TBILISI STATE UNIVERSITY

SPLIT-OCTONIONS AND GEOMETRY OF ITS AUTOMORPHISM GROUP G_2^{NC}

Alexandre Gurchumelia

(PhD student)

Supervisor: Assoc. Prof. Merab Gogberashvili

School and Workshop "Frontiers of QCD" (2019/09/24 - Tbilisi, Georgia)

Supported by a joint grant of Volkswagen Foundation and SRNSF (Ref. 93 562 & #04/48)

Cayley-Dickson doubling procedure

- Given algebra A, we can double it $(a_1, a_2) \in \mathbb{A} \times \mathbb{A}, \quad a_1, a_2 \in \mathbb{A}$
- Multiplication rule

 $(a_1, a_2)(b_1, b_2) = (a_1b_1 + \delta b_2a_2^*, a_1^*b_2 + b_1a_2)$

Involution

 $(a_1, a_2)^* = (a_1^*, -a_2)$

• Norm of $a = (a_1, a_2)$

$$|a|^2 = a^*a = (|a_1|^2 + |a_2|^2, 0)$$

• Complex numbers: i = (0,1)

 $(a_1, a_2) = a_1 + ia_2$

• Setting
$$\delta = 1$$
 and iterating

$$\mathbb{R} \to \mathbb{C} \to \mathbb{H} \to \mathbb{O} \to \mathbb{S} \to \cdots$$

Algebra	Dimen- sion	Ordered	Multiplication properties				Nontriv.
			Commu- tative	Associ- ative	Alter- native	Power- assoc.	zero divisors
Real numbers	1	Yes	Yes	Yes	Yes	Yes	No
Complex num.	2	No	Yes	Yes	Yes	Yes	No
Quaternions	4	No	No	Yes	Yes	Yes	No
Octonions	8	No	No	No	Yes	Yes	No
Sedenions	16	No	No	No	No	Yes	Yes
	> 16						

Complex & split-complex numbers

Quaternions \mathbb{H} : $i^2 = j^2 = k^2 = ijk = -1$

• Quaternionic algebra

$$q_1^2 = q_2^2 = q_3^2 = q_1 q_2 q_3 = -1$$

• Spatial rotations of
$$\vec{\mathbf{A}} = A_n q_n$$

 $\vec{\mathbf{A}}' = \exp\left(\frac{1}{2}\theta_n q_n\right) \vec{\mathbf{A}} \exp\left(-\frac{1}{2}\theta_n q_n\right)$

• Isomorphism with Clifford algebra $\mathbb{C} \otimes \mathbb{H} \simeq \mathbb{C}l(3)$

 $iq_1 \leftrightarrow \sigma_1$, $iq_2 \leftrightarrow \sigma_2$, $iq_3 \leftrightarrow \sigma_3$

Grassmann numbers (nilpotent)
 1

$$a = \frac{1}{2}(q_1 + iq_2), \quad a^{\dagger} = -\frac{1}{2}(q_1 - iq_2)$$

Slide: 4

- Projection operator (idempotent) $aa^{\dagger} = \frac{1}{2}(1 - iq_3)$
- Ladder structure

$$\{a, a\} = \{a^{\dagger}, a^{\dagger}\} = 0, \quad \{a, a^{\dagger}\} = 1$$

<u>C. Furey 2018</u>

THE EUROPEAN PHYSICAL JOURNAL C

Regular Article - Theoretical Physics

$SU(3)_C \times SU(2)_L \times U(1)_Y (\times U(1)_X)$ as a symmetry of division algebraic ladder operators

