Dispersive approach to the hadronic light-by-light contribution to $(g-2)_{\mu}$

Gilberto Colangelo

Tbilisi, 26.9.2019

Based on:

Outline

Introduction

Setting up the stage: Master Formula

A dispersion relation for HLbL

- Pion-pole contribution
- Pion-box contribution
- Pion rescattering contribution

Short-distance constraints

Summary, outlook and Conclusions

Status of $(g-2)_{\mu}$, experiment vs SM

Davier, Hoecker, Malaescu, Zhang 2019

Status of $(g-2)_{\mu}$, experiment vs SM

Keshavarzi, Nomura, Teubner, 2018 (KNT18)

Fermilab experiment's goal: error $\times 1/4$, should be matched by theory: \Rightarrow Muon "(g-2) Theory Initiative" lead by A. El-Khadra and C. Lehner

Status of $(a-2)_{ij}$ experiment vs SM

QED total

electroweak, total

HVP (LO) [KNT 18]

HVP (NLO) [KNT 18]

HLbL [update of Glasgow consensus-KNT 18] HVP (NNLO) [Kurz, Liu, Marquard, Steinhauser 14]

HLbL (NLO) [GC, Hoferichter, Nyffeler, Passera, Stoffer 14]

theory

KNT 18

116 584 718.97

116 591 820.5

153.6

6932.7

-98.2

98.0

12.4

3.0

0.01

0.07 1.0

24.6

0.4

26.0

0.1

2.0

35.6

(3	$=$ $)\mu$, $=$ μ		
		$a_{\mu}[10^{-11}]$	$\Delta a_{\mu} [10^{-11}]$
	experiment	116 592 089.	63.
	QED $\mathcal{O}(\alpha)$	116 140 973.21	0.03
	QED $\mathcal{O}(\alpha^2)$	413 217.63	0.01
	QED $\mathcal{O}(\alpha^3)$	30 141.90	0.00
	QED $\mathcal{O}(\alpha^4)$	381.01	0.02

$QED\ \mathcal{O}(lpha)$	116 140 973.21
QED $\mathcal{O}(\alpha^2)$	413 217.63
` ,	
QED $\mathcal{O}(\alpha^3)$	30 141.90
QED $\mathcal{O}(lpha^4)$	381.01
QED $\mathcal{O}(lpha^5)$	5.09

Status of $(g-2)_{\mu}$, experiment vs SM

KNT 18

$$a_{\mu}^{\rm exp} - a_{\mu}^{\rm SM} = 268.5 \pm 72.4$$
 [3.7 σ]

Keshavarzi, Nomura, Teubner, 2018

Theory uncertainty comes from hadronic physics

- Hadronic contributions responsible for most of the theory uncertainty
- Hadronic vacuum polarization (HVP) can be systematically improved

Theory uncertainty comes from hadronic physics

- Hadronic contributions responsible for most of the theory uncertainty
- Hadronic vacuum polarization (HVP) can be systematically improved

- basic principles: unitarity and analyticity
- ▶ direct relation to experiment: $\sigma_{\text{tot}}(e^+e^- \rightarrow \gamma^* \rightarrow \text{hadrons})$
- ▶ dedicated e⁺e[−] program: BaBar, Belle, BESIII, CMD3, KLOE2, SND
- alternative approach: lattice (ETMC, Mainz, HPQCD, BMW, RBC/UKQCD)

Theory uncertainty comes from hadronic physics

- Hadronic contributions responsible for most of the theory uncertainty
- Hadronic vacuum polarization (HVP) can be systematically improved
- Hadronic light-by-light (HLbL) is more problematic:

- 4-point fct. of em currents in QCD
- "it cannot be expressed in terms of measurable quantities"
- until recently, only model calculations
- lattice QCD is making fast progress

Muon g-2 Theory Initiative

Steering Committee:

GC

Michel Davier

Simon Eidelman

Aida El-Khadra (co-chair)

Christoph Lehner (co-chair)

Tsutomu Mibe (J-PARC E34 experiment)

Andreas Nyffeler

Lee Roberts (Fermilab E989 experiment)

Thomas Teubner

Workshops:

- First plenary meeting, Q-Center (Fermilab), 3-6 June 2017
- HVP WG workshop, KEK (Japan), 12-14 February 2018
- HLbL WG workshop, U. of Connecticut, 12-14 March 2018
- Second plenary meeting, Mainz, 18-22 June 2018
- Third plenary meeting, Seattle, 9-13 September 2019

