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Status of (g — 2),, experiment vs SM

Davier, Hoecker, Malaescu, Zhang 2019
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Status of (g — 2),, experiment vs SM

Keshavarzi, Nomura, Teubner, 2018 (KNT18)
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Fermilab experiment’s goal: error x1/4, should be matched by theory:
= Muon “(g — 2) Theory Initiative” lead by A. El-Khadra and C. Lehner
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Status of (g — 2),,, experiment vs SM

KNT 18

a,[107""]  Aa,[107"]
experiment 116592 089. 63.
QED O(«) 116140973.21 0.03
QED 0O(a?) 413217.63 0.01
QED 0(a?) 30141.90 0.00
QED O(a#) 381.01 0.02
QED O(a?) 5.09 0.01
QED total 116584 718.97 0.07
electroweak, total 153.6 1.0
HVP (LO) n 18] 6932.7 24.6
HVP (NLO) nt 15 -98.2 0.4
HLbL [update of Glasgow consensus—KNT 18] 98.0 26.0
HVP (NNLO) [Kurz, Liu, Marquard, Steinhauser 14] 1 24 01
HLbL (N LO) [GC, Hoferichter, Nyffeler, Passera, Stoffer 14] 30 20
theory 116591 820.5 35.6
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Status of (g — 2),,, experiment vs SM T 18

a®—aM=2685+724  [3.70]

Keshavarzi, Nomura, Teubner, 2018
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Theory uncertainty comes from hadronic physics

» Hadronic contributions responsible for most of the theory
uncertainty

» Hadronic vacuum polarization (HVP) can be systematically
improved



Intro

Theory uncertainty comes from hadronic physics

» Hadronic contributions responsible for most of the theory
uncertainty

» Hadronic vacuum polarization (HVP) can be systematically
improved

W@w

> basic principles: unitarity and analyticity
» direct relation to experiment: o (€€~ — 7* — hadrons)
» dedicated et e~ program: BaBar, Belle, BESIII, CMDS3,
KLOE2, SND
» alternative approach: lattice
(ETMC, Mainz, HPQCD, BMW, RBC/UKQCD)



Intro

Theory uncertainty comes from hadronic physics

» Hadronic contributions responsible for most of the theory
uncertainty

» Hadronic vacuum polarization (HVP) can be systematically
improved

» Hadronic light-by-light (HLbL) is more problematic:

» 4-point fct. of em currents in QCD

» “jt cannot be expressed in terms of
measurable quantities”

> until recently, only model
calculations

> lattice QCD is making fast progress
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Muon g — 2 Theory Initiative

Steering Committee:

GC

Michel Davier

Simon Eidelman

Aida El-Khadra (co-chair)

Christoph Lehner (co-chair)

Tsutomu Mibe (J-PARC E34 experiment)
Andreas Nyffeler

Lee Roberts (Fermilab E989 experiment)
Thomas Teubner

Workshops:
» First plenary meeting, Q-Center (Fermilab), 3-6 June 2017
» HVP WG workshop, KEK (Japan), 12-14 February 2018
» HLbL WG workshop, U. of Connecticut, 12-14 March 2018
» Second plenary meeting, Mainz, 18-22 June 2018
» Third plenary meeting, Seattle, 9-13 September 2019



Different analytic evaluations of HLbL

Jegerlehner-Nyffeler 2009

Contribution BPaP(96) HKS(96) KnN(02) MV(04) BP(07) PdRV(09) N/JN(09)
% n,n' 85-+13 82.746.4 83+12 11410 - 114+13 99-+16
7, K loops —19+13 —4.548.1 - — - —19+19 —19+13

"" 4+ subl. in Ng — — — 0+10 — — —
axial vectors 2.5+1.0 1.7£1.7 — 22+ 5 — 15+10 22+5
scalars —6.8+2.0 — — - - —7+7 —7+2
quark loops 21£3 9.7+11.1 — — — 2.3 21+3
total 83132 89.6+15.4 80+40 136+25 110+40 105+26 116+39

Legenda: B=Bijnens Pa=Pallante P=Prades H=Hayakawa K=Kinoshita S=Sanda Kn=Knecht
N=Nyffeler M=Melnikhov V=Vainshtein dR=de Rafael J=Jegerlehner

» large uncertainties (and differences among calculations) in
individual contributions

» pseudoscalar pole contributions most important

» second most important: pion loop, i.e. two-pion cuts
(Ks are subdominant, see below)

» heavier single-particle poles decreasingly important



Intro

Advantages of the dispersive approach

» model independent
» unambiguous definition of the various contributions

> makes a data-driven evaluation possible
(in principle)

> if data not available: use theoretical calculations of
subamplitudes, short-distance constraints etc.
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Advantages of the dispersive approach

» model independent
» unambiguous definition of the various contributions

> makes a data-driven evaluation possible
(in principle)

> if data not available: use theoretical calculations of
subamplitudes, short-distance constraints etc.

