

Use of triangle singularity in precisely measuring the X(3872) binding energy

Feng-Kun Guo

Institute of Theoretical Physics, Chinese Academy of Sciences

RDP Seventh Autumn PhD School & Workshop, 23–28 Sept. 2019, Tbilisi, Georgia

Based on: FKG, Phys. Rev. Lett. 122, 202002 (2019) [arXiv:1902.11221]

Charmonia and XYZ states

Charmonia and XYZ states

Charmonia and XYZ states

• X(3915) is probably just the $\chi_{c2}(2P)$ with 2^{++} Z.-Y. Zhou et al., PRL115(2015)022001

• $\psi_3(3^{--})$ recently discovered: $M = 3842.71 \pm 0.20~{
m MeV}~{
m LHCb}$, JHEP1907(2019)035

Feng-Kun Guo (ITP)

Naming convention

For states with properties in conflict with naive quark model (normally):

• $X: I = 0, J^{PC}$ other than 1^{--} or unknown

•
$$Y: I = 0, J^{PC} = 1^{-1}$$

• Z: I = 1

PDG2018 naming scheme:

$J^{PC} =$	$\begin{cases} 0^{-+} \\ 2^{-+} \\ \vdots \end{cases}$	${}^{1^{+-}}_{3^{+-}}$:	$2^{}$	0^{++} 1^{++} \vdots
Minimal quark content				
$\overline{u\overline{d}, u\overline{u} - d\overline{d}, d\overline{u}}$ $(I = 1)$	π	b	ρ	a
$ \frac{d\overline{d} + u\overline{u}}{\text{and/or } s\overline{s}} $ $\left\{ \begin{array}{c} (I=0) \\ \end{array} \right. $	η,η^\prime	h, h'	ω, ϕ	f, f'
cc	η_c	h_c	ψ^{\dagger}	χ_c
$b\overline{b}$	η_b	h_b	Υ	χ_b
$I = 1$ with $c\overline{c}$	(Π_c)	Z_c	R_c	(W_c)
$I = 1$ with $b\overline{b}$	(Π_b)	Z_b	(R_b)	(W_b)

[†]The J/ψ remains the J/ψ .

So X(3872) is also called $\chi_{c1}(3872)$

X(3872): properties (1)

Belle, PRL91(2003)262001

- The beginning of the XYZ story, discovered in $B^\pm \to K^\pm J/\psi \pi\pi$

 $M_X = (3871.69 \pm 0.17) \text{ MeV}$

- $\Gamma < 1.2~{\rm MeV}$ Belle, PRD84(2011)052004
- Confirmed in many experiments: Belle, BaBar, BESIII, CDF, CMS, D0, LHCb, ...
- 10 years later, $J^{PC} = 1^{++}$

```
LHCb, PRL110(2013)222001
```

 $\Rightarrow S\text{-wave coupling to }D\bar{D}^{*}$

Mysterious properties:

• Mass coincides with the $D^0 \bar{D}^{*0}$ threshold:

 $M_{D^0} + M_{D^{*0}} - M_X = (0.00 \pm 0.18) \text{ MeV}$

X(3872): properties (2)

Mysterious properties (cont.):

• Large coupling to $D^0 \overline{D}^{*0}$:

 ${\cal B}(X o D^0 \bar D^{*0}) > 30\%$ Belle, PRD81(2010)031103 $\mathcal{B}(X \to D^0 \bar{D}^0 \pi^0) > 40\%$ Belle, PRL97(2006)162002

No isospin partner observed $\Rightarrow I = 0$ but, large isospin breaking:

$$\frac{\mathcal{B}(X \to \omega J/\psi)}{\mathcal{B}(X \to \pi^+ \pi^- J/\psi)} = 0.8 \pm 0.3$$

$$C(X) = +, C(J/\psi) = - \Rightarrow C(\pi^+ \pi^-) = - \Rightarrow I(\pi^+ \pi^-) = 1$$

Radiative decays:

 $\frac{\mathcal{B}(X \to \gamma \psi')}{\mathcal{B}(X \to \gamma J/\psi)} = 2.6 \pm 0.6$

Upper limit at Belle: < 2.1 at 90% C.L.

Notice: New BESIII result: < 0.59 at 90% C.L.

