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Motivation
We aim at deriving closed forms for the energy shifts concerning bound and
scattering states of two-body charged systems on a cubic box of side L.

Applications
Laco ”g:“” 51 » Nuclear Lattice EFT based on ChEFT for nucleons and
é 00 é pions , ,
E @ Q 7 7
Q o
§ ——— or hyperons
® @0 » Lattice Quantum Chromodynamics
ab initio=_ = » for hadrons at the physical quark masses
. , , ,
3 ~~ The accuracy with which the properties of the mesons
g g are calculated requires the embedding of the strong
g interactions within the full SM.
» for light nuclei , ,
= ~ QED plays a critical role in the
o stability and structure of nuclei even if calculations for
A > 5nuclei are still performed at unphysical quark

collective coordinates.

masses
courtesy of P Phenomenological models for o particles within
V. DURANT (2019) a-conjugate nuclei
GS. , G.S. (in preparation)
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Overview

33 years of finite volume corrections for the energy of lattice eigenstates

.. for two-body systems:
» ( = 0 eigenstates

’

and £ > 0 eigenstates

» particles with spin , ;

» moving frames , ,

» generalized boundary conditions , ,

» perturbative QED corrections for £ = 0 eigenstates and

for £ > 0 eigenstates ~~ our task !

.. for three-body systems:

» (= 0 eigenstates , ;
» moving frames ;
» twisted boundary conditions ;

.. for N-body systems:
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Finite volume energy corrections

We review the derivation for bound states of two-body systems with angular mo-
mentum £ in a cubic box of size L’ under periodic boundary conditions (PBC)

The Schrodinger equation for a two-

body system in relative coordinates R

SR e
H= 2MV,—%—V(}’)
Els) =~ )
B) — —~— B
2p

with a finite range interaction
~~> low energy universality

V(r)=0 for r >R

d* e+
dr? r2

Yp(r) = ue(r) Y7 (0, 0) ~= ( —2uV(r) — K,Z) ue(r) =0

courtesy of S. KONIG (2013)
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Finite volume energy corrections

We review the derivation for bound states of two-body systems with angular mo-
mentum £ in a cubic box of size L’ under periodic boundary conditions (PBC)

The Schrodinger equation for a two-
body system in relative coordinates

H

1
_ﬂvr + V(T’)

with a finite range interaction R R
~~> low energy universality

V(r)=0 for r >R

d* e+
dr? r2

Yp(r) = ue(r) Y7 (0, 0) ~= ( —2uV(r) — K,Z) ue(r) =0

courtesy of S. KONIG (2013)
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Finite volume energy corrections

Outside the interaction region, the bound state wavefunction can be replaced by
Riccati-Hankel wavefunctions /i (z) regular at infinity for complex arguments

h () = "
0= (1)
~ 3i 3 i(z—m
i (z) = <1+— Z—2>e<z )
If ue(r) = iy X7 ,.(r) we define

+oo —1/2 -R R
\ = ( JA <r>|2)
0

where v is the asymptotic normalization constant and XZ“O (r) =225 hf (imor)

(% _ é(éj ) 40— Ho) ue(r) =0 for r > R ~» uy(r) = ie?’ ’;j(i"ﬂo”)

courtesy of S. KONIG (2013)
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Finite volume energy corrections
Periodic Boundary Conditions imply the creation of infinitely many copies of V(r)

In particular, the interaction potential V(r) = Vo8(R — r) gives

3L L L 3L
2 2 2 2

whereas the potential V(r) = Vj exp(—*/R?) gives

3L L L 3
2 2

courtesy of S. KONIG (2013)
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Finite volume energy corrections
The comparison between Schrodinger equation in finite and co volume yields

Hi|vo) = —Es(L)[¢h0) Hlyg) = —Es(L)|¢5)
Also the wavefunction 1 has to fulfil periodicity: ~* 1o (r + nL) = 9)y(r)

Considering the following ansatz,

r) = Z Yp(r+ nL)

H|¢p0) = —Ep(00)[t0) + |n)
= Z V(r+ nL)yp(r +n'L) L

n#n’

the result of S. Konig et al. where Amg = Eg(oco) — Eg(L) is recovered

?/10|77 3 —V2roL
A7 = 2 holio) zljl/d”ﬁB ¥u(rnl) + 0@

courtesy of S. KONIG (2013)
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Finite volume energy corrections

LO finite volume energy corrections for relative two-body bosonic states with re-
duced mass 1, angular momentum ¢ and belonging to the I' irrep of the cubic
group O are given by

— kL 2k
AEST = BV (00) — EF (L) = B )P + 0 (e7V2)

where kg is the binding momentum and S(x) is a polynomial:

