10−11 , (6.51)

which implies that with c2 ≈ 1.3, c3 ≈ 0.75 and c4 ≈ −0.6, we can fit (6.49).
The above calculation suggests a simple way to understand the magnitude

of the the chirally suppressed terms in (6.48). Since µ ≈ 4mπ ≈ 550 MeV �
mρ, the chiral expansion converges, but rather slowly. Therefore, calculations
based on the chiral expansion make sense in principle, but are of little help
in practice because the results are very sensitive to higher order power cor-
rections. Since none of the models, be it the HLS model or the VMD model,
can claim full control over higher order power corrections in the chiral expan-
sion, the exact result for the pion box contribution is not very meaningful.
However, the fact that the chiral expansion is applicable suggests that the
strong cancelation between the leading and the first subleading terms in the
chiral expansion of albl

µ [π±] may be a generic, model-independent feature.
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Therefore, we find it reasonable to believe that the pion box contribution
to albl

µ is much smaller than the estimate based on the chirally enhanced
scalar QED result for the pions. However, once this point of view is accepted,
the chiral enhancement looses its power as the theoretical parameter and the
pion box contribution becomes just one of many O(N0

c ) contributions about
which nothing is known at present. Therefore, for the final estimate of albl

µ

we use
a
lbl,N0

c
µ = 0(10) × 10−11 , (6.52)

where the error estimate is very subjective.

6.8 The Hadronic Light-by-light Scattering
Contribution to aµ

In this section we summarize the results for the hadronic light-by-light scat-
tering contribution to the muon magnetic anomaly. We have presented the
minimal large-Nc model for the hadronic light-by-light scattering amplitude
that incorporates both chiral and short-distance QCD constraints and pro-
vides a suitable foundation for numerical estimate of albl

µ . We emphasize,
however, that even with all the constraints included, the calculation of albl

µ

is a guesstimate and, hence, some degree of subjectivity is involved in de-
riving the answer. This, however, is inevitable when strong interactions are
involved. We take [11]

albl
µ = 136(25) × 10−11 , (6.53)

as an estimate of the hadronic light-by-light scattering contribution to the
muon anomalous magnetic moment. We use this number in the next chapter,
where we derive the theoretical prediction for the muon magnetic anomaly
in the Standard Model. Before that, we make a few comments on the result
in (6.53).

We point out that the result in (6.53) is approximately 50 percent larger,
than the value ∼ 80(30) × 10−11 obtained in [6, 3, 4] and about 25 percent
larger than albl

µ = 108 × 10−11, obtained in [9]. The error estimate in (6.53)
includes the sum of O(N0

c ) error estimate in (6.52) as well as 15 × 10−11 as
an error estimate for the sum of the pseudoscalar and the pseudovector ex-
changes. The shift in the central value of albl

µ , compared to other results in the
literature, is a consequence of a better matching of the low-energy hadronic
models and the short-distance QCD achieved within the model described in
the main body of this chapter.

Finally, we note that (6.53) can be checked for consistency in the following
way. We can estimate the light-by-light scattering contribution as a sum of
two terms – the pion-pole contribution, to account for low-momentum region
and the massive quark box contribution, to account for large-momentum
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regime. If the quark masses are chosen to be mq = 300 MeV, the result for
the quark box contribution is ∼ 60 × 10−11. Combining this with the pion
pole contribution, we get the estimate albl

µ ≈ 120×10−11. Although the above
consideration is hardly a proof, it does indicate the tendency of the result
for albl

µ to increase once the contribution of the large-momentum region is
accounted for in the correct way.
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7 Standard Model Value
for the Muon Magnetic Anomaly

In this section we derive the Standard Model prediction for the muon anom-
alous magnetic moment by combining results given in various places in the
text. We write the anomalous magnetic moment as

ath
µ = aQED

µ + aEW
µ + ahvp

µ + ahvp,NLO
µ + albl

µ , (7.1)

and use

aQED
µ = 116 584 720(1) × 10−11 ,

aEW
µ = 154(1)(2) × 10−11 ,

ahvp
µ = 6934(63) × 10−11, ahvp,NLO

µ = −98(1) × 10−11 ,

albl
µ = 136(25) × 10−11 .

(7.2)

The references to the original papers from where these contributions are
extracted can be found in the corresponding chapters. Evaluating the sum in
(7.1), we obtain

ath
µ = 116 591 846(25)(63) × 10−11 , (7.3)

where the first error refers to the hadronic light-by-light scattering contribu-
tion to aµ and the second combines all other errors in quadratures.

The results of the experimental measurements of the muon anomalous
magnetic moment are summarized in Table 7.1. The two most recent BNL
results [9, 10] dominate the world average

aexp
µ = 116 592 082(55) × 10−11 . (7.4)

The difference between the experimental result for aµ (7.4) and the cor-
responding theory value (7.3) is

aexp
µ − ath

µ = (237 ± 55exp ± 25lbl ± 63th) × 10−11 . (7.5)

If the errors in (7.5) are combined in quadratures, the difference between the
experiment and the theory amounts to 2.7 standard deviations.

At the moment, there is no consensus on whether this 2.7σ discrepancy
is a signal of new physics or an indication that the Standard Model theory of

K. Melnikov and A. Vainshtein: Theory of the Muon Anomalous Magnetic Moment
STMP 216, 145–149 (2006)
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Table 7.1. Experimental results for the muon magnetic anomaly

CERN cyclotron 1961 [1] µ+ 0.001145(22)

CERN cyclotron 1962 [2] µ+ 0.001165(5)

1st muon storage ring at CERN 1966 [3] µ− 0.001165(3)

1st muon storage ring at CERN 1968 [4, 5] µ+ 0.00116616(31)

2nd muon storage ring at CERN 1975-77 [6] µ± 0.001165923(8)

BNL, 1998 data 2000 [7] µ+ 0.0011659191(59)

BNL, 1999 data 2001 [8] µ+ 0.0011659202(15)

BNL, 2000 data 2002 [9] µ+ 0.00116592039(84)

BNL, 2001 data 2004 [10] µ− 0.00116592143(83)

World average 2004 [10] µ± 0.00116592082(55)

the muon magnetic anomaly requires further development. We tend to believe
that the Standard Model theory has to be scrutinized further before resorting
to new physics explanations. In this regard, further improvements in under-
standing the hadronic light-by-light scattering are necessary; in particular,
this concerns a careful assessment of its uncertainty.

On the experimental side it is very desirable that small discrepancies in
the e+e− data from CMD-2, SND and KLOE are settled. A new measurement
of the e+e− hadronic annihilation cross-section in the energy range 1.4 GeV−
2 GeV is required to understand the difference between inclusive and exclusive
measurements. Hopefully, such a measurement can be done with the radiative
return method at B-factories. The resolution of the puzzling discrepancy
between the τ data and the e+e− data is probably not crucial for the physics
of the muon magnetic anomaly given multiple confirmations of the low-energy
e+e− data. The resolution of this puzzle is, however, important for better
understanding the isospin symmetry violations in low-energy hadron physics.

The largest uncertainty in the theoretical prediction for the muon anom-
alous magnetic moment is related to the hadronic vacuum polarization. In
this regard, it is interesting to ask if other precision observables are sensi-
tive to the same non-perturbative input and, hence, if they can be used to
cross-check the values for the hadronic vacuum polarization employed for aµ

evaluation. Two such observables were recently discussed in the literature
[11, 12].

Marciano points out [11] that larger values of ahvp
µ , required for the agree-

ment with aexp
µ , imply lower values of the Higgs boson mass, within the

context of the precision electroweak physics. To understand the connection,
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note that for computing electroweak corrections within the Standard Model,
we require three input parameters, in addition to quark masses and the mass
of the Higgs boson. A convenient choice is the electromagnetic coupling con-
stant α, the Fermi constant GF and the mass of the Z-boson MZ since all of
these parameters are measured with the highest precision. Once the values
for these parameters are provided by experiment, other physical quantities
become theoretically computable. Comparing theoretical predictions with ex-
perimental measurements, we may constrain the unknown Standard Model
parameters, in particular the Higgs boson mass.

