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Ab initio nuclear theory

The aim is to predict the properties of atomic nuclei from microscopic nuclear
forces
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� synthesis of the elements in the Universe (nucleosynthesis)

� mechanisms in stars and stellar explosions (nuclear processes)



Nuclear forces from QCD

Quantum chromodynamics (QCD) describes the strong forces by confining
quarks (and gluons) into baryons and mesons.
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Nuclear forces from QCD

Quantum chromodynamics (QCD) describes the strong forces by confining
quarks (and gluons) into baryons and mesons.
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Chiral EFT for nucleons: nuclear forces

Chiral effective field theory organizes the nuclear interactions as an expansion in
powers of momenta and other low energy scales such as the pion mass (Q/Λχ)

Rep. Prog. Phys. 75 (2012) 016301 N Kalantar-Nayestanaki et al
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Figure 4. Hierarchy of nuclear forces in chiral EFT based on Weinberg’s power counting. Solid and dashed lines denote nucleons and
pions, respectively. Solid dots, filled circles and filled squares refer, respectively, to the leading, subleading and sub-subleading vertices in
the effective Lagrangian. The crossed square denotes 2N contact interactions with 4 derivatives.

1 GeV, respectively. A recent review on the methodology and
applications of chiral perturbation theory in the Goldstone–
boson and single-nucleon sectors can be found in [66].

Chiral EFT, however, cannot be directly applied to
low-energy few-nucleon scattering. The strong nature of
the nuclear force that manifests itself in the appearance of
self-bound atomic nuclei invalidates a naive application of
perturbation theory. Weinberg pointed out that the breakdown
of perturbation theory can be traced back to the infrared
enhancement of reducible diagrams that involve few-nucleon
cuts [67, 68]. The irreducible part of the amplitude that gives
rise to the nuclear force is, however, not affected by the infrared
enhancement and is thus accessible within chiral EFT. These
important observations have triggered intense research activity
towards the systematic derivation of the nuclear forces in chiral
EFT and their applications to the nuclear few- and many-body
problem.

It should also be emphasized that an EFT can be
formulated that is only valid at typical momenta well below
the pion mass. This framework allows one to take into
account the unnaturally large NN scattering lengths but loses
the connection with the chiral symmetry of QCD. It has
been used with great success not only for nuclear systems
[69, 14]. This so-called pion-less EFT requires a 3NF in
leading order. The corresponding hard scale is given by
the pion mass and, therefore, intermediate-energy observables
cannot be predicted within this framework. In the following,
we restrict ourselves to chiral EFT.

The EFT expansion of the nuclear force based on
the standard chiral power counting (i.e. assuming that all
operators in the effective Lagrangian scale according to a naive
dimensional analysis) is visualized in figure 4.

It provides a natural qualitative explanation of the
observed hierarchy of two-, three- and more-nucleon forces
with 〈V2N〉 � 〈V3N〉 � 〈V4N〉 . . .. The expansion of the 2NF
has the form

V2N = V
(0)

2N + V
(2)

2N + V
(3)

2N + V
(4)

2N + · · · , (1)

with the superscripts referring to the power of the expansion
parameter Q/�χ . The long-range part of the nuclear
force is dominated by 1π -exchange with the 2π -exchange
contributions starting at next-to-leading order (NLO). The
expressions for the potential up to next-to-next-to-leading
order (N2LO) in the heavy-baryon formulation [70, 71] are
rather compact and have been independently derived by several
authors using a variety of different methods [72–75]. 2π - and
3π -exchange contributions at next-to-next-to-next-to-leading
order (N3LO) have been worked out by Kaiser [76–79] and
are considerably more involved, see also [80]. While the
2π -exchange at NLO and, especially, at N2LO generates a
rather strong potential at distances of the order of the inverse
pion mass [74], the leading 3π -exchange contributions turn out
to be negligible. The N3LO contributions to the 2π -exchange
potential were also derived in the covariant formulation of
chiral EFT [81] by Higa et al [82, 83]. The LECs entering
the pion-exchange contributions up to N3LO are known from
pion–nucleon scattering and related processes [84–86]. We
note that some of them, especially the ones from L(3)

πN , are
presently not very accurately determined. In the isospin
limit, the short-range part of the potential involves 2, 9, 24
independent terms at LO, NLO/N2LO, N3LO, respectively.
The corresponding LECs were fixed from the two-nucleon
data leading to the accurate N3LO potentials of Entem and
Machleidt (EM) [87] and Epelbaum, Glöckle and Meißner
(EGM) [88]. These two potentials differ in the treatment of
relativistic corrections (including the form of the employed
dynamical equation), IB terms and the form of the regulator
functions. There are also differences in the adopted values
of certain pion–nucleon LECs. Finally, EGM provide an
estimation of the theoretical uncertainty by means of the
variation of the cutoffs in some natural ranges. This important
issue is not addressed in [87], where a single excellent
fit to neutron–proton (proton–proton) scattering data with
χ2/datum = 1.10 (χ2/datum = 1.50) in the energy range
from 0 to 290 MeV is given. We refer the reader to [87, 88] for
more details. In figure 5, we compare NN phase shifts obtained
with these models with predictions from phenomenological
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Effective field theory
A classical example: Multipole expansion

Φ(r) =
1

4πε0

∫
V

ρ(~r)dV
|~R−~r|

s

ρ(~r) ~R−~r

~R~r

1
|~R−~r|

=
1√

R2 + r2 − 2Rr cos θ
=

1
R
+

r
R2 cos θ +

r2

R3
3 cos2 θ − 1

2
+ ...