C. Furey^{1,2,a}

¹ Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wi B3 OHE $\overleftarrow{a_1} \equiv \frac{1}{2} \left(-\overleftarrow{e_5} + i \overleftarrow{e_4} \right), \quad \overleftarrow{a_2} \equiv \frac{1}{2} \left(-\overleftarrow{e_3} + i \overleftarrow{e_1} \right),$ $\overleftarrow{a_3} \equiv \frac{1}{2} \left(-\overleftarrow{e_6} + i \overleftarrow{e_2} \right), \quad \overleftarrow{a_1}^\dagger \equiv \frac{1}{2} \left(\overleftarrow{e_5} + i \overleftarrow{e_4} \right),$ $\overleftarrow{a_2}^{\dagger} \equiv \frac{1}{2} \left(\overleftarrow{e_3} + i \overleftarrow{e_1} \right), \quad \overleftarrow{a_3}^{\dagger} \equiv \frac{1}{2} \left(\overleftarrow{e_6} + i \overleftarrow{e_2} \right).$ $S^{u} = \mathcal{V}v_{c}$ $+\bar{\mathcal{D}}^{\mathrm{r}}a_{1}^{\dagger}v_{c}+\bar{\mathcal{D}}^{\mathrm{g}}a_{2}^{\dagger}v_{c}+\bar{\mathcal{D}}^{\mathrm{b}}a_{3}^{\dagger}v_{c}$ $+\mathcal{U}^{\mathrm{r}}a_{3}^{\dagger}a_{2}^{\dagger}v_{c}+\mathcal{U}^{\mathrm{g}}a_{1}^{\dagger}a_{3}^{\dagger}v_{c}+\mathcal{U}^{\mathrm{b}}a_{2}^{\dagger}a_{1}^{\dagger}v_{c}$ $+\mathcal{E}^+a_3^\dagger a_2^\dagger a_1^\dagger v_c,$

Abstract We demonstrate a model which captures certain attractive features of SU(5) theory, while providing a possible escape from proton decay. In this paper we show how ladder operators arise from the division algebras \mathbb{R} , \mathbb{C} , \mathbb{H} , and \mathbb{O} . From the SU(n) symmetry of these ladder operators, we then demonstrate a model which has much structural similarity to Georgi and Glashow's SU(5) grand unified theory. However, in this case, the transitions leading to proton decay are expected to be blocked, given that they coincide with presumably forbidden transformations which would incorrectly mix distinct algebraic actions. As a result, we find that we are left with $G_{sm} = SU(3)_C \times SU(2)_L \times U(1)_Y/\mathbb{Z}_6$. Finally, we point out that if U(n) ladder symmetries are used in place of SU(n), it may then be possible to find this same $G_{sm} = SU(3)_C \times SU(2)_L \times U(1)_Y / \mathbb{Z}_6$, together with an extra $U(1)_X$ symmetry, related to B-L.

Split-octonions

• Multiplication table

1
$$J_1$$
 J_2 J_3 I j_1 j_2 j_3
 I 1 i $-i$ i I $-I$ I

$$I - j_1 - j_2 - j_3 = 1 - J_1 - J_2 - J_3$$
$$j_1 - I - J_3 - J_2 = J_1 - I - J_3 - J_2$$

• Split-octonion & its conjugte

$$s = \omega + \lambda_n J_n + t I + x_n j_n$$

$$\bar{s} = \omega - \lambda_n J_n - tI - x_n j_n$$

• Norm

$$\bar{s}s = \omega^2 - \lambda_m \lambda^m - t^2 + x_n x^n$$

• Other involutions (conjugtions) $\operatorname{conj}_{I,j}(s) = J_3(J_2(J_1sJ_1)J_2)J_3$ $\operatorname{conj}_{J,j}(s) = s^{\dagger_I} = IsI$ $\operatorname{conj}_{J,I}(s) = I(J_3(J_2(J_1sJ_1)J_2)J_3)I$

Spin & chirality with split-octonions

- Eluding non-associativity $ABCf \equiv A(B(Cf))$
- Ladder operators

$$\alpha = \frac{1}{2}(J_1 - j_2), \quad \alpha^{\dagger} = \frac{1}{2}(J_1 + j_2)$$

• Commutation relations

$$\{\alpha, \alpha\} = \{\alpha^{\dagger}, \alpha^{\dagger}\} = 0, \quad \{\alpha, \alpha^{\dagger}\} = 1$$