Different analytic evaluations of HLbL

Jegerlehner-Nyffeler 2009

Contribution	BPaP(96)	HKS(96)	KnN(02)	MV(04)	BP(07)	PdRV(09)	N/JN(09)
π^0, η, η' π, K loops	85±13 -19±13	82.7±6.4 -4.5±8.1	83±12 -	114±10 —	_	114±13 -19±19	99±16 -19±13
" " + subl. in N _c axial vectors	2.5+1.0	1.7±1.7	_	0±10 22±5	-	15±10	22± 5
scalars	-6.8 ± 2.0	1./±1./ -	_	22±5 -	_	-7 ± 7	-7 ± 2
quark loops	21±3	9.7±11.1	_	_	_	2.3	21±3
total	83±32	89.6±15.4	80±40	136±25	110±40	105±26	116±39

Legenda: B=Bijnens Pa=Pallante P=Prades H=Hayakawa K=Kinoshita S=Sanda Kn=Knecht N=Nyffeler M=Melnikhov V=Vainshtein dR=de Rafael J=Jegerlehner

- large uncertainties (and differences among calculations) in individual contributions
- pseudoscalar pole contributions most important
- second most important: pion loop, i.e. two-pion cuts (Ks are subdominant, see below)
- heavier single-particle poles decreasingly important

Advantages of the dispersive approach

- model independent
- unambiguous definition of the various contributions
- makes a data-driven evaluation possible (in principle)
- if data not available: use theoretical calculations of subamplitudes, short-distance constraints etc.

Advantages of the dispersive approach

- model independent
- unambiguous definition of the various contributions
- makes a data-driven evaluation possible (in principle)
- if data not available: use theoretical calculations of subamplitudes, short-distance constraints etc.
- First attempts:

GC, Hoferichter, Procura, Stoffer (14)

Pauk, Vanderhaeghen (14)

- similar philosophy, with a different implementation: Schwinger sum rule
 Hagelstein, Pascalutsa (17)
- why hasn't this been adopted before?

Outline

Introduction

Setting up the stage: Master Formula

A dispersion relation for HLbL

- Pion-pole contribution
- Pion-box contribution
- Pion rescattering contribution

Short-distance constraints

Summary, outlook and Conclusions

The HLbL tensor

HLbL tensor:

$$\Pi^{\mu\nu\lambda\sigma}=i^3\!\int\! dx\!\int\! dy\!\int\! dz\; e^{-i(x\cdot q_1+y\cdot q_2+z\cdot q_3)}\langle 0|T\big\{j^\mu(x)j^\nu(y)j^\lambda(z)j^\sigma(0)\big\}|0\rangle$$

$$q_4 = k = q_1 + q_2 + q_3$$
 $k^2 = 0$

General Lorentz-invariant decomposition:

$$\Pi^{\mu
u\lambda\sigma}=g^{\mu
u}g^{\lambda\sigma}\Pi^1+g^{\mu\lambda}g^{
u\sigma}\Pi^2+g^{\mu\sigma}g^{
u\lambda}\Pi^3+\sum_{i,j,k,l}q_i^\mu q_j^
u q_k^\lambda q_l^\sigma \Pi^4_{ijkl}+\dots$$

consists of 138 scalar functions $\{\Pi^1, \Pi^2, ...\}$, but in d=4 only 136 are linearly independent

Constraints due to gauge invariance? (see also Eichmann, Fischer, Heupel (2015))

⇒ Apply the Bardeen-Tung (68) method+Tarrach (75) addition

Gauge-invariant hadronic light-by-light tensor

Applying the Bardeen-Tung-Tarrach method to $\Pi^{\mu\nu\lambda\sigma}$ one ends up with:

43 basis tensors (BT)

in d = 4: 41=no. of helicity amplitudes

11 additional ones (T)

to guarantee basis completeness everywhere

- of these 54 only 7 are distinct structures
- all remaining 47 can be obtained by crossing transformations of these 7: manifest crossing symmetry
- the dynamical calculation needed to fully determine the LbL tensor concerns these 7 scalar amplitudes

$$\Pi^{\mu\nu\lambda\sigma} = \sum_{i=1}^{54} T_i^{\mu\nu\lambda\sigma} \Pi_i$$

Master Formula

$$a_{\mu}^{\text{HLbL}} = -e^{6} \int \frac{d^{4}q_{1}}{(2\pi)^{4}} \frac{d^{4}q_{2}}{(2\pi)^{4}} \frac{\sum_{i=1}^{12} \hat{T}_{i}(q_{1}, q_{2}; p) \hat{\Pi}_{i}(q_{1}, q_{2}, -q_{1} - q_{2})}{q_{1}^{2}q_{2}^{2}(q_{1} + q_{2})^{2}[(p + q_{1})^{2} - m_{\mu}^{2}][(p - q_{2})^{2} - m_{\mu}^{2}]}$$

- $ightharpoonup \hat{T}_i$: known kernel functions
- $\triangleright \hat{\Pi}_i$: linear combinations of the Π_i
- the Π_i are amenable to a dispersive treatment: their imaginary parts are related to measurable subprocesses
- 5 integrals can be performed with Gegenbauer polynomial techniques

Master Formula

After performing the 5 integrations:

$$a_{\mu}^{\mathrm{HLbL}} = \frac{2\alpha^{3}}{48\pi^{2}} \int_{0}^{\infty} dQ_{1}^{4} \int_{0}^{\infty} dQ_{2}^{4} \int_{-1}^{1} d\tau \sqrt{1-\tau^{2}} \sum_{i=1}^{12} T_{i}(Q_{1}, Q_{2}, \tau) \bar{\Pi}_{i}(Q_{1}, Q_{2}, \tau)$$

where Q_i^{μ} are the Wick-rotated four-momenta and τ the four-dimensional angle between Euclidean momenta:

$$Q_1 \cdot Q_2 = |Q_1||Q_2|\tau$$

The integration variables $Q_1 := |Q_1|, Q_2 := |Q_2|$.

Outline

Introduction

Setting up the stage: Master Formula

A dispersion relation for HLbL

- Pion-pole contribution
- Pion-box contribution
- Pion rescattering contribution

Short-distance constraints

Summary, outlook and Conclusions

We split the HLbL tensor as follows:

$$\Pi_{\mu\nu\lambda\sigma} = \Pi_{\mu\nu\lambda\sigma}^{\pi^{0}\text{-pole}} + \Pi_{\mu\nu\lambda\sigma}^{\pi\text{-box}} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \cdots$$

Pion pole: imaginary parts = δ -functions Projection on the BTT basis: easy ✓

Our master formula=explicit expressions in the literature ✓

Input: pion transition form factor

Hoferichter et al. (18)

First results of direct lattice calculations.

Gerardin, Meyer, Nyffeler (16)

We split the HLbL tensor as follows:

$$\Pi_{\mu\nu\lambda\sigma} = \Pi_{\mu\nu\lambda\sigma}^{\pi^0\text{-pole}} + \Pi_{\mu\nu\lambda\sigma}^{\pi\text{-box}} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \cdots$$

 π -box with the BTT set:

- we have constructed a Mandelstam representation for the contribution of the 2-pion cut with LHC due to a pion pole
- we have explicitly checked that this is identical to sQED multiplied by $F_V^{\pi}(s)$ (FsQED)

We split the HLbL tensor as follows:

$$\Pi_{\mu\nu\lambda\sigma} = \Pi_{\mu\nu\lambda\sigma}^{\pi^0\text{-pole}} + \Pi_{\mu\nu\lambda\sigma}^{\pi\text{-box}} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \cdots$$

We split the HLbL tensor as follows:

$$\Pi_{\mu\nu\lambda\sigma} = \Pi_{\mu\nu\lambda\sigma}^{\pi^0\text{-pole}} + \Pi_{\mu\nu\lambda\sigma}^{\pi\text{-box}} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \cdots$$

The "rest" with 2π intermediate states has cuts only in one channel and will be calculated dispersively after partial-wave expansion

We split the HLbL tensor as follows:

$$\Pi_{\mu\nu\lambda\sigma} = \Pi_{\mu\nu\lambda\sigma}^{\pi^0\text{-pole}} + \Pi_{\mu\nu\lambda\sigma}^{\pi\text{-box}} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \cdots$$

