Non-perturbative QCD corrections to electro-weak observables: the case of muon's g-2

Marcus Petschlies

Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Willhelms-Universität Bonn

RDP Seventh Autumn PhD School & Workshop "Frontiers of QCD" Tbilisi State University, Sep 27 2019

Outline

Motivation

- 2 Lattice calculation
- 3 Lattice corrections
- 4 Summary and outlook

(日)

Outline

1 Motivation

- 2 Lattice calculation
- 3 Lattice corrections
- 4 Summary and outlook

・ロト・西ト・ヨト・ヨー シタぐ

• intrinsic property of spin-1/2 muon

$$\langle \mu(\vec{p}') \mid J_{\nu}^{\text{em}}(0) \mid \mu(\vec{p}) \rangle = -e \, \bar{u}(\vec{p}') \, \left(F_1(q^2) \, \gamma_{\nu} + i \frac{F_2(q^2)}{4m} \, [\gamma_{\nu} \, , \, \gamma_{\rho}] \, q_{\rho} \right) \, u(\vec{p})$$

$$a_{\mu} = (g - 2)_{\mu} \, / 2 = F_2(0)$$

3

• intrinsic property of spin-1/2 muon

$$\langle \mu(\vec{p}') \mid J_{\nu}^{\rm em}(0) \mid \mu(\vec{p}) \rangle = -e \, \bar{u}(\vec{p}') \left(F_1(q^2) \, \gamma_{\nu} + i \frac{F_2(q^2)}{4m} \left[\gamma_{\nu} \, , \, \gamma_{\rho} \right] \, q_{\rho} \right) \, u(\vec{p})$$

$$a_{\mu} = (g - 2)_{\mu} \, / 2 = F_2(0)$$

• It's so precise! a_{μ} (Experiment) = 11659208.9(6.3) \cdot 10⁻¹⁰

э

メロト メポト メヨト メヨ

• intrinsic property of spin-1/2 muon

$$\langle \mu(\vec{p}') \mid J_{\nu}^{\rm em}(0) \mid \mu(\vec{p}) \rangle = -e \, \bar{u}(\vec{p}') \left(F_1(q^2) \, \gamma_{\nu} + i \frac{F_2(q^2)}{4m} \left[\gamma_{\nu} \, , \, \gamma_{\rho} \right] \, q_{\rho} \right) \, u(\vec{p})$$

$$a_{\mu} = (g - 2)_{\mu} \, / 2 = F_2(0)$$

- It's so precise! a_{μ} (Experiment) = 11659208.9(6.3) \cdot 10⁻¹⁰
- It's so precise! a_{μ} (Standard Model) = 11659182.3(4.3) \cdot 10⁻¹⁰

・ロト ・ 同ト ・ ヨト ・

• intrinsic property of spin-1/2 muon

$$\langle \mu(\vec{p}') \mid J_{\nu}^{\rm em}(0) \mid \mu(\vec{p}) \rangle = -e \, \bar{u}(\vec{p}') \left(F_1(q^2) \, \gamma_{\nu} + i \frac{F_2(q^2)}{4m} \left[\gamma_{\nu} \, , \, \gamma_{\rho} \right] \, q_{\rho} \right) \, u(\vec{p})$$

$$a_{\mu} = (g - 2)_{\mu} \, / 2 = F_2(0)$$

- It's so precise! a_{μ} (Experiment) = 11659208.9(6.3) \cdot 10⁻¹⁰
- It's so precise! a_{μ} (Standard Model) = 11659182.3(4.3) \cdot 10⁻¹⁰
- What precisely is so precise? persistent discrepancy 3.5 standard deviations ($2 \sim 4$)
- gold-plated observable in search for physics beyond the Standard Model

$$(g-2)_{\ell}^{
m new \ physics} \sim m_{\ell}^2/M_{
m new \ physics}^2$$

 $m_e^2: m_{\mu}^2: m_{\tau}^2 = 1:4\cdot 10^4:10^7$

Motivation — $(g - 2)_{\mu}$ Standard Model contributions

SM Contribution	$Value \pm Error$	Ref
QED (incl. 5-loops)	116584718.951 ± 0.080	[1]
HVP LO	6931 ± 34	[2]
HVP NLO	-98.4 ± 0.7	[2,3]
HVP NNLO	12.2 ± 0.1	[3]
HLbL	105 ± 26	[4]
Weak (incl. 2-loops)	153.6 ± 1.0	[5]
SM Total (0.37 ppm)	116591823 ± 43	
Experiment (0.54 ppm)	116592089 ± 63	[6]
Difference $(Exp - SM)$	266 ± 76	3.5σ