11102

PDG18 average of BaBar(2009) and LHCb(2014)

Belle, PRL107(2011)091803

see C.-Z. Yuan, talk at Lattice2019

X(3872): important observables

$$\delta \equiv M_{D^0} + M_{D^{*0}} - M_X = (0.00 \pm 0.18) \text{ MeV}$$

• Long-distance wave function (below th.) given by $D^0 \bar{D}^{*0}$: Braaten, Voloshin, ...

$$\psi_X(k^2) = rac{\sqrt{8\pi\gamma_X}}{k^2+\gamma_X^2}$$

binding momentum :
$$\gamma_X\equiv \sqrt{2\deltarac{M_{D^{*0}}M_{D^0}}{M_{D^{*0}}+M_{D^0}}}$$

- Line shapes, mass and width are important to understand the X(3872) Hanhart et al., PRD76(2007)034007; Artoisenet, Braaten, Kang, PRD82(2010)014013; ...
- Width: sensitivity of $\lesssim 100~{\rm keV}$ at PANDA PANDA, EPJA55(2019)42
- Mass \Rightarrow Coupling of X to $D^0 \overline{D}^{*0}$ for the molecular component Is the X above or below the $D^0 \overline{D}^{*0}$

threshold? High precision!

Precision of the binding energy $\delta~(\pm 180~{\rm keV})$ is limited by

• Precision of the X(3872) mass PDG2018 average from the $J/\psi\pi\pi$ and $J/\psi\pi\pi\pi$ modes

$oldsymbol{\chi}_{c1}(3872)$ MASS FROM $oldsymbol{J}/\psioldsymbol{X}$ MODE

INSPIRE search

VALUE (MeV)	EVTS		DOCUMENT ID		TECN	COMMENT
3871.69 ± 0.17	OUR AVERAGE					
$3871.9\ {\pm}0.7\ {\pm}0.2$	$20~{\pm}5$		ABLIKIM	2014	BES3	$e^+~e^- ightarrow J/\psi \pi^+\pi^-\gamma$
$3871.95 \pm 0.48 \pm 0.12$	0.6k		AAIJ	2012H	LHCB	$p \; p o J/\psi \pi^+\pi^- X$
$3871.85 \pm 0.27 \pm 0.19$	~ 170	1	CHOI	2011	BELL	$B o K \pi^+ \pi^- J/\psi$
$3873 \ _{-1.6}^{+1.8} \pm 1.3$	$27~{\pm}8$	2	DEL-AMO- SANCH	2010B	BABR	$B ightarrow \omega J/\psi K$
$3871.61 \pm 0.16 \pm 0.19$	6k	3, 2	AALTONEN	2009AU	CDF2	$p \ \overline{p} ightarrow J/\psi \pi^+\pi^- X$
$3871.4 \ {\pm}0.6 \ {\pm}0.1$	93.4		AUBERT	2008Y	BABR	$B^+ ightarrow K^+ J/\psi \pi^+ \pi^-$
$3868.7 \pm \! 1.5 \pm \! 0.4$	9.4		AUBERT	2008Y	BABR	$B^0 ightarrow K^0_S J/\psi \pi^+ \pi^-$
$3871.8 \pm 3.1 \pm 3.0$	522	4, 2	ABAZOV	2004F	D0	$p \ \overline{p} ightarrow J/\psi \pi^+\pi^- X$

• Precision of D^0, D^{*0} masses (PDG AVERAGE):

 $M_{D^0} = (1864.84 \pm 0.05) \; {
m MeV}, \; \; M_{D^{*0}} = (2006.85 \pm 0.05) \; {
m MeV}$

Triangle singularity

$$\frac{1}{2m_A}\sqrt{\lambda(m_A^2,m_1^2,m_2^2)} \equiv \boxed{p_{2,\text{left}} = p_{2,\text{right}}} \equiv \gamma \left(\beta E_2^* - p_2^*\right)$$

on-shell momentum of m_2 at the left and right cuts in the A rest frame
 $\beta = |\vec{p}_{23}|/E_{23}, \gamma = 1/\sqrt{1-\beta^2}$ Bayar et al., PRD94(2016)074039