E.g. $\gamma^* \gamma^* \to \pi \pi$ *S*-wave contributions

$$\begin{split} \hat{\Pi}_{1}^{S} &= \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} ds' \frac{-2}{\lambda_{12}(s')(s'-q_{3}^{2})^{2}} \left(4s' \operatorname{Im}h_{++,++}^{0}(s') - (s'+q_{1}^{2}-q_{2}^{2})(s'-q_{1}^{2}+q_{2}^{2}) \operatorname{Im}h_{00,++}^{0}(s') \right) \\ \hat{\Pi}_{5}^{S} &= \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} dt' \frac{-2}{\lambda_{13}(t')(t'-q_{2}^{2})^{2}} \left(4t' \operatorname{Im}h_{++,++}^{0}(t') - (t'+q_{1}^{2}-q_{3}^{2})(t'-q_{1}^{2}+q_{3}^{2}) \operatorname{Im}h_{00,++}^{0}(t') \right) \\ \hat{\Pi}_{6}^{S} &= \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} du' \frac{-2}{\lambda_{23}(u')(u'-q_{1}^{2})^{2}} \left(4u' \operatorname{Im}h_{++,++}^{0}(u') - (u'+q_{2}^{2}-q_{3}^{2})(u'-q_{2}^{2}+q_{3}^{2}) \operatorname{Im}h_{00,++}^{0}(u') \right) \\ \hat{\Pi}_{15}^{S} &= \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} du' \frac{4}{\lambda_{23}(u')(u'-q_{1}^{2})^{2}} \left(2\operatorname{Im}h_{++,++}^{0}(u') - (u'-q_{2}^{2}-q_{3}^{2}) \operatorname{Im}h_{00,++}^{0}(u') \right) \\ \hat{\Pi}_{16}^{S} &= \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} dt' \frac{4}{\lambda_{13}(t')(t'-q_{2}^{2})^{2}} \left(2\operatorname{Im}h_{++,++}^{0}(t') - (t'-q_{1}^{2}-q_{3}^{2}) \operatorname{Im}h_{00,++}^{0}(t') \right) \\ \hat{\Pi}_{17}^{S} &= \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} ds' \frac{4}{\lambda_{12}(s')(s'-q_{3}^{2})^{2}} \left(2\operatorname{Im}h_{++,++}^{0}(s') - (s'-q_{1}^{2}-q_{2}^{2}) \operatorname{Im}h_{00,++}^{0}(s') \right) \end{aligned}$$

We split the HLbL tensor as follows:

$$\Pi_{\mu
u\lambda\sigma} = \Pi^{\pi^0\text{-pole}}_{\mu
u\lambda\sigma} + \Pi^{\pi\text{-box}}_{\mu
u\lambda\sigma} + \bar{\Pi}_{\mu
u\lambda\sigma} + \cdots$$

Contributions of cuts with anything else other than one and two pions in intermediate states are neglected in first approximation

of course, the $\eta,\,\eta'$ and other pseudoscalars pole contribution, or the kaon-box/rescattering contribution can be calculated within the same formalism

- Expression of this contribution in terms of the pion transition form factor already known
 Knecht-Nyffeler (01)
- Both transition form factors (TFF) must be included:

$$\bar{\Pi}_1 = \frac{F_{\pi^0 \gamma^* \gamma^*}(q_1^2, q_2^2) F_{\pi^0 \gamma^* \gamma^*}(q_3^2, 0)}{q_3^2 - M_{\pi^0}^2}$$

[dropping one bc short-distance not correct Melnikov-Vainshtein (04)]

- data on singly-virtual TFF available CELLO, CLEO, BaBar, Belle, BESIII
- several calculations of the transition form factors in the
 literature
 Masjuan & Sanchez-Puertas (17), Eichmann et al. (17), Guevara et al. (18)
- ► dispersive approach works here too Hoferichter et al. (18)
- quantity where lattice calculations can have a significant impact Gerardin, Meyer, Nyffeler (16)

Pion-pole contribution

Latest complete analyses:

Dispersive calculation of the pion TFF

Hoferichter et al. (18)

$$a_{\mu}^{\pi^0} = 63.0^{+2.7}_{-2.1} \times 10^{-11}$$

Padé-Canterbury approximants

Masjuan & Sanchez-Puertas (17)

$$a_{\mu}^{\pi^0} = 63.6(2.7) \times 10^{-11}$$

Lattice

Gérardin, Meyer, Nyffeler (19)

$$a_{\mu}^{\pi^0} = 62.3(2.3) \times 10^{-11}$$

$$\Pi_{\mu
u\lambda\sigma} = \Pi_{\mu
u\lambda\sigma}^{\pi^0\text{-pole}} + \Pi_{\mu
u\lambda\sigma}^{\mathsf{FsQED}} + \bar{\Pi}_{\mu
u\lambda\sigma} + \cdots$$

The only ingredient needed for the pion-box contribution is the vector form factor

$$\hat{\Pi}_{i}^{\pi\text{-box}} = F_{\pi}^{V}(q_{1}^{2})F_{\pi}^{V}(q_{2}^{2})F_{\pi}^{V}(q_{3}^{2})\frac{1}{16\pi^{2}}\int_{0}^{1}dx\int_{0}^{1-x}dy\,I_{i}(x,y),$$

where

$$I_1(x,y) = \frac{8xy(1-2x)(1-2y)}{\Delta_{123}\Delta_{23}},$$

and analogous expressions for $I_{4,7,17,39,54}$ and

$$\begin{split} &\Delta_{123} = M_\pi^2 - xyq_1^2 - x(1-x-y)q_2^2 - y(1-x-y)q_3^2, \\ &\Delta_{23} = M_\pi^2 - x(1-x)q_2^2 - y(1-y)q_3^2 \end{split}$$

Uncertainties are negligibly small:

$$a_{\mu}^{\text{FsQED}} = -15.9(2) \cdot 10^{-11}$$

Contribution	BPaP(96)	HKS(96)	KnN(02)	MV(04)	BP(07)	PdRV(09)	N/JN(09)
π^0, η, η' π, K loops	85±13 -19±13	82.7±6.4 -4.5±8.1	83±12	114±10	_	114±13 -19±19	99±16 -19±13
" " + subl. in N _C axial vectors	- 2.5±1.0	1.7±1.7	_	0±10	_	- 15±10	- 22+5
scalars	-6.8 ± 2.0	_	_	22±5 -	_	-7 ± 7	-7 ± 2
quark loops	21±3	9.7±11.1	-	_	_	2.3	21±3
total	83±32	89.6±15.4	80±40	136±25	110±40	105±26	116±39

Uncertainties are negligibly small:

$$a_{\mu}^{\text{FsQED}} = -15.9(2) \cdot 10^{-11}$$

First evaluation of S- wave 2π -rescattering

Omnès solution for $\gamma^*\gamma^* \to \pi\pi$ provides the following:

Based on:

- taking the pion pole as the only left-hand singularity
- ▶ ⇒ pion vector FF to describe the off-shell behaviour
- $\pi\pi$ phases obtained with the inverse amplitude method [realistic only below 1 Gev: accounts for the $f_0(500)$ + unique and well defined extrapolation to ∞]
- numerical solution of the $\gamma^* \gamma^* \to \pi \pi$ dispersion relation

First evaluation of S- wave 2π -rescattering

Omnès solution for $\gamma^*\gamma^* \to \pi\pi$ provides the following:

Based on:

- taking the pion pole as the only left-hand singularity
- ▶ ⇒ pion vector FF to describe the off-shell behaviour
- $\pi\pi$ phases obtained with the inverse amplitude method [realistic only below 1 Gev: accounts for the $f_0(500)$ + unique and well defined extrapolation to ∞]
- ▶ numerical solution of the $\gamma^*\gamma^* \to \pi\pi$ dispersion relation

S-wave contributions :
$$a_{\mu,J=0}^{\pi\pi,\pi ext{-pole LHC}}=-8(1) imes10^{-11}$$

Two-pion contribution to $(g-2)_{\mu}$ from HLbL

Two-pion contributions to HLbL:

$$a_{\mu}^{\pi-{
m box}} + a_{\mu,J=0}^{\pi\pi,\pi ext{-pole LHC}} = -24(1)\cdot 10^{-11}$$

$\gamma^* \gamma^* \to \pi \pi$ contribution from other partial waves

- formulae get significantly more involved with several subtleties in the calculation
- in particular sum rules which link different partial waves must be satisfied by different resonances in the narrow width approximation
 Danilkin, Pascalutsa, Pauk, Vanderhaeghen (12,14,17)
- data and dispersive treatments available for on-shell photons
 e.g. Dai & Pennington (14,16,17)
- dispersive treatment for the full doubly-virtual case and check with forthcoming data is very important