([Prog.Part.Nucl.Phys. 104 (2019) 46-96, EPJ Web Conf. 166 (2018) 00022], in units of 10^{-11})

- [1] Phys.Rev.Lett. 109, 111808 (2012)
- [2] Eur.Phys.J. C77 (2017) no.12, 827
- [3] Phys.Lett. B734, 144 (2014)
- [4] Adv.Ser.Direct.High Energy Phys. 20 (2009) 303-317
- [5] Phys.Rev. D88, 053005 (2013)
- [6] Phys.Rev. D73, 072003 (2006)

イロト イヨト イヨト イヨ

[Jegerlehner, EPJ Web Conf. 166 (2018) 00022]

(δ HVP: "Lattice QCD is the ultimate tool to get QCD predictions in future." **(** δ HLbL: "Also in this case lattice QCD for me is the ultimate approach, although tough to be achieved with limited computing resources."

Marcus (HISKP)

Outline

Motivation

2 Lattice calculation

3 Lattice corrections

4 Summary and outlook

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = の Q (~) Frontiers of QCD 2019 8/30

• discretized finite box in Euclidean space, lattice spacing $a \sim 0.05 - 0.1 \,\mathrm{fm}$, volume $L^3 \times T$, $L \sim \mathrm{several} \mathrm{fm}$, $T = (2 \sim 3) \,L$

< □ > < @ >

• discretized finite box in Euclidean space, lattice spacing $a \sim 0.05 - 0.1 \,\mathrm{fm}$, volume $L^3 \times T$, $L \sim \mathrm{several} \mathrm{fm}$, $T = (2 \sim 3) \,L$

 unphysical (larger-than-physical) light quark masses (up, down);
 but approaching *physical point* simulations

< □ > < 同 >

- discretized finite box in Euclidean space, lattice spacing $a \sim 0.05 0.1 \,\mathrm{fm}$, volume $L^3 \times T$, $L \sim \mathrm{several} \mathrm{fm}$, $T = (2 \sim 3) \,L$
- unphysical (larger-than-physical) light quark masses (up, down);
 but approaching *physical point* simulations

< 日 > < 同 > <

• discrete spectrum; discrete momenta $\vec{p} = 2\pi/L \times \vec{n}$

- discretized finite box in Euclidean space, lattice spacing $a \sim 0.05 0.1 \,\mathrm{fm}$, volume $L^3 \times T$, $L \sim \mathrm{several} \mathrm{fm}$, $T = (2 \sim 3) \,L$
- unphysical (larger-than-physical) light quark masses (up, down);
 but approaching *physical point* simulations

• discrete spectrum; discrete momenta $\vec{p} = 2\pi/L \times \vec{n}$

• Lorentz symmetry breaking and finite-volume effects

- discretized finite box in Euclidean space, lattice spacing $a \sim 0.05 0.1 \,\mathrm{fm}$, volume $L^3 \times T$, $L \sim \mathrm{several} \mathrm{fm}$, $T = (2 \sim 3) \,L$
- unphysical (larger-than-physical) light quark masses (up, down);
 but approaching *physical point* simulations
- discrete spectrum; discrete momenta $\vec{p} = 2\pi/L \times \vec{n}$
- Lorentz symmetry breaking and finite-volume effects
- QCD simulations with SU(2) isospin symmetry or unphysical isospin symmetry-breaking artifacts
- strong and electroweak IB from dedicated calculations

- discretized finite box in Euclidean space, lattice spacing $a \sim 0.05 0.1 \,\mathrm{fm}$, volume $L^3 \times T$, $L \sim \mathrm{several} \mathrm{fm}$, $T = (2 \sim 3) \,L$
- unphysical (larger-than-physical) light quark masses (up, down);
 but approaching *physical point* simulations
- discrete spectrum; discrete momenta $\vec{p} = 2\pi/L \times \vec{n}$
- Lorentz symmetry breaking and finite-volume effects
- QCD simulations with SU(2) isospin symmetry or unphysical isospin symmetry-breaking artifacts
- strong and electroweak IB from dedicated calculations
- finite time extent (+ signal-to-noise ratio); IR / UV cutoff $2\pi/L \lesssim Q \lesssim \pi/a$

(日)

