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Introduction

Theory of hadron resonances – Ulf-G. Meißner – 7th RDP Workshop, Tbilisi, September 27, 2019 · ◦ C < ∧ O > B •



4QCD LAGRANGIAN

• LQCD = −1
4
GaµνG

µν,a +
∑
f

q̄f(iD/−M)qf + . . .

Dµ = ∂µ − igAaµλa/2
Gaµν = ∂µA

a
ν − ∂νAaµ − g[Abµ, Acν ]

f = (u, d, s, c, b, t)

• running of αs =
g2

4π
⇒ ΛQCD = 210± 14 MeV (Nf = 5,MS, µ = 2 GeV)

• light (u,d,s) and heavy (c,b,t) quark flavors:

mlight � ΛQCD mheavy � ΛQCD

mu = 2.2+0.5
−0.3 MeV mc = 1.27± 0.02 GeV

md = 4.7+0.5
−0.2 MeV mb = 4.18+0.03

−0.02 GeV

ms = 93+11
−5 MeV mt = 173.1± 0.9 GeV
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LIMITS of QCD

• light quarks: LQCD = q̄L iD/ qL + q̄R iD/ qR +O(mf/ΛQCD)

− L and R quarks decouple⇒ chiral symmetry

− spontaneous chiral symmetry breaking⇒ pseudo-Goldstone bosons

− pertinent EFT⇒ chiral perturbation theory (CHPT)

• heavy quarks: LQCD = Q̄f iv ·DQf +O(ΛQCD/mf)

− independent of quark spin and flavor
⇒ SU(2) spin and SU(2) flavor symmetries (HQSS and HQFS)

− pertinent EFT⇒ heavy quark effective field theory (HQEFT)

• heavy-light systems:

− heavy quarks act as matter fields coupled to light pions

− combine CHPT and HQEFT
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6WHY EXCITED STATES?

• The spectrum of QCD is its least understood feature

→ why only qqq and q̄q states? XYZ states? “exotics”? glueballs?

→ important players: hadronic molecules↔ nuclear physics

→ the quark model is much too simple . . .

→ need insight from EFTs↔ symmetries!

• Many recent high-precision data (utilizing e.g. double polarization exp’s)

→ ELSA at Bonn, CEBAF at Jefferson Lab, LHCb at CERN,

BESIII at BEPCII, . . ., PANDA at FAIR, GlueX at JLab12, . . .

• Lattice QCD can get ground-states at almost physical pion masses

→ most distinctive feature of excited states: decays

→ only captured for very few states in lattice QCD

→ must explore this (almost complete) terra incognita
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Lesson 1
What is a resonance?
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WHAT is a RESONANCE?

• “Not every bump is a resonance and not every resonance is a bump”

Moorhouse 1960ties

• Resonances have complex properties (mass & width, photo-couplings, . . .)

↪→ these intrinsic properties do not depend on the experiment or theory (model)

• Resonances correspond to S-matrix poles on unphysical Riemann sheets

↪→ only model-independent definition !

↪→ matrix-elements from analytic cont.

to the resonance pole pR ↪→ pics next slide
Resonance

Threshold

Bound state

• That’s all nice in the continuum, but . . .
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9PICTURES of RESONANCES

• Resonances as complex poles on unphsyical sheets:
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Abs|T(J^P=1/2-)| for пN-->пN

• A view of the two close-by baryon resonances:

the two lowest nucleon excitations in the

S11 partial wave of πN → πN

JüBo approach, D. Rönchen et al.
NP A829 (2009) 170; A851 (2011) 58; EPJ A49 (2013) 44; A50 (2014) 101; A51 (2015) 70; A54 (2018) 110
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10RESONANCES IN A BOX

• Resonances in a box: not eigenstates of the Hamiltonian
⇒ volume dependence of the energy spectrum

Lüscher, Wiese, . . .