The hadronic vacuum polarization influences the precision electroweak
observables through its contribution to the running of the electromagnetic
coupling constant, from the low scale where conventional α is defined, to MZ

which is the appropriate scale for electroweak measurements. We define

α(MZ) =
α

1 − ∆αlept − ∆αhadr
, (7.6)

where
∆αlept, hadr =

α

3π

∫
ds

Rlept, hadr

s(M2
Z − s)

. (7.7)

Values of ∆αlept,hadr are related to leptonic and hadronic vacuum polarization
contributions to the running of the coupling constant. In what follows, we
only discuss the hadronic vacuum polarization since the leptonic vacuum
polarization is known precisely. The magnitude of ∆αhadr can be estimated
from both the e+e− and the τ data. When appropriate isospin corrections
are applied, the τ data leads to a larger value of ∆αhadr

∆αhadr =

{
0.02767(16), e+e− ;

0.02782(16), τ .
(7.8)

The difference between the two values for ∆αhadr is less than one standard
deviation, so the evidence of the disagreement is not very impressive,1 but it
leads to interesting consequences. Consider the prediction for sin2 θW within
the Standard Model

sin2 θW (MZ)MS = 0.23101 − 2.77 · 10−3

[( mt

178GeV

)2

− 1
]

+9.69 · 10−3

(
∆αhadr

0.02767
− 1

)
+ 4.908 · 10−4 ln

mH

100GeV

+3.43 · 10−5 ln2 mH

100GeV
. (7.9)

1 The difference between the e+e− and the τ data leads to a stronger disagreement
in aµ than in α(MZ) because the latter is less sensitive to the e+e− hadronic
annihilation cross-section at low energies.



148 7 Standard Model Value for the Muon Magnetic Anomaly

It follows from (7.9) that for a given value of sin2 θW and the mass of the
top quark mt, a larger value of ∆αhadr implies a smaller value for the Higgs
boson mass mH . Marciano finds [11] mH = 71+48

−32 GeV, by using the ∆αhadr

determined from the e+e− data and mH = 64+44
−30 GeV, by using the τ data.

Although both values of the Higgs boson mass are not in contradiction with
the LEP bound mH ≥ 114 GeV, a correlation between a better agreement of
ath

µ with the experimental value and a smaller value of the Higgs boson mass
is interesting.

Another observation is due to Maltman [12]. It is known that data on τ
decays provides one of the most precise determinations of the strong coupling
constant αs(MZ) through the theoretical prediction for Γ (τ → ντ +hadrons)
computed within the framework of the perturbative QCD and the operator
product expansion. It gives αs(MZ) = 0.120(2). On the other hand, one
can perform the same analysis [12] using the spectral density from e+e− →
hadrons; this leads to the result αs(MZ) = 0.115(2). The difference between
the two values for αs is yet another reflection of the difference between the
e+e− and the τ data.

The two values of αs can be compared to other determinations of the
strong coupling constant, unrelated to the e+e− and τ data. Comparing
the above determinations of αs(MZ) with the world average 2 taken to be
0.120(2), Maltman concludes that the e+e− data is disfavored. Note, how-
ever, that this conclusion depends on the exact value of αs that is assumed
for the world average which consists of many measurements with different
status of systematic errors. For example, if we select αs measurements that
have total error less than 8 × 10−3 and for which NNLO description in per-
turbative QCD is available, we obtain αs(MZ) = 0.1180(25). Such value of
αs lies between the value of αs obtained from the e+e− and the τ data and
hence a definite conclusion is not possible. Nevertheless, the above consider-
ations point out that improved agreement between the world average value
of αs and the value of αs determined from the low-energy e+e− data, may
be achieved if the e+e− spectral densities become larger; this would auto-
matically entail the increase in the theoretical value of the muon anomalous
magnetic moment and a smaller disagreement with the experimental value.

The two examples discussed above lead to contradictory conclusions in
as much as the consistency of the muon anomalous magnetic moment with
other precision data is concerned. While the Higgs mass constraint indicates
that a larger value of ath

µ pushes mH lower to an extent that a conflict with
the direct bound becomes a possibility, the world average value of the strong
coupling constant seems to require a larger value of ath

µ . Whether or not these
contradictions point to physics beyond the Standard Model as a solution is
open to debate. However, it is undeniable and intriguing that, for the last few
years, the theoretical estimate of the muon magnetic anomaly is persistently
2 Values of αs(MZ) obtained from τ decays and from heavy quarkonia spec-

troscopy are not included when the average is computed.
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lower than the experimental value. It is therefore interesting to investigate the
consequences of this discrepancy, assuming that its cause is physics beyond
the Standard Model. We review some of new physics explanations of the g−2
discrepancy in the next chapter where we show that its magnitude is natural
in many new physics models.
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8 New Physics and the Muon Anomalous
Magnetic Moment

In this chapter we review various scenarios of physics beyond the Standard
Model that may explain the difference between the measured value of the
muon anomalous magnetic moment and the Standard Model expectation for
this quantity. It was realized long ago that the muon anomalous magnetic
moment provides a powerful tool for studying the energy frontier. For exam-
ple, in late 1950s, the interest in the muon magnetic anomaly was driven by
a quest to understand why the muon is heavier than the electron while all
other properties of the two leptons are the same. It was suggested that the
muon magnetic anomaly is a particular suitable observable since it can be
used to probe the validity of QED up to the energy scale of about few GeV,
the energy frontier at that time.

The current situation with the muon anomalous magnetic moment is sim-
ilar although, clearly, energy scales that are involved are quite different. Col-
lider searches for beyond the Standard Model physics and good agreement
between precision electroweak measurements and the Standard Model imply
that new phenomena should appear at energy scales higher than 0.5−1 TeV.
It is expected that new particles with masses in this range will be accessible
to the Large Hadron Collider (LHC) that will start operating in 2007. There
is no shortage of suggestions of what the physics beyond the Standard Model
might be [1], but all these ideas have to await experimental confirmation.

The muon anomalous magnetic moment constrains new physics indirectly,
through contributions of virtual, yet undiscovered particles. If an allowed
range of the difference aBSM

µ = aexp
µ − ath

µ is established, it can be used to
constrain the parameter space of a particular realization of the beyond the
Standard Model physics. Because the muon anomalous magnetic moment
is a single low-energy observable, it can not be used to uniquely identify
the physics beyond the Standard Model, but this can probably be achieved
in a combination with other low-energy observables and direct searches at
colliders.

Shortly after first results of the Brookhaven experiment E821, announced
in 2001, indicated a possible disagreement between aexp

µ and ath
µ , various

models of beyond the Standard Model physics were invoked to explain it.
These models include supersymmetry [2, 3], extensions of the Higgs sector of
the Standard Model [4], models with additional gauge bosons, such as left-
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right symmetric models [5], compositeness, extra dimensions [6, 7, 8, 9], and
others. In what follows, we briefly review some of these explanations.

Before doing so, it is useful to fix the allowed new physics contribution to
aµ, consistent with the current data and the theoretical calculations of the
muon magnetic anomaly in the Standard Model. In this chapter, we assume
that at the 95% confidence level, the new physics contribution should fall
into the interval (cf. (7.5))

40 × 10−11 < aBSM
µ < 440 × 10−11 . (8.1)

We note that for constraining new physics, it is crucial that aBSM
µ has the

lower bound which implies that new physics can not decouple. Unfortunately,
such a conclusion is only valid if, as in (8.1), we consider the 95% confidence
level (2σ) interval; when the 3σ interval is considered, the lower bound is
negative and aBSM

µ = 0 becomes consistent with the data.

8.1 Supersymmetry

Supersymmetry (SUSY) extends in a non-trivial fashion space-time symme-
tries (the Poincare group of translations and rotations in Minkowski space) to
include generators that relate bosons and fermions. Its practical consequence
is rather curious – every particle P must have a superpartner P̃ whose spin
differs from that of P by one half and whose mass equals to that of P . In
particular, in a supersymmetric world, there would be such scalar particles
as sleptons and squarks, partners of ordinary quarks and leptons, partners of
gauge bosons gauginos and others. Such particles are not observed in Nature;
hence, if the supersymmetry has anything to do with the real world, it has to
be broken in such a way that superpartners of all known elementary particles
are sufficiently heavy to be unobservable at existing colliders. Nevertheless, if
indeed present in Nature, superpartners of ordinary particles may contribute
to low-energy observables through quantum loops. Because the muon anom-
alous magnetic moment is one of the most precisely measured low-energy
observables, it might be a good place to detect superpartners. We discuss
implications of supersymmetry for the muon anomalous magnetic moment in
Sect. 8.1.2. Before that, we describe peculiar implications of the unbroken su-
persymmetry for the anomalous magnetic moment of an elementary fermion
in supersymmetric extension of the U(1) gauge theory.