- $p_2 > 0, p_3 = \gamma \left(\beta E_3^* + p_2^*\right) > 0 \Rightarrow m_2$ and m_3 move in the same direction
- velocities in the A rest frame: $v_3 > \beta > v_2$

$$v_2 = \beta \, \frac{E_2^* - p_2^* / \beta}{E_2^* - \beta \, p_2^*} < \beta \,, \qquad v_3 = \beta \, \frac{E_3^* + p_2^* / \beta}{E_3^* + \beta \, p_2^*} > \beta$$

Conditions (Coleman–Norton theorem): Coleman, Norton (1965); Bronzan (1964)
 I all three intermediate particles can go on shell simultaneously
 I p
 ³ p
 ² || p
 ³, particle-3 can catch up with particle-2 (as a classical process)
 needs very special kinematics ⇒ process dependent! (contrary to pole position)

Feng-Kun Guo (ITP)

New method for measuring the X(3872) mass (1)

FKG, PRL122(2019)202002

Use of triangle singularity:

- Massless photon
- TS for the $X\gamma$ invariant mass ($\delta = M_{D^{*0}} + M_{D^0} M_X$):

$$E_{X\gamma}^{\rm TS} = 2M_{D^{*0}} + \frac{1}{4M_{D^0}} \left(M_{D^{*0}} - M_{D^0} - 2\sqrt{-M_{D^0}\delta} + \delta \right)^2 + \mathcal{O}\left(\frac{(..)^3}{M_{D^0}^2}\right)$$

 \Rightarrow TS in $E_{X\gamma}$ around the $D^{*0}\bar{D}^{*0}$ thr. (S-wave $D^{*0}\bar{D}^{*0}$ with $J^PC = 1^{+-}$)

• D^{0*} width is tiny:

$$\begin{split} &\Gamma(D^{*\pm}) = (83.4 \pm 1.8) \text{ keV}, \quad \mathcal{B}(D^{*\pm} \to \pi^0 D^{\pm}) = (67.7 \pm 0.5)\%, \\ &\mathcal{B}(D^{*0} \to \pi^0 D^0) = (64.7 \pm 0.9)\% \\ &\Rightarrow \Gamma(D^{*0}) = (55.3 \pm 1.4) \text{ keV} \end{split}$$

New method for measuring the X(3872) mass (1)

FKG, PRL122(2019)202002

Use of triangle singularity:

- Massless photon
- TS for the $X\gamma$ invariant mass ($\delta = M_{D^{*0}} + M_{D^0} M_X$):

$$E_{X\gamma}^{\text{TS}} = 2M_{D^{*0}} + \frac{1}{4M_{D^0}} \left(M_{D^{*0}} - M_{D^0} - 2\sqrt{-M_{D^0}\delta} + \delta \right)^2 + \mathcal{O}\left(\frac{(..)^3}{M_{D^0}^2}\right)$$

 \Rightarrow TS in $E_{X\gamma}$ around the $D^{*0}\bar{D}^{*0}$ thr. (S-wave $D^{*0}\bar{D}^{*0}$ with $J^PC = 1^{+-}$)

• D^{0*} width is tiny:

$$\begin{split} &\Gamma(D^{*\pm}) = (83.4 \pm 1.8) \text{ keV}, \quad \mathcal{B}(D^{*\pm} \to \pi^0 D^{\pm}) = (67.7 \pm 0.5)\%, \\ &\mathcal{B}(D^{*0} \to \pi^0 D^0) = (64.7 \pm 0.9)\% \\ &\Rightarrow \Gamma(D^{*0}) = (55.3 \pm 1.4) \text{ keV} \end{split}$$

New method for measuring the X(3872) mass (2)

$$E_{X\gamma}^{\rm TS} \simeq 2M_{D^{*0}} + \frac{1}{2M_{D^0}} \left(M_{D^{*0}} - M_{D^0} - 2\sqrt{-M_{D^0}\delta} + \delta \right)^2$$

- For X blow $D^0 \bar{D}^{*0}$ threshold, $\delta > 0$, TS is complex, smooth shape
- For X above $D^0 \bar{D}^{*0}$ threshold, $\delta < 0$, TS is real \Rightarrow logarithmic divergent peak if neglecting D^{*0} width
- Sharper peak when $\delta < 0$

