MPD Project at Nuclotron Based Ion Collider Facility (NICA)

Revaz Shanidze

High Energy Physics Institute Tbilisi State University

RDP Seventh Autumn PhD School & Workshop (20-28/09/2019 Tbilisi, Georgia)

STREET IS A MUCH AND ALL

Joint Institute of Nuclear Research (Dubna)

JINR/Dubna → founded in 1956

May 2019: 18 member states

6 Associte member states: Egipt, Germany, Hungary, Italy, Serbia, South Africa

RDP Seventh Autumn PhD School & Workshop

JINR Synchrotron

JINR Synchroton (synchrophasotron): 10 GeV accelerator for protons and light ions. (1957 – 2003)

RDP Seventh Autumn PhD School & Workshop

JINR Nuclotron

Nuclorton@JINR was build 1987-1992 (first superconductive synchrotron) Nuclotron ring follows the outer perimeter of the synchrophasotron ring)

NICA Project

- Main goals: study dense baryonic matter at the extreme conditions; investigation of nucleon spin structure with polarized protons and deuterons
- Modernization of JINR accelerator facility \rightarrow construction of **Collider** of relativistic ions from **p** to **Au** at ($\sqrt{S}_{NN} = 4 - 11$ GeV) polarized **p** and **d** at energy up to $\sqrt{S} = 27$ GeV (p)

NICA Complex

RDP Seventh Autumn PhD School & Workshop

28 /09/ 2019 TSU

R. Shanidze

Production of Superconductiong Magnets

RDP Seventh Autumn PhD School & Workshop

28 /09/ 2019 TSU

R. Shanidze

NICA Complex/Booster

RDP Seventh Autumn PhD School & Workshop

28 /09/ 2019 TSU

R. Shanidze

Construction of NICA Collaider Building

http://nucloweb.jinr.ru/nucloserv/205corp.htm

Saint Petersburg 07/09/2019

CERN – JINR School V. Matveev

work in progress

HFP

assembly

commissioned / existing

NICA Accelerator Complex Parameters

- Ion source: ${}^{197}Au^{31+}$ 2.10⁹ ions per pulse of about 7 µs / rate up to 50 Hz.
- Heavy ion linear accelerator (HILAc): ions at A/q ≤ 8 up to the energy of 3 MeV/u at efficiency not less than 80 %;
- Booster-synchrotron: SC ring circumference of 215 m, max magnetic rigidity of 25T · m. Max. energy of ¹⁹⁷Au³¹⁺ ions 600 MeV/u; (electron cooling system).
- Nuclotron superconducting (SC) synchrotron (circumference of 251.52 m) with maximum magnetic rigidity of 45T · m Completely stripped ¹⁹⁷Au⁷⁹⁺ up to 4.5 GeV/u and protons up to 12.6 GeV

• **Collider rings** - (about 503.4 m circumference) - max. magnetic rigidity of 45T · m electron and stochastic cooling systems Au-Au collision energy range $\sqrt{s_{_{NN}}} = 4 - 11 \text{ GeV} (10^{27} \text{ cm}^{-2} \text{ sec}^{-1})$ p-p collisions at the energy up to $\sqrt{s} = 27 \text{ GeV}$. ($10^{32} \text{ cm}^{-2} \text{ sec}^{-1}$)

Standard Model of Particle Physics

V. Matveev@ESHEP-2019

Core of Neutron Stars reaches density several times nuclear density

Supernova

The Neutron Star

Au+Au collision at √s=11 AGeV event Simulated within MpdROOT

Highest density matter in the universe M = 1~2 M_☉, R ~ 10~20 km ⇒ Density of the core = 3~10ρ₀ (1~3 Btons/cm³) ρ₀: nuclear density Various forms of matter made of almost

only quarks

Nuclear "Pasta"

Nuclear + Neutron Matter

Neutron Matter

Superfluid

Quark Matter Deconfined quarks Color superconductivity

Strange Hadronic <u>Matter</u> High density nuclear matter with hyperons (strange quarks)

Heavy Ion Program at CERN

New State of Matter created at CERN

CERN special seminar

(press release, 10 Feb. 2000)

SPS:
$$E_{pb} = Z_{pb} \times E_p = 82 \times 400 \text{ GeV} = 33 \text{ TeV}$$

 $E_u = E_{pb} / A_{pb} \approx 160 \text{ GeV}$
 $\sqrt{S}_{NN} \approx 17 \text{ GeV}$

