

STRONG CP PROBLEM Aspects of Symmetry

Nov. 8-9, 2021 | Andreas Wirzba | Institute of Advanced Simulation

Cartoon 1

Let's start with a **Disclaimer**

Outline of lecture 1:

- Evolution of the Universe, matter vs. antimatter, Sakharov conditions
- 2 CP violation in the Standard Model
- 3 $U(1)_A$ problem
- Instantons, topological charge and susceptibility
- **5** QCD vacuum structure and θ -angle
- 6 Strong CP problem
- 7 Peccei-Quinn mechanism
- 8 Invisible axions
- 9 Fine-tuning after all

- \rightarrow lecture 2
- \rightarrow lecture 2
- \rightarrow lecture 2

Andreas Wirzba

HISTORY OF THE UNIVERSE AND CP-VIOLATION

Member of the Helmholtz Association

Andreas Wirzba

Nov. 8-9, 2021

Matter Excess in the Universe

 $(*) \ 2J_{\text{Jarlskog}}^{\text{CKM}}(m_t^2 - m_u^2)(m_t^2 - m_c^2)(m_c^2 - m_u^2)(m_b^2 - m_d^2)(m_b^2 - m_s^2)(m_s^2 - m_d^2) \sim 10^{-18} M_{\text{EW}}^{12}$

- 1 End of inflation: $n_B = n_{\bar{B}}$
- 2 Cosmic Microwave Bkgr.
 - SM(s) *prediction:** (*n_B* - 𝔅)/*n_γ*|_{CMB} ~ 10⁻¹⁸
 - WMAP+PLANCK ('13): $n_B/n_\gamma|_{CMB} = (6.05 \pm 0.07) 10^{-10}$

Sakharov conditions ('67)

for dyn. generation of net B:

- 1 *B* violation to depart from initial *B*=0
- 2 C & CP violation to distinguish *B* from \bar{B} production rates
- 3 Either CPT violation or out of thermal equilibrium to distinguish *B* production from back reaction and to escape (*B*)=0 if CPT holds

Andreas Wirzba

Nov. 8-9, 2021

CP violation in the Standard Model

The conventional source: Kobayashi-Maskawa mechanism

Empirical facts: 3 generations of u/d quarks (& e/ν leptons)

- quarks & leptons in mass basis ≠ quarks & leptons in weak-int. basis
- - with the exception of the θ term of QCD (see later)

and the charged-weak-current interaction ($\subset \mathcal{L}_{gauge-fermion}$)

$$\mathcal{L}_{c-w-c} = -\frac{g_w}{\sqrt{2}} \sum_{ij=1}^{3} \bar{d}_{Li} \gamma^{\mu} V_{ij} U_{Lj} W_{\mu}^{-} - \frac{g_w}{\sqrt{2}} \sum_{ij=1}^{3} \bar{\ell}_{Li} \gamma^{\mu} U_{ij} \nu_{Lj} W_{\mu}^{-} + \text{h.c.}$$

V: 3 × 3 unitary quark-mixing matrix
 (Cabibbo-Kobayashi-Maskawa matrix)
 3 angles + 1 β^μ phase δ_{KM}
 3 angles + 1 β^μ phase δ_{KM}
 3 angles + 1 β^μ phase δ_{KM}

Member of the Helmholtz Association

Andreas Wirzba

Nov. 8-9, 2021

$U(1)_A$ problem: why only N_F^2 – 1 Pseudo-<u>G</u>oldstone <u>B</u>osons ?

- GBs arise from spontaneous symmetry breaking (SSB) with one massless GB per broken symmetry generator (='charge') •
- Pseudo-GBs acquire finite mass from small explicit SB
- In the chiral limit, the QCD Lagrangian is invariant under

 $U(N_F)_L \times U(N_F)_R = \underbrace{SU(N_F)_L \times SU(N_F)_R}_{\text{chiral group}} \times \underbrace{U(1)_V}_{\text{baryon #}} \times \underbrace{U(1)_A}_?$

What about the extra U(1)_A symmetry? Spontaneous SB?

Is there an extra "(P)GB" in addition to the $N_F^2 - 1$ ones? Not really: $N_F = 2: \qquad m_{\pi^0} \approx 135 \,\text{MeV}, m_{\pi^\pm} \approx 139 \,\text{MeV} \ll m_\eta \approx 548 \,\text{MeV}$

 $N_F = 3:$ $m_{\pi^0} \lesssim m_{\pi^\pm} < m_{K^\pm} \lesssim m_{K^0, \overline{K}^0} < m_\eta \ll m_{\eta'} \approx 958 \,\mathrm{MeV}$

while for $N_F \ge 2$ there is the naive bound: $m_{n_{\eta'}} < \sqrt{3}m_{\pi} \approx 240$ MeV.