Outline

Introduction

Setting up the stage: Master Formula

A dispersion relation for HLbL

- Pion-pole contribution
- Pion-box contribution
- Pion rescattering contribution

Short-distance constraints

Summary, outlook and Conclusions

Short-distance contraints

- short-distance constraints on n-point functions in QCD is a well known issue
- low- and intermediate-energy representation in terms of hadronic states doesn't typically extrapolate to the right high-energy limit
- requiring that the latter be satisfied is often essential to obtain a description of spectral functions which leads to correct integrals over them
 vast literature [de Rafael, Goltermann, Peris...]
- implementing such an approach for HLbL not very simple, but it works
 GC, Hagelstein, Hoferichter, Laub, work in progress

A Regge-like large-N_C inspired model

where

$$\mathit{M}^2_{V_{
ho,\omega}} = \mathit{M}^2_{
ho,\omega}(i_{
ho,\omega}) = \mathit{M}^2_{
ho,\omega}(0) + i_{
ho,\omega}\,\sigma^2_{
ho,\omega}$$

Masjuan, Broniowski, Ruiz Arriola (12)

A Regge-like large- N_C inspired model

A Regge-like large-N_C inspired model

$$F_{\pi^{(n)}\gamma^*\gamma^*}(q_1^2, q_2^2) = \sum_{V_{\rho}, V_{\omega}} \frac{F_{V_{\rho}}(q_1^2) F_{V_{\omega}}(q_2^2) G_{\pi^{(n)}V_{\rho}V_{\omega}}(q_1^2, q_2^2)}{(q_1^2 + M_{V_{\rho}}^2)(q_2^2 + M_{V_{\omega}}^2)} + \left\{q_1 \leftrightarrow q_2\right\}$$

where

$$M_{V_{
ho,\omega}}^2=M_{
ho,\omega}^2(i_{
ho,\omega})=M_{
ho,\omega}^2(0)+i_{
ho,\omega}\,\sigma_{
ho,\omega}^2$$

Masjuan, Broniowski, Ruiz Arriola (12)

similarly for "excited pions", described by a Regge-like model:

$$m_{\pi}^{2}(n) = \begin{cases} m_{\pi^{0}}^{2} & n = 0, \\ m_{0}^{2} + n \sigma_{\pi}^{2} & n \geq 1, \end{cases}$$

A Regge-like large- N_C inspired model

A Regge-like large- N_C inspired model

$$F_{\pi^{(n)}\gamma^*\gamma^*}(q_1^2,q_2^2) = \sum_{V_\rho,V_\omega} \frac{F_{V_\rho}(q_1^2) \, F_{V_\omega}(q_2^2) \, G_{\pi^{(n)}V_\rho V_\omega}(q_1^2,q_2^2)}{(q_1^2 + M_{V_\rho}^2)(q_2^2 + M_{V_\omega}^2)} + \left\{ q_1 \leftrightarrow q_2 \right\}$$

coupling between pions, and rho's and omega's taken diagonal for simplicity:

$$G_{\pi^{(n)}V_{\rho}V_{\omega}}(q_1^2,q_2^2) \propto \delta_{n\,i_{
ho}}\delta_{n\,i_{\omega}}$$

Satisfying short-distance constraints

$$\begin{split} \lim_{Q_3 \to \infty} \lim_{\tilde{Q} \to \infty} \sum_{n=0}^{\infty} \frac{F_{\pi^{(n)} \gamma^* \gamma^*}(\tilde{Q}^2, \tilde{Q}^2) \, F_{\pi^{(n)} \gamma \gamma^*}(Q_3^2)}{Q_3^2 + m_{\pi^{(n)}}^2} = \\ = \frac{1}{6\pi^2} \frac{1}{\tilde{Q}^2} \frac{1}{Q_3^2} + \mathcal{O}\left(\tilde{Q}^{-2} Q_3^{-4}\right), \end{split}$$

where $F_{\pi^{(n)}\gamma^*\gamma^*}$ is the TFF of the *n*-th radially-excited pion

The infinite sum over excited pions changes the large- Q_3^2 behaviour from Q_3^{-4} (single pion pole) to Q_3^{-2}