• "Complex" numbers, *A*, *B*, *C*, *D*

 $x = x_0 + j_3 x_1$

Idempotents

$$v_R = \alpha \alpha^{\dagger} = \frac{1}{2}(1 - J_3)$$
$$v_L = \alpha^{\dagger} \alpha = \frac{1}{2}(1 + J_3)$$

- Finding minimal left ideal (spinor) $\Psi = (\alpha | A + \alpha^{\dagger} | B + \alpha \alpha^{\dagger} | C + \alpha^{\dagger} \alpha | D) v$
- Left and right Weyl spinors $\Psi_R = \alpha^{\dagger} v_R \psi_R^{\dagger} + v_R \psi_R^{\downarrow}$ $\Psi_L = v_L \psi_L^{\dagger} + \alpha v_L \psi_L^{\downarrow}$

Dirac theory with with split-octonions

• Dirac spinor

$$\begin{split} \Psi_{D} &= \Psi_{R} + \Psi_{L} \\ &= \frac{1}{2} \left(\psi_{L0}^{\uparrow} + \psi_{R0}^{\downarrow} \right) + \frac{1}{2} \left(\psi_{L0}^{\downarrow} + \psi_{R0}^{\uparrow} \right) J_{1} + \frac{1}{2} \left(\psi_{L1}^{\downarrow} + \psi_{R1}^{\uparrow} \right) J_{2} + \frac{1}{2} \left(\psi_{L0}^{\uparrow} - \psi_{R0}^{\downarrow} \right) J_{3} \\ &- \frac{1}{2} \left(\psi_{L1}^{\uparrow} - \psi_{R1}^{\downarrow} \right) I - \frac{1}{2} \left(\psi_{L1}^{\downarrow} - \psi_{R1}^{\uparrow} \right) j_{1} - \frac{1}{2} \left(\psi_{L0}^{\downarrow} - \psi_{R0}^{\uparrow} \right) j_{2} + \frac{1}{2} \left(\psi_{L1}^{\uparrow} + \psi_{R1}^{\downarrow} \right) j_{3} \end{split}$$

• Dirac equation in external 4-potential $j_3(\nabla \Psi) + \operatorname{conj}_{J,I}(\mathcal{A}\Psi) = m\Psi$

$$\nabla = \frac{\partial}{\partial t} + J_m \frac{\partial}{\partial x_m}, \quad \mathcal{A} = A_0 + J_m A_m$$

 $\rho = \overline{\Psi} \Psi$

• Another way of writing

$$J_3(\nabla \Psi) + I \operatorname{conj}_{I,J}(\mathcal{A}\Psi) = -m\Psi$$

$$\nabla = -I\frac{\partial}{\partial t} + j_m\frac{\partial}{\partial x_m}, \quad \mathcal{A} = -IA_0 + j_mA_m$$

Slide: 8

 $\rho = -\overline{\Psi}\Psi = \overline{(\Psi I)}(\Psi I)$

Exceptional Lie group $G_2^{\rm NC}$

• Quadratic form

$$\bar{s}s = \omega^2 - \lambda_m \lambda^m - t^2 + x_n x^n$$

• Groups that preserve it

 $SO(4,4) \supset SO(4,3) \supset G_2^{\rm NC}$

$$Y_{kk} = -z_k \frac{\partial}{\partial z^k} + y_k \frac{\partial}{\partial y^k} + \frac{1}{3} \sum_i \left(z_i \frac{\partial}{\partial z_i} - y_i \frac{\partial}{\partial y_i} \right) ,$$

$$Y_{k0} = -2t \frac{\partial}{\partial z^k} + y_k \frac{\partial}{\partial t} + \frac{1}{2} \sum_{i,j} \epsilon_{ijk} \left(z^i \frac{\partial}{\partial y_j} - z^j \frac{\partial}{\partial y_i} \right) ,$$

$$Y_{0k} = -2t \frac{\partial}{\partial y^k} + z_k \frac{\partial}{\partial t} + \frac{1}{2} \sum_{i,j} \epsilon_{ijk} \left(y^i \frac{\partial}{\partial z_j} - y^j \frac{\partial}{\partial z_i} \right) ,$$

$$Y_{ij} = -z_j \frac{\partial}{\partial z^i} + y_i \frac{\partial}{\partial y^j} .$$

$$(i, j, k = 1, 2, 3)$$

 $Y_{11} + Y_{22} + Y_{33} = 0 ,$

$G_2^{\rm NC}$ generators (other basis)