1T B(x) |
0 | Af -3
1 | 17 +3
T, 30x + 135x% + 315x” + 315x*
2 | Et —1(15 4 90x + 405x> + 945x° + 945x*)
Ay 315x% 4 2835x° + 122285x* + 28350x° + 28350x°
3 | T, —2(105x + 945x” + 5355x” 4 19530x* + 42525x° + 42525x°)
Ty | —3(14 4 105x + 7352 + 3465x> + 11340x* + 23625x° + 23625x°)

The asymptotic behaviour of the corrections with the side of the cubic box is
, the decay constant being proportional to the binding momentum
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Finite Volume Energy Corrections with QED
In absence of QED the FV artifacts on the eigen-energies are exponentially suppressed

in L. As soon as QED is turned on, FV effects become proportional to the inverse of L.
The Coulomb interaction is the leading contribution of QED in elastic scattering at low energies.

20, =)
1 =
15l e In particular, QED affects:
' t g » the masses of the individual particles
S 0l = ~ for nt’s:
St Z
= 2 AMpm it 2y
05 - TTL T Mg+ 12
0.0 % » the energy of the resulting
0.0 £ many-body system
L 3 ~~ for £ = 0 bound states:
o
Its FV counterpart for unit opposite charges is AE ~ — O% +
o 1 jnr T
ULy = —3° Wezm L with 7 = —8.9136
n#0

Consequences

Ampere’s Law and Gauss Law are no more satisfied by a gauge field obeying PBCs. ~+ a
uniform backg. charge density is introduced = the removal of the zero modes of the photons
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Finite volume energy corrections with QED
For the derivation of the two-body finite volume energy corrections (FVECs)
in presence of QED we adopt S. Beane et al.
apply it also to strong potentials coupling to higher partial waves ¢ = 0,1, 2, ...

NR EFT

FOR FERMIONS IN
% VOLUME

INTRODUCTION OF
COULOMB
PHOTONS

NON-PERTURBATIVELY

F>

FINITE VOLUME
QUANTIZATION

CONDITION
TO ORDER o

% VOLUME

ERE

i

FINITE VOLUME
KINEMATICS

QT

procedure and

TRANSVERSE
PHOTONS
CORRECTIONS

FINITE VOLUME

ERE

FVECs

WITH QED

Key ingredient: the generalized Effective Range Expansion for strong & Coulomb interactions...
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Non relativistic EFT for S-wave scattering in co volume
Let’s consider a non-relativistic pionless effective field theory for spinless fer-
mions with mass M and S-wave interaction

v
_— (ha + ) v~ L) (W)
The induced two-fermion interaction in the CoM frame reads
v (p,q) = (q,—q|V?V|p,—p) = C

+p (resp. q) = momentum of the incoming (resp. outcoming) particles
(r|p) = plane-waves, eigenfunctions of Hy = P2/M

» Feynman rules (momentum space)

(lo, 1) i dly a3
" lo— L2 +ie —c Jo @y Jos

» Two-body free retarded (4) and advanced (—) Green’s functions at energy
E = p?/M in the CoM frame in momentum and coordmate space:

(+) N A
CEVE,1,v) = (|CF)(E . 1
(ig) (E,r,x') = (r |A (Oi) (E)|r) here G((]i)(E) L
Gy (E,p,p") = (P'IGy ' (E)Ip) E —Hy*ie
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Non relativistic EFT for S-wave scattering in co volume
Let’s consider a non-relativistic pionless effective field theory for spinless fer-
mions with mass M and S-wave interaction

h2v2

0 _ (hat + ) v~ L) (W)

The induced two-fermion interaction in the CoM frame reads
VO (p,q) = (q, —q|V?|p,—p) = Co

» Two-body free Green's functions at energy E = p*/M:

GEVNE,1,¢) = (¢|GF)(E
(io) (E,1,1') = (r |A(O:l:)( )|r) where G“E)(E) 1
Gs '(E,p,p") = (p'IGy ™ (E)Ip) E—Hy+ie’

The amplitude of the fermion-fermion scattering process is the superposition
of all the contributions fom the bubble diagrams:
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Two-fermion S-wave scattering states in co volume

The translation of the diagrams into the language of matrix element returns
the scattering amplitude (T-matrix) of the fermion-fermion process,

iTs(p, q) = i{q, —q| VO (1 + GV + GV OEV® + .)[p, —p)

which that can be conveniently rewritten as a Geometric series

Co and PDS M
Ts(P,q) = =~ Gh(r, ¥ =——(i
(P q) 1 —COGE(0,0) 0( ) 7/-1') /=0 471_( |PH—[.L) )
where  is the renormalization mass in the PDS scheme
Recalling the full amplitude for S-wave scattering together with the zero an-

gular momentum (¢ = 0) effective range expansion (ERE),

4w 1 1 1
T 5 e T T = —— — 2 4 0 -
s(P.@) = —4; ot % —7lp] [plcot o = —= + Srop” + v2p” + 0",
one finds an expression for the scattering amplitude and the effective range

a:47]l;/fo and ro=0.