"The combined data coming from 7 experiments on CERN's Heavy Ion programme have given a clear picture of a new state of matter. . . . where quarks and gluons are not confined. There is still an entirely new territory to be explored concerning the physical properties of quark-gluon matter. The challenge now passes to the Relativistic Heavy Ion Collider(s)"

Experiments: NA44, NA45/CERES, NA49, NA50, NA51/NEWMASS, WA97/NA57, WA98

Boson interferometry - Collective expansion - Strange meson enhancement = Hardon production - Low-mass lepton pair production - J/Ψ suppression -Baryon and antibaryon production - strange and multistrange hadrons – direct photons

Heavy Ion Experiments

FAIR - Facility for Antiproton and Ion Research

FAIR: construction at GSI (Darmstadt)

SIS100: circumference of 1,100 m can accelerate the ions of all the natural elements in the periodic table.

- Beams of heavy ions (Au) up to 11A GeV,
- Light ions (e.g. Ca) up to 14A GeV
- protons up to 29 GeV.

FAIR GmbHShareholders from the 9 countries:Finland, France, Germany, India, Poland,Romania, Russia, Slovenia and Sweden.

Associated:United Kingdom.Aspirant partner:Czech Republic.

Commissioning: for 2025.

Investments (Planning status in 2015): 1.262 billion Euro (based on price level of 2005).

RHIC – Relavivistic Heavy Ion Collider (BNL, US)

Upton, New York

Experiment STAR (Solenoidal Tracker At RHIC)

RHIC \rightarrow all ion beam species (up to Uranium) at energies up to 100 GeV per nucleon. (250 GeV for protons).

Two concentric accelerator rings 2.4 miles in circumference containing a total of 1,700 SC-magnets. Independently accelerated and collide different beam species and for protons, different spin polarizations.

These capabilities make RHIC the most flexible and capable collider in the world for transformative studies of extreme states of nuclear matter and the origin of the proton spin.

ALICE@LHC

One of the first Pb-Pb collisions recorded by the ALICE@LHC (2010) 1209 positiv (darker tracks) and 1197 negative-charged (lighter tracks) (80% pions) in 0.5 T field of ALICE (0.5 T). Recorded with TPC of ALICE, (5 m diamter and 5 m length), equivalent of 500 million pixels.

> 550 published papers

$$E_{b} = Z \times E_{p} \qquad E_{N} = E_{b} / A$$

$${}_{82}Pb^{208}$$

$$Z / A \propto E_{p} = 2.76 \text{ TeV}$$

$$E_{cms} = 5.5 \text{ TeV}$$

RDP Seventh Autumn PhD School & Workshop

MPD: Multi Purpose Detector / Collaboration

http://mpd.jinr.ru/experiment/ MPD Collaboration: Azerbaijan(1) Bulgaria(1) Chile(1) China(6) Czech Republic(2) Georgia(1) Germany(1) Israel(1) Kazkhstan(1) Mexico(1)Moldova(1) Poland(4)Russia(8)

RDP Seventh Autumn PhD School & Workshop

1st Meeting of NICA Experiments (BM@N, MPD)

The kick-off meeting of formation of the MPD ana BM@N Collaborations. (JINR/Dubna, 11-12 April 2018)

220 participants from **18 countries** (Azerbaijan, Bulgaria, Chili, China, Czech Republic, Egipt, France, Georgia, Germany, Israel, Kazachstam, Mexico, Moldova, Poland, Switzerland, Russia, Ukraine, USA)

RDP Seventh Autumn PhD School & Workshop

TSU@MPD/NICA

• HEPI TSU is a member of the MPD Collaboration since April, 2018

(T. Babutsidze, G. Kachlishvili, V. Kikvadze, A. Machavariani, M. Nioradze, R.Shanidze)+ students: R. Nikolashvili, G. Qistauri (ECAL)

- @JINR:
 - Alexander Machavariani:

Theory (ρ -meson production/polarization, spin density matrice, . .), coordination

- Valery Kikvadze

MPD Ecal (FE, DAQ), test of ECal modules, . . .