• consider a narrow resonance→ avoided level crossing
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Lesson 2
Well separated

resonances
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ISOLATED RESONANCES in a BOX

• Two identical particles of mass m in a box, no interaction:

E = 2
√
m2 + |~p |2 , pi =

2π

L
ni , ni ∈ Z

• turn on interaction→ scattering phase→ Lüscher formula: Lüscher 1985

δ(p) = −φ(q) mod π , q =
pL

2π

φ(q) = −
π3/2q

Z00(1; q2)
, Z00(1; q2) =

1
√

4π

∑

~n∈Z3

1

~n 2 − q2

• assume resonance with mass mR > 2m→ effective range expansion
(Breit-Wigner shape):

tan

(
δ −

π

2

)
=
E2 −m2

R

mRΓR
[not general!]

⇒ measure the phase shift in the resonance region and fit mR,ΓR
& extension to moving frames Rummukainen, Gottlieb (1995) + . . .
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13RESULTS for the ρ(770)-MESON

• The ρ(770) is a well separated meson resonance in the ππ system

• P-wave ππ scattering, Mπ = 280− 500 MeV, three different a,
three different L, boosts ~d = 0, 1, 2, 3, 4, all irreps

Werner et al. [ETMC] 1907.01237 [hep-lat]

• Phase shift • Mass •Width

Mπ ≈ 310 MeV
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Experiment

• consistent with other collaborations world-wide

• pioneered in: Feng, Jansen, Renner (2011)

Mρ = 770(19) MeV Γρ = 130(7) MeV
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14RESULTS for the ∆(1232)

QCDSF-Bonn-Jülich coll., see UGM, J. Phys. Conf. Ser. 295 (2011) 012001

• The ∆(1232) is a well separated baryon resonance in the πN system

• l = 1, I = 3/2 πN phase shift
•Mπ = 160 - 390 MeV, large volumes

• consistent with the experimental width

• precision determination of gπN∆

requires more precise data

around δ = π/2

→ for new quantitative results, see
Alexandrou et al., Phys.Rev. D88 (2013) 031501

Alexandrou et al., Phys.Rev. D93 (2016) 114515

Andersen et al., Phys.Rev. D97 (2018) 014506
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Lesson 3:
Coupled channels /

thresholds
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EXTENSION to COUPLED CHANNELS

• Isolated (well-separated) resonances are the exception

• Coupled channel effects, close-by thresholds: f0(980), a0(980),Λ(1405), . . .

• various extensions of Lüscher’s approach:

? purely quantum mechanical treatment
Feng, He, Liu, Li, . . .

? non-relativistic EFT (NREFT)
Beane, Savage, Bernard, Lage, UGM, Rusetsky, Briceno. Davoudi, Luu, . . .

? finite-volume unitarized CHPT
Döring, UGM, Rusetsky, Oset, . . .

• Mostly done in the meson sector, very little for baryons

• Be aware of methods that can mislead you (K-matrix and alike)
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17COUPLED CHANNEL SCATTERING
G. Moir, M. Peardon, S. Ryan, C. E. Thomas, D. J. Wilson, JHEP 1610 (2016) 011

•Dπ, Dη, DsK̄ scattering with I = 1/2:

• 3 volumes, one as, one at, Mπ ' 390 MeV, various K-matrix type extrapolations�

�

�

�
• S-wave pole at (2275.9± 0.9) MeV

• close to the Dπ threshold

• consistent w/ D?
0(2300) of PDG

• BUT: chiral symmtery ignored... :-(
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18COUPLED CHANNEL DYNAMICS
Kaiser, Weise, Siegel (1995), Oset, Ramos (1998), Oller, UGM (2001), Kolomeitsev, Lutz (2002),Jido et al. (2003), Guo et al. (2006), . . .

•Dφ bound states: Poles of the T-matrix (potential from CHPT and unitarization)

= + + + ...
V V VV V V

V

G GGT

• Unitarized CHPT as a non-perturbative tool:

T−1(s) = V −1(s)−G(s)

• V (s): derived from the SU(3) chiral Lagrangian, 6 LECs up to NLO → next slide

• G(s): 2-point scalar loop function, regularized w/ a subtraction constant a(µ)

• T, V,G: all these are matrices, channel indices suppressed
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19COUPLED CHANNEL DYNAMICS cont’d
Barnes et al. (2003), van Beveren, Rupp (2003), Kolomeitsev, Lutz (2004), Guo et al. (2006), . . .