Remark: a zero ry was expected, since the potential is proportional to §(xr")5(r)
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Non relativistic EFT for P-wave scattering in co volume
Let’s consider a non-relativistic pionless effective field theory for spinless fer-
mions with mass M and P-wave interaction

2v72
L=y {z‘hat v }w—w‘?w W)

Analogously, the induced two-fermion interaction in the CoM frame reads

V@ (p,q) = (g, —aV"p,—p) =Dop-q.
» Feynman rules (momentum space)
00 — i\P\l/i‘l ~iDop - q -m Jo @y Jis L
lo— 537 Hie / \\ \\/ (2m)

The amplitude of the fermion-fermion scattering process is again the
superposition of all the contributions fom the bubble diagrams:

RN N N
ST AT AR
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Two-fermion P-wave scattering states in co volume

The translation of the diagrams into the language of matrix element returns
the scattering amplitude (T-matrix) of the fermion-fermion process,

iTs(p, q) = ilq, —q/V (1 + GV + GGV + )lp, —p)
which that can be conveniently rewritten as a Geometric series

p
3 2 )7
where 41 is the renormalization mass in the PDS scheme and T = V@ V'G5 (3;1,1') |P =0

Recalling the full amplitude for P-wave scattering together w1th the zero an-
gular momentum (¢ = 1) effective range expansion,

D 3
Ts(p.@) =d- g—popp  and qros _ 6,,4— (lm +ul

12m P-q and
Ts(p,q) = — M [pFcotdr —ipP
one finds an expression for the scattering amplitude and the effective range
M Dy
T 4m 3
Remark: a zero effective range was expected, since the potential is
proportional to V'6(x') - V4(x).

1 1
Ip|® cot 6, = - + Ergp2 +opt ...,

and 7‘():0.
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Non relativistic EFT with QED in co volume

We introduce QED in a non-relativistic fashion. The Lagrangian for NR Pauli spinor
fields ¥ associated to particles with mass M and unit charge e is provided by '

2
LQED _ _% (E2 — BZ) +ut (i@t —ed+ %) o4t [dl ap Do B}}
N 4
i [Cl sV T oM T e

where D = V + ieA is the covariant derivative and ¢ is the scalar potential.
In the spinless fermion case ¥ — 1. Plugging E = —V¢ — QA in L2, and
considering the —e¢q) 1) term the following Feynman rules are recovered

t ot B+cs——V-E+ci——r lia}\I/+...

ol & 3 where A = IR
124+ )2 —— ¢ regulator

’

p P

where the dotted line indicates a Coulomb photon.
Remark: In low-momentum NR QED transverse photons are negligible, since
their coupling is proportional to the fermion’s velocity.

Isee also T. Kinoshita and M. Nio and
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Two-fermion scattering states in co volume with QED
We begin with the repulsive case. The potential in momentum space becomes

2

(@Velp) = oo

and two solutions of the Coulomb Schrodinger equation are given by
}(,ﬂ(r) = e_%“”f‘(l + in)M(Fin, 1; +ipr — ip - r)e?”
where M = 1Fy, (5 [9§) = (27)%6(q — p) and vy (1) = )" (1)

(4) ~> outgoing spherical waves in the future
(—) ~> incoming spherical waves in the past

n = ;“—I}ﬁ regulates the viability of the perturbative treatment of the QED corrections.

The above Coulomb wavefunctions admit an expansion into spherical waves:

4 ey %
) (r ”Z Z i“eCFy(n, pr) Y2 (®)Y™ (P)

£=0 m=—£
where oy = arg'(¢ + 1 + in) is the Coulomb phase shift and

2™ 2|00 + 1 + in)
Feln.pr) = (2|1z(+1)! |

(pr) eV M(€ + 1 + in, 2¢ + 2, ~2ipr)
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Two-fermion scattering states in co volume with QED
In the non relativistic regime perturbation theory in a breaks down:
lpl~aM ie. n~1

The expression of the Coulomb Green'’s functions in terms of Vc and Céi>
yields the Dyson equation and the Ladder diagrammatic expansion

ISl PE——— () py A () a(E) (T ()
E—Hy— V¢ +ie ~r G (BE)=Gy T (E) = Gy (E)VeGe (E)

PN

17/33 Bound and Scattering States in a Finite Volume including the Coulomb Interac
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Two-fermion scattering states in co volume with QED

An analogous expansion is recovered when the full Green’s function operator
is rewritten in terms of Géi) (E) and the strong potential Vs,