8.1.1 The Anomalous Magnetic Moment
in Supersymmetric QED

Consider supersymmetric version of QED (SQED). For the sake of argument,
we assume that the theory only contains muons as matter fermions. The muon
(µ−) has two spin states; then, supersymmetry requires two bosons, smuons,
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as superpartners. One smuon, S, is a scalar, another, P , is a pseudoscalar.
A superpartner of photon, photino, is represented by the Majorana fermion
field λα. The Lagrangian of the theory reads [10]

LSQED = LQED + LSUSY , (8.2)

where
LQED = −1

4
FµνFµν + ψ̄(iD̂ − m)ψ , (8.3)

with Dµ = ∂µ − ieAµ, is the ordinary QED Lagrangian and

LSUSY =
1
2

λ̄ i∂̂ λ + |DµS|2 + m2|S|2 + |DµP |2 + m2|P |2

− ie
[
ψ̄(S + iγ5P )λ − λ̄

(
S+− iγ5P

+
)
ψ
]
− e2

2
(
S+P − SP+

)2
.

(8.4)

describes additional terms required to make LSQED supersymmetric. Note
that as the consequence of supersymmetry, all couplings in the theory are
defined through the muon electric charge e.

The supersymmetric generalization of QED has many interesting proper-
ties. For example, supersymmetry imposes strict restrictions on the renormal-
ization properties of the theory; in general, ultra-violet properties of super-
symmetric theories are better, than in ordinary gauge theories. The generic
reason for this is the cancelation between Feynman graphs present in ordinary
QED with “new” Feynman graphs that involve superpartners.

The consequences of these fact are numerous. For example, it turns out
possible to compute an exact β-function for such theories [11]. Also, masses
of scalar particles become stable under radiative corrections; this means, that
the quadratic divergence that is present in the self-energy operator of a scalar
particle in ordinary QED disappears in the supersymmetric version of the
theory. It is interesting to point out that this feature of the theory is exploited
in an attempt to extend the Standard Model in a way that allows to solve
the so-called hierarchy problem.

Another feature of SQED is, perhaps, less known but it is quite interest-
ing as well. It was pointed out by Ferrara and Remiddi that in SQED the
matter fermion (muon, in our case) can not acquire the anomalous magnetic
moment [12]. They proved this fact by demonstrating that the magnetic di-
pole moment operator, Fµνψ̄σµνψ is not consistent with SUSY. The result is
valid through all orders in the coupling constant. We will not reproduce here
the general proof, limiting ourselves to a demonstration of the cancelation at
the one-loop level.

From the Lagrangian of SQED (8.2) it is clear that there are three dia-
grams that contribute to the muon anomalous magnetic moment. The first
one is the standard QED contribution studied in Chap. 2. The other two
originate from the muon-smuon-photino vertices in LSUSY. Such diagrams
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are shown in Fig. 8.1a, where µ̃ = P or S and χ0 = λ. The vertex functions
(cf. (2.3)) for the two diagrams are

ΓS,µ = ie2

∫
d4k

(2π)4
k̂ (pµ

2 + pµ
1 − 2kµ)

k2((p2 − k)2 − m̃2)((p1 − k)2 − m̃2)
,

ΓP,µ = −ie2

∫
d4k

(2π)4
γ5k̂γ5 (pµ

2 + pµ
1 − 2kµ)

k2((p2 − k)2 − m̃2)((p1 − k)2 − m̃2)
,

(8.5)

where m̃ stands for the smuon mass that we treat as a free parameter for the
time being. Of course, exact supersymmetry requires m̃ = m .

Using γ5k̂γ5 = −k̂, we observe that the two vertex functions are identical.
To compute the smuon contribution to the muon anomalous magnetic mo-
ment, we follow the calculation discussed in Sect. 2.3. Neglecting terms that
do not contribute to the Pauli form factor, we derive

Γ µ̃,µ = Γ S,µ + ΓP,µ aµ=
α

4π

(pµ
2 + pµ

1 )
2m

G(m̃/m) , (8.6)

where

G(m̃/m) = 2

1∫

0

dx
x(1 − x)

(m̃/m)2 − x
. (8.7)

Using the identity

ūp2γ
µup1 = ūp2

[
pµ
2 + pµ

1

2m
+

iσµνqν

2m

]
up1 , (8.8)

where q = p2−p1, we read off the smuon contribution to the muon anomalous
magnetic moment from (8.6). We find

aµ̃
µ = − α

2π
G(m̃/m) . (8.9)

The muon anomalous magnetic moment in SQED in the one-loop approx-
imation is given by the sum of aµ̃

µ and the Schwinger correction (2.27),

aSQED
µ =

α

2π
(1 − G(m̃/m)) . (8.10)

The exact supersymmetry requires the equality of the muon and smuon
masses. Since G(1) = 1, we find that aSQED

µ = 0 in case when the super-
symmetry is unbroken.

An absence of the anomalous magnetic moment is a particular example
of numerous SUSY constraints. Generalizations [12, 13] include vanishing of
the Pauli form factor FP (q2) not only at q2 = 0 but at arbitrary q2, as
well as specific relations for higher electric and magnetic multipole moments
of elementary particles with spin s > 1/2. Further discussion of this issue
requires a working knowledge of supersymmetric gauge theories and, for this
reason, we do not pursue it here.
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What happens when the smuon and muon masses are different? As we
mentioned already, supersymmetry has to be broken if supersymmetric the-
ories are to remain phenomenologically viable; moreover m̃ � m is required
by existing experimental bounds. In that limit, G(z) ≈ 1/(3z2), so that the
contribution of smuons to the muon anomalous magnetic moment reads

aµ̃
µ ≈ − α

6π

m2

m̃2
. (8.11)

Although the sign of aµ̃
µ is opposite to what is required for aBSM

µ , (8.1), it
is interesting to estimate the magnitude of aµ̃

µ. To have |aµ̃
µ| ≈ 200 × 10−11

we need m̃ ≈ 30 GeV. Smuons with the mass 30 GeV are excluded phe-
nomenologically; the current lower bound on slepton masses is m̃ >∼ 100 GeV.
Nevertheless, it is interesting to observe that even in simplest supersymmetric
extension of QED, the masses of superpartners required to obtain aBSM

µ (8.1)
are reasonably close to current exclusion limits. As we discuss in Sect. 8.1.2,
more sophisticated supersymmetric models are totally capable of explaining
the current discrepancy in the muon magnetic anomaly and, simultaneously,
escape all other phenomenological constraints.

8.1.2 Supersymmetric Extensions of the Standard Model

In supersymmetric extensions of the Standard Model, the muon anomalous
magnetic moment receives contributions from two diagrams, one with smuon
and neutralino and the other with chargino and sneutrino, Fig. 8.1. In princi-
ple, there is also a new contribution due to modification of the Higgs sector in
supersymmetric extensions of the Standard Model, but it is negligible given
existing constrains on the Higgs boson masses. The Higgs contribution to aµ

may become important once the mass constraints are lifted; this is possible
in the two-Higgs doublet model that is described in Sect. 8.4.

For a general supersymmetric model, asusy
µ depends on seven parameters;

gaugino masses M1,2 for two electroweak gauge groups UY(1) and SUL(2),
the ratio of vacuum expectation values of up and down Higgs doublets
tan β = vu/vd, the µ-parameter (µHuHd term in the superpotential), Aµ –
the coefficient of the relevant Yukawa term in the soft SUSY breaking La-
grangian and mL,R, the masses of left- and right-handed smuons. Calculation
of asusy

µ in a general framework of the Minimal Supersymmetric Standard
Model (MSSM) was performed in [14]. Such computation requires diagonal-
izing mass matrices for smuons and gauginos; as a consequence, the general
result for asusy

µ is somewhat convoluted. However, it is easy to display its im-
portant features and to understand the impact that precise measurement of
the muon anomalous magnetic moment has on restricting SUSY parameter
space.