> FII’ST attempts GC, Hoferichter, Procura, Stoffer (14)

Pauk, Vanderhaeghen (14)

» similar philosophy, with a different implementation:
SChWinger sum rule Hagelstein, Pascalutsa (17)

» why hasn’t this been adopted before?



HLbL tensor

Outline

Setting up the stage: Master Formula



HLbL tensor

The HLbL tensor
HLbL tensor:

e = 2 [ [ay [ oz emitearras=a) o T (G () (0)) 0

GB=Kk=q+q@+aqg k=0

General Lorentz-invariant decomposition:

Mo — g,uug)\al—ﬂ_'_gu)\gual—IZ_i_guagV)\nS_i_Z ql/fq;’q}i‘q;’ﬂ;}kl—i—. ..
ij.k,l

consists of 138 scalar functions {N', M2, ...}, butin d = 4 only
136 are Iinearly independent Eichmann et al. (14)

Constraints due to gauge invariance? (see aiso Eichmann, Fischer, Heupel (2015))

= Apply the Bardeen-Tung (68) method-+Tarrach (75) addition



HLbL tensor

Gauge-invariant hadronic light-by-light tensor

Applying the Bardeen-Tung-Tarrach method to M*** one ends

up with: GC, Hoferichter, Procura, Stoffer (2015)

> 43 basis tensors (BT) in d = 4: 41=no. of helicity amplitudes
» 11 additional ones (T) to guarantee basis completeness everywhere
» of these 54 only 7 are distinct structures
| 2

all remaining 47 can be obtained by crossing
transformations of these 7: manifest crossing symmetry

» the dynamical calculation needed to fully determine the
LbL tensor concerns these 7 scalar amplitudes
54
I—IH,VAU — Z 7-[“1/)\0"—"

i=1



HLbL tensor

Master Formula

aHLbL:_ee/ d'an d'q 312 Ti(ar @ PG, G, —G1 — G)
g (2m)* (2m)* 92q5(aqr + q2)?[(p + q1)% — m2][(p — q2)? — m2]

» T;: known kernel functions
» [1;: linear combinations of the I,

» the l1; are amenable to a dispersive
treatment: their imaginary parts are related
to measurable subprocesses

» 5 integrals can be performed with
Gegenbauer polynomial techniques

GC, Hoferichter, Procura, Stoffer (2015)



HLbL tensor

Master Formula

After performing the 5 integrations:

alI:ILbL /dQ4 /dQ4 /dT\/ﬁZT (Q1, @z, 7)Ni(Q4, Qa,7)

482

where Q/ are the Wick-rotated four-momenta and  the
four-dimensional angle between Euclidean momenta:

Q- Qo = |Qi]|Q|T

The integration variables Q; := |Q], Qo := | Q|-

GC, Hoferichter, Procura, Stoffer (2015)



HLbL dispersive

Outline

A dispersion relation for HLbL
- Pion-pole contribution
- Pion-box contribution
- Pion rescattering contribution

m-pole m-box mr-resc.



HLbL dispersive m-pole m-box m-resc.

Setting up the dispersive calculation

We split the HLbL tensor as follows:

m0-pole mbox |
n/w)\ﬁ = I_I,ul//\a + I_I,ltlf)\a + nuvka +-

Pion pole: imaginary parts = §-functions

Projection on the BTT basis: easy v/

Our master formula=explicit expressions in the literature v/
Input: pion transition form factor Hoferichter et al. (18)
First results of direct lattice calculations — cerardin, meyer, Nyffeler (16)



HLbL dispersive m-pole m-box m-resc.

Setting up the dispersive calculation

We split the HLbL tensor as follows:

_ 70-pole 7-box |
Nuro = nm/Ao + e + Mg+

m-box with the BTT set:

— we have constructed a Mandelstam representation for the
contribution of the 2-pion cut with LHC due to a pion pole

— we have explicitly checked that this is identical to sQED
multiplied by FJ;(s) (FSQED)



HLbL dispersive m-pole m-box m-resc.