Φ(r) =
1

4πε0

{
1
R

∫
V

ρ(~r)dV +
1

R2

∫
V
~rρ(~r)dV +

1
R3

∫
V
(3rirj − r2δij)ρ(~r)dV

}
+O

(
1

R4

)

� We do not need to know the dynamics at the short distance to understand the dynamics at
the long distance

� the sum converges for S� R
� long distances probes are determined by the bulk properties



Lattice effective field theory

Lattice effective field theory is a powerful numerical method formulated in the
framework of chiral effective field theory
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Lattice formulation of χEFT

� a new lattice formulation of χEFT interactions:

� a simpler decomposition into spin channels

� the process of fitting to the empirical scattering phase shifts is simplified,
and the resulting lattice phase shifts are more accurate.

VS,I,J
L,L′ (n) = ∑

Iz ,Jz

∑
Sz ,Lz

∑
S′z ,L′z

(
〈SSz, LLz|J Jz〉

[
a(n) ∇2M R∗L,Lz

(∇) a(n)
]sNL

S,Sz ,I,Iz

)†

〈SS′z, L′L′z|J Jz〉
[

a(n) ∇2M R∗L′ ,L′z (∇) a(n)
]sNL

S,S′z ,I,Iz

[a(n) a(n′)]sNL
S,Sz ,I,Iz

= ∑
i,j,i′ ,j′

asNL
i,j (n) Mii′ (S, Sz) Mjj′ (I, Iz) asNL

i,j (n′)

Li, SE, Epelbaum, Lee, Lu, Meißner Phys. Rev. C 98, 044002 (2018)



χEFT for nucleons: NN scattering phase shifts

� formulate the lattice action in the framework of chiral effective field theory

� fit the unknown coefficients of the short-range lattice interactions to empirical
phase shiftsRep. Prog. Phys. 75 (2012) 016301 N Kalantar-Nayestanaki et al
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Figure 4. Hierarchy of nuclear forces in chiral EFT based on Weinberg’s power counting. Solid and dashed lines denote nucleons and
pions, respectively. Solid dots, filled circles and filled squares refer, respectively, to the leading, subleading and sub-subleading vertices in
the effective Lagrangian. The crossed square denotes 2N contact interactions with 4 derivatives.

1 GeV, respectively. A recent review on the methodology and
applications of chiral perturbation theory in the Goldstone–
boson and single-nucleon sectors can be found in [66].

Chiral EFT, however, cannot be directly applied to
low-energy few-nucleon scattering. The strong nature of
the nuclear force that manifests itself in the appearance of
self-bound atomic nuclei invalidates a naive application of
perturbation theory. Weinberg pointed out that the breakdown
of perturbation theory can be traced back to the infrared
enhancement of reducible diagrams that involve few-nucleon
cuts [67, 68]. The irreducible part of the amplitude that gives
rise to the nuclear force is, however, not affected by the infrared
enhancement and is thus accessible within chiral EFT. These
important observations have triggered intense research activity
towards the systematic derivation of the nuclear forces in chiral
EFT and their applications to the nuclear few- and many-body
problem.

It should also be emphasized that an EFT can be
formulated that is only valid at typical momenta well below
the pion mass. This framework allows one to take into
account the unnaturally large NN scattering lengths but loses
the connection with the chiral symmetry of QCD. It has
been used with great success not only for nuclear systems
[69, 14]. This so-called pion-less EFT requires a 3NF in
leading order. The corresponding hard scale is given by
the pion mass and, therefore, intermediate-energy observables
cannot be predicted within this framework. In the following,
we restrict ourselves to chiral EFT.

The EFT expansion of the nuclear force based on
the standard chiral power counting (i.e. assuming that all
operators in the effective Lagrangian scale according to a naive
dimensional analysis) is visualized in figure 4.

It provides a natural qualitative explanation of the
observed hierarchy of two-, three- and more-nucleon forces
with 〈V2N〉 � 〈V3N〉 � 〈V4N〉 . . .. The expansion of the 2NF
has the form

V2N = V
(0)

2N + V
(2)

2N + V
(3)

2N + V
(4)

2N + · · · , (1)

with the superscripts referring to the power of the expansion
parameter Q/�χ . The long-range part of the nuclear
force is dominated by 1π -exchange with the 2π -exchange
contributions starting at next-to-leading order (NLO). The
expressions for the potential up to next-to-next-to-leading
order (N2LO) in the heavy-baryon formulation [70, 71] are
rather compact and have been independently derived by several
authors using a variety of different methods [72–75]. 2π - and
3π -exchange contributions at next-to-next-to-next-to-leading
order (N3LO) have been worked out by Kaiser [76–79] and
are considerably more involved, see also [80]. While the
2π -exchange at NLO and, especially, at N2LO generates a
rather strong potential at distances of the order of the inverse
pion mass [74], the leading 3π -exchange contributions turn out
to be negligible. The N3LO contributions to the 2π -exchange
potential were also derived in the covariant formulation of
chiral EFT [81] by Higa et al [82, 83]. The LECs entering
the pion-exchange contributions up to N3LO are known from
pion–nucleon scattering and related processes [84–86]. We
note that some of them, especially the ones from L(3)