In the context of supersymmetric contributions to the muon anomalous
magnetic moment, it was realized early on that asusy

µ scales as tan β, when
tan β is large [15]. Henceforth, for large tanβ, the supersymmetric contribu-
tions to the muon anomalous magnetic moment can become large and the
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µ̃

χ0

χ−

ν̃

Fig. 8.1. Supersymmetric contributions to the muon anomalous magnetic moment

range, allowed for aBSM
µ , can efficiently constrain such regions of the SUSY

parameter space.
When tanβ is large and masses of all sparticles are set to a common

value Msusy, the correction to the muon anomalous magnetic moment can be
written in a simple form [14]

asusy
µ =

sgn(µ)m2 tan β

192π2M2
susy

(
g2
1 + 5g2

2

)
≈ α(MZ)

8π sin2 θW

sgn(µ)m2 tan β

M2
susy

. (8.12)

The dominant contribution to asusy
µ is due to chargino-sneutrino diagram

whereas the neutralino-smuon diagram gives a contribution that is smaller,
approximately, by an order of magnitude. As expected, asusy

µ scales as
1/M2

susy; also, it is proportional to tanβ and to the sign of the µ-parameter.
An immediate consequence of (8.12) is that if supersymmetry is to explain

the range of aBSM
µ given in (8.1), the µ parameter has to be positive. Using

(8.1, 8.12), we derive a useful relation between the scale of sparticle masses
Msusy and tanβ

Msusy ≈ 88 GeV

√
tan β

200 × 10−11

aBSM
µ

. (8.13)

This equation shows the order of magnitude that sparticle masses should
have if aBSM

µ in the interval (8.1) is to be explained by supersymmetry. For
example, (8.13) shows that for the central value of aBSM

µ = 240 × 10−11, the
direct LEP limit on sparticle masses Msusy > 100 GeV implies an absolute
lower bound tanβ > 1.4. Of course, when the full range of aBSM

µ is considered,
the bounds on Msusy and tanβ become loose; nevertheless, as a matter of
principle, they exist. The above discussion should be taken only as indicative;
a more careful analysis is required to achieve a definite conclusion about the
impact of the aµ measurement on the supersymmetric parameter space.

Before presenting the results of the comprehensive analysis, we remark
that an unconstrained SUSY gives a possibility to explain aBSM

µ by supersym-
metric contributions that are not enhanced by the large tan β. An example of
this situation [16] is the limit where the charginos are decoupled and the neu-
tralinos are bino-like. This can be realized by assuming M1 ∼ mµ̃ 	 M2, µ. In
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this approximation, the chargino-sneutrino diagram decouples and the major
contribution to asusy

µ comes from smuon-neutralino diagram that gives

asusy
µ ∼ α(MZ)

12π sin θ2
W

Re [µ tan β − A1] m2M1

m4
µ̃

. (8.14)

Numerically, this contribution can be quite large, to allow for asusy
µ ∼ 200 ×

10−11 even for moderate tan β, provided that the smuon masses are not very
large. However, such solution is not always possible since in specific model of
supersymmetry breaking the gaugino masses are proportional to each other
and the chargino contribution can not be decoupled without decreasing the
neutralino-smuon contribution to an unacceptably small value.

To analyze what the allowed range for aBSM
µ (8.1) implies for super-

symmetric parameter space, one can either scan over the seven-dimensional
subspace of the general supersymmetric parameter space or consider spe-
cific models of supersymmetry breaking, for example minimal supergravity
(mSUGRA), where the supersymmetry breaking is introduced in such a way
that the number of independent parameters is reduced. In addition to reduc-
ing the dimensionality of the parameter space, the relations between different
supersymmetric parameters lead to stronger correlations of aµ with other low
and high energy observables. For example, since aµ is not directly sensitive
to squarks and gluinos, in unconstrained MSSM there is little correlation
between the muon anomalous magnetic moment and the branching ratio of
b → s + γ. However, in mSUGRA a strong correlation appears because at
the scale of supersymmetry breaking, there is a single mass parameter for all
scalars (squarks and sleptons) and another single mass parameter for gaug-
inos (gluinos, binos, winos). We will illustrate the two possible approaches
to the analysis of the supersymmetric contributions to the muon magnetic
anomaly by considering the unconstrained SUSY [17] and the mSUGRA [18]
cases.

In [17], the analysis is performed under the following assumptions: i) all
supersymmetric parameters relevant for the muon magnetic anomaly are real;
ii) |µ| > M2; iii) the gaugino masses satisfy M1 = 0.5 M2; iv) the scalar cubic
coupling of smuons to the Higgs boson is bounded from above |Aµ| < 3|mµ̃|
and v) the smuon masses are larger than the direct LEP limit [20] mµ̃ >
95 GeV. It is also assumed in [17] that −360.8×10−11 < asusy

µ < 860×10−11

which, at the time when [17] was written, used to be a 5σ allowed region
(currently, it corresponds to the 6σ region). It is interesting that even such
loose bounds on asusy

µ in a fairly general SUSY framework lead to exclusion of
some regions of the parameter space that no other observable or experiment
has probed so far.

In Fig. 8.2 the exclusion regions for various values of tanβ are shown
[17]; the SUSY breaking parameters satisfy the relations displayed above.
The constraint from the muon magnetic anomaly affects sparticle masses of
about few hundred GeV, in accord with the estimate given in (8.13). Note,
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Fig. 8.2. The exclusion plot from for µ < 0 and other parameters as described
in the text. The shaded region is excluded by direct LEP limit. Reprinted with
permission from [17] (Copyright (2003) by the American Physical Society)

that from aµ alone, there is no upper bound on chargino masses; this part
of the parameter space is excluded because for large chargino masses, one of
the smuons becomes lighter than the direct bound from LEP. As emphasized
in [17], Fig. 8.2 demonstrates the power of the muon magnetic anomaly in
constraining supersymmetric parameter space.

The impact of other constraints on the exclusion region is shown in
Fig. 8.3. Introduction of mass constraints for staus and neutralinos affects
the exclusions regions. As expected, the exclusion regions become larger but
imposed constraints mostly affect the region of the parameter space where
charginos are heavy; for relatively light charginos, the constraint from the
muon magnetic anomaly remains important.

In the framework of the unconstrained SUSY that we just discussed,
the correlation between the muon anomalous magnetic moment and other
low-energy processes, potentially sensitive to supersymmetry, are not signif-
icant [17] and can be evaded. The situation changes if a specific model of
SUSY breaking is introduced. A particular example is the mSUGRA model
where, at the Planck scale, all scalars have a common mass m0, all gauginos
have a common mass m1/2 and all trilinear soft SUSY breaking couplings
have a common value A0. As a consequence, the model has five parameters
m0, m1/2, A0, tan β, sgn(µ). The mass spectrum of supersymmetric particles
is computable from this set of parameters and supersymmetric contributions
to processes that, at first sight, are not related, exhibit significant correla-
tions. To demonstrate that, in Fig. 8.4 we display the plot from [18], where
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Fig. 8.3. The exclusion plot from for µ < 0, tan β = 30 and other parameters as
described in the text. The excluded areas obtained by adding requirements that the
stau mass is larger than 80 GeV (dash-dotted); the neutralino is lighter than the
smuon (dash-dot-dotted); the neutralino is the lighter than stau (dash). Reprinted
with permission from [17] (Copyright (2003) by the American Physical Society)

allowed regions in (m0,m1/2) plane for a particular choice of A0, tan β and
sgn(µ) are shown.

In this plot contours for fixed b → s + γ branching fraction, asusy
µ , neu-

tralino cold dark matter density and the LEP limit on the Standard Model-
like Higgs boson mass mh > 114 GeV [21] are shown. The light-shaded regions
are excluded because either proper electroweak symmetry breaking is absent
or the neutralino is not the lightest supersymmetric particle. The LHC reach
in a generic channel pp → ET+missing energy is also displayed. Current lim-
its on the input values are 2.94× 10−4 < Br(B → Xs + γ) < 4.47× 10−4 [22]
and 0.094 < ΩZ̃1

h2 < 0.129 [23]; the allowed supersymmetric contribution to
aµ is given in (8.1).