 \rightarrow This is the $U(1)_A$ problem

S. Weinberg, Phys. Rev. D 11 (1975) 3583

Question rephrased:

What happens to the classical $U(1)_A$ symmetry at quantum level?

$U(1)_A$ anomaly – perturbative consideration

• Anomaly of the axial $U(1)_A$ current in QCD (in the chiral limit) :

$$\partial_{\mu}J_{A}^{\mu} = -\frac{g_{s}^{2}N_{F}}{8\pi^{2}}\frac{1}{2}G_{\mu\nu}^{c}\tilde{G}^{c\,\mu\nu} = -\frac{g_{s}^{2}N_{F}}{16\pi^{2}}G_{\mu\nu}^{c}\tilde{G}_{\mu\nu}^{c} \quad (\mathsf{Tr}_{\mathsf{flavor}}[\mathsf{I}]=N_{F}, \, \mathsf{Tr}_{\mathsf{color}}[t^{c}t^{c'}]=\frac{1}{2}\delta^{cc'})$$

$$(\mathsf{however}, \, SU(3)_{A}: \, \partial_{\mu}J_{A}^{a\mu} = 0, \, \forall a \neq 0 \quad \mathsf{since} \, \mathsf{Tr}_{\mathsf{flavor}}[\frac{1}{2}\lambda^{a}] = 0.)$$

• In the "path-integral language", the $U(1)_A$ anomaly arises due to the **Jacobian** in the fermion measure ($\mathcal{D}\psi'\mathcal{D}\bar{\psi}' = J^{-2}\mathcal{D}\psi\mathcal{D}\bar{\psi}$) resulting from the flavor-singlet axial transformation $\psi_f \rightarrow \psi'_f = e^{i\beta\gamma_5}\psi_f$:

$$\beta \int d^4 x \,\partial_\mu j^\mu_A \stackrel{!}{=} -i \ln \left(J^{-2} \right) = -\beta \, 2N_F \frac{g_s^2}{32\pi^2} \int d^4 x G^c_{\mu\nu} \tilde{G}^{c\,\mu\nu}$$

not zero, even in chiral limit

• Note that $\frac{g_s^2}{32\pi^2} G^a_{\mu\nu} \tilde{G}^{a\,\mu\nu} = \frac{g_s^2}{32\pi^2} \epsilon^{\mu\nu\rho\sigma} \operatorname{Tr}(G_{\mu\nu}G_{\rho\sigma}) = \partial_{\mu}K^{\mu}$ is a total derivative with $K^{\mu} = \frac{g_s^2}{16\pi^2} \epsilon^{\mu\nu\rho\sigma} \operatorname{Tr}(A_{\nu}G_{\rho\sigma} + i\frac{2}{3}A_{\nu}A_{\rho}A_{\sigma})$ (Chern-Simons current)

 \rightarrow the $U(1)_A$ anomaly of QCD is irrelevant in perturbation theory!

$U(1)_A$ anomaly and large gauge transformations

Since $G^c_{\mu\nu} \tilde{G}^{c\,\mu\nu} \propto \partial_{\mu} K^{\mu}$ is a total derivative, even a gauge-invariant, Lorentz-invariant, *C*- and still $P \times T$ -invariant (although P & T breaking) θ -term,

$$\mathcal{L}^{\theta}_{\text{QCD}} = -\bar{\theta} \frac{g_s^2}{32\pi^2} \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma} ,$$

added to the usual QCD Lagrangian

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} G^c_{\mu\nu} G^{c,\mu\nu} + \sum_f \bar{q}_f \Big(i \gamma^{\mu} \big(\partial_{\mu} - i g A^c_{\mu} t^c \big) - m_f \Big) q_f \,,$$

would be irrelevant as well - in perturbation theory !

 However, non-perturbative (*large*) gauge transformations (so-called *instantons*) exist in Euclidean space-time R⁴, such that

 $\int_{R^4} d^4 x_{\mathsf{E}} \frac{g_s^2}{32\pi^2} G_{\mu\nu}^c \tilde{G}_{\mu\nu}^c = \mathbf{n} \in \mathbb{Z} \text{ (topologically protected and nonzero in general).}$