πN , are
presently not very accurately determined. In the isospin
limit, the short-range part of the potential involves 2, 9, 24
independent terms at LO, NLO/N2LO, N3LO, respectively.
The corresponding LECs were fixed from the two-nucleon
data leading to the accurate N3LO potentials of Entem and
Machleidt (EM) [87] and Epelbaum, Glöckle and Meißner
(EGM) [88]. These two potentials differ in the treatment of
relativistic corrections (including the form of the employed
dynamical equation), IB terms and the form of the regulator
functions. There are also differences in the adopted values
of certain pion–nucleon LECs. Finally, EGM provide an
estimation of the theoretical uncertainty by means of the
variation of the cutoffs in some natural ranges. This important
issue is not addressed in [87], where a single excellent
fit to neutron–proton (proton–proton) scattering data with
χ2/datum = 1.10 (χ2/datum = 1.50) in the energy range
from 0 to 290 MeV is given. We refer the reader to [87, 88] for
more details. In figure 5, we compare NN phase shifts obtained
with these models with predictions from phenomenological
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χEFT for nucleons: NN scattering phase shifts
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Figure 1: Neutron-proton scattering phase shifts versus center-of-mass momenta. Coarse
lattice spaces, a = at = (100MeV)−1 = 1.97 fm, are used in the fits. The two-pion-exchange
potentials are not included specifically since they can be absorbed into the contact forces
through a redefinition of the low-energy constants.
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Many body quantum systems - ab initio nuclear theory



Lattice Monte Carlo calculations: Euclidean time projection

� construct a trial state of
nucleons, |ψI〉, as a Slater
determinant of free-particle
standing waves on the
lattice.
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Lattice Monte Carlo calculations: Euclidean time projection

� construct a trial state of
nucleons, |ψI〉, as a Slater
determinant of free-particle
standing waves on the
lattice.

� evolve nucleons forward in
Euclidean time, e−HLO τ |ψI〉,
where τ = Ltat.

� The evolution in Euclidean
time automatically
incorporates the induced
deformation, polarization
and clustering.
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Lattice EFT: (Euclidean time) projection Monte Carlo

Transfer matrix operator formalism M = : exp(−HLO at) :

Microscopic Hamiltonian HLO = Hfree + VLO

Z(Lt) = Tr(MLt) =
∫

Dc Dc∗ exp[−S(c, c∗)]
Creutz, Found. Phys. 30 (2000) 487.

The exact equivalence of several different lattice formulations.
Lee, PRC 78:024001, (2008); Prog.Part.Nucl.Phys., 63:117-154 (2009)



Lattice Monte Carlo calculations

Projection Monte Carlo uses a given initial state, |ψI〉, to evaluate a
product of a string of transfer matrices M.

Z(Lt) = 〈ψI |M(Lt − 1)M(Lt − 2) . . . M(1)M(0) |ψI〉

In the limit of large Euclidean time the evolution operator e−HLO τ

suppress the signal beyond the low-lying states, and the ground state
energy of our quantum system can be extracted by

lim
Lt→∞

Z(Lt + 1)
Z(Lt)

= e−E0 at

These amplitudes are computed with the Hybrid Monte Carlo methods.
Phys. Lett. B195, 216-222 (1987), Phys. Rev. D35, 2531-2542 (1987).



Lattice Monte Carlo calculations

perturbative higher order calculations

ho = NLO, NNLO, · · ·

Mho = : e−at(HLO+Vho) :

where the potential Vho is treated perturbatively. Therefore, the higher
order corrections to the ground state energy can be computed as,

e−∆Eho at = lim
Lt→∞

〈ψI |MLt/2 Mho MLt/2 |ψI〉
〈ψI |MLt |ψI〉



Auxiliary field Monte Carlo

Use a Gaussian integral identity

exp
[
−C

2

(
N† N

)2
]
=

√
1

2π

∫
ds exp

[
− s2

2
+
√
−C s

(
N† N

)]
s is an auxiliary field coupled to particle density. Each nucleon evolves as if a single particle in a
fluctuating background of pion fields and auxiliary fields.
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Scattering and reactions: Adiabatic projection method

The method constructs a low energy effective theory for the clusters

Use initial states parameterized by the
relative spatial separation between
clusters, and project them in Euclidean
time.

|~R〉 = ∑
~r
|~r + ~R〉1 ⊗ |~r〉2

𝑅 

𝑛𝑥, 𝑛𝑦  

𝑛𝑥
′ , 𝑛𝑦

′   

|~R〉τ = e−H τ |~R〉 dressed cluster state

The adiabatic projection in Euclidean time gives a
systematically improvable description of the low-
lying scattering cluster states.
In the limit of large Euclidean projection time the
description becomes exact.