We see that the allowed region of scalar and gaugino masses for the par-
ticular choice of other supersymmetric parameters receives non-trivial con-
straints from all of the observables. From Fig. 8.4 we may conclude that,
for this choice of tan β, sgn(µ) and A0, there are two small regions in the
parameter space consistent with the current data; either

500GeV < m1/2 < 1TeV , 250GeV < m0 < 1TeV ,

or
200GeV < m1/2 < 400GeV , 1TeV < m0 < 2.5TeV .

As follows from Fig. 8.4, both of these regions in the parameter space can be
explored at the LHC.
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Fig. 8.4. Various constraints on mSUGRA for µ > 0, A0 = 0 and tan β = 52 [18].
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To summarize, the impact of the E821 measurement on supersymmetry
is significant. A simple estimate of the supersymmetric contribution to the
muon magnetic anomaly (8.13) shows that sparticle masses of about few hun-
dred GeV can account for aBSM

µ in (8.1). Even when very loose bounds on
allowed asusy

µ are assumed, the muon anomalous magnetic moment cuts away
a significant region of the parameter space in a general supersymmetric model;
this, in particular, concerns the region of relatively light chargino and moder-
ately light smuons. When popular supersymmetric models such as mSUGRA
etc. are considered, the situation is more complex since in such models re-
lations between different, a priori independent parameters exist at the scale
where the supersymmetry is broken. As a consequence, the supersymmetric
parameter space becomes constrained by a number of low-energy and collider
observables and the interplay between them can be quite intricate. Simplest
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models of supersymmetry breaking, e.g. mSUGRA, are tightly constrained;
regions of the supersymmetric parameter space that are still allowed by the
existing data, are within the reach of the LHC.

8.2 Additional Vector Bosons

Recall, that exchanges of Z and W provide the one-loop electroweak correc-
tion to the muon anomalous magnetic moment; if additional gauge bosons are
present in the theory, they also contribute to aµ [5]. The appearance of gauge
bosons heavier than Z and W is generic for many extensions of the Standard
Model. A particular example is provided by the so-called left-right symmetric
models [24], that extend the SU(2)L × U(1) Standard Model gauge group to
the SU(2)R×SU(2)L×U(1). In the left-right symmetric model, there are four
charged and two neutral gauge bosons of the non-abelian electroweak gauge
groups and the U(1) gauge boson. The electroweak symmetry is broken by
the Higgs mechanism in such a way that right- and left-handed gauge bosons
acquire different masses. In general, in such a model the muon couplings to
gauge bosons and the Higgs boson differ from Standard Model couplings; this
generates new contributions to the muon magnetic anomaly.

Given existing constraints on the masses of additional gauge bosons from
collider experiments, their contribution to the muon magnetic anomaly is
typically smaller than aBSM

µ ∼ 200 × 10−11. Indeed, an additional (right-
handed) gauge boson with the mass MWR

and the coupling to muon gR,
changes the muon anomalous magnetic moment by

anew
µ =

10
3

GF m2

8
√

2π2

g2
Rm2

W

g2
Lm2

WR

. (8.15)

Taking anew
µ > 40×10−11, to conform to (8.1), we find MWR

< 400 gR/gL GeV.
However, from direct searches at the Tevatron Run I, MWR

> 720 GeV. To
comply with this bound, we require gR > 2gL, which is not very appealing
theoretically since it destroys the left-right symmetry from the start.

A similar situation occurs for the contribution of an additional neutral
gauge bosons to the muon magnetic anomaly. Such gauge bosons are generi-
cally referred to as Z ′. aBSM

µ ≈ 200×10−11 requires MZ′ ∼ 100 GeV, provided
that the Z ′ coupling to muons is Standard Model-like. However, direct limits
from the Tevatron Run I constrain the Z ′ mass MZ′ > 500−600 GeV. Thus,
it appears that existing experimental bounds on additional gauge bosons im-
ply that their contribution to aµ is at the level of 10×10−11. It is unlikely that
the theoretical uncertainty on the calculation of the muon magnetic anomaly
in the Standard Model will ever reach that value; hence, the muon anomalous
magnetic moment does not seem to offer a competitive constraint on models
with additional gauge bosons.
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8.3 Compositeness of the Standard
Model Gauge Bosons

In the Standard Model, the self-interaction of gauge bosons is fixed by the
renormalizability of the theory. However, in models where gauge bosons are
composite, such as the technicolor, their interaction may deviate from the
canonical form. In particular, the γW+W− effective Lagrangian can be writ-
ten as

LγWW = − ie
{

Aµ(W−
µνW+ν − W+

µνW−ν)

+ κFµνW+
µ W−

ν +
λ

m2
W

FµνW+ρ
µ W−

ρν

}
,

(8.16)

where Fµν = ∂µAν − ∂νAµ, Wµν = ∂µWν − ∂νWµ. Two parameters, κ and
λ, define the magnetic dipole moment

µW = (1 + κ + λ)
e

2mW

and the electric quadrupole moment

qW = −(κ − λ)
e

m2
W

of the W boson. In the Standard Model, κ = 1 and λ = 0.
When the gauge boson interactions are modified, the theory becomes

non-renormalizable; as a consequence, the one-loop contribution to the muon
magnetic anomaly becomes divergent. Assuming that loop integrals are cut
off at the scale of compositeness Λ, we obtain [25]

anew
µ =

GF m2

4
√

2π2

(
(κ − 1) ln

Λ2

M2
W

− λ

3

)
. (8.17)

The couplings κ and λ are constrained by the LEP data on the process
e+e− → W+W−. At the 68% confidence level these constraints are [26]

κ − 1 = −0.016+0.042
−0.047 , λ = −0.016+0.021

−0.023 . (8.18)

To maximize anew
µ in (8.17), we take the maximal value for κ − 1 and the

minimal value for λ. Then, for Λ = 1 TeV, we obtain
[
anew

µ

]
max

= 34 × 10−11 . (8.19)

Note that the effect of λ is very small, it is only 10% of the above number.
Hence, we conclude that anomalous gauge boson couplings is an unlikely

explanation of the current discrepancy in the muon magnetic anomaly.
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8.4 Extensions of the Higgs Sector

The Higgs boson is the only Standard Model particle that has not yet been
observed and whose couplings to gauge bosons and fermions have not been
experimentally verified. Because of that, it is interesting to ask if the muon
anomalous magnetic moment can be used to constrain the Higgs sector of
the yet undiscovered fundamental theory.

In the Standard Model, the Higgs boson coupling to a fermion of mass
mf is ∼ mf/mW times smaller than standard electroweak couplings. Given
that the one-loop electroweak correction to aµ is, approximately, 200×10−11,
and the mass of the Standard Model Higgs boson is limited by LEP searches,
mH > 114 GeV, the contribution of the Standard Model Higgs boson to aµ

is at the level of 10−14 and is completely negligible.1 The Higgs sector can
significantly contribute to aµ if its coupling to muons is enhanced and its
mass is lowered, compared to the Standard Model.

This can be achieved in the model with two Higgs doublets, the two-Higgs
doublet model (2HDM) [27]. We will discuss the so-called type two 2HDM
that has two Higgs doublets that couple to up- and down-type fermions, re-
spectively. In this regard, the Higgs sector of the 2HDM(II) is identical to that
of the MSSM. Exactly as in the MSSM, after electroweak symmetry breaking,
the Higgs sector of the theory consists of two scalars, one pseudoscalar and
two charged Higgs bosons. In contrast to MSSM, however, the Higgs masses
are free parameters and can be changed at will unless constrained by the
data.

In principle, all the Higgs bosons of the 2HDM contribute to aµ; however,
the only possibility to get sufficiently large contribution is related to the
scalar and pseudoscalar Higgs bosons which are allowed to be light and whose
couplings to charged leptons and down-type quarks are enhanced by tanβ.
We thus concentrate on the 2HDM(II), where either h or A is light, tanβ is
significant and the mixing angle in the CP-even part of the Higgs sector α is
equal to β.