Gogberashvili, Gurchumelia (2019)

$$\begin{split} \Theta_{k} &= -2\left(x_{k}\frac{\partial}{\partial t} + t\frac{\partial}{\partial x^{k}}\right) - \sum_{i,j}\epsilon_{ijk}\left(\lambda^{i}\frac{\partial}{\partial x_{j}} - x^{j}\frac{\partial}{\partial \lambda_{i}}\right) \ ,\\ B_{k} &= -2\left(\lambda_{k}\frac{\partial}{\partial t} + t\frac{\partial}{\partial \lambda^{k}}\right) - \sum_{i,j}\epsilon_{ijk}\left(\lambda^{i}\frac{\partial}{\partial \lambda_{j}} - x^{j}\frac{\partial}{\partial x_{i}}\right) \ ,\\ \Gamma_{k} &= \sum_{i,j}|\epsilon_{ijk}|\left(x^{i}\frac{\partial}{\partial \lambda_{j}} + \lambda^{j}\frac{\partial}{\partial x_{i}}\right) \ ,\\ R_{k} &= \sum_{i,j}\epsilon_{ijk}\left(\lambda^{i}\frac{\partial}{\partial \lambda_{j}} + x^{i}\frac{\partial}{\partial x_{j}}\right) \ ,\\ \Phi_{k} &= \left(x_{k}\frac{\partial}{\partial \lambda^{k}} + \lambda_{k}\frac{\partial}{\partial x^{k}}\right) - \frac{1}{3}\sum_{i}\left(x_{i}\frac{\partial}{\partial \lambda_{i}} + \lambda_{i}\frac{\partial}{\partial x_{i}}\right) \ . \end{split}$$

Infinitesimal G_2^{NC} transformations

$$\lambda_{k}' = \lambda_{k} + \sum_{i,j} \epsilon_{ijk} \left(\beta^{i} - \rho^{i}\right) \lambda^{j} - 2\beta_{k}t - \sum_{i,j} \left(\epsilon_{ijk}\theta^{i} + |\epsilon_{ijk}| \gamma^{i}\right) x^{j} - \left(\varphi_{k} - \frac{1}{3}\sum_{i}\varphi_{i}\right) x_{k} ,$$

$$t' = t + 2\sum_{i} \left(\beta_{i}\lambda^{i} + \theta_{i}x^{i}\right) ,$$

$$x'_{k} = x_{k} - \sum_{i,j} \epsilon_{ijk} \left(\beta^{i} + \rho^{i}\right) x^{j} + 2\theta_{k}t + \sum_{i,j} \left(\epsilon_{ijk}\theta^{i} - \left|\epsilon_{ijk}\right|\gamma^{i}\right) \lambda^{j} - \left(\varphi_{k} - \frac{1}{3}\sum_{i}\varphi_{i}\right) \lambda_{k} .$$

Finite transformation examples in G_2^{NC}

Non-commutativity bound $[x_i, x_j] < 10^{-8} \text{GeV}^2$

Slide: 12

• Rotation

Chaichian, Sheikh-Jabbari, Tureanu (2001)

$$\begin{aligned} \lambda'_1 &= \lambda_1 , & \lambda'_2 &= \lambda_2 \cos \rho_1 + \lambda_3 \sin \rho_1 , & \lambda'_3 &= \lambda_3 \cos \rho_1 - \lambda_2 \sin \rho_1 , \\ t' &= t , \\ x'_1 &= x_1 , & x'_2 &= x_2 \cos \rho_1 + x_3 \sin \rho_1 , & x'_3 &= x_3 \cos \rho_1 - x_2 \sin \rho_1 . \end{aligned}$$