PRL 111 (2013) 032502; EPJA 49 (2013) 151; PRC 90, 064001 (2014); PRC 92,054612 (2015); EPJA 52: 174 (2016)



Scattering and reactions: Adiabatic projection method

|~R〉τ = e−H τ |~R〉 dressed cluster state (not orthogonal)

Hamiltonian matrix

[Hτ]~R,~R′ = τ 〈~R|H|~R′〉τ

Norm matrix

[Nτ]~R,~R′ = τ 〈~R|~R′〉τ

[Ha
τ]~R,~R′ = ∑

~R′′,~R′′′

[
N−1/2

τ

]
~R~R′′

[Hτ]~R′′~R′′′
[

N−1/2
τ

]
~R′′′~R′

The structure of the adiabatic Hamiltonian,[Ha
τ ]~R,~R′ , is similar to the Hamiltonian

matrix used in calculations of ab initio no-core shell model/resonating group method
(NCSM/RGM) for nuclear scattering and reactions.

Navratil, Quaglioni, PRC 83, 044609 (2011).
Navratil, Roth, Quaglioni, PLB 704, 379 (2011).
Navratil, Quaglioni, PRL 108, 042503 (2012).



Nuclear LEFT: ab initio nuclear structure and scattering theory

� Lattice EFT calculations for A = 3, 4, 6, 12 nuclei, PRL 104 (2010) 142501

� Ab initio calculation of the Hoyle state, PRL 106 (2011) 192501

� Structure and rotations of the Hoyle state, PRL 109 (2012) 252501

� Viability of Carbon-Based Life as a Function of the Light Quark Mass, PRL 110

(2013) 112502

� Radiative capture reactions in lattice effective field theory,
PRL 111 (2013) 032502

� Ab initio calculation of the Spectrum and Structure of 16O,
PRL 112 (2014) 102501

� Ab initio alpha-alpha scattering, Nature 528, 111-114 (2015).

� Nuclear Binding Near a Quantum Phase Transition, PRL 117, 132501 (2016).

� Ab initio calculations of the isotopic dependence of nuclear clustering,
PRL 119, 222505 (2017).

� Essential elements for nuclear binding, PLB 797 (2019) 134863.
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Degree of locality of nuclear forces
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Figure 4. Hierarchy of nuclear forces in chiral EFT based on Weinberg’s power counting. Solid and dashed lines denote nucleons and
pions, respectively. Solid dots, filled circles and filled squares refer, respectively, to the leading, subleading and sub-subleading vertices in
the effective Lagrangian. The crossed square denotes 2N contact interactions with 4 derivatives.

1 GeV, respectively. A recent review on the methodology and
applications of chiral perturbation theory in the Goldstone–
boson and single-nucleon sectors can be found in [66].

Chiral EFT, however, cannot be directly applied to
low-energy few-nucleon scattering. The strong nature of
the nuclear force that manifests itself in the appearance of
self-bound atomic nuclei invalidates a naive application of
perturbation theory. Weinberg pointed out that the breakdown
of perturbation theory can be traced back to the infrared
enhancement of reducible diagrams that involve few-nucleon
cuts [67, 68]. The irreducible part of the amplitude that gives
rise to the nuclear force is, however, not affected by the infrared
enhancement and is thus accessible within chiral EFT. These
important observations have triggered intense research activity
towards the systematic derivation of the nuclear forces in chiral
EFT and their applications to the nuclear few- and many-body
problem.

It should also be emphasized that an EFT can be
formulated that is only valid at typical momenta well below
the pion mass. This framework allows one to take into
account the unnaturally large NN scattering lengths but loses
the connection with the chiral symmetry of QCD. It has
been used with great success not only for nuclear systems
[69, 14]. This so-called pion-less EFT requires a 3NF in
leading order. The corresponding hard scale is given by
the pion mass and, therefore, intermediate-energy observables
cannot be predicted within this framework. In the following,
we restrict ourselves to chiral EFT.

The EFT expansion of the nuclear force based on
the standard chiral power counting (i.e. assuming that all
operators in the effective Lagrangian scale according to a naive
dimensional analysis) is visualized in figure 4.

It provides a natural qualitative explanation of the
observed hierarchy of two-, three- and more-nucleon forces
with 〈V2N〉 � 〈V3N〉 � 〈V4N〉 . . .. The expansion of the 2NF
has the form

V2N = V
(0)

2N + V
(2)

2N + V
(3)

2N + V
(4)

2N + · · · , (1)

with the superscripts referring to the power of the expansion
parameter Q/�χ . The long-range part of the nuclear
force is dominated by 1π -exchange with the 2π -exchange
contributions starting at next-to-leading order (NLO). The
expressions for the potential up to next-to-next-to-leading
order (N2LO) in the heavy-baryon formulation [70, 71] are
rather compact and have been independently derived by several
authors using a variety of different methods [72–75]. 2π - and
3π -exchange contributions at next-to-next-to-next-to-leading
order (N3LO) have been worked out by Kaiser [76–79] and
are considerably more involved, see also [80]. While the
2π -exchange at NLO and, especially, at N2LO generates a
rather strong potential at distances of the order of the inverse
pion mass [74], the leading 3π -exchange contributions turn out
to be negligible. The N3LO contributions to the 2π -exchange
potential were also derived in the covariant formulation of
chiral EFT [81] by Higa et al [82, 83]. The LECs entering
the pion-exchange contributions up to N3LO are known from
pion–nucleon scattering and related processes [84–86]. We
note that some of them, especially the ones from L(3)