• NLO effective chiral Lagrangian for coupled channel dynamics
Guo, Hanhart, Krewald, UGM, Phys. Lett. B666 (2008) 251

Leff = L(1) + L(2)

L(1) = DµDDµD† −M2
DDD

† , D = (D0, D+, D+
s )

L(2) = D [−h0〈χ+〉 − h1χ+ + h2〈uµuµ〉 − h3uµu
µ]D

+DµD [h4〈uµuν〉 − h5{uµ, uν}]DνD

with uµ ∼ ∂µφ , χ+ ∼Mquark , . . .

• LECs:

↪→ h0 absorbed in masses

↪→ h1 = 0.42 from the Ds-D splitting

↪→ h2,3,4,5 from a fit to lattice data (Dπ → Dπ,DK̄ → DK̄, ...)
Liu, Orginos, Guo, Hanhart, UGM, Phys. Rev. D 87 (2013) 014508
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20FIT to LATTICE DATA
Liu, Orginos, Guo, Hanhart, UGM, PRD 87 (2013) 014508

• Fit to lattice data in 5 “simple” channels: no disconnected diagrams
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• Prediction: Pole in the (S, I) = (1, 0) channel: 2315+18
−28 MeV

Experiment: MD?s0(2317) = (2317.7± 0.6) MeV PDG2016

[Mπ = 600 MeV not fitted]
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21FINITE VOLUME FORMALISM

• Goal: postdict the finite volume (FV) energy levels for I = 1/2 and compare with
the recent LQCD results from Moir et al. using the already fixed LECs
→ parameter-free insights into the D?

0(2400)

• In a FV, momenta are quantized: ~q =
2π

L
~n , ~n ∈ Z3

⇒ Loop function G(s) gets modified:
∫
d3~q →

1

L3

∑

~q

G̃(s, L) = G(s) = lim
Λ→∞


 1

L3

|~q|<Λ∑

~n

I(~q )−
∫ Λ

0

q2dq

2π2
I(~q )




Döring, UGM, Rusetsky, Oset, Eur. Phys. J. A47 (2011) 139

• FV energy levels from the poles of T̃ (s, L):

T̃−1(s, L) = V −1(s)− G̃(s, L)

=G(s)

D, Ds

π, η, K
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22WHAT ABOUT the D?
0(2300)?

• Results for I = 1/2 Dφ scattering Albaladejo, Fernandez-Soler, Guo, Nieves (2017)
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• this is NOT a fit!

• all LECs taken from the earlier study of Liu et al. (discussed before)
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WHAT ABOUT the D?
0(2300)?

Albaladejo, Fernandez-Soler, Guo, Nieves (2017)
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• reveals a two-pole scenario! [cf. Λ(1405)]

• understood from group theory

3̄⊗ 8 = 3̄⊕ 6︸ ︷︷ ︸
attractive

⊕15

• this was seen earlier in various calc’s
Kolomeitsev, Lutz (2004), F. Guo, Shen, Chiang, Ping, Zou (2006),
F. Guo, Hanhart, UGM (2009), Z. Guo, UGM, Yao (2009)

• Again: important role of chiral symmetry

• Easy lattice QCD test:

sextet pole becomes a bound state

for Mφ > 575 MeV in the SU(3) limit
Du et al. (2018)
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24TWO-POLE SCENARIO in the HEAVY-LIGHT SECTOR

• Two states in various I = 1/2 states in the heavy meson sector (M,Γ/2)

Lower [MeV] Higher [MeV] PDG [MeV]

D?
0

(
2105+6

−8, 102+10
−11

) (
2451+36

−26, 134+7
−8

)
(2300± 19, 137± 20)

D1

(
2247+5

−6, 107+11
−10

) (
2555+47

−30, 203+8
−9

)
(2427± 40, 192+65

−55)

B?0

(
5535+9

−11, 113+15
−17

) (
5852+16

−19, 36± 5
)

—

B1

(
5584+9

−11, 119+14
−17

) (
5912+15

−18, 42+5
−4

)
—

→ but is their experimental support for this? YES, but this is another talk...
(B → Dππ from LHCb)

http://pdg.lbl.gov/
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Lesson 4:
Hadronic molecules
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26What are HADRONIC MOLECULES ?