Line shape normalized at the $D^{*0}\bar{D}^{*0}$ threshold:

$$F(E_{X\gamma}) = \frac{|I(E_{X\gamma})|^2}{|I(2m_*)|^2} \frac{E_{\gamma}^3}{\left[(4m_*^2 - m_X^2)/(4m_*)\right]^3}$$

here $I(E_{X\gamma})$: the triangle loop integral

New method for measuring the X(3872) mass (2)

$$E_{X\gamma}^{\rm TS} \simeq 2M_{D^{*0}} + \frac{1}{2M_{D^0}} \left(M_{D^{*0}} - M_{D^0} - 2\sqrt{-M_{D^0}\delta} + \delta \right)^2$$

Line shape normalized at the $D^{*0}\overline{D}^{*0}$ threshold:

$$F(E_{X\gamma}) = \frac{|I(E_{X\gamma})|^2}{|I(2m_*)|^2} \frac{E_{\gamma}^3}{\left[(4m_*^2 - m_X^2)/(4m_*)\right]^3}$$

here $I(E_{X\gamma})$: the triangle loop integral

Sensitivity study from a simple Monte Carlo simulation:

(1) Generate synthetic events following the distribution

$$F(E_{X\gamma}) = \frac{|I(E_{X\gamma})|^2}{|I(2m_*)|^2} \frac{E_{\gamma}^3}{\left[(4m_*^2 - m_X^2)/(4m_*)\right]^3}$$

(2) Fit to the synthetic data treating δ as a free parameter

Sensitivity study (2)

Feng-Kun Guo (ITP)

А	$\delta_{\rm in} = -50~{\rm keV}$ (127 events)	$\delta_{\rm in}=0$ (164 events)	$\delta_{\rm in}=50~{\rm keV}$ (192 events)
10 bins	-24^{+24}_{-28}	11^{+31}_{-20}	22^{+41}_{-23}
5 bins	-17^{+24}_{-27}	30_{-29}^{+64}	40_{-31}^{+67}
В	$\delta_{\rm in} = -50~{\rm keV}$ (626 events)	$\delta_{\rm in}=0$ (831 events)	$\delta_{\rm in}=50~{\rm keV}$ (1006 events)
10 bins	-47^{+13}_{-16}	-1^{+13}_{-11}	63^{+34}_{-24}
5 bins	-48^{+15}_{-19}	-4^{+11}_{-10}	53^{+38}_{-25}
С	$\delta_{\rm in} = -50~{\rm keV}$ (3133 events)	$\delta_{\rm in}=0$ (4027 events)	$\delta_{\rm in}=50~{\rm keV}$ (5015 events)
10 bins	-53^{+7}_{-8}	-2 ± 5	55^{+13}_{-11}
5 bins	-52^{+7}_{-8}	-2^{+7}_{-6}	61^{+17}_{-14}

10 bins: 1 MeV/bin

5 bins: 2 MeV/bin

Triangle singularity for $e^+e^- ightarrow \gamma X(3872)$

- There can also be triangle singularity for $e^+e^- \rightarrow D^{*0}\bar{D}^{*0} \rightarrow \gamma X(3872)$
- $D^{*0}\bar{D}^{*0}$ in *P*-wave, thus suppressed at threshold, no threshold cusp
- But, still enhanced cross section and a narrow peak at about 2.2 MeV above the $D^{*0}\bar{D}^{*0}$ threshold E. Braaten, L.-P. He, K. Ingles, PRD100(2019)031501

• For BESIII: to measure cross section for $e^+e^-\to\gamma X(3872)$ between 4009 MeV and 4020 MeV

- Unprecedented data allow us to study analytic structures of QFT other than the resonance poles
- Triangle singularity as a tool:

 $\mathbb{TS} \Rightarrow$ enhanced production of near-threshold states

- New method for precisely measuring the X(3872) mass: to measure the $X\gamma$ line shape between 4.01 and 4.02 GeV
- A few possibilities:

BESIII + STCF + Belle-II (ISR):

 $e^+e^- \to \pi^0 D^{*0} \bar{D}^{*0} \to \pi^0 \gamma X(3872) @ \sqrt{s}_{e^+e^-} \sim 4.4 \text{ GeV}$

- \square B factories: $B \to KD^{*0}\bar{D}^{*0} \to K\gamma X(3872)$
- Solution PANDA: $p\bar{p} \rightarrow D^{*0}\bar{D}^{*0} \rightarrow \gamma X(3872)$

THANK YOU FOR YOUR ATTENTION!