πN , are
presently not very accurately determined. In the isospin
limit, the short-range part of the potential involves 2, 9, 24
independent terms at LO, NLO/N2LO, N3LO, respectively.
The corresponding LECs were fixed from the two-nucleon
data leading to the accurate N3LO potentials of Entem and
Machleidt (EM) [87] and Epelbaum, Glöckle and Meißner
(EGM) [88]. These two potentials differ in the treatment of
relativistic corrections (including the form of the employed
dynamical equation), IB terms and the form of the regulator
functions. There are also differences in the adopted values
of certain pion–nucleon LECs. Finally, EGM provide an
estimation of the theoretical uncertainty by means of the
variation of the cutoffs in some natural ranges. This important
issue is not addressed in [87], where a single excellent
fit to neutron–proton (proton–proton) scattering data with
χ2/datum = 1.10 (χ2/datum = 1.50) in the energy range
from 0 to 290 MeV is given. We refer the reader to [87, 88] for
more details. In figure 5, we compare NN phase shifts obtained
with these models with predictions from phenomenological
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� Does every χEFT interaction give well controlled and reliable results for
heavier systems?

� Is the convergence of higher-order terms under control?



Degree of locality of nuclear forces – I

VA
LO = VsNL

1S0,Q0 + VsNL
3S1,Q0 + VOPE VB

LO = VsNL ,sL
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Nucleus A (LO) B (LO) A (LO + Coulomb) B (LO + Coulomb) Experiment
4He -29.36(4) -29.19(6) -28.62(4) -28.45(6) -28.296
8Be -58.61(14) -59.73(6) -56.51(14) -57.29(7) -56.591
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E8Be
E4He

= 1.997(6)
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= 3.00(1)

E16O
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= 4.00(2)

E20Ne
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= 5.03(3)
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Nuclear binding near a quantum phase transition

Consider a one-parameter family of interactions: V = (1− λ)VA
LO + λ VB

LO
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There is a quantum phase transition at the point where the α-α scattering length aαα vanishes,

and it is a first-order transition from a Bose-condensed α-particle gas to a nuclear liquid.

SE, Li, Rokash, Alarcon, Du, Klein, Lu, Meißner, Epelbaum, Krebs, Lähde, Lee, Rupak, PRL 117, 132501 (2016)
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Degree of locality of nuclear forces – II
We can probe the degree of locality only by many-body calculations, and we
consider an SU4-symmetric potential,

VLO = VsNL ,sL
SU4 + VOPE
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Ground state energies at LO

VLO = VsNL,sL
SU4 + VOPE + VCoulomb
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Degree of locality of nuclear forces – III
Consider the following potential in the framework of pionless effective field theory to
probe the degree of locality from many-body calculations,

Vstart
/π = VC2,sNL ,sL

SU4 + VC3
SU4 + VCoulomb

� C2, sL, and C3 are tuned to get the few-body physics correct
� For A ≥ 16, the binding energies are well-parameterized with the

Bethe-Weizsäcker mass formula;

B(A) = aV A− aS A2/3 +ECoulomb +(symmetry + pairing + shellcorrection+ . . .)

� Consider only N = Z even-even nuclei, and obtain C2, sL, C3 for various values
of sNL
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Figure 1. The correlation plot for the calculated volume-energy con-
stant aV and surface-energy constant aS . The square, diamond and
square region denote the results fitted with Macroscopic-Microscopic
model [44], Finite Range Liquid Drop Model [43], Mean Field Mod-
els [45], respectively.

For medium mass nuclei with A ≥ 16, the binding energies
can be well parameterized with the Bethe-Weizsäcker mass
formula,

B(A) = aV A− aSA
2
3 + ECoulomb + · · · , (4)

where aV and aS are volume-energy and surface-energy con-
stants, respectively, ECoulomb is the Coulomb energy, and the
ellipsis represents the symmetry energy, pairing energy, shell
correction energy, etc. To avoid fitting complexities not ac-
curately captured in our minimal nuclear interaction, we fit
only N = Z even-even nuclei, for which the symmetry en-
ergy vanishes and the pairing energy varies smoothly. The
shell correction energy is known to be much smaller than the
macroscopic contribution in this mass region [43] and thus the
first three terms appearing in Eq. (4) dominate.

For each interaction we use the calculated binding energies
with 16 ≤ A ≤ 40 to extract the liquid drop constants aV
and aS . We observe prominent shell effects for these nuclei,
and the binding energy per nucleon fluctuates around the liq-
uid drop values with maxima at the magic numbers. In the
fitting procedure the shell effects across a whole shell are av-
eraged out, thus decreasing uncertainties for the liquid drop
constants. The aS-aV plot is shown in Fig. 1. We can see
a linear correlation between these constants. The values of
aS and aV both increase as the strength of the local part of
the interaction increases. For comparison, we also show other
values of these constants in the literature, in which the masses
throughout the whole nuclide chart are used in the fits. We
found that the interaction NL50 gives a value of aV closest to
other estimations. This value of aV still gives an estimate of
the energy per nucleon at saturation. The uncertainty in aS is
large but still matches the empirical values.