EE (E) = 1 ~ G 6 = 6156
E — H() VC — Vs + iE
As a result, multiple Coulomb photon insertions appear both in the external
legs of the bubble diagrams and within the fermion loops themselves.
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Two-fermion scattering states in co volume with QED
An analogous expansion is recovered when the full Green’s function operator
is rewritten in terms of Céi) (E) and the strong potential Vs,

CE(E) = L MG - 68 = GG
E—Hy—Vc—Vs+ie
» The S-matrix element associated to the scattering process becomes
S’ p) = (X, e ) = 27)°8(p" — p) — 2id(E' — E)T(p', p)

where \X}(,i)) are the full eigenstates, T(p’, p) = Tc(p’, p) + Tsc(p’, p) and
Tc(p',p) = (p ’WC|7,Z)<+)> ~~ purely Coulomb amplitude
Tsc(p’,p) = <1/1( )\VS\XH')) ~~ Coulomb corrected Strong amplitude

In particular, both the two amplitudes admit a partial wave expansion:

Te(p'sp) = —— Z(2€+ 1)

2‘ ‘ :|77[(C059)

€2i
2ilp \

Tsc(p',p) = —— Z (20 4 1)e%oe [ ] Py(cos §)

where oy = argI'(1 + ¢ + in) and 6 ¢ is the strong contribution to the total phase shift

18/33 Bound and Scattering States in a Finite Volume including the Coulomb Interac
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Two-fermion S-wave scattering states in co volume with QED
Tsc for the ¢ = 0 interaction o the sum of a geometric series with ratio Co G(C+) (E,0,0),
C; Coe®™

1— CoGE7(E,0,0)

Tsc(p',p) =

» where C,, is the Sommerfeld factor

. 1 .
27 H(n) = ¢(in) + 2 log(in)

and 9 (z) is the Digamma function.

— w® 0
= i O =
In particular, G(CH(E, 0,0) = Jc(p) = J&"(p) + J&(p) proves to be UV divergent in
three dimensions. Its explict computation gives

aM?

) =-SHm )

PDS  aM? [1
) :—{ +log

I }7@
47

2 e 47

The exploitation of the generalized ERE for S-wave scattering amplitudes,

1 ©)

C2Ipl(cot 5y — i) + aMH(n) = ¥ + 40 PPt

yields r(o) = 0 and an expression of a ) in terms of the coupling constants
1 4r u\f 3
= —aM 1 i
i MG MO ¢ Hlog T
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Two-fermion P-wave scattering states in oo volume with QED

Analogously to the S-wave case, the Coulomb-corrected strong scattering amp-
litude is proportional to the sum of a geometric series,

_ Dy
T / _ v/ (/ e (+)
b op) = VU 0|, Ve W)
albeit with a matrix ratio whose elements are diagonal and, in dimensional
regularization, are given by
3jj d% 2mn(s) s> 14 n(s)?
d ( )d 627”7(5) —-1 p2 _ 52 + iE

(Tsc);; (d) = M— = tsc(d)dy

therefore, the T-matrix elements simplify into

) DOEZio'lp 3 p/ ” o DOeZial
0 PP _ 1 cz_—0°

T 1 — Dotsc ( +n ) 71 — Dotsc

The evaluation of tsc at the denominator in the PDS regularization scheme yields

; oMt 1 3
tsc(p) = 182(p) + 180 () + 48 2(p) = St [ 51 4 €)= Soe ot + 1o AN

_aPMp (Trz 3) aM? p? { 1 3 v } pMp? oM p?

Tsc(p',p) = (1+7°)C p’cosf,

27 3 T 3 5o d+7_77£+0g oM

W,

» The expression is UV divergent, but terms proportional to p* give rise to finite 7,
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Two-fermion P-wave scattering states in oo volume with QED

Exploiting the last expression and the £ = 1 component of the partial wave expansion,

3 ) 127 1 — Dotsc(p)  and 3 . 127p? €%1 cos 6

cotdy —i) = —— — 1~ 0 — i) = — £ Y
|P| ( 1 ) M D(]C%(l +772) ‘P| (CO 1 l) M TSC(P/,P)
together with the P-wave version generalized ERE, PRC 26, 2381-2396 (1982)

. 1 1
P’ (1+7°) [CIpl(cot &1 — i) + aMH(n)| = IRk

an expression for the Coulomb P-wave scattering length u(cl) is obtained,

1 2r M 1 3 pVT] | oM
LI - _2 1 —3).
D~ MD, 4 {3 —a tB) F+3 378 M } 8 (” 3)

The components of tsc proportional to p® generate a purely Coulomb nonzero
effective range, i.e. vanishing as soon as the electrostatic interaction is turned off

D = oM {id 8 200 ”\{ﬂ —3u,
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S-wave scattering states in oo volume with QED: the attractive case

Now we consider the two fermions with opposite charges. As a result
n = —aM/2|p|, and the H(n) function in the ERE is replaced by

F(n) = (i) + ﬁ ~log(—in)

For convenience, we relabel the strong coupling constant: Co — Co.