Setting up the dispersive calculation

We split the HLbL tensor as follows:

70-pole mbox | &
n/u/)\o' = I_I‘u,,/\o + I_I/WA(; + rl;uz/\a +

CI1 FV %)FV Q3

DK




HLbL dispersive m-pole m-box m-resc.
Setting up the dispersive calculation
We split the HLbL tensor as follows:

__ 7%-pole rbox | A
n/ﬂ/)\ﬂ - n;w/\o + nuu/\a + I_IMW\U +-

- -

7 | N

N\
~

4

7
~ - -

The “rest” with 27 intermediate states has cuts only in one
channel and will be
calculated dispersively after partial-wave expansion
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Setting up the dispersive calculation
We split the HLbL tensor as follows:

n0-pole mbox |
I_IMVAU = I_I,u,z//\o + I_I,Lw)\cr + I_IMV)\U +oe

E.g. v*v* — nw S-wave contributions

a3 :% 4;; ds'le_q%)z (48" mhd, L (s) = (s + & — BN — df + ) mGy ., (s"))
- :% Sz dt’ m (4 mh, (1) = (¢ + & — B — & + ) Imhgy (1))

as :% 4;‘; o’ m (a0 mhd, (W) = (W' + 65 — B — g5+ 65) Imhy . (u))
a3, :% 4;; “/m (2 Imh3+,++(“/) - - - qg)lmhgo,++(“/))

As, :% 4;; dt'm (2, () = (' — & — ) imhy (1))

As, :% 4;’; ds'm (2w, () — (s — & — GB)imhy . ,(s)))
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Setting up the dispersive calculation
We split the HLbL tensor as follows:

m0-pole mbox |
I_IMV)‘U = n#l/)\o + I_I,UJ/)\U + I_IHV/\U +-

Contributions of cuts with anything else other than one and two
pions in intermediate states are neglected in first approximation

of course, the n, ' and other pseudoscalars pole contribution,
or the kaon-box/rescattering contribution can be calculated
within the same formalism



HLbL dispersive m-pole m-box m-resc.

Pion-pole contribution

| 4

>

Expression of this contribution in terms of the pion
transition form factor already known Knecht-Nyffeler (01)

Both transition form factors (TFF) must be included:

Tro’y y* (q17q2) 0y*y* (Q§O)
95 — Mz,

My =
[dropping one bc short-distance not correct Melnikov-Vainshtein (04) |

data on singly-virtual TFF available CELLO, GLEO, BaBar, Belle, BESIII

several calculations of the transition form factors in the

Iiterature Masjuan & Sanchez-Puertas (17), Eichmann et al. (17), Guevara et al. (18)
dispersive approach works here too Hoferichter et al. (18)

quantity where lattice calculations can have a significant
impaCt Gerardin, Meyer, Nyffeler (16)



HLbL dispersive m-pole m-box m-resc.

Pion-pole contribution

Latest complete analyses:

» Dispersive calculation of the pion TFF Hoferichter et al. (18)

g’ =63.0%27 x 107

> Padé-CanterbU ry apprOXimantS Masjuan & Sanchez-Puertas (17)
a" =63.6(2.7) x 10"
= . .
» Lattice Gérardin, Meyer, Nyffeler (19)

0 —11
a, = 62.3(2.3) x 10
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Pion-box contribution

%-pole FSQED | f
I_IMV)\U = I_IZV)F\)J + 1 = + n;u/)\a + -

12X




HLbL dispersive m-pole m-box m-resc.

Pion-box contribution

The only ingredient needed for the pion-box contribution is the
vector form factor

L 1 1 1—x
7o = PR B @Bgs [ & [ ayiry)

where

8xy(1 —2x)(1 —2y)

/ =
1x.) Aq23A03

and analogous expressions for /4 717,39 54 and

Dizs = M2 — xyqz — x(1 = x — y)g5 — y(1 — x — y) 45,
Doz = M2 — x(1—Xx)q5 — y(1 — ¥)45



HLbL dispersive

m-pole mw-box m-resc.

Pion-box contribution

. NA7 *
- JLab .
I 1 2
[ 10
I 0 0.2
!
08 06 0.4 02 0
s [Ge\/z]

Uncertainties are negligibly small:

a;®P = —15.9(2) - 107"

0.4 0.6
s [GeVz]

0.8




HLbL dispersive

Pion-box contribution

m-pole mw-box m-resc.