• QCD offers yet another set of bound states, first seen in nuclear physics
↪→ hadronic molecules (made of 2 or 3 hadrons)

• Bound states of two hadrons in an S-wave very close a 2-particle threshold
or between two close-by thresholds⇒ particular decay patterns

• weak binding entails a large spatial extension

• the classical example:

? the deuteron

mp +mn = 938.27 + 939.57 MeV,

md = mp +mn − EB → EB = 2.22 MeV

rd = 2.14 fm [rp = 0.85 fm]

• other examples: Λ(1405), f0(980), X(3872), . . .

⇒ how to distinguish these from compact multi-quark states ?
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27COMPOSITENESS CRITERION
Weinberg (1965), Morgan (1991), Tornquist (1995), Baru et al. (2003), Sekihara et al. (2013), . . .

•Wave fct. of a bound state with a compact & a two-hadron component in S-wave:

|Ψ〉 =

( √
Z|ψ0〉

χ(~k)|h1h2〉

) compact comp. w/ probability
√
Z

two-hadron comp. w/ relative w.f. χ(~k)

• consider the scattering amplitude and compare with the ERE:

a = −2
1− Z
2− Z

(
1

γ

)
+O

(
1

β

)
, r = −

Z

1− Z

(
1

γ

)
+O

(
1

β

)
γ =
√

2µEB

a = scattering length, γ/EB = binding momentum/energy (shallow b.s.)

µ = reduced mass of the two-particle system, β = range of forces

⇒ pure molecule (Z = 0): maximal scattering length a = −1/γ

natural effective range r = O(1/β)

⇒ compact state (Z = 1): the scattering length is a = −O(1/β)

effective range diverges, r → −∞
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28The DEUTERON
Weinberg, Phys. Rev. 137 (1965) B672

• The deuteron: shallow neutron-proton bound state (EB � md):

EB = 2.22 MeV→ γ = 45.7 MeV = 0.23 fm−1

• range of forces set by the one-pion-exchange:

1/β ∼ 1/Mπ ' 1.4 fm

• set Z = 0 in the Weinberg formula:

amol = −(4.3± 1.4) fm

• this is consistent with the data:

a = −5.419(7) fm , r = 1.764(8) fm

One begins to suspect that Nature is doing her best to
keep us from learning whether the “elementary” particles
deserve that title. (Weinberg, 1965)
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29EXTENSION to RESONANCES
Baru et al. (2003), Braaten, Lu (2007), Aceti, Oset (2012), Hyodo et al. (2012), Guo, Oller (2016), . . .

• Still assume closeness to a two-particle threshold:

T (E) =
g2/2

E − Er + (g2/2)(ik + γ) + iΓ0/2

with E = k2/(2µ) , Γ0 accounts for the inelasticities of other channels

• leads to very different line shapes for compact and molecular states:
d

dM

σ

M

d

dM

σ

M

d

dM

σ

M

d

dM

σ

M

k2 term dominates→ symmetric g2 term dominates→ asymmetric/cusp

• extension to instable particles/additional poles have also been worked out

�� ��M = m1 +m2 + E
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30SOME CANDIDATES

• Prominent examples in the light quark sector:

f0(980), a0(980), the two Λ(1405), . . .

• Prominent examples in the cc̄ spectrum:

X(3872), Zc(3900), Y (4260), Y (4660), . . .

• Prominent examples of heavy-light mesons:

D?s0(2317), Ds1(2460), D?s1(2860), . . .

• Prominent examples in the bb̄ spectrum:

Zb(10610), Zb(10650)

• and some examples of heavy baryons:

Λc(2595), Λc(2940), Pc(4312), Pc(4557), . . .

• suitable EFTs: UCHPT, NREFT1, NREFT2, CMS, . . .

• Details in the review: Guo et al., Rev. Mod. Phys. 90 (2018) 015004
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31MISCONCEPTIONS on HADROPRODUCTION
Albaladejo, Guo, Hanhart, UGM, Nieves, Nogga, Yang, Chin.Phys. C 41 (2017) 121001

• It is often claimed that molecules due to their large spatial extent can not
be produced in high-energy collisions, say at the LHC→ this is wrong!