Andreas Wirzba

Instantons in classical Yang-Mills theory

In **Euclidean** space-time $(t \rightarrow -i\tau, \partial_t \rightarrow i\partial_\tau, g_{\mu\nu} \rightarrow -\delta_{\mu\nu})$ the Yang-Mills action is positive: $S_{\mathsf{E}} \equiv -iS_{\mathsf{M}}(t \rightarrow -i\tau) = \frac{1}{2} \int d^4 x_{\mathsf{E}} \operatorname{Tr} \left(G_{\mu\nu}^{\mathsf{E}} G_{\mu\nu}^{\mathsf{E}} \right) \ge 0 \ (!)$ (rescale $A_{\mu}^{E} \rightarrow A_{\mu}^{E}/g_{s}$ and drop index E from now on) $\hookrightarrow S_{\mathsf{E}} = \frac{1}{4q_{*}^{2}} \int d^{4}x_{\mathsf{E}} \operatorname{Tr} \left((G_{\mu\nu} \mp \tilde{G}_{\mu\nu}) (G_{\mu\nu} \mp \tilde{G}_{\mu\nu}) \right) \pm \frac{1}{2q_{*}^{2}} \int d^{4}x_{\mathsf{E}} \operatorname{Tr} \left(G_{\mu\nu} \tilde{G}_{\mu\nu} \right)$ > 0 $\equiv 8\pi^2 Q/q_a^2$ $\Rightarrow S_{\mathsf{E}} \stackrel{!}{=} \frac{8\pi^2 |Q|}{\sigma_{\star}^2} \text{ for } \begin{cases} \text{ self-dual } G_{\mu\nu} = +\tilde{G}_{\mu\nu} (Q \ge 0) \\ \text{anti-self-dual } G_{\mu\nu} = -\tilde{G}_{\mu\nu} (Q < 0) \end{cases} \quad \text{``instanton''}$ Use $\frac{1}{16\pi^2} \operatorname{Tr} \left(G_{\mu\nu} \tilde{G}_{\mu\nu} \right) = \partial_{\mu} \left[\frac{1}{8\pi^2} \epsilon_{\mu\nu\alpha\beta} \operatorname{Tr} \left(A_{\nu} (\partial_{\alpha} A_{\beta} - i\frac{2}{3} A_{\alpha} A_{\beta}) \right) \right] \equiv \partial_{\mu} K_{\mu}$ (with K_{μ} Chern-Simons current and $\epsilon_{0123} = -1$) and $A_{\mu} \xrightarrow{|x| \to \infty} -i(\partial_{\mu}\Omega)\Omega^{\dagger}$ (pure gauge) such that $G_{\mu\nu} \xrightarrow{|x| \to \infty} 0$ and action is finite.

→ Topological charge (= Pontryagin index = 2nd Chern class)

$$Q = \frac{1}{16\pi^2} \int d^4 x_{\rm E} {\rm Tr} \left(G_{\mu\nu} \tilde{G}_{\mu\nu} \right) = \oint_{\mathbb{S}^3} d\sigma_\mu \frac{-1}{24\pi^2} \, \epsilon_{\mu\nu\alpha\beta} {\rm Tr} \left((\partial_\nu \Omega) \Omega^\dagger (\partial_\alpha \Omega) \Omega^\dagger (\partial_\beta \Omega) \Omega^\dagger \right)$$

is an integer determined by $\Omega(n_{\mu})$ with n_{μ} ($n^2 = 1$) the direction in which $|x| \rightarrow \infty$.

Topological charge

$$Q = \frac{1}{16\pi^2} \int d^4 x_{\rm E} {\rm Tr} \left(G_{\mu\nu} \tilde{G}_{\mu\nu} \right) = \oint_{\mathbb{S}^3} d\sigma_\mu \frac{-1}{24\pi^2} \epsilon_{\mu\nu\alpha\beta} {\rm Tr} \left((\partial_\nu \Omega) \Omega^\dagger (\partial_\alpha \Omega) \Omega^\dagger (\partial_\beta \Omega) \Omega^\dagger \right)$$

- Pure gauge condition $A_{\mu} \longrightarrow -i(\partial_{\mu}\Omega)\Omega^{\dagger}$ determined by $\Omega(n_{\mu})$ where the unit 4-vector n_{μ} specifies the direction in which *x* approaches infinity
- \rightarrow Space-time at $|x| \rightarrow \infty$ isomorphic to S^3 sphere
- \Rightarrow Ω(n_{μ}): mapping $S^3 \rightarrow S^3$ (group-valued) $\cong SU(2)$ (note: $2\pi^2 \times 3! \times \text{Tr}[I] = 24\pi^2$) in the two-color scenario (or for a color group $G = SU(N_c) \supseteq SU(2)$ in general).
- Space of mappings of S³ → G: infinite set of isolated classes, labeled by the winding number Q: mappings belonging to one class cannot be continuously deformed into those belonging to any other class
- \rightarrow homotopy classes $\Pi_3(G) = \mathbb{Z}$ (windings of mappings $S^3 \rightarrow G$)

- analog to $n \in \mathbb{Z}$ windings of $Q = \oint_{S^1} d\sigma_\mu \frac{1}{2\pi} \epsilon_{\mu\nu} A_\nu = \frac{1}{2\pi} \int_0^{2\pi} d\phi A_\phi$ for the maps $S_1 \to S_1$