• This boost imitates translation, but is non-commutative

$$\begin{aligned} \lambda_1' &= \lambda_1 , \qquad \lambda_2' &= \lambda_2 \cosh \gamma_1 - x_3 \sinh \gamma_1 , \qquad \lambda_3' &= \lambda_3 \cosh \gamma_1 - x_2 \sinh \gamma_1 , \\ t' &= t , \\ x_1' &= x_1 , \qquad x_2' &= x_2 \cosh \gamma_1 - \lambda_3 \sinh \gamma_1 , \qquad x_3' &= x_3 \cosh \gamma_1 - \lambda_2 \sinh \gamma_1 . \end{aligned}$$

Casimir operator of $G_2^{\rm NC}$

Slide: 13

$$\begin{split} C_2 &= \sum_k \left(\frac{1}{3} \Theta_k^2 - \frac{1}{3} B_k^2 + \Gamma_k^2 - R_k^2 + 2\Phi_k^2 \right) = \\ &= 6 \left[t \frac{\partial}{\partial t} + \sum_k \left(\lambda_k \frac{\partial}{\partial \lambda_k} + x_k \frac{\partial}{\partial x_k} \right) \right] + x^2 \frac{\partial^2}{\partial t^2} + \sum_k t^2 \frac{\partial^2}{\partial x_k^2} + 2t \sum_k x_k \frac{\partial^2}{\partial t \partial x_k} + \\ &+ \sum_{i,j,k} |\epsilon_{ijk}| \left(x_i x_j \frac{\partial^2}{\partial x_i \partial x_j} - x_i^2 \frac{\partial^2}{\partial x_j^2} \right) - \lambda^2 \left(\frac{\partial^2}{\partial t^2} - \sum_k \frac{\partial^2}{\partial x_k^2} \right) - \sum_k \left(t^2 - x^2 \right) \frac{\partial^2}{\partial \lambda_k^2} + \\ &+ 2t \sum_k \lambda_k \frac{\partial^2}{\partial t \partial \lambda_k} + \sum_{i,j} \frac{2}{3} \lambda_i x_j \frac{\partial^2}{\partial \lambda_i \partial x_j} + \sum_{i,j,k} |\epsilon_{ijk}| \left(\lambda_i \lambda_j \frac{\partial}{\partial \lambda_i \partial \lambda_j} - \lambda_i^2 \frac{\partial}{\partial \lambda_j^2} \right) \,. \end{split}$$

• Limiting extra dimensions $\lambda = \text{const}$ $C_2 \rightarrow C_{\text{Lorentz}} - \lambda^2 C_{\text{KG}}$

Summary & references

Summery

• We constructed spin ladder structure and Dirac equation with split-octonions

- Geometrical application of split-octonions was also considered
- Representation of rotations by split-octonions gives G_2^{NC}
- Effective space-time is 7D (4 time, 3 space)
- *G*^{NC}₂ imitates Poincaré transformations
- Translations are non-commutative due to extra time-like dimensions
- Casimir of G₂^{NC} reduces to Casimirs of Lorentz and Poincaré in the limit
 References
- Gogberashvili, M., & Gurchumelia, A. (2019). Geometry of the non-compact G (2). Journal
 of Geometry and Physics.
- Gogberashvili, M., & Sakhelashvili, O. (2015). Geometrical applications of split octonions. Advances in Mathematical Physics, 2015.
- Chaichian, M., Sheikh-Jabbari, M. M., & Tureanu, A. (2001). Hydrogen atom spectrum and the Lamb shift in noncommutative QED. *Physical Review Letters*, 86(13), 2716.
- Furey, C. (2018). SU(3)_C × SU(2)_L × U(1)_Y(× U(1)_X) as a symmetry of division algebraic ladder operators. The European Physical Journal C, 78(5), 375.