The one-loop correction to the muon anomalous magnetic moment from
the Higgs sector in the 2HDM(II) is shown in Fig. 8.5. It reads

a1loop
µ =

GF m2

4π2
√

2
tan2 β

∑
i=h,A

ziFi(zi) , (8.20)

where zh,A = m2/m2
h,A and

Fi(z) =

1∫

0

dx
Ni(x)

1 − x + xz2
, (8.21)

1 This conclusion changes at the two-loop level where a contribution proportional
to a single Higgs-muon Yukawa coupling appears, Fig. 8.6.
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h, A

Fig. 8.5. One-loop corrections to the muon anomalous magnetic moment in 2HDM

with Nh = x2(2−x), NA = −x3. It follows from those formulas that the one-
loop contribution to the muon magnetic anomaly is positive for the scalar
and negative for the pseudoscalar Higgs boson. Since aBSM

µ , (8.1), is positive,
this seems to imply that no light pseudoscalar in the 2HDM model is allowed,
while tight constraints on the scalar can be derived. A detailed analysis along
these lines has been presented in [28].

However, as was pointed out in [29], one may expect significant modi-
fications of the one-loop result when higher order corrections are included.
The reason is the following. The Higgs contribution to the magnetic anomaly
is small because it is suppressed by the square of the Higgs-muon Yukawa
coupling. However, at the two-loop level it is possible to overcome this sup-
pression, thanks to the diagram shown in Fig. 8.6. In this case, if the fermion
in the loop is heavy, we trade the Higgs-muon Yukawa coupling for the prod-
uct of the loop suppression factor α/π and the enhancement factor m2

f/m2,
where mf is the mass of the heavy fermion in the loop. Note, that the Yukawa
coupling to up-type quarks is suppressed by 1/ tan β; as a consequence, the
top quark contribution is not dominant in spite of the fact that the top quark
mass is very large. The largest contribution comes from the bottom quark
and the tau lepton loops. Since, for example, (α/π)m2

b/m2 ∼ 4, the enhance-
ment due to a larger Yukawa coupling overcomes the loop suppression factor
and the two-loop contributions become larger than the one-loop ones.

b, τ

h, A γ

Fig. 8.6. The two-loop diagram of the Barr–Zee type [33] that gives an enhanced
contribution to aµ
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The two-loop correction to the muon anomalous magnetic moment reads

a2loop
µ =

2α

π

GF m2

4π2
√

2
tan2 β

∑
f ; i=h,A

NfQ2
f z̃if F̃if (z̃if ) , (8.22)

where z̃hf,Af = m2
f/m2

h,A, Nf = 3(1), for quarks and leptons, respectively,
Qf is the electric charge of the fermion and

F̃if (z) =

1∫

0

dx
Ñi

x(1 − x) − z
ln

x(1 − x)
z

, (8.23)

with Ñh = −1 + 2x(1 − x) and ÑA = 1. We note that, in the two-loop
case, the scalar contribution is negative and the pseudoscalar contribution is
positive, contrary to the one-loop result discussed above. Numerical calcu-
lations show that the two-loop result is larger than the one-loop result for
mh ≥ 3 GeV and mA ≥ 5 GeV. Given the signs of the one- and two-loop
contributions for h and A discussed above, this fact allows to understand the
influence of the muon magnetic anomaly on the 2HDM.

A comprehensive analysis of the impact of the muon anomalous magnetic
moment on the parameter space of the type II 2HDM can be found in [30,
31, 32]. The main conclusion of these analyses is that a very large part of
the parameter space for the 2HDM with light mA,h is excluded by the data.
In particular, the LEP collaborations constrain the two-Higgs doublet model
with light h and A since e+e− → Zh, e+e− → Ah and e+e− → b̄bh(A)
processes have not been observed [34]. In particular, the OPAL data excludes
large part of the parameter space where both h and A are light; roughly,
the exclusion region can be approximated by mA + mh > 90 GeV. For our
purposes, this result implies that we may consider scenarios were either the
scalar or the pseudoscalar is light.

Consider the situation when the scalar is light. Then, since aBSM
µ > 0, this

is only possible if the scalar contribution is dominated by the one-loop result
and, hence, mh ≤ 3 GeV with tan β ≥ 1. However, such Higgs bosons are ex-
cluded by the non-observation of the Wilczek process Υ → H +γ [35]. Hence,
we conclude that the 2HDM with the light scalar Higgs boson is excluded.
For the case when the pseudoscalar is light, the Higgs contribution to aµ

should be dominated by the two-loop result. As a consequence, mA ≥ 5 GeV
is required. Part of the allowed region for mA ≤ 10 GeV is again excluded
by the Wilczek process, whereas for larger pseudoscalar masses, the LEP ex-
periments exclude much of the allowed parameter space. What remains [31]
is a small region where 25 GeV < mA < 70 GeV and 25 < tan β < 100.
This region can be further reduced [32] if precision electroweak constraints
are applied to the 2HDM; this happens because large mass splittings of h
and A implied by OPAL data and consistent with the range of aBSM

µ , are in
conflict with, e.g., apparent agreement of Γ (Z → bb̄)/Γ (Z) with its Standard
Model value.
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8.5 Extra Dimensions

Another interesting idea about the beyond the Standard Model physics is
the suggestion that there are more than three spatial dimensions [36, 37].
The need for additional dimensions is motivated by the huge difference in
the observed scale of electroweak symmetry breaking and the Planck scale.
To solve this “hierarchy problem”, [36] postulates that gravity is weak due to
existence of large, compactified additional dimensions, where gravitons can
propagate. In the simplest version of the model [36], the Standard Model
fields live on a four-dimensional manifold, called the brane, in n-dimensional
space. Because of the additional volume available for gravitons; the gravita-
tional interactions are weak, unless the energy of the processes on the brane
becomes comparable to the Planck scale M∗ of quantum gravity in n = 4+∆
dimensions. The value of M∗ is assumed to be of the order of 1 TeV. The
relation between the Newton’s constant GN that measures the strength of
the gravitational interactions on the brane and the fundamental 4+∆ Planck
scale M∗ reads

4πGNR∆ = M−2−∆
∗ , (8.24)

where it is assumed that additional ∆ dimensions are compactified on a circle
of radius R.

In all variants of extra-dimensional theories, gravity always propagates in
extra dimensions, whereas other Standard Model fields may or may not do so.
The simplest possibility is to assume that geometry of additional dimensions
is flat [36], but generalizations of the theory allow for a non-trivial geometry
[37]. A common feature of theories with compactified additional dimensions
is the appearance of the so-called Kaluza-Klein states that can be thought of
as excitations of the Standard Model fields that are allowed to propagate in
additional dimensions. For example, the simplest version of extra-dimensional
theories features massive gravitons, in addition to the massless graviton, re-
sponsible for Newtonian gravity on the brane. Masses of Kaluza-Klein states
depend on the geometry of additional dimensions; when additional dimen-
sions are compactified on a circle of radius R, the mass of the Kaluza-Klein
graviton excitation is

m2
n =

n2
1 + n2

2 + ... + n2
∆

R2
, (8.25)

where all quantum numbers ni are integers.
The impact of the muon magnetic anomaly on theories with extra dimen-

sions was studied in [6, 7, 8, 9]. We discuss the simplest scenario, where the
Standard Model fields are confined to the brane and gravity is allowed to
propagate in ∆ compactified dimensions [6]. In this case, new physics contri-
bution to aµ comes from Kaluza-Klein gravitons whose masses are given by
(8.25). Each Kaluza-Klein mode of the graviton couples to ordinary matter
through the stress-momentum tensor Tµν , with the coupling proportional to
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the square root of the ordinary Newton’s constants. There are two interest-
ing features of the gravitational corrections to the muon anomalous magnetic
moment [6, 38]; first, for each Kaluza-Klein mode, the gravitational correc-
tion to aµ is finite; second, heavier gravitons do not decouple. The last feature
follows from the fact that the strength of the interaction between gravitons
and matter grows with energy. As the result, the correction to the muon
anomalous magnetic moment reads

aed
µ =

GNm2

2π

∑
n

w(m,mn) , (8.26)

where w(m, mn) is the contribution to aed
µ due to n-th Kaluza-Klein mode

with the mass mn. Using (8.25), we may rewrite the sum over quantum
numbers n through the integral over m2

n. We find

aed
µ =

GNR∆m2

2π

π∆/2

Γ (∆/2)

∫
ds s∆/2−1w(m,

√
s) . (8.27)

Since, as we pointed out above, w(m,
√

s) → const = c, for
√

s → ∞, the
integral is saturated by heavy Kaluza-Klein gravitons. Cutting the integral
(8.27) at

√
s = λM∗ and using (8.24) to remove the Newton’s constant, we

find

aed
µ =

cλ∆

4π2

π∆/2

∆Γ (∆/2)
m2

M2
∗

. (8.28)

As shown in [6], c = 5. In addition, there is a contribution to aµ from the
so-called radion field; we neglect it here because the radion contribution is
small [6].