Some examples:

$$\begin{array}{ll} Q = +1 \text{ mapping:} & \Omega_1(n_\mu) = n_0 + i \, \vec{n} \cdot \vec{\tau} & \text{with } n_\mu = x_\mu / \sqrt{x^2} \, ; \\ Q = -1 \text{ mapping:} & \Omega_{-1}(n_\mu) = \Omega_1^{\dagger}(n_\mu) \, ; & \cdots \\ Q = +7 \text{ mapping:} & (\Omega_1(nu_\mu))^7 & \text{etc.} \end{array}$$

Instantons and the solution of the $U(1)_A$ problem

't Hooft, PRL 37 ('76), PRD 14 ('76), 18 ('78)

 Non-perturbative (*large*) gauge transformations (so-called *instantons*) exist in Euclidean space-time R⁴, such that

$$\underbrace{Q}_{\text{topol. charge}} = \int_{R^4} d^4 x_{\text{E}} \underbrace{\frac{g_s^2}{32\pi^2} G_{\mu\nu}^a \tilde{G}_{\mu\nu}^a}_{\text{topol. density } q(x)} = \underbrace{n \in \mathbb{Z}}_{\text{topol. charge}} \text{ (protected by topology & nonzero in general)}$$

 \therefore One-(anti-)*instanton amplitude* for QCD (after redefining $g_s A_\mu \longrightarrow A_\mu$)

$$\mathcal{A}_{\mathsf{E}}^{1/\bar{1}} \propto e^{-\int d^4 x_{\mathsf{E}} \left(\frac{1}{8g_{\mathsf{S}}^2} (G_{\mu\nu}^a + \tilde{G}_{\mu\nu}^a)^2 \pm \frac{8\pi^2}{g_{\mathsf{S}}^2} \frac{1}{32\pi^2} G_{\mu\nu}^a \tilde{G}_{\mu\nu}^a\right)} \propto e^{-\frac{8\pi^2}{g_{\mathsf{S}}^2(\mu)}}$$

is nonzero and proportional to $e^{-S_{\rm E}}$.

- Weak coupling $(g_s^2(\mu) \ll 1)$: instanton amplitude exponentially small;
- but in the strong coupling case, $g_s^2(\mu) \sim (4\pi)^2$, no suppression!
- $\rightarrow \partial_{\mu} j_{A}^{\mu} \neq 0$ non-perturbatively $\sim m_{\eta'}^{2} \gg m_{\pi,K,\eta}^{2} \sim \text{only } N_{F}^{2} 1$ Pseudo-GBs !

Instantons and non-trivial vacua in QCD

Because of large gauge transformations $A_{\mu} \rightarrow A_{\mu}^{(n)} = A_{\mu} - i(\partial_{\mu}\Omega_n)\Omega_n^{\dagger}$, there are infinitely many homotopy classes $\Pi_3(SU(3) = \mathbb{Z}$ and QCD has a topologically **non-trivial vacuum structure**

with winding number n

- instantons (\cong large gauge transformations) that induce $|n\rangle \rightarrow |n+1\rangle$ etc. \Rightarrow and solve the $U_A(1)$ problem 't Hooft, PRL 37 (76), PRD 14 (76), 18 (78)
- However, any **naively chosen vacuum** $|0\rangle_n \equiv |n\rangle$ (with *n* arbitrary, but fixed)
 - **1** is **unstable** under the one-instanton action, $\Omega_1 : |0\rangle_n \rightarrow |0\rangle_{n+1}$,
 - 2 is not gauge invariant under large gauge transformations,
 - **3** violates *cluster decomposition:* $\langle O_1 O_2 \rangle \stackrel{!}{=} \langle O_1 \rangle \langle O_2 \rangle$

which can be traced back to causality, unitarity (and locality) of the underlying field theory, *e.g.*: let O_1 be the axial charge operator $Q^{\dagger}(t_E)$ and O_2 the corresponding operator Q(0) at $t_E = 0$, then both $\langle n|O_1|n\rangle = 0$ and $\langle n|O_2|n\rangle = 0$ but $\langle n|O_1|n+2\rangle\langle n+2|O_2|n\rangle \neq 0$ even for $t_E \to \infty$.

θ vacua in strong interaction physics

Thus true vacuum must be a superposition of all $|n\rangle$ vacua:

$$|vac\rangle_{\theta} \equiv \sum_{n=-\infty}^{+\infty} e^{in\theta} |n\rangle$$
 with $\Omega_1 : |vac\rangle_{\theta} \to e^{-i\theta} |vac\rangle_{\theta}$ (with a phase shift only)

Note $_{\theta'}\langle vac|e^{-iHt}|vac\rangle_{\theta} = \delta_{\theta-\theta'} \times _{\theta}\langle vac|e^{-iHt}|vac\rangle_{\theta}$ such that θ is unique. $\Rightarrow \theta$ is another parameter of strong interaction physics (as $m_u, m_d, ...$):

$$\mathcal{L}_{\rm QCD} = \mathcal{L}_{\rm QCD}^{CP} + \mathcal{L}_{\rm QCD}^{QP} = \mathcal{L}_{\rm QCD}^{CP} - \theta \frac{g_s^2}{32\pi^2} \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma} \,.$$