Bignamini, Grinstein, Piccinini, Polosa, Sabelli, Phys. Rev. Lett. 103 (2009) 162001

σ(p̄p→ X) ∼
∣∣∫ d3k〈X|D0D̄∗0(k)〉〈D0D̄∗0(k)|p̄p〉

∣∣2
'
∣∣∫
R d

3k〈X|D0D̄∗0(k)〉〈D0D̄∗0(k)|p̄p〉
∣∣2

≤
∫
R d

3k |Ψ(k)|2
∫
R d

3k
∣∣〈D0D̄∗0(k)|p̄p〉

∣∣2
≤
∫
R d

3k
∣∣〈D0D̄∗0(k)|p̄p〉

∣∣2
• The result depends crucially on the value ofR which specifies the region

where the bound state wave function “Ψ(k) is significantly different from zero”

• assumption by Bignamini et al: R ' 35 MeV of the order of γ

↪→ σ(p̄p→ X) ' 0.07 nb way smaller than experiment

↪→ the X(3872) can not be a molecule

↪→ so what goes wrong?
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32MISCONCEPTIONS on HADROPRODUCTION
Albaladejo, Guo, Hanhart, UGM, Nieves, Nogga, Yang, Chin.Phys. C 41 (2017) 121001

• Consider the relevant integral for the deuteron: Ψ̄λ(R) ≡
∫
R d

3k Ψλ(k)

• the binding momentum is γ ' 45 MeV, use that for the supportR:
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↪→ the integral is by far not saturated forR = γ, needR ' 2Mπ ' 300 MeV

• Similar misconception: Molecules can not be produced at large pT

↪→ true for nuclei but not quarkonia and alike (q versus q̄)
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33HADROPRODUCTION of the X(3872)
• Nice example of a process involving short-distance physics
↪→ still, factorization is at work, best seen using EFT

Artoisenet, Braaten, Phys. Rev. D 81 (2010) 114018

↪→ consider production at the Tevatron and at LHC

σ[X] =
1

4mHmH′
g2|G|2

(
dσ[HH′(k)]

dk

)
MC

4π2µ

k2

G(E,Λ) = −
µ

π2

[√
2π

Λ

4
+
√
π γD

(√
2γ

Λ

)
−
π

2
γ e2γ2/Λ2

]
�

�

�

�
• typical results (using PYTHIA/HERWIG):

Guo, UGM, Wang, Yang, Eur. Phys. J. C 74 (2014) 3063

σ(pp/p̄→ X(3872)) Λ = 0.5− 1.0 GeV Exp.
Tevatron 5 - 29 [nb] 37 - 115 [nb]

LHC7 4 - 55 [nb] 13 - 39 [nb]

⇒ not very precise, but perfectly consistent with the data!

⇒ also predictions for the charm-strange mesons
Guo, UGM, Wang, Yang, JHEP 1405 (2014) 138
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Lesson 5:
The width of baryon

resonances from EFT
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35EFT including the ∆-RESONANCE

• Task: calculate the width of the ∆ at two-loop order [one-loop too simple]
Gegelia, UGM, Siemens, Yao, Phys. Lett. B763 (2016) 1

• Consider the effective chiral Lagrangian of pions, nucleons and deltas:

L(1)
πN = Ψ̄N

{
i /D −m+ 1

2
g /uγ5

}
ΨN

L(1)
π∆ = −Ψ̄iµξ

3
2
ij

{(
i /D

jk −m∆δ
jk
)
gµν − i

(
γµDν,jk + γνDµ,jk

)
+ iγµ /D

jk
γν

+m∆δ
jkγµγν + g1

1
2 /u

jkγ5gµν + g2
1
2
(γµuν,jk + uν,jkγµ)γ5

+ g3
1
2
γµ/ujkγ5γν

}
ξ

3
2
klΨ

l
ν

L(1)
πN∆ = h Ψ̄iµξ

3
2
ijΘ

µα(z1) ω
j
αΨN + h.c.

L(2)
πN∆ = Ψ̄iµξ

3
2
ijΘ

µα(z2)
[
i b3ω

j
αβγ

β + i b8
1
m
ω
j
αβiD

β
]

ΨN + h.c.+ . . .