- discretized finite box in Euclidean space, lattice spacing $a \sim 0.05 0.1 \,\mathrm{fm}$, volume $L^3 \times T$, $L \sim \mathrm{several} \mathrm{fm}$, $T = (2 \sim 3) \,L$
- unphysical (larger-than-physical) light quark masses (up, down);
 but approaching *physical point* simulations
- discrete spectrum; discrete momenta $\vec{p} = 2\pi/L \times \vec{n}$
- Lorentz symmetry breaking and finite-volume effects
- QCD simulations with SU(2) isospin symmetry or unphysical isospin symmetry-breaking artifacts
- strong and electroweak IB from dedicated calculations
- finite time extent (+ signal-to-noise ratio); IR / UV cutoff $2\pi/L \lesssim Q \lesssim \pi/a$
- chiral, continuum and infinite volume limit to control all systematics

< □ > < 同 > < 回

Lattice QCD - ensemble landscape (1)

Pion mass m_{π} versus lattice spacing a [G. Koutsou @ ETMC]

Marcus (HISKP)

g - 2 in LQCD

Lattice QCD - ensemble landscape (2)

300 BMW, N_f=2+1 0 CLS, N_f=2+1 PACS, Nf=2+1 250 Ο ETMC, N_f=2 0 m_π [MeV] ETMC, Nf=2+1+1 200 MILC, N_f=2+1+1 NME, N_f=2+1 0 QCDSF, N_f=2 150 0 QCDSF/UKQCD, Nf=2+1 RBC/UKQCD, Nf=2+1 100 2 4 6 0 Lm_π

Lattice size $m_\pi L$ versus spatial lattice size L [G. Koutsou @ ETMC]

Image: A marked black

- integral over Euclidean momenta [Phys.Rev.Lett. 91 (2003) 052001]
- weight function w from QED perturbation theory

< □ > < 同 > <

- integral over Euclidean momenta [Phys.Rev.Lett. 91 (2003) 052001]
- weight function w from QED perturbation theory

$$\Pi_{\mu\nu}(Q) = \sum_{x} \langle J_{\mu}(x) J_{\nu}(y) \rangle e^{iQ(x-y)}$$

$$\Pi_{\mu\nu}(Q) = \left(Q_{\mu} Q_{\nu} - Q^{2} \delta_{\mu\nu}\right) \Pi(Q^{2}) \left(+ \text{lattice artefacts} \right)$$

$$J_{\mu} = \frac{2}{3} \bar{u} \gamma_{\mu} u - \frac{1}{3} \bar{d} \gamma_{\mu} d - \frac{1}{3} \bar{s} \gamma_{\mu} s + \frac{2}{3} \bar{c} \gamma_{\mu} c$$

• local current ($+Z_V$) or conserved vector current

< □ > < 同 > <

LO HVP in lattice QCD

• $\int\limits_{0}^{\infty} dQ^2 \leftrightarrow$ discretized lattice momenta $Q_{\mu}=n_{\mu}\,2\pi/L,\ n_{\mu}=0,\ldots,L/a-1$

•
$$\Pi(Q^2)$$
 for $(2\pi/L)^2 \lesssim Q^2 \lesssim (\pi/a)^2$

- determine $\Pi(0)$ and curvature for $Q^2 < Q^2_{
 m min}$
- quark-connected and quark-disconnected diagrams

• (momentum dependent) signal-to-noise ratio of $\Pi(Q^2)$ from finite gauge statistics

• □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ </p>

LO HVP in lattice QCD - example data

left: hadronic vacuum polarization function (light quarks, connected) for a = 0.078 fm, L = 2.5 fm, $m_{PS} = 274$ MeV; right: weight function

LO HVP integral saturation

- example for $N_f = 2 + 1 + 1 \text{ tmLQCD}$ with a = 0.061 fm, $m_{\pi} = 318 \text{ MeV}$, L = 2.9 fm[EPJ Web Conf. 118 (2016) 01029]
- $Q_{\min}^2 = 0.045 \, \text{GeV}^2 \gg Q_{\text{peak},\mu}^2 \approx 0.0026 \, \text{GeV}^2$

$$a_l^{\rm LO\,HVP} = \alpha^2 \, \int_0^\infty \frac{dQ^2}{Q^2} \, w \left(Q^2/m_l^2\right) \, \Pi_{\rm R}(Q^2)$$

• shown is the ratio
$$R_l(Q_{\rm max}^2) = \frac{a_l^{\rm LO\,HVP}(Q_{\rm max}^2)}{a_l^{\rm LO\,HVP}(100\,{\rm GeV}^2)} ,$$