Under axial rotation of the quark fields $q_f \rightarrow e^{i\beta\gamma_5}q_f \approx (1+i\beta\gamma_5)q_f$

$$\mathcal{L}_{\text{QCD}} \rightarrow \mathcal{L}_{\text{QCD}}^{\text{CP}} - \frac{2\beta}{f} m_f \bar{q} i \gamma_5 q - (\theta + 2N_f \beta) \frac{g_s^2}{32\pi^2} \tilde{G}^a_{\mu\nu} G^{a,\mu\nu}$$

$$\hookrightarrow \mathcal{L}_{SM}^{\mathrm{str}\,\mathcal{Q}^{\prime}} = \mathcal{L}_{SM}^{\mathrm{CP}} - \overline{\theta} \frac{g_{s}^{2}}{32\pi^{2}} \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} G_{\mu\nu}^{a} G_{\rho\sigma}^{a} \quad \text{with} \quad \overline{\theta} = \theta + \arg \det \mathcal{M}$$

Note:

- The $\bar{\theta}$ parameter is an *angle*, $\bar{\theta} \in [-\pi, \pi]$, since the one-instanton amplitude is $\propto e^{i\bar{\theta}Q}$.
- If any quark mass m_f were zero, then the $\bar{\theta}$ angle could be removed by a suitable axial rotation with $2\beta_f = -\bar{\theta}$.

Strong CP problem

The resolution of the $U(1)_A$ problem – via the complicated nature of the QCD vacuum – effectively adds an extra term to the QCD Lagrangian:

Strong CP problem

The resolution of the $U(1)_A$ problem – via the complicated nature of the QCD vacuum – effectively adds an extra term to the QCD Lagrangian:

but conserves charge conjugation invariance $\mathcal{C} \sim \mathcal{P} \sim$

it induce an electric dipole moment (EDM) for the neutron:

$$|d_n| \simeq |\bar{\theta}| \cdot \frac{m_q^*}{\Lambda_{\text{QCD}}} \cdot \frac{e}{2m_n} \sim |\bar{\theta}| \cdot 10^{-2} \cdot 10^{-14} e \,\text{cm} \sim |\bar{\theta}| \cdot 10^{-16} e \,\text{cm}$$

compared with $|d_n^{\text{exp.}}| < 1.8 \cdot 10^{-26} e \text{ cm}$ Abel et al. [*nEDM Coll.*] (2020). $\Rightarrow |\bar{\theta}| \leq 10^{-10}$, while NDA (naive dim. analysis) predicts $|\bar{\theta}| \sim \mathcal{O}(1)$. (Note that the other *CP*-violating phase of the SM, δ_{KM} , is indeed of $\mathcal{O}(1)$).

This mismatch is called the strong *CP* problem.

Resolution(s) of the Strong CP problem

Fine-tuning

- motivated by many-worlds scenarios, anthropic principle (?) etc.
- or **spontaneously broken** *CP* such that $\bar{\theta} := 0$ at the Lagrangian level
 - but $\bar{\theta} \neq 0$ reintroduced at the loop level
 - and the CKM mechanism predicts CP-breaking of explicit nature and not as SSB

or an additional chiral symmetry

- (i) by a vanishing (u-)quark mass (?)
 - excluded by Lattice QCD: $m_u = 2.16^{+0.49}_{-0.26} \text{ MeV}$

Particle Data Group (2020)

- (ii) or by an **additional global** chiral $U_{PQ}(1)$ symmetry of the SM
 - Peccei-Quinn (PQ) mechanism
 - including axions

Peccei & Quinn, PRL 38 & PRD 16 (1977)

Weinberg, PRL 40 (1978), Wilczek PRL (40) (1978)

- (iii) however, the "Empire strikes back": fine-tuning may be back
 - reintroduced by Planck-scale explicit PQ-symmetry breaking terms

Kiwoon Choi (Daejeon, Korea), Bethe-Lectures, Bonn, March 2015

Slide 17139

End of Lecture1

Some leftovers from lecture 1

- EW Baryogenesis in the Standard Model
- Physics of Electric Dipole Moments (EDMs)
- 3 Dimensional analysis of the nucleon EDM

Remaining outline for lecture 2:

- 4 Peccei-Quinn mechanism and axions
- 5 Invisible axions
- 6 Fine-tuning after all
- 7 EDM roadmap and bounds (if time permits)
- B Oscillating EDMs, axions and Axion-Like Particles (ALPs) (if time permits)

Andreas Wirzba

CP violation and Electric Dipol Moments (EDMs)

EDM:
$$\vec{d} = \sum_{i} \vec{r}_{i} e_{i} \xrightarrow{\text{subatomic}}_{\text{particles}} d \cdot \vec{S} / |\vec{S}|$$