» The Green’s function G(+) (E;0,0) becomes GH') (E;0,0) ) + Jo(C) where
_ M oM [ 1 p/m —in) — L i 1
e(p) = — M oM [3 L+ 1og I tog(—in) — 51 +w( )1+ 2o
+oo oo 2
‘¢n,£,m OéM . .
and Yy Y [+ (—im)+2¢ (1))

n=1 £=0 m=—¢

» J&(p) accounts for the bound states o the associated Laguerre polynomials

M n—+£—1! aMr [ m
Gnem(r) = \/(an ) me ( M) LZZH (2M47) Y7 (6, 9)

where E, = —a?M/4n? is the energy and n~ principal quantum number
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S-wave scattering states in oo volume with QED: the attractive case

Now we consider the two fermions with opposite charges. As a result
n = —aM/2|p|, and the H(n) function in the ERE is replaced by

Fi(n) = (i) + ﬁ ~ log(—in)

For convenience, we relabel the strong coupling constant: Co — Co.

» The Green’s function G(+) (E;0,0) becomes GH) (E;0,0) )+ ISC C) where
_ mM aM?* [ 1 u\/T o i . 1
Je(p) = Mo [3_d +log I 4 og(—in) — o1 +w( in) + 14 2
+o0o +oo 2
. ", aM . .
and ) =33 3 e OF oMy i iagy

n=1 £=0 m=—¢

The scattering length coincides with the repulsive one except the sign in front of a!

1 1
o, =20 M {loguﬁ“‘%“’f
ac’(p)  ac
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P-wave scattering states in oo volume with QED: the attractive case

Asin the £ = 0 case, Dy — Do and H(n) — H(n) in the ERE. The contribution of the
bound states in the denominator of the scattering amplitude Tsc(p’, p) becomes

314 2 2
fhe(p) = ~ <) + 5B e+ gt + gutin)] 1+7)

and the overall function tsc is replaced by Egc(p) + 139 (p) + 5 (p) = tsc(p):

B a3M4 1 3 \/> 2M3

t =— i _Z 1 - _

sclp) =~ [ 525+ 0@ — e+ 5 +1o YT ] - PG
aM?p* [ 1 4 3 w/n]  pMp*  aM?p? 2

—TW?{H—Fg—E’YE-HOg oM —E?"‘ o H(n)(1+n)

The scattering length assumes the same expression except the sign in front of «

1 2r M 1 3 N B T
— — 1 -
a0 MD, 4 {3 —a @) 5 +3 3087, } 8 (” 3)

and the same conclusion can be drawn for the effective range parameter r( )

u\{ﬂ 3

D = 2 .8
—aM [3 d+3 3ve + 2log
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Non relativistic EFT with QED in the Finite Volume

The system is transposed into a discretized cubic box of side L
~~ discretization of momentum ~~ p = 27n/L withn € Z°.
~ the analytic structure of the scattering amplitude changes
~> the validity of our generalized ERE is affected

> Tsc(p,p’)
P = .
=/ Analytical along Jm p
€ X Pion production cut with
< threshold 0 along e p
o
Z
_maf2 3 Tsc(p.p')
7 Vg M M
/ g / Analytical along Jm p
/ > v Pion production cut with
‘ £ threshold \/2rM/L along Re p
2 (no zero momentum modes)
9]
Without QED: a cut appears along the Jm p axis, with threshold in /2

the 7 production cut is lifted at /mM

24/33 Bound and Scattering States in a Finite Volume including the Coulomb Interac
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Finite Volume Kinematics
In the finite volume both the energies of the bound or scattering states A E = E"—
E and the masses AM = M" — M of the particles are affected.
~~ without QED: AM are of order e =L ( )
~~ with QED: AM are of order L ™" (important)

Asin shifted scattering parameters are introduced

(€)
1 1 OéTO MT 2 ’ 4051’(2)MI
—_ = — 2 () _ () 1 a
70 T 0T oL +0(e% ) 7 =) + L= 1 0(e% 1)
» Making the dependence of Cy on the total energy of the two-fermion system

p?
E*=2M+E=2M+ —
+M

in the CoM frame explicit, the £ = 0 ERE for equal charges in FV becomes

1 1 ’
Cilpl cot o + aMH(n) = -5 + + 1O0p
C

_ Ar 1 u\/T 3
MCS(E*)+OC[3—11 +log( M>+1 37 }

where the AM effects are incorporated in alc<0> and r(’,m).
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The Quantization Condition at ¢ = 0