- weight function w peaked at $Q_{\text{peak},l}^2 = (\sqrt{5} 2) m_l^2$
- quantized lattice momenta (periodic boundary conditions), $Q_{\min}^2 \sim \left(2\pi/L\right)^2$

<

Model-independent parametrization of HVP [Phys.Rev. D86 (2012) 054509]

• rewrite $\Pi(Q^2)$ using the spectral function $\rho(t)$

$$\Pi(Q^2) = \Pi(0) - Q^2 \Phi(Q^2), \quad \Phi(Q^2) = \int_{4m_\pi^2}^{\infty} dt \, rac{
ho(t)}{t(t+Q^2)}$$

• with $\tau = 1/t$, $d\nu(\tau) = \rho(1/\tau) d\tau$, $\rho(t) = \frac{1}{\pi} \Im \Pi(t)$, $\rho(t) \ge 0$ for $4m_{\pi}^2 \le t < \infty$

Stieltjes function
$$\Phi(z=Q^2) = \int_{0}^{1/R} \frac{d\nu(\tau)}{1+\tau z}$$

analytic in complex plane except on negative real axis (cut) for $z \le -R$ • multipoint Padé approximants converge to Φ

$$R_{\lfloor P/2 \rfloor}^{\lfloor (P-1)/2 \rfloor}(Q^2) = a_0 + \sum_{n=1}^{\lfloor P/2 \rfloor} \frac{a_n}{b_n + Q^2}$$

with $a_0 = 0$ for P even and

$$\begin{aligned} a_n > 0 , \qquad n \in \{1, \dots, \lfloor P/2 \rfloor\} \\ b_{\lfloor P/2 \rfloor} > b_{\lfloor P/2 \rfloor - 1} > \dots > b_1 \ge R \end{aligned}$$

Matching to perturbative QCD

• *N_f* = 2, tmLQCD, light quark contribution

•
$$a = 0.063 \text{ fm}, m_{\pi} = 325 \text{ MeV},$$

 $L = 2 \text{ fm}$

$$\Pi(q^{2}; \bar{\mu}) = \sum_{l=0}^{L} \left(\frac{\alpha_{s}(\bar{\mu}; \Lambda_{\overline{\text{MS}}}^{(2)})}{\pi} \right)^{l} \Pi^{(l)}(q^{2}; \bar{\mu})$$
$$\Pi^{(l)}(q^{2}; \bar{\mu}) = C_{m \leq n}^{(l)}(-q^{2}/\bar{\mu}^{2}) \log(-4z)^{m} \frac{1}{z^{n}}$$
$$z = q^{2}/(4\bar{m}(\bar{\mu})^{2}).$$

- perturbative expansion up to 4-loop order [JHEP 1207 (2012) 017]
- $\bar{\mu} = 2 \, \text{GeV} \, \overline{MS}$ renormalization scale
- $\overline{m}(\overline{\mu})$ renormalized \overline{MS} quark mass

Image: A marked black

• matching at $Q^2 = 4 \,\mathrm{GeV}^2$ by single additive constant $(\Pi^{\mathrm{pQCD}}(0) - \Pi^{\mathrm{lat}}(0))$

Outline

Motivation

- 2 Lattice calculation
- 3 Lattice corrections
 - 4 Summary and outlook

・ロト・日本・モート ヨー シタぐ

Pion mass dependence and external scales problem

• integration requires lattice scale

$$a_\mu^{
m hlo} = lpha_{
m QED}^2 \int_0^\infty rac{d\,\hat{Q}^2}{\hat{Q}^2} w(\hat{Q}^2/(am_\mu)^2) {\Pi_{
m lat}}(\hat{Q}^2)\,, \quad \hat{Q} = aQ$$

• effective dimension of lattice QCD observable X (at fixed gauge coupling g)

$$d_{\rm eff}[X] \equiv -\frac{a}{X} \left. \frac{\partial X}{\partial a} \right|_{\ell}$$

Image: A marked black

Pion mass dependence and external scales problem

• effective dimension of "dimensionless" $a_{\mu}^{\rm hlo}$

$$egin{split} d_{
m eff}[a^{
m hlo}_{\mu}] &= -2 \left(\int_{0}^{\infty} rac{dQ^2}{Q^2} w(Q^2/m^2_{\mu}) Q^2 rac{d\Pi_R}{dQ^2}
ight) \left(\int_{0}^{\infty} rac{dQ^2}{Q^2} w(Q^2/m^2_{\mu}) \Pi_R(Q^2)
ight)^{-1} \ &pprox -2 \end{split}$$