Contribution BPaP(96) HKS(96) KnN(02) MV(04) BP(07) PdRV(09) N/JN(09)
0 n,n' 85+13 82.7+6.4 83+12 114410 — 114413 99+16
7, K loops —19+13 —4.54+8.1 — — — —19+19 —19+13

"""+ subl. in N — — — 0+10 — — —

axial vectors 2.5+1.0 1.7£1.7 — 2245 — 15410 2245

scalars —6.84+2.0 - — — — —7+7 —7+2

quark loops 21+£3 9.7+11.1 — - - 2.3 21+ 3

total 83+32 89.6+15.4 80440 136+25 110+40 105126 116439

Uncertainties are negligibly small:

a;®P = —15.9(2) - 107"



HLbL dispersive m-pole mw-box mr-resc.

First evaluation of S- wave 2r7-rescattering

Omnes solution for v*~* — w7 provides the following:

XX X

recursive  PWE, no LHC

Based on:

>

>

|

taking the pion pole as the only left-hand singularity
= pion vector FF to describe the off-shell behaviour

7w phases obtained with the inverse amplitude method

[realistic only below 1 Gev: accounts for the f;(500) + unique and well defined extrapolation to co]

numerical solution of the v*v* — w7 dispersion relation



HLbL dispersive m-pole mw-box mr-resc.

First evaluation of S- wave 2r7-rescattering

Omnes solution for v*~* — w7 provides the following:

XX X

recursive  PWE, no LHC
Based on:

» taking the pion pole as the only left-hand singularity
» = pion vector FF to describe the off-shell behaviour

» 7 phases obtained with the inverse amplitude method

[realistic only below 1 Gev: accounts for the f;(500) + unique and well defined extrapolation to co]

» numerical solution of the v*~* — 77 dispersion relation

S-wave contributions : aZT,’:(')OOIe LHC — _8(1) x 107"



HLbL dispersive m-pole mw-box mr-resc.

Two-pion contribution to (g — 2),, from HLbL

Two-pion contributions to HLbL:

pion box rescattering contribution

P 7w, m-pole LHC —
ay " 4 a0 = —24(1) - 107"

12




HLbL dispersive m-pole mw-box mr-resc.

v*~v* — 7 contribution from other partial waves

» formulae get significantly more involved with several
subtleties in the calculation

» in particular sum rules which link different partial waves
must be satisfied by different resonances in the narrow
W|dth appI’OXimation Danilkin, Pascalutsa, Pauk, Vanderhaeghen (12,14,17)

> data and dispersive treatments available for on-shell
photons e.g. Dai & Pennington (14,16,17)

» dispersive treatment for the full doubly-virtual case and
check with forthcoming data is very important

Hoferichter, Stoffer (19), Danilkin, Deineka, Vanderhaeghen (19)



SDC

Outline

Short-distance constraints



SDC

Short-distance contraints

» short-distance constraints on n-point functions in QCD is a
well known issue

» low- and intermediate-energy representation in terms of
hadronic states doesn’t typically extrapolate to the right
high-energy limit

> requiring that the latter be satisfied is often essential to
obtain a description of spectral functions which leads to
correct integrals over them vast literature [de Rafael, Goltermann, Peris,...]

» implementing such an approach for HLbL not very simple,

but it works GC, Hagelstein, Hoferichter, Laub, work in progress



A Regge-like large-N¢ inspired model

o

FV (q12) FV (qg) C-;7rV Vw(q127q§)
Fryer (G2, G3) 5 - - +1G1 ¢ Q2
v \q1: G2 Vz‘;w (@2 + Mﬁp)(aﬁ + M3 ) { }

where
2 2 2 : 2
MVM = Mp,w(/pw) = Mp,w(O) + lpw Tp

Masjuan, Broniowski, Ruiz Arriola (12)
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A Regge-like large-N¢ inspired model

M2 (GeV?)

M? (GeV?)

p(177) states

i
« PDG'18 « extracted from Masjuan et al. '12

w(177) states

——— Anisovich et al. '00
----- Masjuan et al. '12

- Ecker et al. '89

- Kaczmarek et al. '05

——— Anisovich et al. '00
_____ Masjuan et al. '12
...... Ecker et al. '89
........ Kaczmarek et al. '05



A Regge-like large-N¢ inspired model

o

v,(G9) Fv,(G5) Gy, v, (93, G3)
F
(1) ey CI1 CIQ) vz\; q1 +M2 )(q2+M2 ) +{CI1HC72}

Py Vw

where
2 2 (; 2 H 2
Mprw = Mp,w(lp,w) = Mp,w(o) + IPM Up,w

Masjuan, Broniowski, Ruiz Arriola (12)

similarly for “excited pions”, described by a Regge-like model:

2
m n=2~0
2 0
mw(n):{ T » ’
s
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A Regge-like large-N¢ inspired model

n(0~*) states

Anisovich et al. '00
Masjuan et al. '12

M? (GeV?)

extracted from Masjuan et al. '12

« PDG'I8



A Regge-like large-N¢ inspired model

o

v,(92) Fv,(93) Gy, v, (92, G3)

F (o
() q1 q2) Z (q1+M2 )(q2+M2)

coupling between pions, and rho’s and omega’s taken
diagonal for simplicity:

G, v, (95, GB) o 0ni,0ni,

+ {Ch s CI2}



SDC

Satisfying short-distance constraints

W("v v* ( (M yy* (QS)

Q2 Q)
lim lim

11 o o4
_67T2(~)20§+O<Q Qs)u

where F_ . is the TFF of the n-th radially-excited pion

Moy*y

The infinite sum over excited pions changes the Iarge—Q§
behaviour from Q* (single pion pole) to Q; 2



SDC

Satisfying short-distance constraints

7r(n7 - (O Q2 )F, - (03)
Q§+mfr(

111 A2 -4
—67@@20§+O<Q Q;*).

[im lim
Q3—00 Q00

n=0

where F_ . is the TFF of the n-th radially-excited pion

Moy*y

The infinite sum over excited pions changes the Iarge—O§
behaviour from Q* (single pion pole) to Q; 2

Is this a realistic model? Can it satisfy all theory constraints
(anomaly, Brodsky-Lepage, etc.)?
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Comparing our Regge-like model to phenomenology

-------- LMD+V ----- Dispersive This work
T
0.35F
0301 7
% 0251 } ]
Qo
= 020f i - CELLO
&
1 Ir | 1
S A - CLEO
£o0.1sp 7!
£ —— BaBar
o
Qi o.10f 1 — Belle
0.05-
0.00 7
0 5 10 15 20 25 30 35

0% (GeV?)
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Comparing our Regge-like model to phenomenology

By p(@%QH GV Q@+ Q)lEry (@, Q)] (GeV)

5
Q% (GeV?)

5
Q1 (Gev*)
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Comparing our model to the dispersive representation

-------- LQCD ----- Dispersive This work

0.06

0.05F

0.041

0.03

Q2 |Fﬂy* y*(QZ,QZ)l (GeV)

00 o0s 10 15 20
0* (GeV?)
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Comparing our model to the dispersive representation

————— Dispersive This work

77777 Dispersive This work

0.07
< 0.06 ~~ 0.020F
3 >
= 0.05 3
N < 0.010F
S 004 =

&

S S
< 003 Q) 0.00sF
& =
w002 IS
< 59
oot ~ 0.002F

0.00

0 10 20 30 40 5 10 15 20 25 30 35 40

Q% (GeV?) 0% (GeV?)



SDC

Contribution to (g — 2),,

The =%-pole contribution to (g — 2),, evaluated with our model is:
a0 _ -1
a, =64.1-10

very close to the value obtained with the dispersive
representation for the pion TFF (62.6732 - 10~'7)

After resumming the contribution of all pion excitations we get:
N
Adl:=> g, =27(5)-10""
n=1

Much smaller than the shift obtained by Melnikov-Vainshtein by
dropping the pion TFF at the outer 7%*y vertex:

us _ —11
A& (M-V) = 13510



SDC

Effect due to short-distance constraints

Melnikov-Vainshtein’s solution to satisfy (longitudinal) SDC:
drop the 70-TFF at the outer n%*y vertex. Effect is significant:

T _ —11
Agj(M-V) =13.5-10
With two different models which satisfy the SDC, agree w/ data
on the 70 TFF and with the dispersive representation we obtain:

us —11
Aaj(our model) ~2.7-10



SDC

Effect due to short-distance constraints

Melnikov-Vainshtein’s solution to satisfy (longitudinal) SDC:
drop the n-TFF at the outer nv*v vertex. Effect is significant:

_ —11

Agj(M-V) =5-10
With two different models which satisfy the SDC, agree w/ data
on the 70 TFF and with the dispersive representation we obtain:

-1
Aa}(our model) = 3.3-10



SDC

Effect due to short-distance constraints

Melnikov-Vainshtein’s solution to satisfy (longitudinal) SDC:
drop the n/-TFF at the outer n’~v*~ vertex. Effect is significant:

’ _ -1
Ag](M-V) =5-10

With two different models which satisfy the SDC, agree w/ data

on the 70 TFF and with the dispersive representation we obtain:

! -1
Aa} (our model) = 6.6 - 10



SDC

Effect due to short-distance constraints

Melnikov-Vainshtein’s solution to satisfy (longitudinal) SDC:
drop the n/-TFF at the outer n’~v*~ vertex. Effect is significant:

! _ —11
Ag) (M-V) =5-10

With two different models which satisfy the SDC, agree w/ data
on the 70 TFF and with the dispersive representation we obtain:

! -1
Aa} (our model) = 6.6 - 10

Work on the transverse SDC is in progress, but M-V estimate
(axials) seems to be an overestimate (for various reasons)

Our models will be matched to the quark loop (in progress)
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Outline

Summary, outlook and Conclusions



Conclusions

Improvements obtained with the dispersive approach

Contribution BPaP(96) HKS(96) KnN(02) MV(04) BP(07) PdRV(09) N/JIN(09)
7% n,n' 85-+13 82.746.4 83+12 11410 - 114+13 99-+16
7, K loops —19+13 —4.548.1 - — - —19+19 —19+13

"""+ subl. in Ng - - - 0+10 - — -
axial vectors 2.5+1.0 1.7£1.7 — 22+ 5 — 15+10 224+5
scalars —6.8+2.0 — — - - —7+7 —7+2
quark loops 21£3 9.7+11.1 — — — 2.3 21£3
total 83132 89.6+15.4 80+40 136+25 110+£40 105+26 116+39

Results with the dispersive approach:

Pion pole: 62.6730
Pion box: —-15.9+£0.2
Kaon box (VMD): ~ —0.5
Pion S-wave rescatt.: —-8+1

Longitudinal SDC: ~ 13

(prelim. Hoferichter, Stoffer)

(prelim.)
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White Paper Summary of HLbL (very preliminary!)

Contributions to 10" - it

» 79 5 and 7’ poles =93.873%
» pion and kaon box  (kaonbox ~ —0.5) =—-16.4(2)
» S-wave 77 rescattering =-8(1)
Partial total: 69.4 +£4.1

» scalars and tensors with Mg > 1 GeV —2(3)
» axial vectors 8(8)
» short-distance contribution ~10(10)
Central value: 85 + XX
Uncertainties added in quadrature: XX =14
Uncertainties added linearly: XX =25



Conclusions

White Paper compared to Glasgow consensus

ai™ in units of 10~

| Contribution [ PdRV(09) [ N/JN(09) [ J(17) [ White Paper |
7%, n,n -poles 114+ 13 99 4+ 16 95.45+12.40 93.84+4.0
7, K-loop/box —194+19 —194+13 —20+5 —-16.4+0.2
S-wave nmw — - — -8+ 1
scalars -7+7 -7+2 -5.98+1.20 243
tensors — — 1.1+0.1
axials 15+ 10 22+5 7.55+2.71 8+8
g-loops / SD 2.3 214+3 22.3+5.0 10+ 10
total 105 £+ 26 116 + 39 100.4 +28.2 85 + XX

PdRV = Prades, de Rafael, Vainshtein (“Glasgow consensus”);
N = Nyffeler; J = Jegerlehner



Conclusions

Conclusions

» The HLbL contribution to (g — 2),, can be expressed in
terms of measurable quantities in a dispersive approach

» master formula: HLbL contribution to g, as triple-integral
over scalar functions which satisfy dispersion relations

» the relevant measurable quantity entering the dispersion
relation depends on the intermediate state:

> single-pion contribution: pion transition form factor
» pion-box contribution: pion vector form factor
» 2-pion rescattering: v*4*) — 77 helicity amplitudes

these three contributions (S-wave for the latter) have been
calculated with remarkably small uncertainties

» The goal of matching the experimental reduction of the
uncertainty with a similar reduction on the theory side
is being achieved (work in progress...)
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Hadronic light-by-light: a roadmap

GC, Hoferichter, Kubis, Procura, Stoffer arxiv:1408.2517 (PLB'14)

T — T

(w, o — m'r’y)(—(e‘*’e“ — 71'71'7)
/

Partial waves for
Y*y* — T

G)ion polarizabilities}—(vﬂ' — ’yﬂ')

Pion transition form factor
Froyeys (q127 qg)

Pion vector
form factor F{;

Artwork by M. Hoferichter

A reliable evaluation of the HLbL requires many different contributions
by and a collaboration among (lattice) theorists and experimentalists
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