In Table I we show the binding energies and charge radii for
selected nuclei. For comparison we also list the experimental
values and the calculated Coulomb energy. While the 3H en-
ergy is exact due to the fitting procedure, all the other values
are predictions. The largest relative error in binding energy
4.5% occurs for 16O. While most of the charge radii are over-
estimated, the largest relative error is only 8.0% and occurs

Table I. The calculated binding energies and charge radii of 3H, 3He
and selected alpha-like nuclei compared with experimental values.
The Coulomb interaction is taken into account perturbatively. All
energies are in MeV and radii in fm. Experimental binding energies
are taken from Ref. [47] and radii from Ref. [48].

B Exp. Rch Exp. Cou.
3H 8.48(2) 8.48 1.90(1) 1.76 0.0
3He 7.75(2) 7.72 1.99(1) 1.97 0.73(1)
4He 28.89(1) 28.3 1.72(1) 1.68 0.80(1)
16O 121.9(1) 127.6 2.74(1) 2.70 13.9(1)
20Ne 161.6(1) 160.6 2.95(1) 3.01 20.2(1)
24Mg 193.5(2) 198.3 3.13(1) 3.06 28.0(1)
28Si 235.8(4) 236.5 3.26(1) 3.12 37.1(2)
40Ca 346.8(6) 342.1 3.42(1) 3.48 71.7(4)
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Figure 2. The calculated binding energies from 3H to 48Ca. The solid
symbols denote the lattice results and the open symbols denote the
experimental values. Different symbols and colors denote different
element. The Coulomb interaction is taken into account perturba-
tively. The experimental values are taken from Ref. [47].

for 3H. For the lattice calculations of the nuclear charge radii,
we have taken into account the charge radius of the proton.

In order to examine the global behavior, here we calcu-
late the binding energies for totally 86 even-even nuclei up to
A=48. For each isotope chain we only consider the nuclides
known to be bound in experiments. The results are shown
and compared with the data in Fig. 2. Because the interaction
has an exact SU(4) symmetry, we are free of the sign problem
and can calculate the binding energies with high precision. In
Fig. 2 all of the Monte Carlo error bars are smaller than the
size of the symbols. The remaining errors due to imaginary
time and volume extrapolations are also small but not explic-
itly shown in the plot. In Fig. 2 we see that the gross feature
of the binding energies along each isotopic chain are well re-
produced. In particular, the slopes of each isotopic curve on
the proton-rich side are close to experimental value. However,
since we are using a simple central force without any spin or
isospin dependence, the discrepancy is somewhat larger on the
neutron-rich side.

The charge density profile is another important physical

Lu, Li, SE, Lee, Epelbaum, Meißner, Phys. Lett. B, 797, 134863 (2019)



Essential elements for nuclear binding

� a lattice action with minimum number of parameters (four) which describes
neutron matter up to saturation density and the ground state properties of nuclei
up to calcium. a = 1.32 fm, sL = 0.0609 (l.u.), and sNL = 0.5 (l.u.)

Lu, Li, SE, Lee, Epelbaum, Meißner, Phys. Lett. B, 797, 134863 (2019)
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square region denote the results fitted with Macroscopic-Microscopic
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For medium mass nuclei with A ≥ 16, the binding energies
can be well parameterized with the Bethe-Weizsäcker mass
formula,

B(A) = aV A− aSA
2
3 + ECoulomb + · · · , (4)

where aV and aS are volume-energy and surface-energy con-
stants, respectively, ECoulomb is the Coulomb energy, and the
ellipsis represents the symmetry energy, pairing energy, shell
correction energy, etc. To avoid fitting complexities not ac-
curately captured in our minimal nuclear interaction, we fit
only N = Z even-even nuclei, for which the symmetry en-
ergy vanishes and the pairing energy varies smoothly. The
shell correction energy is known to be much smaller than the
macroscopic contribution in this mass region [43] and thus the
first three terms appearing in Eq. (4) dominate.

For each interaction we use the calculated binding energies
with 16 ≤ A ≤ 40 to extract the liquid drop constants aV
and aS . We observe prominent shell effects for these nuclei,
and the binding energy per nucleon fluctuates around the liq-
uid drop values with maxima at the magic numbers. In the
fitting procedure the shell effects across a whole shell are av-
eraged out, thus decreasing uncertainties for the liquid drop
constants. The aS-aV plot is shown in Fig. 1. We can see
a linear correlation between these constants. The values of
aS and aV both increase as the strength of the local part of
the interaction increases. For comparison, we also show other
values of these constants in the literature, in which the masses
throughout the whole nuclide chart are used in the fits. We
found that the interaction NL50 gives a value of aV closest to
other estimations. This value of aV still gives an estimate of
the energy per nucleon at saturation. The uncertainty in aS is
large but still matches the empirical values.