- Giorgi Kachlishvili

NICA SC-magnets and technologies

MPD Magnet

MPD: Multi Purpose Detector

MPD TPC (Time Projection Chamber)

Commissioning of TPC with MPD: 2021

Item	Dimension		
Length of the TPC	340cm		
Outer radius of vessel	140cm		
Inner radius of vessel	27 cm		
Outer radius of the drift	133cm		
volume			
Inner radius of the drift	34cm		
volume			
Length of the drift volume	170cm (of each half)		
HV electrode	Membrane at the center of the TPC		
Electric field strength	~140V/cm;		
Drift gas	90% Ar+10% Methane, Atmospheric pres. + 2		
	mbar		
Gas amplification factor	~10 ⁴		
Drift velocity	5.45 cm/μs;		
Drift time	< 30µs;		
Temperature stability	< 0.5 C		
Number of readout	24 (12 per each end-plate)		
chambers			
Segmentation in ϕ	30 †		
Pad size	5x12mm ² and 5x18mm ²		
Number of pads	95232		
Pad raw numbers	53		
Maximal event rate	$< 7 \mathrm{kHz} (\mathrm{Lum} 10^{27})$		
Electronics shaping time	~180 ns (FWHM)		
Signal-to-noise ratio	30:1		
Signal dynamical range	10 bits		
Sampling rate			
Samping denth	310 time buckets		
Sampling depth	STUTIME DUCKETS		

MPD PID: ToF (Time of Flight) System

MPD event display: tracks in TPC

ToF system (in a 0.5 T field): PID 0.1–2 GeV/c

- large phase space coverage $|\eta|$ <2;
- system occupancy below 15%
- good position resolution (TOF/TPC tracks);
- identification of π/K and with $p_t < 1.5$ GeV/c; (anti)protons with $p_t < 3$ GeV/c;

RDP Seventh Autumn PhD School & Workshop

- Several groups participating in ECAL reconstruction & analysis
- Clusterizing, energy/space resolution, e/h separation, overlapping effects investigated
- $\pi^0(\eta)$ reconstruction demonstrated in Au+Au collisions

MPD ECal (Electro-magnetic Calorimeter)

the "shashlyk" type calorimeter with MAPD (SiPM) photon detectors

ECal: 43000 "Shashyk" detectors: China(75%), Russia (25%)

Parameters	
Maximum transverse dimensions of the tower, mm ²	40x40
Maximum transverse dimensions of the module, mm ²	80x320
Number of layers	219 ÷ 221
Paint free lead absorber thickness, mm	0.3
Paint lead absorber thickness, mm	0.4
Thickness of scintillator plate, mm	1.5
Effective radiation length, mm	32.4
Moliere radius, mm	62
Radiation length, X ₀	11.8

NICA/MPD Software

RDP Seventh Autumn PhD School & Workshop

MPD Physics Performance

Simulation of MPD physics cases:

- Multistrange hyperons
- Flow analysis status (charged hadrons and hyperons)
- Ev-by-Ev fluctuations of net-protons
- ECal reconstruction and resonances
- Femtoscopy and correlations

Beam	CM Energy, AGeV	L 2021-23, cm ⁻² c ⁻¹	L >2023, cm ⁻² s ⁻¹
Heavy ions (Au)	11	5 · 10 ²⁵	10 ²⁷
Intermediate (Z/A~0.45)	13	3 · 10 ²⁶	10 ²⁹
р	25	~10 ²⁹	10 ³²

MPD Physics Simulations

MPD Workong Groups

 PWG1 Global observables Total event multiplicity Total event energy Centrality determination Total cross-section measurement Vertex determination Event plane measurement at all rapidities Spectator measurement 	PW Spectra of I and hype Light flavor sp Hyperons and Total particle yield ratios Kinematic and properties of Mapping QCD diagram	G2 light flavor ernuclei pectra d hypernuclei yields and d chemical the event Phase	 PWG3 Correlations and Fluctuations Collective flow for hadrons Vorticity, Λ polarization E-by-E fluctuation of multiplicity, momentum and conserved quantities Femtoscopy Forward-Backward corr. Jet-like correlations
PWG4			PWG5

Electromagnetic probes

- Electromagnetic calorimeter measurements
- Photons in ECAL and central barrel
- Low mass dilepton spectra and search for inmedium modification of resonances and intermediate mass region

PWG5 Heavy flavor

- · Study of open charm production
- Charmonium with ECAL and central barrel
- Charmed meson through secondary vertices in ITS and HF electrons
- Explore production at charm threshold

დიდი მადლობა !

NICA-user Center