Satisfying short-distance constraints

$$\begin{split} \lim_{Q_3 \to \infty} \lim_{\tilde{Q} \to \infty} \sum_{n=0}^{\infty} \frac{F_{\pi^{(n)} \gamma^* \gamma^*}(\tilde{Q}^2, \tilde{Q}^2) \, F_{\pi^{(n)} \gamma \gamma^*}(Q_3^2)}{Q_3^2 + m_{\pi^{(n)}}^2} = \\ = \frac{1}{6\pi^2} \frac{1}{\tilde{Q}^2} \frac{1}{Q_3^2} + \mathcal{O}\left(\tilde{Q}^{-2} Q_3^{-4}\right), \end{split}$$

where $F_{\pi^{(n)} \gamma^* \gamma^*}$ is the TFF of the *n*-th radially-excited pion

The infinite sum over excited pions changes the large- Q_3^2 behaviour from Q_3^{-4} (single pion pole) to Q_3^{-2}

Is this a realistic model? Can it satisfy all theory constraints (anomaly, Brodsky-Lepage, etc.)?

Comparing our Regge-like model to phenomenology

Comparing our Regge-like model to phenomenology

Comparing our model to the dispersive representation

Comparing our model to the dispersive representation

Contribution to $(g-2)_{\mu}$

The π^0 -pole contribution to $(g-2)_{\mu}$ evaluated with our model is:

$$a_{\mu}^{\pi^0} = 64.1 \cdot 10^{-11}$$

very close to the value obtained with the dispersive representation for the pion TFF $(62.6^{+3.0}_{-2.5} \cdot 10^{-11})$

After resumming the contribution of all pion excitations we get:

$$\Delta a_{\mu}^{\pi} := \sum_{n=1}^{\infty} a_{\mu}^{\pi^{(n)}} = 2.7(5) \cdot 10^{-11}$$

Much smaller than the shift obtained by Melnikov-Vainshtein by dropping the pion TFF at the outer $\pi^0\gamma^*\gamma$ vertex:

$$\Delta a_{\mu}^{\pi}(\text{M-V}) = 13.5 \cdot 10^{-11}$$

Melnikov-Vainshtein's solution to satisfy (longitudinal) SDC: drop the π^0 -TFF at the outer $\pi^0\gamma^*\gamma$ vertex. Effect is significant:

$$\Delta a^{\pi}_{\mu}(\text{M-V}) = 13.5 \cdot 10^{-11}$$

With two different models which satisfy the SDC, agree w/ data on the π^0 TFF and with the dispersive representation we obtain:

$$\Delta a_{\mu}^{\pi}$$
(our model) $\sim 2.7 \cdot 10^{-11}$

Melnikov-Vainshtein's solution to satisfy (longitudinal) SDC: drop the η -TFF at the outer $\eta \gamma^* \gamma$ vertex. Effect is significant:

$$\Delta a^{\eta}_{\mu}(\text{M-V}) = 5 \cdot 10^{-11}$$

With two different models which satisfy the SDC, agree w/ data on the π^0 TFF and with the dispersive representation we obtain:

$$\Delta a^{\eta}_{\mu}(\text{our model}) = 3.3 \cdot 10^{-11}$$

Melnikov-Vainshtein's solution to satisfy (longitudinal) SDC: drop the η' -TFF at the outer $\eta'\gamma^*\gamma$ vertex. Effect is significant:

$$\Delta a_{\mu}^{\eta'}(\text{M-V}) = 5 \cdot 10^{-11}$$

With two different models which satisfy the SDC, agree w/ data on the π^0 TFF and with the dispersive representation we obtain:

$$\Delta a_{\mu}^{\eta'}$$
(our model) = 6.6 · 10⁻¹¹

Melnikov-Vainshtein's solution to satisfy (longitudinal) SDC: drop the η' -TFF at the outer $\eta'\gamma^*\gamma$ vertex. Effect is significant:

$$\Delta a_{\mu}^{\eta'}(\text{M-V}) = 5 \cdot 10^{-11}$$

With two different models which satisfy the SDC, agree w/ data on the π^0 TFF and with the dispersive representation we obtain:

$$\Delta a_{\mu}^{\eta'}$$
 (our model) = 6.6 · 10⁻¹¹

Work on the transverse SDC is in progress, but M-V estimate (axials) seems to be an overestimate (for various reasons)