In Table I we show the binding energies and charge radii for
selected nuclei. For comparison we also list the experimental
values and the calculated Coulomb energy. While the 3H en-
ergy is exact due to the fitting procedure, all the other values
are predictions. The largest relative error in binding energy
4.5% occurs for 16O. While most of the charge radii are over-
estimated, the largest relative error is only 8.0% and occurs

Table I. The calculated binding energies and charge radii of 3H, 3He
and selected alpha-like nuclei compared with experimental values.
The Coulomb interaction is taken into account perturbatively. All
energies are in MeV and radii in fm. Experimental binding energies
are taken from Ref. [47] and radii from Ref. [48].

B Exp. Rch Exp. Cou.
3H 8.48(2) 8.48 1.90(1) 1.76 0.0
3He 7.75(2) 7.72 1.99(1) 1.97 0.73(1)
4He 28.89(1) 28.3 1.72(1) 1.68 0.80(1)
16O 121.9(1) 127.6 2.74(1) 2.70 13.9(1)
20Ne 161.6(1) 160.6 2.95(1) 3.01 20.2(1)
24Mg 193.5(2) 198.3 3.13(1) 3.06 28.0(1)
28Si 235.8(4) 236.5 3.26(1) 3.12 37.1(2)
40Ca 346.8(6) 342.1 3.42(1) 3.48 71.7(4)
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Figure 2. The calculated binding energies from 3H to 48Ca. The solid
symbols denote the lattice results and the open symbols denote the
experimental values. Different symbols and colors denote different
element. The Coulomb interaction is taken into account perturba-
tively. The experimental values are taken from Ref. [47].

for 3H. For the lattice calculations of the nuclear charge radii,
we have taken into account the charge radius of the proton.

In order to examine the global behavior, here we calcu-
late the binding energies for totally 86 even-even nuclei up to
A=48. For each isotope chain we only consider the nuclides
known to be bound in experiments. The results are shown
and compared with the data in Fig. 2. Because the interaction
has an exact SU(4) symmetry, we are free of the sign problem
and can calculate the binding energies with high precision. In
Fig. 2 all of the Monte Carlo error bars are smaller than the
size of the symbols. The remaining errors due to imaginary
time and volume extrapolations are also small but not explic-
itly shown in the plot. In Fig. 2 we see that the gross feature
of the binding energies along each isotopic chain are well re-
produced. In particular, the slopes of each isotopic curve on
the proton-rich side are close to experimental value. However,
since we are using a simple central force without any spin or
isospin dependence, the discrepancy is somewhat larger on the
neutron-rich side.

The charge density profile is another important physical
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� a lattice action with minimum number of parameters (four) which describes
neutron matter up to saturation density and the ground state properties of nuclei
up to calcium. a = 1.32 fm, sL = 0.0609 (l.u.), and sNL = 0.5 (l.u.)
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Figure 3. The calculated 16O and 40Ca charge densities compared
with the empirical results. The circles denote the results with-
out Coulomb interaction. The squares denote the results with the
Coulomb interaction included perturbatively. Empirical values are
taken from Ref. [49].

quantity sensitive to the nuclear interaction. In Fig. 3 we
show the charge densities of 16O and 40Ca calculated with
the pinhole algorithm. We have again taken into account the
charge distribution of the proton. To compare with data from
the electron scattering experiments we also show the results
with the Coulomb interaction included with first order pertur-
bation theory. For both nuclei, the charge densities without
Coulomb interaction show clear Gaussian shapes. The center
densities of 16O and 40Ca are approximately 0.08 e·fm−3 and
0.11 e·fm−3, respectively. The Coulomb force suppresses the
center densities and expands the nuclei, drawing the results
closer to the empirical data. Our results are surprisingly good
for such as a simple nuclear interaction.

Finally we examine the predictions for pure neutron matter
(NM). In Fig. 4 we show the calculated NM energy as a func-
tion of the neutron density compared with other calculations.
Here we use three different box size L = 5, 6, 7 with neutron
numbers varying from 14 to 66. We compare our results with
other calculations with full N3LO chiral interactions. We see
that our results are in line with the other calculations at den-
sities above 0.05 fm−3. At lower densities the discrepancy
is larger because our SU(4)-invariant interaction is not tuned
to the physical neutron-neutron scattering length, but this is
simply fixed by including SU(4)-breaking interactions. Over-
all, our results are quite good in view of the simplicity of the
interaction.