L(3)
πN∆ = Ψ̄iµξ

3
2
ijΘ

µν(z3)
[
f1

1
m

[Dν , ω
j
αβ]γαiDβ−f2

1
2m2 [Dν , ω

j
αβ]{Dα, Dβ}+f4ω

j
ν〈χ+〉

+ f5[Dν , iχ
j
−]
]
ΨN + h.c.+ . . .

• Power counting rests on m∆ −mN being a small quantity

• So many LECs, how can one possibly make a prediction?
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36COMPLEX-MASS RENORMALIZATION

• Method originally introduced for W,Z-physics, later transported to chiral EFT
Stuart (1990), Denner, Dittmaier et al. (1999), Actis, Passarino (2007)
Djukanovic, Gegelia, Keller, Scherer, Phys. Lett. B680 (2009) 235

• Evaluate the ∆ self-energy on the complex pole:

z −m0
∆ − Σ1(z2)− zΣ6(z2) ≡ z −m0

∆ − Σ(z) = 0 with

�



�
	z = m∆ − i

Γ∆

2

1

1 1 1 1 1 1 1 1 1 1

(a) (b) (c) (d)

(h) (i) (j)

(k)

3

2 2

211 1

1 1 1 2 2 1

1

(e)

(f) (g)

(l)

1 11 1 1 1 1 1 1

4

1

3 1

1

(m) (n)
(o)

(p)

1 1 1

1 1

1 2 3

(q) (r) (s) (t)

• Self-energy diagrams:

→ one-loop easy

→ two-loops:
use Cutkovsky rules for
instable particles
→ width ∼ |A(∆→ Nπ)|2

Veltman, Physica 29 (1963) 186
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37CALCULATION of the WIDTH

• Remarkable reduction of parameters:

hA = h− (b3∆23 + b8 ∆123)− (f1∆23 + f2 ∆123) ∆123 + 2(2f4 − f5)M2
π

• Very simple formula for the decay width ∆→ Nπ:

Γ(∆→ Nπ) = (53.91h2
A+0.87g2

1h
2
A−3.31g1h

2
A−0.99h4

A) MeV

• Correlation:
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àà
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g1

h
A

� large NC w/ unc.

Siemens et al.,
Phys. Lett. B 770 (2017) 27

∆23 = mN −m∆,∆123 = (M2
π +m2

N −m
2
∆)/(2mN )
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38EFT including the ROPER-RESONANCE

• Task: calculate the width of the Roper N∗(1440) at two-loop order
Gegelia, UGM, Yao, Phys. Lett. B760 (2016) 736

• Remarkable feature: Γ(R→ Nπ) ' Γ(R→ Nππ)

• Consider the effective chiral Lagrangian of pions, nucleons and deltas:
Borasoy et al., Phys. Lett. B641 (2006) 294, Djukanovic et al., Phys. Lett. B690 (2010) 123

Long, van Kolck, Nucl. Phys. A870-871 (2011) 72

Leff = Lππ + LπN + Lπ∆ + LπR + LπN∆ + LπNR + Lπ∆R

L(1)
πR = Ψ̄R

{
i /D −mR + 1

2
gR/uγ

5
}

ΨR

L(2)
πR = Ψ̄R

{
cR1 〈χ+〉

}
ΨR + . . .

L(1)
πNR = Ψ̄R

{
1
2
gπNRγ

µγ5uµ
}

ΨN + h.c.

L(1)
π∆R = hR Ψ̄i

µξ
3
2

ijΘ
µα(z̃) ωjαΨR + h.c.
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39EFT including the ROPER-RESONANCE continued

• The power counting is complicated, but can be set up around the complex pole:

mR −mN ∼ ε , mR −m∆ ∼ ε2 , m∆ −mN ∼ ε2 , Mπ ∼ ε2

• Calculate the two-loop self-energy and the corresponding decay amplitudes

11 1 1

1 11

1 111 1 1

1 1 1 1 1 1 1 1

11

1 1
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(e) (f) (g) (h)

(i) (j) (k) (l)

1 1 1 3 3 1

4

21
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1 1
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40CALCULATION of the WIDTH
• A lengthy calculation leads to:

Γ(R→ Nπ) = 550(58) g2
πNR MeV

Γ(R→ Nππ) =
(
1.49(0.58) g2

A g
2
πNR − 2.76(1.07) gA g

2
πNR gR

+ 1.48(0.58) g2
πNR g

2
R + 2.96(0.94) gA gπNR hhR

− 3.79(1.37) gπNR gR hhR + 9.93(5.45)h2h2
R

)
MeV

• Fix gπNR from the PDG value: gπNR = ±(0.47± 0.05) PDG 2016

• Maximal mixing assumption: gR = gA , hR = h
Beane, van Kolck, J. Phys. G31 (2005) 921

↪→ can make a prediction for the two-pion decay width of the Roper

Γ(R→ Nππ) = (41± 22LECs ± 17h.o.) MeV

• consistent with the PDG value of (67± 10) MeV

• need an improved determination of the LECs gR and hR

Theory of hadron resonances – Ulf-G. Meißner – 7th RDP Workshop, Tbilisi, September 27, 2019 · ◦ C < ∧ O > B •



41

Summary & Outlook
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42SUMMARY & OUTLOOK

• Lessons learned / take home:

The QCD spectrum is more than a collection of quark model states

Structure formation in QCD ties nuclear and hadron physics together

Lattice QCD is making progress in addressing complex resonance
properties (must respect chiral symmetry)

EFTs are of utmost importance in pushing this program forward
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SPARES
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LATTICE QCD

• In principle ab initio calcs of non–pert. QCD on a discretized space–time

↪→ already some successes but only now entering the chiral regime

• Extrapolations neccessary:

? finite volume V = L3 × Lt →∞

? finite lattice spacing a→ 0

? chiral extrapolation mq → mphys
q

• All these effects can be treated in suitably tailored EFTs

• how are resonances defined in such a finite space-time?

⇒ consider finite volume effects for low-lying hadron resonances
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Amplitude Analysis of
B → Dππ
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46DATA for B → Dππ

• Recent high precision results for B → Dππ from LHCb
Aaji et al. [LHCb], Phys. Rev. D 94 (2016) 072001

• Spectroscopic information in the angular moments (Dπ FSI):
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47CHIRAL LAGRANGIAN for B → D TRANSITIONS
Savage, Wise, Phys. Rev. D39 (1989) 3346

• Consider B̄ → D transition with the emission of two light pseudoscalars (pions)

↪→ chiral symmetry puts constraints on one of the two pions

↪→ the other pion moves fast and does not participate in the final-state interactions

• Chiral effective Lagrangian:

Leff = B̄
[
c1 (uµtM +Mtuµ) + c2 (uµM +Muµ) t

+c3 t (uµM +Muµ) + c4 (uµ〈Mt〉+M〈uµt〉)

+c5 t〈Muµ〉+ c6〈(Muµ + uµM) t〉
]
∂µD†

with

B̄ = (B−, B̄0, B̄0
s ) , D = (D0, D+, D+

s )

M is the matter field for the fast-moving pion

t = uHu is a spurion field for Cabbibo-allowed decays

→ only some combinations of the LECs ci appear

H =




0 0 0

1 0 0

0 0 0
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48THEORY of B → Dππ
Du, Albadajedo, Fernandez-Soler, Guo, Hanhart, UGM, Nieves, Phys. Rev. D98 (2018) 094018

• B− → D+π−π− contains coupled-channel Dπ FSI

• consider S, P,D waves: A(B− → D+π−π−) = A0(s) +A1(s) +A2(s)

→ P-wave: D?, D?(2860); D-wave: D2(2460) as by LHCb

→ S-wave: use coupled channel (Dπ,Dη,DsK̄) amplitudes
with all parameters fixed before

→ only two parameters in the S-wave
(one combination of the LECs ci and
one subtraction constant in the Gij)

A0(s) ∝ Eπ
[
2 +GDπ(s)

(
5
3
T

1/2
11 (s) + 1

3
T

3/2
11 (s)

)]

+1
3
EηGDη(s)T

1/2
21 (s) +

√
2
3
EK̄GDsK̄(s)T

1/2
31 (s)

+C EηGDη(s)T
1/2
21 (s)

=G(s)

D, Ds

π, η, K
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49THEORY of B → Dππ continued
Du, Albadajedo, Fernandez-Soler, Guo, Hanhart, UGM, Nieves, Yao, Phys. Rev. D98 (2018) 094018