Our models will be matched to the quark loop (in progress)

Outline

Introduction

Setting up the stage: Master Formula

A dispersion relation for HLbL

- Pion-pole contribution
- Pion-box contribution
- Pion rescattering contribution

Short-distance constraints

Summary, outlook and Conclusions

Improvements obtained with the dispersive approach

Contribution	BPaP(96)	HKS(96)	KnN(02)	MV(04)	BP(07)	PdRV(09)	N/JN(09)
π^0, η, η'	85±13	82.7±6.4	83±12	114±10	_	114±13	99±16
π, K loops	-19 ± 13	-4.5 ± 8.1	_	_	_	-19 ± 19	-19 ± 13
" " $+$ subl. in N_c	_	_	_	0 ± 10	_	_	_
axial vectors	2.5 ± 1.0	1.7 ± 1.7	_	22 ± 5	_	15±10	22 ± 5
scalars	-6.8 ± 2.0	_	_	_	_	-7 ± 7	-7 ± 2
quark loops	21±3	9.7±11.1	_	-	_	2.3	21 ± 3
total	83±32	89.6±15.4	80±40	136±25	110±40	105±26	116±39

Results with the dispersive approach:

Pion pole: $62.6^{+3.0}_{-2.6}$

Pion box: -15.9 ± 0.2

Kaon box (VMD): ~ -0.5 (prelim. Hoferichter, Stoffer)

Pion S-wave rescatt.: -8 ± 1

Longitudinal SDC: \sim 13 (prelim.)

White Paper Summary of HLbL (very preliminary!)

Contributions to $10^{11} \cdot a_{\mu}^{\text{HLbL}}$

$$\blacktriangleright$$
 π^0 , η and η' poles

▶ pion and kaon box
$$(kaon box \sim -0.5)$$

$$\triangleright$$
 S-wave $\pi\pi$ rescattering

$$=93.8^{+4.0}_{-3.6}$$

$$=-16.4(2)$$

 $=-8(1)$

$$69.4 \pm 4.1$$

$$\sim -2(3)$$

$$\sim 8(8)$$

$$\sim 10(10)$$

$$85 \pm XX$$
$$XX = 14$$

$$XX = 25$$

White Paper compared to Glasgow consensus

 $a_{\mu}^{
m HLbL}$ in units of 10^{-11}

Contribution	PdRV(09)	N/JN(09)	J(17)	White Paper	
π^0, η, η' -poles	114 ± 13	99 ± 16	95.45 ± 12.40	93.8 ± 4.0	
π , <i>K</i> -loop/box	-19 ± 19	-19 ± 13	-20 ± 5	-16.4 ± 0.2	
S-wave $\pi\pi$	_	_	_	-8 ± 1	
scalars	-7 ± 7	-7 ± 2	-5.98 ± 1.20		
tensors	_	_	1.1 ± 0.1	} - 2 ± 3	
axials	15 ± 10	22 ± 5	7.55 ± 2.71	8 ± 8	
q-loops / SD	2.3	21 ± 3	22.3 ± 5.0	10 ± 10	
total	105 ± 26	116 ± 39	100.4 ± 28.2	85 ± <i>XX</i>	

PdRV = Prades, de Rafael, Vainshtein ("Glasgow consensus"); N = Nyffeler; J = Jegerlehner

Conclusions

- ► The HLbL contribution to $(g-2)_{\mu}$ can be expressed in terms of measurable quantities in a dispersive approach
- **master formula**: HLbL contribution to a_{μ} as triple-integral over scalar functions which satisfy dispersion relations
- the relevant measurable quantity entering the dispersion relation depends on the intermediate state:
 - ► single-pion contribution: pion transition form factor
 - pion-box contribution: pion vector form factor
 - ▶ 2-pion rescattering: $\gamma^* \gamma^{(*)} \to \pi \pi$ helicity amplitudes

these three contributions (*S*-wave for the latter) have been calculated with remarkably small uncertainties

The goal of matching the experimental reduction of the uncertainty with a similar reduction on the theory side is being achieved (work in progress...)

Hadronic light-by-light: a roadmap

GC, Hoferichter, Kubis, Procura, Stoffer arXiv:1408.2517 (PLB '14)

Artwork by M. Hoferichter

A reliable evaluation of the HLbL requires many different contributions by and a collaboration among (lattice) theorists and experimentalists