The QC determines the energy eigenvalues from the singularities of the two-point
correlation function. The full Green’s function atr = r' = 0 for ¢ = 0 gives

- 1 A Gc(E;0,0)
e L sy GW(E0.0) = 0,
I TEIC sc (£,0,0) = 3= Co(E")Gc(E;0,0)

In finite volume a descent in rotational symmetry takes place:
~ the £ = 0 irrep of SO(3) is mapped into the A; of the cubic group O

L
G LE 0,00 = — J<®)
- ’ 1—-C5(E")Jc(p)
where G{ (E,0,0) — G{7 (E,0,0) and GE™ (E,0,0) — GEP E(E,0,0) = Jh(p). The
quantization condition can be read off the denominator of Géé‘ )L(E,0,0)
1
Je(p)
where ]é (p) to all orders in a contains sums over non-rational functions
~~ the Sommerfeld factor depends on the summed momenta!

Gy(E) =
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Perturbative treatment of QED in finite volume

Without zero modes, in FV the momenta are |p| > 27 /L, i.e. n ~ aML
~ if ML <« 1/a then ) < 1: large volume required
~> in LQCD M « 1/L: QED can be treated perturbatively

Consequences

{The Sommerfeld factor in J¢(p) can be expanded in power series of a}

Ay An

L(p) = 1 1 2
Jelp) = 47r2L Z |n|2 16775 Z Z |n‘2 P mZ—2n—mp +0(a)

where p = L|p|/27 and A, = LA /27 ~> three-momentum cutoff
» Trick: Regulation of the divergent sums by means of the Cutoff- and
Dimensionally Regularized version of Jc(p) up to first order in ¢ in co-volume:

1

aE B = he) - e )

~~> C5(E*) is expressed in terms of a Liischer function
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The finite volume ERE for S-waves with QED

The sums appearing in the QC for the ¢ = 0 strong coupling constant are rewritten as

1 M aM? . aMP[ 1

%@ﬂ:_h%aM+Mﬁ&@H_M 3-d

1 2w
2ny+1 log——log\f

where S¢(x) = S(x) + %Sz(x) is the Liischer function
and S(x) & Sx(x) are finite summations (zero modes are absent!)

9=30y : : ’ >
— 47" log A, S(x) = ——— —4nA,
2 _ 2 ml2 — 22 |n — m|? 2 _ 2
o \n| X2 |m| 2 |n —m| — In| X

» The divergences in 1/C(E*) can be removed by means of the MSyy scheme:

! M 5 oM . aM? T
G = S e g o ()~

~ the following quantity has beeen subracted to C5(E*) ~!and to the Lh.s. of the original ERE,
modulo a multiplication factor of 47 /M?
1 MSpy aM? { 1 1 VT }

A 4 l4log LT
CL(E") an [3-a 2T
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The finite volume ERE for S-waves with QED

The sums appearing in the QC for the ¢ = 0 strong coupling constant are rewritten as

1 M .. oM., .. oM 1 1 27
aE) - P T e P T T 37 27E+1_1°g* ~log v/

where S€(x) = S(x) + %Sz(x) is the Liischer function
and S(x) & S»(x) are finite summations (zero modes are absent!)

A
1 1 a 1

(x — 47" log Ay S(x) = ——— —4mA,

)= Z > \n|2 2 mP — 22 |n— m]? mtlog () ; Mz —x2 o

n m##n

» The removal of the divergence via the MSpy scheme in both C§(E ")71 and the
original ¢ = 0 generalized FV ERE, allows for the sought rewriting of the latter:

1 - aM 2 1 1 o 0)

Improvements: By considering transverse photon contributions, further O(«) terms
can be included in J&(p) ~ photon exchanges occur also between the bubbles!
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Transverse photon corrections

The terms depending on the vector potential A in —1/2(E* — B?) and in the
UTD?/2MV term of L originate the transverse photon propagator and vertex

4 (To, 1) , 51‘]‘—m % _eF’IZNfi
! P B—12—X2+ie

’

P P
If these photons are included into the total Lagrangian four new classes of diagrams
sum up to the scattering amplitude Tsc to order O(«
~~ photons are exhanged between the bubbles!

et S S te T

Remarks
» In comparison with the bubbles with one Coulomb photon insertions, the new
diagrams are suppressed in the IR momentum region
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Transverse photon corrections

The terms depending on the vector potential A in —1/2(E* — B?) and in the
UTD?/2MU¥ term of LP originate the transverse photon propagator and vertex

lilj gi o
; (l()a 1) : 61] — m _ePIZA/?
1 ] .