(polar) $\mathcal{H} = -\mu \frac{\vec{S}}{S} \cdot \vec{B} - d \frac{\vec{S}}{S} \cdot \vec{E}$
P: $\mathcal{H} = -\mu \frac{\vec{S}}{S} \cdot \vec{B} + d \frac{\vec{S}}{S} \cdot \vec{E}$
T: $\mathcal{H} = -\mu \frac{\vec{S}}{S} \cdot \vec{B} + d \frac{\vec{S}}{S} \cdot \vec{E}$

Slide 19139

Any *non-zero EDM* of **P-non-degenerate**, **finite** (e.g. subatomic) particle requires **explicit** breaking of **P**& **T** in **quantum mechanics**

- Assuming CPT to hold, CP violated as well (diagonally in flavor !)
 → subatomic EDMs: "rear window" to CP violation in early universe ●
- Strongly suppressed in SM (CKM-matrix): $|d_n| \sim 10^{-31-33} e$ cm, $|d_e| \sim 10^{-44} e$ cm
- Current bounds: $|d_n| < 1.8^{\circ}/1.6^{*} \cdot 10^{-26} e \text{ cm}, |d_p| < 2 \cdot 10^{-25} e \text{ cm}, |d_e| < 1.1 \cdot 10^{-29} e \text{ cm}$

n: Abel et al. [nEDM] (2020)^{\lambda}, p prediction^{*}: Dimitriev&Sen'kov (2003), e: Andreev et al. [ACME] (2018)[†]

* indirect from $|d_{199}_{H\alpha}| < 7.4 \cdot 10^{-30} e \text{ cm}$ bound of Graner et al. (2016), [†] indirect from polar ThO

Naive nucleon-EDM estimate from known physics

(apart from measured bound $|d_n^{exp}| < 10^{-26} e \text{ cm}$) Kin

- Khriplovich & Lamoreaux (1997); Kolya Nikolaev (2012)
- CP & P conserving (magnetic) moment ~ nuclear magneton μ_N

$$\mu_N = \frac{e}{2m_p} \sim 10^{-14} e\,\mathrm{cm}\,.$$

Nonzero EDM requires

parity P violation: price to pay $\sim 10^{-7}$ ($G_F \cdot F_{\pi}^2 \sim 10^{-7}$ with $G_F \approx 1.166 \cdot 10^{-5} \text{GeV}^{-2}$), and *additionally* **CP violation**: price to pay $\sim 10^{-3}$

d additionally CP violation: price to pay ~ 10 ° $(|\eta_{+-}| \equiv |\mathcal{A}(K_L^0 \to \pi^+\pi^-)| / |\mathcal{A}(K_S^0 \to \pi^+\pi^-)| = (2.232 \pm 0.011) \cdot 10^{-3}).$

Slide 20139

- In summary: $|d_N| \lesssim 10^{-7} \times 10^{-3} \times \mu_N \sim 10^{-24} e \text{ cm}$
- In SM (without θ): extra $G_F F_{\pi}^2$ factor to *undo* flavor change of CKM-matrix

$$\Rightarrow |d_N^{\rm SM}| \lesssim 10^{-7} \times 10^{-24} e\,{\rm cm} \sim 10^{-31} e\,{\rm cm}$$

 $\Rightarrow \text{BSM window for physics search beyond SM} @ \theta := 0$ 10⁻²⁴ e cm ≥ $|d_N| \ge 10^{-30}$ e cm

Estimate of strong CP-violating parameter θ

Another source of **CP**- (i.e. **P**- & **T**-) violation in SM: QCD θ -term (of dimension 4)

$$-\theta \frac{g_s^2}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma} \xrightarrow{\text{chiral } U_A(1)} \bar{\theta} m_q^* \sum_f \bar{q}_f i \gamma_5 q_f$$
with $\bar{\theta} = \theta + \arg \det \mathcal{M}_{\text{quark}}$ the *physical* parameter in QCD for **CP** violation
$$\Rightarrow \left| d_N^{\bar{\theta}} \right| \sim \left| \bar{\theta} \right| \cdot \frac{m_q^*}{\Lambda_{\text{QCD}}} \cdot \frac{e}{2m_N} \sim \left| \bar{\theta} \right| \cdot 10^{-2} \cdot 10^{-14} e \text{ cm} \sim \left| \bar{\theta} \right| \cdot 10^{-16} e \text{ cm}$$

$$m^*/\Lambda_{\text{QCD}} \text{ suppression factor from } U_A(1) \text{ rotation}$$

• m_q^*/Λ_{QCD} suppression factor from $U_A(1)$ rotation with $m_q^* = \frac{m_u m_d m_s}{m_u m_d + m_s m_u + m_s m_d} \sim \frac{m_u m_d}{m_u + m_d}$ reduced quark mass.