• More appropriate combinations of the angular moments:

〈P0〉 ∝ |A0|2 + |A1|2 + |A2|2

〈P2〉 ∝ 2
5
|A1|2 +

2

7
|A2|2 +

2
√

5
|A0||A2| cos(δ2 − δ0)

〈P13〉 = 〈P1〉 −
14

9
〈P3〉 ∝

2
√

3
|A0||A1| cos(δ1 − δ0)
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• The S-wave Dπ can be very well described using pre-fixed amplitudes

• Fast variation in [2.4,2.5] GeV in 〈P13〉: cusps at the Dη and DsK̄ thresholds
↪→ should be tested experimentally
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50A CLOSER LOOK at the S–WAVE
• LHCb provides anchor points, where the strength and the phase of the S-wave

were extracted from the data and connected by cubic spline
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FIG. 4. Comparison of the S-wave amplitude determined in
this work to the S-wave anchor points found in the experi-
mental analysis, shown as the data points [46]. The red line
gives the best fit results and the grey band quantifies the
uncertainties that emerged from the fitting procedure. The
fitting range extended up to 2.55 GeV. The dashed perpendic-
ular lines indicate the location of the Dη and DsK̄ threshold,
respectively.

the B → D(∗)ππ and B → D
(∗)
s K̄π reactions. This

can be done at LHCb and Belle-II. We expect to see

nontrivial cusp structures at the D(∗)η and D
(∗)
s K̄

thresholds in the former, and near-threshold en-

hancement in theD
(∗)
s K̄ spectrum in the latter [37].

• Measuring the hadronic width of the D∗s0(2317),
predicted to be of about 100 keV in the molecu-
lar scenario [32, 55], while much smaller otherwise.
This will be measured by the PANDA experiment.

• Checking the existence of the sextet pole in LQCD
with a relatively large SU(3) symmetric quark
mass.

• Searching for the predicted analogous bottom
positive-parity mesons both experimentally and in
LQCD.

ACKNOWLEDGMENTS

We acknowledge Tim Gershon, Jonas Rademacker,
Mark Peter Whitehead and Yan-Xi Zhang for discus-
sions on the LHCb data, and thank Sinéad Ryan and
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Appendix A: Effective Lagrangian

Here, we discuss briefly the effective Lagrangian for the
weak decays B̄ to D with the emission of two light pseu-
doscalar mesons, induced by the Cabibbo-allowed tran-
sition b → cūd. In the phase space region near the Dπ
threshold, chiral symmetry puts constraints on one of
the two pions while the other one moves fast and can
be treated as a matter field. Moreover, its interaction
with the other particles in the final state can be safely
neglected. Then the relevant chiral effective Lagrangian
leading to Eq. (2) reads,

Leff = B̄
[
c1 (uµtM +Mtuµ) + c2 (uµM +Muµ) t

+c3 t (uµM +Muµ) + c4 (uµ〈Mt〉+M〈uµt〉)
+c5 t〈Muµ〉+ c6〈(Muµ + uµM) t〉

]
∂µD† . (A.1)

Here, B̄ = (B−, B̄0, B̄0
s ) and D = (D0, D+, D+

s ) are the
fields for bottom and charm mesons, 〈. . .〉 denotes the
trace in the SU(3) light-flavor space, and uµ = i(u†∂µu−
u∂µu

†) is the axial current derived from chiral symmetry.
The Goldstone Bosons are represented non-linearily via
u = exp

(
iφ/(
√

2F )
)
, with

φ =




1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η


 , (A.2)

• Higher mass pole at 2.46 GeV clearly amplifies the cusps predicted in our amplitude
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THEORY of B0
s → D̄0K−π+

Du, Albadajedo, Fernandez-Soler, Guo, Hanhart, UGM, Nieves, Yao, Phys. Rev. D98 (2018) 094018

• LHCb has also data on B0
s → D̄0K−π+, but less precise

• Same formalism as before, one different combination of the LECs ci

• same resonances in the P- and D-wave as LHCb ↪→ one parameter fit!
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⇒ these data are also well described

⇒ better data for 〈P13〉 would be welcome

⇒ even more channels, see Du, Guo, UGM, Phys. Rev. D 99 (2019) 114002
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