• modified observables with hadronic scale H ($m_
ho$, f_π , \dots), $d_{
m eff}[a_\mu^{
m hlo}]=0$

$$\mathbf{a}_{\mu}^{\mathrm{hlo}} = \alpha^2 \int_0^\infty \frac{dQ^2}{Q^2} \, \mathbf{w} \left(\frac{Q^2}{H^2} \cdot \frac{H_{\mathrm{phys}}^2}{m_{\mu}^2} \right) \Pi_R(Q^2) = \alpha^2 \int_0^\infty \frac{d\hat{Q}^2}{\hat{Q}^2} \, \mathbf{w} \left(\frac{\hat{Q}^2}{\hat{H}^2} \cdot \frac{H_{\mathrm{phys}}^2}{m_{\mu}^2} \right) \Pi_{\mathrm{lat}}(\hat{Q}^2)$$

• WTI in finite volume with $T \neq L$ and at non-zero lattice spacing

$$\sum_{\mu} \hat{q}_{\mu} \Pi_{\mu\nu}(\hat{q}) = 0 \quad \hat{q}_{\mu} = \frac{2}{a} \sin{(aq_{\mu}/2)}$$

э

(日)

• WTI in finite volume with $T \neq L$ and at non-zero lattice spacing

$$\sum_{\mu} \hat{q}_{\mu} \Pi_{\mu\nu}(\hat{q}) = 0 \quad \hat{q}_{\mu} = \frac{2}{a} \sin(aq_{\mu}/2)$$

• but $\Pi_{\mu\nu}(0) \neq 0$; $\Pi_{\mu\nu}(0) = \delta_{\mu\nu} (\Pi_s(0) + \delta_{\mu4} (\Pi_4(0) - \Pi_s(0)))$

э

(日)、

• WTI in finite volume with $T \neq L$ and at non-zero lattice spacing

$$\sum_{\mu} \hat{q}_{\mu} \Pi_{\mu\nu}(\hat{q}) = 0 \quad \hat{q}_{\mu} = \frac{2}{a} \sin(aq_{\mu}/2)$$

- but $\Pi_{\mu\nu}(0) \neq 0$; $\Pi_{\mu\nu}(0) = \delta_{\mu\nu} (\Pi_s(0) + \delta_{\mu4} (\Pi_4(0) \Pi_s(0)))$
- $\bar{\Pi}_{\mu\nu}(\hat{q}) = P_{\mu\kappa}^T \left(\Pi_{\kappa\lambda}(\hat{q}) \Pi_{\kappa\lambda}(0) \right) P_{\lambda\nu}^T$ with $P_{\mu\nu}^T = \delta_{\mu\nu} - \hat{q}_{\mu} \hat{q}_{\nu}/\hat{q}^2$

3

<ロト < 同ト < ヨト < ヨト

• WTI in finite volume with $T \neq L$ and at non-zero lattice spacing

$$\sum_{\mu} \hat{q}_{\mu} \Pi_{\mu\nu}(\hat{q}) = 0 \quad \hat{q}_{\mu} = \frac{2}{a} \sin(aq_{\mu}/2)$$

• but
$$\Pi_{\mu\nu}(0) \neq 0$$
; $\Pi_{\mu\nu}(0) = \delta_{\mu\nu} (\Pi_s(0) + \delta_{\mu4} (\Pi_4(0) - \Pi_s(0)))$
• $\bar{\Pi}_{\mu\nu}(\hat{q}) = P_{\mu\kappa}^T (\Pi_{\kappa\lambda}(\hat{q}) - \Pi_{\kappa\lambda}(0)) P_{\lambda\nu}^T$
with $P_{\mu\nu}^T = \delta_{\mu\nu} - \hat{q}_{\mu} \hat{q}_{\nu}/\hat{q}^2$