From empirical nEDM limit, $|d_n^{emp}| < 1.8 \cdot 10^{-26} e cm$. and naive CKM-SM estimate, $|d_N^{SM}| \leq 10^{-31} e \text{ cm}$ \rightarrow window of opportunity for determining $\bar{\theta}$:

SM/CKM $\longrightarrow 10^{-14} \leq |\overline{\theta}| \leq 10^{-10} \leftarrow nEDM$ of Abel et al.

cannot explain cosmic matter surplus, since $\Lambda_{\chi SB} \ll \Lambda_{EWSB}$,

→ CP-violating (dimension≥ 6) sources from BSM physics needed

 \rightarrow

Rough EDM-scale estimate in BSM scenario

solely based on dimensional considerations

EDM d_i of quark or lepton *i* of mass m_i and charge e_i

scales as
$$d_i \simeq \frac{1}{16\pi^2} \frac{m_i}{\Lambda_{BSM}^2} e_i \sin \phi$$
 where

- Λ_{BSM} mass scale of underlying BSM physics,
- *d_i* ∝ *m_i* (helicity flip from Higgs interaction) → dimension-6 source terms (Solely existing dimension-5 CP-violating operator: Majorana mass term in neutrino physics)
- $\sin \phi$ results from the **CP**-violating BSM phases,
- $g^2/16\pi^2 \sim 10^{-2}$ (if $g \sim 1$) one-loop suppression factor (as in SUSY extensions)

(10⁻⁴ suppression factor for two-loop (Barr-Zee) processes in, e.g., multi-Higgs scenarios, while no suppression factor for loop-free particle exchanges as, e.g., in leptoquark scenarios)

Thus

$$|d_N| \sim 10^{-24} \left(\frac{1 \text{ TeV}}{\Lambda_{\text{BSM}}}\right)^2 |\sin \phi| e \text{ cm} \quad \text{if } m_q \sim 5 \text{ MeV}$$

compatible with naive estimate $10^{-24} e \text{ cm}$ if $\Lambda_{\text{BSM}} \gtrsim 1 \text{ TeV}$ and $\sin \phi \sim 1$, while a $10^{-29} e \text{ cm}$ sensitivity would allow testing down to $\phi \gtrsim 10^{-5}$ @1TeV scale or up to $\Lambda_{\text{BSM}} \lesssim 300 \text{ TeV}$ @ $\phi \sim 1$ (in the one-loop scenario)

END OF LEFTOVERS

RESUMING THE FAIRYTALE OF THE HARE AND HEDGEHOG

Andreas Wirzba

From the $U(1)_A$ problem to the strong CP problem

The Hare and the Hedgehog – a fairy tale

- $U(1)_A$ problem of QCD: $m_{\eta,\eta'} > \sqrt{3}m_{\pi} \approx 240 \text{ MeV}$ - proposed solution: $U(1)_A$ anomaly
- Problem: resulting current proportional to a total derivative in perturbation theory

 solution: non-perturbative QCD vacuum including instantons
- Problem: vacuum $|n\rangle$ not unique, not gauge inv., cluster decomposition viol. - solution: θ vacuum (superposition of all $|n\rangle$ vacua $\times e^{i\theta n}$)
- \blacksquare Problem: neutron EDM bound \leadsto strong CP problem
 - proposed solution: Peccei-Quinn mechanism …

Peccei-Quinn symmetry and the axion

Peccei & Quinn (1977): imposed on the SM

a global chiral $U(1)_{PQ}$ symmetry that is non-linearly realized (*i.e.* SSB)

Peccei & Quinn, PRL 38 & PRD 16 (1977)

Weinberg & Wilczek (1978): introduced the corresponding Nambu–Goldstone boson, the so-called axion Weinberg, PRL 40 (1978), Wilczek PRL (40) (1978)

The static angular parameter $\overline{\theta} \pmod{2\pi}$ is replaced by a dynamical pseudoscalar field a(x) which transforms under PQ as

$$U(1)_{\mathsf{PQ}}: \ f_a^{-1}a(x) \to f_a^{-1}a(x) + \alpha_{\mathsf{PQ}}$$

where f_a is the order parameter associated with spont. breaking of $U(1)_{PQ}$ symmetry. The SM Lagrangian is augmented by axion interactions

 $\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{SM}} - \bar{\theta} \frac{g_s^2}{32\pi^2} G_{\mu\nu}^c \tilde{G}^{c\,\mu\nu} + \frac{1}{2} \partial_\mu a \partial^\mu a + \mathcal{L}_{\text{int}} [\partial^\mu a/f_a, \psi, \bar{\psi}] + \xi \frac{a}{f_a} \frac{g_s^2}{32\pi^2} G_{\mu\nu}^c \tilde{G}^{c\,\mu\nu}$