In this letter we have shown that the ground state properties
of light nuclei, medium-mass nuclei, and neutron matter can
be described using a minimal nuclear interaction with only
four interaction parameters. While the first three parameters
are already standard in χEFT, the fourth and last parameter is
a new feature that controls the strength of the local part of the
nuclear interactions. We expect that these new insights might
help design new χEFT calculations with better convergence at
higher densities. While in this analysis we are controlling the

0.00 0.05 0.10 0.15
0

5

10

15

20  EM 500 MeV
 EGM 450/500 MeV
 EGM 450/700 MeV
 GCR (2012)
 APR (1998)
 This work, L = 5
 This work, L = 6
 This work, L = 7

E/
N

 (M
eV

)

neutron density (fm-3)

Figure 4. The pure neutron matter (NM) energy as a function of neu-
tron density calculated using the NL50 interaction with box size L=5
(up triangles), L=6 (squares), L=7 (right triangles), respectively. For
comparison we also show results calculated with full N3LO chiral
interactions (EM 500 MeV, EGM 450/500 MeV and EGM 450/700
MeV) [50], the results from variational (APR) [51] and Auxiliary
Field Diffusion MC calculations (GCR) [52].

strength of the local part of the interactions primarily through
the NN interaction, we suspect that one could also control the
local part of the interactions at the 3N level only. This may ex-
plain the large differences seen in recent ab initio calculations
using different 3N forces.

Aside from the Coulomb interaction, all of the other in-
teractions in this minimal model obey Wigner’s SU(4) sym-
metry. This seems to be an example of emergent universal-
ity. The SU(4) interaction resurges at higher densities not
because the underlying fundamental interaction is invariant,
but because the SU(4) interaction is coherently enhanced in
the many-body environment. This is not to minimize the im-
portant role of spin-dependent effects such as spin-orbit cou-
plings and tensor forces. However, it does seem to suggest
that SU(4) invariance plays a key role in the bulk properties of
nuclear matter.
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Ab initio nuclear structure: recent progress
We have constructed a new lattice formulation of chiral effective field theory interactions with a
simpler decomposition into spin channels. Li, SE, Epelbaum, Lee, Lu, Meißner, Phys. Rev. C 98, 044002 (2018)

a = 1.97 fm, sL = 0.0336 (l.u.), and sNL = 0.0839 (l.u.) and pmax = π/a = 314 MeV
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Ab initio nuclear structure: recent progress
a = 1.97 fm, sL = 0.0336 (l.u.), and sNL = 0.0839 (l.u.) and pmax = π/a = 314 MeV
Preliminary results for the ground state energies of light and medium-mass nuclei:
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PRELIMINARY

� To determine the 3N forces, we consider several nuclear processes, such as triton
beta-decay, neutron-alpha and alpha-alpha scattering, properties of 3He and 4He etc.
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Triton beta-decay
a = 1.97 fm
Preliminary results for the 3-nucleon systems:

Bovermann, SE, Epelbaum, Krebs, Lee, Meißner [work in progress]

L (fm) ELO (MeV) ENLO (MeV) EN3LO (MeV)

11.84 -10.03 -9.07 -9.10
15.78 -9.55 -8.43 -8.47
19.73 -9.51 -8.36 -8.39

L (fm) 〈F〉LO 〈F〉NLO 〈F〉N3LO 〈GT〉LO 〈GT〉NLO 〈GT〉N3LO

11.84 1.0000 0.9995 0.9995 1.7045 1.6714 1.6725
15.78 1.0000 0.9996 0.9996 1.7111 1.6789 1.6796
19.73 1.0000 0.9997 0.9997 1.7134 1.6839 1.6845

〈F〉emp = 0.9998
〈GT〉emp = 1.6474(23)

Phys. Rev. C 95, no. 5, 059902 (2017)

OPE MEC



n− d scattering

a = 1.97 fm
Preliminary results for the 3-nucleon systems:
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variational method: Nucl. Phys. A 607, 402 (1996)

n− d (experiment): Phys. Lett. 24B, 562 (1967)

pionless EFT: Nucl. Phys. A 675, 601 (2000)



Ab initio nuclear structure: recent progress
We have constructed a new lattice formulation of chiral effective field theory interactions with a
simpler decomposition into spin channels. Li, SE, Epelbaum, Lee, Lu, Meißner, Phys. Rev. C 98, 044002 (2018)

a = 1.32 fm, sL = 0.0609 (l.u.), and sNL = 0.5 (l.u.) and pmax = π/a = 470 MeV
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Ab initio nuclear structure: recent progress
a = 1.32 fm, sL = 0.0609 (l.u.), and sNL = 0.5 (l.u.) and pmax = π/a = 470 MeV
Preliminary results for the ground state energies of light and medium-mass nuclei:
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Summary

� Nuclear forces in the framework of chiral effective field theory are well-established,
and it is very important time for ab initio methods to make predictions in many-
nucleon system using these forces.

� A new lattice formulation of chiral effective field theory interactions has improved
our ab initio nuclear theory which describes the nuclear structure successfully as
well as nuclear scattering and reaction processes.

� Understanding of the connection between the degree of locality of nuclear forces
and nuclear structure has led to a more efficient set of lattice chiral EFT interac-
tions.

� Scattering and reaction processes involving alpha particle are in reach of ab initio
methods and this has opened the door towards using experimental data from
collisions of heavier nuclei as input to improve ab initio nuclear structure theory.

Thanks!
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Quantum Phase Transtition

In physics, a quantum phase transition (QPT) is a phase transition
between different quantum phases (phases of matter at zero
temperature). Contrary to classical phase transitions, quantum phase
transitions can only be accessed by varying a physical
parameter-such as magnetic field or pressure-at absolute zero
temperature. The transition describes an abrupt change in the ground
state of a many-body system due to its quantum fluctuations.