$$m_{\pi} = 220 \,\mathrm{MeV}, \, L = 3.8 \,\mathrm{fm}, \, m_{\pi}L = 4.2$$

five irreducible sub-structures

$$\begin{array}{rcl} A_{1} & : & \sum_{i} \bar{\Pi}_{ii} = (3\hat{q}^{2} - \hat{q}^{2})\bar{\Pi}_{A_{1}} \ , \\ A_{1}^{44} & : & \bar{\Pi}_{44} = (\hat{q}^{2})\bar{\Pi}_{A_{1}^{44}} \ , \\ T_{1} & : & \bar{\Pi}_{4i} = -(\hat{q}_{4}\hat{q}_{i})\bar{\Pi}_{T_{1}} \ , \\ T_{2} & : & \bar{\Pi}_{ij} = -(\hat{q}_{i}\hat{q}_{j})\bar{\Pi}_{T_{2}} \ , \ i \neq j \ , \\ E & : & \bar{\Pi}_{ii} - \sum_{i} \bar{\Pi}_{ii}/3 = (-\hat{q}_{i}^{2} + \hat{q}^{2}/3)\bar{\Pi}_{E} \end{array}$$

Image: Image:

Time momentum representation

• subtracted vacuum polarization in terms of time-dependent vector-vector correlator

$$\Pi(Q^{2}) - \Pi(0) = \frac{1}{Q^{2}} \int_{0}^{\infty} dt \ G(t) \left[Q^{2} t^{2} - 4 \sin^{2} (Q t/2) \right]$$
$$G(t) = \sum_{\vec{x}} \langle J_{k}(t, \vec{x}) J_{k}(0) \rangle$$

э

< ロ > < 同 > < 回 > < 回 > < 回 >

Time momentum representation

• subtracted vacuum polarization in terms of time-dependent vector-vector correlator

$$\Pi(Q^{2}) - \Pi(0) = \frac{1}{Q^{2}} \int_{0}^{\infty} dt \ G(t) \left[Q^{2} t^{2} - 4 \sin^{2} (Q t/2) \right]$$
$$G(t) = \sum_{\vec{x}} \langle J_{k}(t, \vec{x}) J_{k}(0) \rangle$$

• integration with Euclidean time-dependent kernel [Eur.Phys.J. A47 (2011) 148]

$$a_{\mu}^{\mathrm{hvp}} = rac{lpha_{\mathrm{QED}}^2}{\pi} \int\limits_{0}^{\infty} dt \, G(t) \, ilde{K}(t,m_{\mu})$$

-

・ロト ・ 一下・ ・ ヨト ・ ヨ

Time momentum representation

• subtracted vacuum polarization in terms of time-dependent vector-vector correlator

$$\Pi(Q^{2}) - \Pi(0) = \frac{1}{Q^{2}} \int_{0}^{\infty} dt \ G(t) \left[Q^{2} t^{2} - 4 \sin^{2} (Q t/2) \right]$$
$$G(t) = \sum_{\vec{x}} \langle J_{k}(t, \vec{x}) J_{k}(0) \rangle$$

• integration with Euclidean time-dependent kernel [Eur.Phys.J. A47 (2011) 148]

$$a_{\mu}^{\mathrm{hvp}} = rac{lpha_{\mathrm{QED}}^2}{\pi} \int\limits_{0}^{\infty} dt \, G(t) \, ilde{K}(t,m_{\mu})$$

• $a_{\mu}^{
m hvp}$ in terms of lattice spectrum of vector states

$$G(t) = \sum_{n \ge 0} |A_n|^2 \left(e^{-E_n t} + e^{-E_n(T-t)} \right)$$

(日)

Finite - T / volume correction in TMR

• isospin components of G for asymptotic time

$$G(t) = G^{(I=0)}(t) + G^{(I=1)}$$

$$I = 0: \omega - \pi \pi \pi / I = 1: \rho - \pi \pi$$

・ロト ・日下・ ・ ヨト

[JHEP 1710 (2017) 020]

Finite - T / volume correction in TMR

• isospin components of G for asymptotic time

$$G(t) = G^{(I=0)}(t) + G^{(I=1)}$$

$$I = 0: \omega - \pi \pi \pi / I = 1: \rho - \pi \pi$$

• dominant *I* = 1 contribution from time-like pion vector form factor

$$egin{aligned} &\mathcal{G}^{(I=1)}(t) = \int\limits_{0}^{\infty} d\omega \, \omega^2 \,
ho(\omega^2) \, \mathrm{e}^{-\omega t} \ &
ho(\omega) = rac{1}{48\pi^2} \, \left(1 - rac{4m_\pi^2}{\omega^2}
ight) \, |F_\pi(\omega)|^2 \end{aligned}$$

(日)

Finite - T / volume correction in TMR

[JHEP 1710 (2017) 020]