Backup slides

TS: some details (1)

Consider the scalar three-point loop integral

$$I = i \int \frac{d^4q}{(2\pi)^4} \frac{1}{\left[(P-q)^2 - m_1^2 + i\epsilon\right]\left(q^2 - m_2^2 + i\epsilon\right)\left[(p_{23} - q)^2 - m_3^2 + i\epsilon\right]}$$

Rewriting a propagator into two poles:

$$\frac{1}{q^2 - m_2^2 + i\epsilon} = \frac{1}{(q^0 - \omega_2 + i\epsilon)(q^0 + \omega_2 - i\epsilon)} \quad \text{with} \quad \omega_2 = \sqrt{m_2^2 + \vec{q'}^2}$$

focus on the positive-energy poles

$$I \simeq \frac{i}{8m_1m_2m_3} \int \frac{dq^0 d^3\vec{q}}{(2\pi)^4} \frac{1}{\left(P^0 - q^0 - \omega_1 + i\epsilon\right)\left(q^0 - \omega_2 + i\epsilon\right)\left(p_{23}^0 - q^0 - \omega_3 + i\epsilon\right)}$$

TS: some details (2)

Contour integral over $q^0 \Rightarrow$

$$I \propto \int \frac{d^3 \vec{q}}{(2\pi)^3} \frac{1}{[P^0 - \omega_1(q) - \omega_2(q) + i\,\epsilon][p_{23}^0 - \omega_2(q) - \omega_3(\vec{p}_{23} - \vec{q}) + i\,\epsilon]}$$

$$\propto \int_0^\infty dq \; rac{q^2}{P^0-\omega_1(q)-\omega_2(q)+i\,\epsilon} f(q)$$

The second cut:

$$f(q) = \int_{-1}^{1} dz \, \frac{1}{p_{23}^0 - \omega_2(q) - \sqrt{m_3^2 + q^2 + p_{23}^2 - 2p_{23}qz} + i\,\epsilon}$$

AL 14 0

----+ 1

Relation between singularities of integrand and integral

- singularity of integrand does not necessarily give a singularity of integral: integral contour may be deformed to avoid the singularity
- Two cases that a singularity cannot be avoided:
 - endpoint singularity
 - pinch singularity

TS: some details (4)

Singularities of the **integrand of** I in the rest frame of initial particle ($P^0 = M$):

• 1st cut:
$$M - \omega_1(l) - \omega_2(l) + i\epsilon = 0 \Rightarrow$$

 $q_{\text{on}\pm} \equiv \pm \left(\frac{1}{2M}\sqrt{\lambda(M^2, m_1^2, m_2^2)} + i\epsilon\right)$
• 2nd cut: $A(q, \pm 1) = 0 \Rightarrow$ endpoint singularities of $f(q)$
 $z = +1: \quad q_{a+} = \gamma \left(\beta E_2^* + p_2^*\right) + i\epsilon, \qquad q_{a-} = \gamma \left(\beta E_2^* - p_2^*\right) - i\epsilon,$

$$z = -1: \quad q_{b+} = \gamma \left(-\beta E_2^* + p_2^*\right) + i \epsilon, \quad q_{b-} = -\gamma \left(\beta E_2^* + p_2^*\right) - i \epsilon$$
$$\beta = |\vec{p}_{23}|/E_{23}, \qquad \gamma = 1/\sqrt{1 - \beta^2} = E_{23}/m_{23}$$

 $E_2^*(p_2^*)$: energy (momentum) of particle-2 in the cmf of the (2,3) system

Feng-Kun Guo (ITP)

TS: some details (5)

All singularities of the integrand of *I*:

 $\begin{array}{ll} q_{\mathrm{on}+}, & q_{a+} = \gamma \left(\beta \, E_2^* + p_2^*\right) + i \, \epsilon, & q_{a-} = \gamma \left(\beta \, E_2^* - p_2^*\right) - i \, \epsilon, \\ q_{\mathrm{on}-} < 0, & q_{b-} = -q_{a+} < 0 \; (\text{for } \epsilon = 0), & q_{b+} = -q_{a-}, \end{array}$