From (8.28) we see that aed
µ depends on the unknown parameter λ that is

introduced to parametrize our inability to carry out the integral over masses
of Kaluza-Klein states in (8.27). This is a typical situation with calculations
in theories with extra dimensions since these theories are not renormalizable
and have power divergences. For estimates, we take λ = 1 and derive

M∗ = 1 TeV ×





(
200 × 10−11/aµ

)1/2
, ∆ = 2 ;

(
327 × 10−11/aµ

)1/2
, ∆ = 6 .

(8.29)

How does the estimate for the fundamental Planck scale M∗ shown in
(8.29) compare with other constraints on M∗? For ∆ = 2, severe constraints
come from astrophysics and cosmology [39]; they require M∗ > few TeV
making the muon magnetic anomaly constraint irrelevant. On the other hand,
for ∆ = 6, astrophysical constrains are quite weak and direct limits from
Tevatron and LEP require M∗ ≥ 600−700 GeV. In such a case, the estimate
from the muon magnetic anomaly (8.29) is quite competitive since, aBSM

µ <
440 × 10−11, implies M∗ ≥ 900 GeV.
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There are two other variants of models with extra dimensions that have
been suggested. The first model is the so-called universal extra dimensions
where the compactification radius R is sufficiently small so that all the Stan-
dard Model particles can propagate in the bulk. The second model is the
Randall-Sundrum model [37] where the geometry of extra dimensions is not
flat. The muon anomalous magnetic moment in these models was studied in
[9, 8, 7]. Typically, in such models the muon magnetic anomaly receives neg-
ative contributions which is difficult to reconcile with the currently preferred
range for aBSM

µ .

References

1. Good exhibition of current ideas can be found in the Proceedings of 32nd
SLAC Summer Institute on Particle Physics “Nature’s Greatest Puzzles,”
J. L. Hewett, J. Jaros, T. Kamae and C. Prescott (eds), eConf C040802.

2. J. A. Grifols and A. Mendez, Phys. Rev. D 26, 1809 (1982);
J. Ellis, J. Hagelin and D. V. Nanopoulos, Phys. Lett. B 116, 283 (1982);
R. Barbieri and L. Maiani, Phys. Lett. B 117, 203 (1982);
D. A. Kosower, L. M. Krauss and N. Sakai, Phys. Lett. B 133, 305 (1983);
T. C. Yuan, R. Arnowitt, A. H. Chamseddine and P. Nath, Z. Phys. C 26, 407
(1984);
T. Moroi, Phys. Rev. D 53, 6565 (1996);
M. Carena, G. F. Giudice and C. E. Wagner, Phys. Lett. B 390, 234 (1997);
T. Ibrahim and P. Nath, Phys. Rev. D 61, 095008 (2000);
G. Cho, K. Hagiwara and M. Hayakawa, Phys. Lett. B 478, 231 (2000).

3. L. Everett, G. Kane, S. Rigolin and L. Wang, Phys. Rev. Lett. 86, 3484 (2001);
S. P. Martin and J. D. Wells, Phys. Rev. D 64, 035003 (2001);
J. L. Feng and K. Matchev, Phys. Rev. Lett. 86, 3480 (2001);
E. A. Baltz and P. Gondolo, Phys. Rev. Lett. 86, 5004 (2001);
U. Chattopadhya and P. Nath, Phys. Rev. Lett. 86, 5854 (2001);
S. Komine, T. Moroi and M. Yamaguchi, Phys. Lett. B 506, 93 (2001); Phys.
Lett. B 507, 224 (2001);
J. R. Ellis, D. V. Nanopoulos and K. A. Olive, Phys. Lett. B 508, 65 (2001);
R. Arnowitt, B. Dutta, B. Hu and Y. Santoso, Phys. Lett. B 505, 177 (2001);
K. Choi et al., Phys. Rev. D 64, 055001 (2001);
J. E. Kim, B. Kyae and H. M. Lee, Phys. Lett. B 520, 298 (2001);
K. Cheung, C. Chou and O. C. Kong, Phys. Rev. D 64, 111301 (2001);
H. Baer et al., Phys. Rev. D 64, 035004 (2001);
C. Chen and C. Q. Geng, Phys. Lett. B 511, 77 (2001);
G. Cho and K. Hagiwara, Phys. Lett. B 514, 123 (2001).

4. E. D. Carlson, S. L. Glashow and U. Sarid, Nucl. Phys. B 309, 597 (1988);
M. Krawczyk and J. Zochowski, Phys. Rev. D 55, 6968 (1997);
P. H. Chankowski, M. Krawczyk and J. Zochowski, Eur. Phys. J. C 11, 661
(1999);
A. Dedes and H. E. Haber, JHEP 0105, 006 (2001);
F. Larious, G. Tavares-Velasco and C. P. Yuan, Phys. Rev. D 64, 055004 (2001);
D. Chang, W. Chang, C. Chou and W. Keung, Phys. Rev. D 63, 091301 (2001);



References 169

K. Cheung, C. Chou and O. C. Kong, Phys. Rev. D 64, 111301 (2001); Phys.
Rev. D 68, 053003 (2003).

5. J. P. Leveille, Nucl. Phys. B 137, 63 (1978).
6. M. L. Graesser, Phys. Rev. D 61, 074019 (2000).
7. H. Davoudiasl, J. L. Hewett and T. Rizzo, Phys. Lett. B 493, 135 (2000).
8. K. Agashe, N. G. Deschpande and G. H. Wu, Phys. Lett. B 511, 85 (2001).
9. B. Dobrescu and T. Appelquist, Phys. Lett. B 516, 85 (2001).

10. J. Wess and B. Zumino, Nucl. Phys. B 70, 39 (1974); Phys. Lett. B 49, 5
(1974); Nucl. Phys. B 78, 1 (1984).

11. V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Nucl. Phys.
B 229, 381 (1983); Phys. Lett. B 166, 329 (1986).

12. S. Ferrara and E. Remiddi, Phys. Lett. B, 53, 347 (1974).
13. S. Ferrara and M. Porrati, Phys. Lett. B, 288, 85 (1992); I. Giannakis, J. T. Liu

and M. Porrati, Phys. Rev. D, 58, 025009 (1998).
14. T. Moroi, Phys. Rev. D 53, 6565 (1996);
15. J. L. Lopez, D. V. Nanopolulos and X. Wang, Phys. Rev. D 49, 366 (1994).
16. S. P. Martin and J. D. Wells, Phys. Rev. D 64, 035003 (2001).
17. S. P. Martin and J. D. Wells, Phys. Rev. D 67, 015002 (2003).
18. H. Baer, C. Balazs, A. Belyaev, T. Krupovnickas and X. Tata, JHEP 0306,

054 (2003).
19. S. Eidelman et al. [Particle Data Group], Phys. Lett. B592, 1 (2004).
20. See M. Schmitt, Supersymmetry, Part II (Experiment), in [19].
21. See P. Igo-Kemenes, Searches for Higgs bosons, in [19].
22. A recent analysis is given in T. Hurth, E. Lunghi and W. Porod, Nucl. Phys.

B 704, 56 (2005).
23. D. N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003).
24. J. C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974);

R. N. Mohapatra and J. C. Pati, Phys. Rev. D 11, 566 (1975);
G. Senjanovic and R. N. Mohapatra, Phys. Rev. D 12, 1502 (1975).

25. P. Mery, S. E. Moubarik, M. Perrottet and F. M. Renard, Zeit. f. Phys. C 46,
229 (1990);
F. Herzog, Phys. Lett. B 148, 355 (1984);
M. Suzuki, Phys. Lett. B 153, 289 (1985);
A. Grau and J. A. Grifols, Phys. Lett. B 154, 283 (1985);
M. Beccaria, F. M. Renard, S. Spagnolo and G. Verzegnassi, Phys. Lett. B 448,
129 (1999).