• isospin components of G for asymptotic time

$$G(t) = G^{(I=0)}(t) + G^{(I=1)}$$

$$I = 0: \omega - \pi \pi \pi / I = 1: \rho - \pi \pi$$

• dominant *I* = 1 contribution from time-like pion vector form factor

$$egin{aligned} & G^{(I=1)}(t) = \int\limits_{0}^{\infty} d\omega \, \omega^2 \,
ho(\omega^2) \, \mathrm{e}^{-\omega t} \ &
ho(\omega) = rac{1}{48\pi^2} \, \left(1 - rac{4m_\pi^2}{\omega^2}
ight) \, |F_\pi(\omega)|^2 \end{aligned}$$

(日)

• infinite-volume F_{π} from finite-volume volume spectrum with Lellouch-Lüscher formalism [Commun.Math.Phys. 219 (2001) 31-44]

$$|A_n|^2 = \frac{2k^5}{3\pi E_n^2} \frac{|F_{\pi}(E_n)|^2}{q_n \phi'(q_n) + k_n \delta'_{\ell=1}(k_n)}$$

HVP disconnected contribution [Phys.Rev.Lett. 116 (2016) no.23, 232002]

requires all-to-all quark propagation

$$C^{ ext{disc}}(t) = rac{1}{\mathcal{T}L^3} \left\langle \left[\sum_{ec{x}} \operatorname{Tr} \left(J_j(ec{x},t)
ight)
ight] imes \left[\sum_{ec{y}} \operatorname{Tr} \left(J_j(ec{y},0)
ight)
ight]
ight
angle$$

 special techniques: exact fermionic low-modes, stochastic quark propagation, hierarchical probing

• $\mathcal{O}(\alpha_{\text{QED}})$ QED correction to hadronic vector current correlator

$$\mathcal{S}_{ ext{quark}}
ightarrow \mathcal{S}_{ ext{quark}}^{ ext{IB}} = \bar{\psi} D \psi + \bar{m}_q \bar{\psi} \psi + e J_\mu^{ ext{em}} A_\mu$$

 $\mathcal{C}(t) = \langle J_j(t) J_j(0) \rangle_{ ext{QCD}}
ightarrow \mathcal{C}(t) + lpha_{ ext{QED}} \mathcal{C}^{ ext{QED}}(t) + \dots$

3

・ロト ・ 一下・ ・ ヨト ・ ヨ

• $\mathcal{O}(\alpha_{\text{QED}})$ QED correction to hadronic vector current correlator

$$\mathcal{S}_{ ext{quark}}
ightarrow \mathcal{S}_{ ext{quark}}^{ ext{IB}} = ar{\psi} D \psi + ar{m}_q ar{\psi} \psi + e J_\mu^{ ext{em}} A_\mu$$
 $\mathcal{C}(t) = \langle J_j(t) J_j(0)
angle_{ ext{QCD}}
ightarrow \mathcal{C}(t) + lpha_{ ext{QED}} \mathcal{C}^{ ext{QED}}(t) + \dots$

 \bullet quenched QED : expansion of path integral in $\alpha_{\rm QED}$ to leading order

[PoS LATTICE2018 (2018) 134, Phys.Rev.Lett. 121 (2018) no.2, 022003]

Image: Image:

• $\mathcal{O}(\alpha_{\text{QED}})$ QED correction to hadronic vector current correlator

$$\mathcal{S}_{ ext{quark}}
ightarrow \mathcal{S}_{ ext{quark}}^{ ext{IB}} = \bar{\psi} D \psi + \bar{m}_q \bar{\psi} \psi + e J_\mu^{ ext{em}} A_\mu$$

 $\mathcal{C}(t) = \langle J_j(t) J_j(0) \rangle_{ ext{QCD}}
ightarrow \mathcal{C}(t) + lpha_{ ext{QED}} \mathcal{C}^{ ext{QED}}(t) + \dots$

 \bullet quenched QED : expansion of path integral in $\alpha_{\rm QED}$ to leading order

[PoS LATTICE2018 (2018) 134, Phys.Rev.Lett. 121 (2018) no.2, 022003] • photon propagation with QED_L method [Prog.Theor.Phys. 120 (2008) 413-441]

$$\Delta_{\mu\nu} = \delta_{\mu\nu} \frac{1}{N} \sum_{k,\vec{k}\neq 0} \frac{\mathrm{e}^{ik(x-y)}}{\hat{k}^2} \quad \text{(Feynman gauge, excl. zero mode)}$$