2_12_2 .
lO 14— A\“+ie P P

If these photons are included into the total Lagrangian four new classes of diagrams
sum up to the scattering amplitude Tsc to order O(«
~~ photons are exhanged between the bubbles!

B

Remarks
» In comparison with the bubbles with one Coulomb photon insertions, the new
diagrams are suppressed in the IR momentum region
» The diagrams that do not allow for the implementation of the geometric series on
the bubbles give rise to the dressed interaction, modified in the FV environment
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Transverse photon corrections
If these photons are included into the total Lagrangian four new classes of diagrams

sum up to the scattering amplitude Tsc to order O(«
~~ photons are exhanged between the bubbles!

JODreOx O

Remarks
» In comparison with the bubbles with one Coulomb photon insertions, the new
diagrams are suppressed in the IR momentum region
» The diagrams that do not allow for the implementation of the geometric series
on the bubbles give rise to the dressed interaction, modified in the FV environment

Taking these new O(«a) diagrams into account, the generalized ERE in FV becomes

aM _, . aMa o, 2rl? 2
WLS(p) 473 SZ(P) u #I[S( )] +aM |:10g ( ML) a VE]
1,0 2

—|—7r0 P _H,/(O) 4

P+ ...

- al. (0)
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FVECs for S-wave scattering states with QED
We search for the FVEC to the non-interacting g.s. A;" with total energy E* = 2M*
Strategy
» Low-momentum approx. ~ for |n| # 0 we expand the arguments of the sums
in the Liischer function S¢(p) as function of p/|n|

1 1 1 1 7 p* 56
= =+ 7 Lol L
mZ—72  |n21_ LZZ nf? + I + e + [
[n]
As a result:

- 1 - - -
Sp) = % + I+ TP+ KP4 LP° + ..

) 2 . .
S:(p) = —f?j + R — 2K 4 20> (Ras — L) + p* (Raa + 2Ra6) + ...

where Z, 7, K, L, R and Ry are 3D Riemann sums:

Ap 1 oo 1 oo 1
=Y T~ 4rA, = —89136 T = = 16.5323 K=>" mE = 8.4019
n#0 n#0 n#0

AYl oo oo 1 oo oo 1 1
1 1
= - - =6.94 o =
R=3 3 rmim o dTIoEm 2 T Ra=D D

n£0 m=£0,n |m - n#0 n#0 m#0,n
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FVECs for S-wave scattering states with QED
We search for the FVEC to the non-interacting g.s. A;" with total energy E* = 2M*
Strategy
» Low-momentum approx. ~ for |n| # 0 we expand the arguments of the sums
in the Liischer function S¢(p) as function of p/|n|
N T T .
P =7 Py B P el O (%)
» Solution of the approximate FV ERE in terms of p p p(a

pac”, 16", M; L)

~~ up to order p° the polynomial is biquadratic
~~ improvements in p*":

iterative approach
1 ,(0> 2 16mt s aat@OM 1 1, oM, ag 020 79
,<0>+ 07+ i p *T;ﬁ* St s T
2
aM -~ J aal %) N
Lo MR a4 | L MRy - o) + —Sp I - K)| P
7L 474 313

K M al. 0% (© -
|5 = (R + Ras) + €0 7(g% — 2L 4+2KT) | B + ...
L 4t 7313

. small quantities:
where R =R — 4r* [log (aML> - 'YE] o, 1/L, u/C(U)/L, r()(o)/L and rim)/L <1
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FVECs for S-wave scattering states with QED

We search for the FVEC to the non-interacting g.s. A;" with total energy E* = 2M*
Strategy
» Low-momentum approx. ~> for n| # 0 we expand the arguments of the sums
in the Liischer function S€(p) as function of p/|n|

1 1 1 1 p2 pt
= =+ 7 +O(|n‘s)

=72 " InPq_ PZ Inf2 "~ n[* "~ |nf®

In| 2

» Solution of the approximate FV ERE in terms of p p= P9, @ M; L)
~~ up to order p° the polynomial is biquadratic
~~ improvements in p*": iterative approach

» Derivation of the FVECs ~~ AEg 041 — p2 /M where p solves the approx. ERE

2
~~ at order a ac(o) JL*, al 0) /L% and a a7, /L* we have:

ony ® (N (O 20d® (O
1) _ -~ —_ —_—
AEPM) = 2C {1 <7FL> +< ) [Z-J]+. } Lzz{J—i-(WL)[IC

7L
24! (0) /(0 (
P o ™ L RI+Zj72JZfZIIC+£fR24] +}

2772+ 2
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FVECs for ¢ = 0 bound states with QED

We search for two-body bound eigenstates with momentum p = ix with QED.
» Taking the large & limit of S(ik) (= deep binding limit) we find:

An

1 ~
—— ~4rA, — 27k
2 g A =2
Ay >
1 1 1 T
_ _ ~ 4rt[log Ay — log(2R)]| + —I
;mz?én [n|2 + %2 |m|?2 + %2 |n — m|? i

Plugging the approx. expr. of the Liischer function into the ERE, the latter becomes

1 1 )2 aM aM
7{1?)) gl K =K aM ['yg + log (E)} — 27mLI(l — KTp)

» Performing a perturbative expansion of k = ko + K1 + ... where &, is O(a") and
expressing k1 in terms of (ko, @) the energy of the lowest A state in FV is found

2 2
Ko Ko Ko 2akg ap @
B0y o0y, = o _“ako log (£ )| - 21
MTEM™ T 20 T T = roro {WE +og (250” 7L
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FVECs for ¢ = 0 bound states with QED

We search for two-body bound eigenstates with momentum p = ix with QED.
Plugging the approx. expr. of the Liischer function into the ERE, the latter becomes

1 1 )2 aM aM
_aéT) — 5l K = K= aM {’yg + log <E — 27mLI<1 — KI)

» Performing a perturbative expansion of k = ko + k1 + ... where &, is O(") and
expressing k1 in terms of (ko, @) the energy of the lowest A; state in FV is found

2 2 2 20k o o
E©AD :i%@ 2@ _ Ry _ A 1 oy - —_7
s )= A M 2 T 2 T T o | T8 20 7L

from which the LO FVECs is inferred (remember: Z < 0)

AEP) = Ef)(00) — EP4D(L) = ST+ 0(o?)

Remark

As in the case without QED, FV corrections for the £ = 0 state are negative}
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Conclusion
The preliminary calculations for the derivation of the correction formulae to
two-body ¢ = 1 bound and free energy eigenstates on a cubic lattice with PBC
in the approach followed in have been presented.
In particular
1. we have adopted a non relativistic field theoretical framework with the
£ = 0 (resp. £ = 1) contact interaction in (resp.

).
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Conclusion

The preliminary calculations for the derivation of the correction formulae to
two-body ¢ = 1 bound and free energy eigenstates on a cubic lattice with PBC

in the approach followed in have been presented.
In particular
1. we have adopted a non relativistic field theoretical framework with the
£ = 0 (resp. £ = 1) contact interaction in (resp.
).

. after presenting the £ = 0 two-body scattering amplitude, we have

derived Ts for the above £ = 1 strong interaction.

. the QED corrections have been introduced in the form of Coulomb

photon exchanges on top of the strong bubble diagrams.

. the available Coulomb-corrected strong scattering amplitudes Tsc for

£ = 0 have been presented and the one for £ = 1 have been derived.

. the system has been transposed on a cubic lattice with periodic

boundary conditions. Provided the volume of the lattice is large enough,
the conditions for a perturbative treatment of QED are satisfied.
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in the approach followed in have been presented.
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photon exchanges on top of the strong bubble diagrams.

. the available Coulomb-corrected strong scattering amplitudes Tsc for

£ = 0 have been presented and the one for £ = 1 have been derived.

. the system has been transposed on a cubic lattice with periodic

boundary conditions. Provided the volume of the lattice is large enough,
the conditions for a perturbative treatment of QED are satisfied.

. the full two-body Green’s function for £ = 0 states has been discretized,

leading to the Quantization Conditions.
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boundary conditions. Provided the volume of the lattice is large enough,
the conditions for a perturbative treatment of QED are satisfied.
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leading to the Quantization Conditions.

. after discussing the changes in the FV kinematics, the lattice version of

the ERE for ¢ = 0 states has been presented and O(«) transverse-photon
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In particular

1.

we have adopted a non relativistic field theoretical framework with the
£ = 0 (resp. £ = 1) contact interaction in (resp.

).

. after presenting the £ = 0 two-body scattering amplitude, we have

derived Ts for the above ¢ = 1 strong interaction.

. the QED corrections have been introduced in the form of Coulomb

photon exchanges on top of the strong bubble diagrams.

. the available Coulomb-corrected strong scattering amplitudes Tsc for

£ = 0 have been presented and the one for £ = 1 have been derived.

. the system has been transposed on a cubic lattice with periodic

boundary conditions. Provided the volume of the lattice is large enough,
the conditions for a perturbative treatment of QED are satisfied.

. the full two-body Green’s function for ¢ = 0 states has been discretized,

leading to the Quantization Conditions.

. after discussing the changes in the FV kinematics, the lattice version of

the ERE for ¢ = 0 states has been presented and O(«) transverse-photon
corrections have been introduced.

. from the approximated FV ERE, the enrgy corrections for scattring and

bound states in have been discussed.
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