26. LEP Elecroweak Working Group, A combination of preliminary electroweak
measurements and constraints on the standard model, hep-ex/0511027.

27. J. F. Gunion, H. E. Haber, G. L. Kane and S. Dawson, The Higgs hunter’s
guide, Addison-Wesley, Reading, MA, 1990.

28. A. Dedes and H. Haber, JHEP 0105, 006 (2000).
29. D. Chang, W. Chang, C. Chou and W. Keung, Phys. Rev. D 63, 091301 (2001).
30. K. Cheung, C. Chou and O. C. Kong, Phys. Rev. D 64, 111301 (2001).
31. M. Krawczyk, Acta. Phys. Polon. B 33, 2621 (2002).
32. K. Cheung, C. Chou and O. C. Kong, Phys. Rev. D 68, 053003 (2003).
33. S. M. Barr and A. Zee, Phys. Rev. Lett. 65, 21 (1990); Erratum-ibid. 65, 2920

(1990).
34. G. Abbiendi et al. [OPAL Collaboration], Eur. Phys. J. C 18, 425 (2001); G.

Abbiendi et al. [OPAL Collaboration], Eur. Phys. J. C 23, 397 (2002); DELPHI
collaboration, DELPHI 2002-037-CONF-571; ALEPH collaboration, PA13-027.



170 8 New Physics and the Muon Anomalous Magnetic Moment

35. P. Franzini et al. [CUSB collaboration], Phys. Rev. D 35, 2883 (1987).
36. N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B 429, 263 (1998);

I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B
436, 257 (1998);
G. Shiu and S. H. H. Tye, Phys. Rev. D 58, 106007 (1998);
N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Rev. D 59, 086004
(1999).

37. L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999); Phys. Rev. Lett.
83, 4690 (1999).

38. F. A. Berends and R. Gastmans, Phys. Lett. B 55, 311 (1975).
39. For a review, see J. L. Hewett and M. Spiropulu, Ann. Rev. Nucl. Part. Phys.

52, 397 (2002).



9 Summary

The experiment E821, completed recently at Brookhaven National Labora-
tory, measured the muon magnetic anomaly to an impressive precision of
about one part per million. That measurement and, in particular, prelimi-
nary indication of the disagreement between the experimental result and the
Standard Model prediction, stimulated a flurry of theoretical activity. As the
result, the calculation of the muon magnetic anomaly within the Standard
Model was scrutinized and the understanding that existing models of new
physics can easily explain the current deviation, was achieved.

To better emphasize the level at which the theoretical predictions are
being tested, we point out that, currently, the theory and experiment disagree
on the value of the muon magnetic anomaly in two parts per million. This tiny
disagreement may be a signal that the Standard Model of particle physics,
as we know it, is incomplete. When translated to standard deviations, the
current disagreement becomes 2.7σ and, hence, is not conclusive. As of this
writing, it is unclear whether the experimental program will continue, but new
ideas for measuring the muon magnetic anomaly with even higher precision
are being discussed [1].

While it seems relatively straightforward to reduce the current experi-
mental uncertainty on aµ to (20 − 30) × 10−11 by collecting more data [1],
it is less clear whether a similar improvement in the theoretical uncertainty
is possible. The uncertainty of the CMD-2 and SND results for the cross-
section σ(e+e− → π+π−) is dominated by systematic uncertainties, related
to QED radiative corrections. In principle, this should be improvable but
dramatic changes are unlikely. The radiative return measurements at BaBar
and Belle may help to improve the knowledge of the e+e− hadronic annihi-
lation cross-section at higher energies. It is conceivable that the error on the
hadronic vacuum polarization contribution to the muon magnetic anomaly is
reducible to (30 − 40) × 10−11 in the long run.

The error on the hadronic light-by-light scattering contribution is diffi-
cult to improve since such an improvement would necessarily entail a break-
through in our understanding of hadronic interactions at low energies. Hence,
it appears that the reduction of the combined error below (60 − 70) × 10−11

is unlikely. Provided that the difference between the experimental value of aµ

K. Melnikov and A. Vainshtein: Theory of the Muon Anomalous Magnetic Moment
STMP 216, 171–172 (2006)
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and the theoretical prediction does not change significantly, this will move the
disagreement into a much more interesting range of 3−4 standard deviations.

However, it is most likely that the final closure of the recent story of the
muon anomalous magnetic moment will come from collider experiments. In
2007, the Large Hadron Collider will begin the exploration of the new energy
frontier. If the current discrepancy in the muon magnetic anomaly is genuine,
the LHC will find new physics responsible for it. It is entirely possible that,
say, in 2010 we will look back and realize that the first hints of new physics
that will have been discovered, were there already in 2004 as the puzzling
discrepancy in the muon magnetic anomaly that just did not want to go
away.
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A Appendix

A.1 Notation

In this Appendix, we summarize the notation that are used throughout the
text. We use e to denote the muon electric charge, e = −|e| and m to denote
the muon mass.

The Lorentz indices are denoted by Greek letters, µ, ν, ... = 0, 1, 2, 3; the
three-dimensional indices by Latin letters, i, j, k, ... = 1, 2, 3. The spatial vec-
tors refer to upper Lorentz indices, e.g. xµ = (t,x). The metric tensor is
gµν = Diag{1,−1,−1,−1}, and the totally antisymmetric tensor εµναβ is de-
fined through ε0123 = 1. The product of two Lorentz vectors is denoted by
ab = aµbµ = a0b0 − ab.

The Dirac matrices are denoted by γµ and

γ5 = −iγ0γ1γ2γ3 = − i

4!
εµναβγµγνγαγβ .

We use the short-hand notation â = aµγµ. The Pauli matrices are denoted
by σi, i = 1, 2, 3.

Unless stated explicitly, we use the system of units where the Planck
constant � and the speed of light c are equal to 1.

A.2 Gounaris-Sakurai Parametrization
of the Pion Form Factor

In this Appendix, we summarize the formulas related to Gounaris-Sakurai
(GS) parametrization of the pion form factor. The form factor is written as

Fπ(s) =
1

1+β+γ

[
BWGS

ρ (s)
(
1+δ

s

m2
ω

BWω(s)
)
+βBWGS

ρ′ (s)+γBWGS
ρ′′ (s)

]
,

(A.1)
where

BWGS
ρ (s) =

m2
ρ

m2
ρ − s + fρ(s) − i

√
sΓρ(s)

(
1 +

d

mρ
Γρ

)
;

BWω(s) =
m2

ω

m2
ω − s + iΓωmω

, (A.2)
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with

fρ(s) = Γρ

m2
ρ

p0

(
p(s)2(h(s) − h(m2

ρ)) + (m2
ρ − s)p2

0

dh

ds

∣∣∣∣
s=m2

ρ

)
,

h(s) =
2p(s)
π
√

s
ln

√
s + 2p(s)
2mπ

, (A.3)

d =
3
π

m2
π

p2
0

ln
mρ + 2p0

2mπ
+

mρ

2πp0
− m2

πmρ

πp3
0

,

We also use p(s) =
√

1 − 4m2
π/s, p0 = p(m2

ρ) and

Γρ(s) = Γρ

(
p(s)
p0

)3 (m2
ρ

s

)1/2

. (A.4)

All the parameters involved in the Gounaris-Sakurai parameterization of
the pion form factor are extracted from the fit to the experimental data. For
numerical computations, we use [1],

mρ = 773.1 ± 0.5 MeV, Γρ = 148.0 ± 0.9 MeV ,

mρ− = 775.5 ± 0.6 MeV, Γρ− = 148.2 ± 0.8 MeV ,

|δ| = (2.03 ± 0.1) × 10−3, arg δ = 13.00 ± 2.30 ,

mρ′ = 1409 ± 12 MeV, Γρ′ = 501 ± 37 MeV ,

mρ′′ = 1740 ± 21 MeV, Γρ′′ = 235 MeV ,

as well as β = −0.167 ± 0.006 and γ = 0.071 ± 0.006. For the mass and the
width of ω, we adopt mω = 782.71 ± 0.08 MeV and Γω = 8.68 MeV.
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