• Strong isospin correction from mass term insertions

[PoS LATTICE2018 (2018) 134, Phys.Rev.Lett. 121 (2018) no.2, 022003]

イロト イヨト イヨト イ

Outline

Motivation

- 2 Lattice calculation
 - 3 Lattice corrections
- 4 Summary and outlook

<ロ> <目> <目> <目> <目> <日> <日> <日> <日> <日> <日> <日</p>

HVP LO lattice results update of [Prog.Part.Nucl.Phys. 104 (2019) 46-96]

Collaboration	a_{μ}^{hvp}	$(a_{\mu}^{hvp})^{uds}$	$(a_{\mu}^{hvp})^{ud}$	$(a_{\mu}^{hvp})^{s}$	$(a_{\mu}^{hvp})^{c}$	Method
$N_{\rm f} = 2 + 1 + 1$:						
BMW 17 [1]	711.0(7.5)(17.3)*†	696.3(7.5)(17.3)* [†]		53.7(0)(4)	14.7(0)(1)	TMR
ETMC 19 [2]	682(19)* [†]			$53.1(2.5)^{\dagger}$	14.72(56) [†]	TMR
HPQCD 16 [3]	667(6)(12)* [†]		599(11)* [†]			Moments
HPQCD 14 [4]				53.4(6)	14.4(4)	Moments
ETMC 13 [5]	674(21)(18)	655(21)		53(3)	14.1(6)	Fits in Q ²
$N_{\rm f} = 2 + 1$:						
PACS 19 [14]	737(9)(13)		673(9)(11)	52.1(2)(5)	11.7(2)(1.6)	Fits in Q ² , TMR
CLS/Mainz 19 [13]	720.0(12.4)(9.9)*†		674(12)(5)	54.5(2.4)(0.6)	14.66(0.45)(0.06)	TMR
RBC/UKOCD 18 (6)	715.4(16.3)(9.2)*†	701.2(16.3)(9.2)*†		53.2(4)(3)	14.3(0)(7)	TMR
NDC/ONQCD 10 [0]	692.5(1.4)(0.5)(0.7)(2.1) ^{*†}					R-ratio, TMR
RBC/UKQCD 16 [7]				$53.1(9)(^{1}_{3})$		Hybrid
RBC/UKQCD 11 [8]		641(33)(32)				Fits in Q ²
Aubin & Blum 07 [9]		713(15) / 748(25)				Fits in Q ²
$N_{\rm f} = 2$:						
CLS/Mainz 17 [10]	654(32)(²¹ ₂₃)*	639(32)(²¹ ₂₃)*	$588(32)\binom{21}{23}$	51.1(1.7)(0.4)	14.3(2)(1)	TMR
CLS/Mainz 11 [11]		618(64)				Fits in Q ²
ETMC 11 [12]			572(16)*			Fits in Q ²

- Phys. Rev. Lett. 121 (2018) 022002
 Phys.Rev. D99 (2019) no.11, 114502
 Phys. Rev. D96 (3) (2017) 034516.
 Phys. Rev. D89 (11) (2014) 114501
 JHEP 02 (2014) 099
 Phys. Rev. Lett. 121 (2018) 022003
- [7] JHEP 04 (2016) 063

[8] Phys. Rev. D85 (2012) 074504
[9] Phys. Rev. D75 (2007) 114502
[10] JHEP 10 (2017) 020
[11] JHEP 1203 (2012) 055
[12] Phys. Rev. Lett. 107 (2011) 081802
[13] Phys.Rev. D100 (2019) no.1, 014510
[14] Phys.Rev. D100 (2019) no.3, 034517

< ロ > < 同 > < 三 > < 三

Summary and outlook

- HVP LO: convergence of lattice calculations with control of all leading systematics
- HLbL : Gilberto's talk
- White paper from g 2 Theory Initiative upcoming

・ロト ・ 一 ト ・ ヨト ・

Summary and outlook

- HVP LO: convergence of lattice calculations with control of all leading systematics
- HLbL : Gilberto's talk
- White paper from g 2 Theory Initiative upcoming
- $\bullet\,$ HVP LO contribution to anomalous magnetic moment of e and τ
- HVP NLO $(g 2)_{\ell}$: with control on vacuum polarization and available QED integration kernels
- hadronic leading order correction to running of electro-weak couplings
- ... Lamb shift in muonic hydrogen

<ロト < 同ト < ヨト < ヨト

Thank you very much for your attention.

э