 \hookrightarrow the PQ current $J^{\mu}_{PQ} = \partial^{\mu} a + \frac{\partial \mathcal{L}_{int}}{\partial \partial_{\mu} a}$ is anomalous:

$$\partial_{\mu}J^{\mu}_{\mathsf{PQ}} \equiv \partial_{\mu}\left(\partial^{\mu}a + \frac{1}{f_{a}}\frac{\partial\mathcal{L}_{\mathsf{int}}}{\partial\partial_{\mu}a/f_{a}}\right) = \frac{\xi}{f_{a}}\frac{g_{s}^{2}}{32\pi^{2}}G^{c}_{\mu\nu}\tilde{G}^{c\,\mu\nu}$$

Andreas Wirzba

The effective potential for the axion field

The minimum of this effective potential occurs at $\langle a \rangle = \overline{\theta} f_a / \xi$:

$$\left| \frac{\partial V_{\text{eff}}}{\partial a} \right\rangle = -\frac{\xi}{f_a} \left| \frac{g_s^2}{32\pi^2} G_{\mu\nu}^c \tilde{G}^{c\,\mu\nu} \right\rangle \Big|_{(a)=\bar{\theta}f_a/\xi} = 0$$

such that the $\bar{\theta}$ term is canceled out at this minimum.

Without the QCD anomaly, the $U(1)_{PQ}$ symmetry is compatible with all values

$$0 \leq \xi \frac{\langle a \rangle}{f_a} < 2\pi$$

With the QCD anomaly, the axion potential has to be periodic and even in the *effective* vacuum angle $-\overline{\theta} + \langle a \rangle \xi / f_a \equiv \theta_a$:

- rotate θ_a via chiral rotation $q \rightarrow e^{i\theta_a \gamma_5/2}$ into the quark mass term, $-m_q \bar{q}q \rightarrow -m_q \bar{q}e^{i\gamma_5 \theta_a}q$,
- then in one-instanton approximation

$$\langle V_{\text{eff}} \rangle \simeq \frac{1}{2} \sum_{q} m_q \left(\bar{q} e^{i\gamma_5 \theta_a} q + \bar{q} e^{-i\gamma_5 \theta_a} q \right) \text{ and with } \lim_{m_q \to 0} \lim_{V_4 \to \infty} \langle \bar{q}q \rangle < 0 \& \lim_{m_q \to 0} \lim_{V_4 \to \infty} \langle \bar{q}i\gamma_5 q \rangle = 0$$

$$\Rightarrow \langle V_{\text{eff}} \rangle \approx \cos\left(-\bar{\theta} + \langle a \rangle \xi / f_a \right) \left(m_u \langle \bar{u}u \rangle + m_d \langle \bar{d}d \rangle \right) \text{ with the minimum at } \langle a \rangle = \frac{f_a}{\xi} \bar{\theta}$$

and
$$m_a^2 = \left(\frac{\partial^2 V_{\text{eff}}}{\partial a^2}\right)\Big|_{\langle a \rangle = f_a \bar{\theta} / \xi} \approx \left(\xi \frac{m_\pi f_\pi}{f_a}\right)^2$$
 as axion mass²

The road to the invisible axion models

The $U(1)_{PQ}$ order parameter f_a of the axion interaction Lagrangian

$$\mathcal{L}_{\text{int}}(\partial^{\mu} a/f_{a},\psi_{f}) + \xi \frac{a}{f_{a}} \frac{g_{s}^{2}}{32\pi^{2}} G_{\mu\nu}^{c} \tilde{G}^{c\,\mu\nu}$$

- associated with the scale of the spontaneous breaking of the PQ symmetry.
- Original PQ-model (with two Higgs) had $f_a \sim v_F \equiv \sqrt{v_1^2 + v_2^2} \approx 246 \text{ GeV}$ and predicted $\mathcal{BR}(K^+ \rightarrow \pi^+ + a) < 3 \cdot 10^{-5} \cdot (v_2/v_1 + v_1/v_2)$
- however $\mathcal{BR}_{exp}(K^+ \to \pi^+ \text{nothing}) < 3.8 \cdot 10^{-8}$ such that $f_a \gg v_F \sim$ basically two classes of invisible axion models:
- (1) **KSVZ model:** scalar field σ with $f_a = \langle \sigma \rangle \gg v_F$ and super-heavy quark with PQ charge and $M_Q \sim f_a$ Kim, PRL 43 (79); Shifman, Vainshtein, Zakharov, NPB 166 (80)
- (2) **DFSZ model:** adds to original PQ model a scalar field with PQ charge and $f_a = \langle \phi \rangle \gg v_F$ Dine, Fischler, Srednicki, PLB 104 (81), Zhitnitsky, Sov,J.NP 31 (80)

Photon couplings to axions

QCD anomaly induces an anomalous axion-coupling to 2 photons, e.g.:

$$\mathcal{L}_{\text{axion}}^{\text{KSVZ}} = \frac{a}{f_a} \left(\xi \frac{g_s^2}{32\pi^2} G_{\mu\nu}^a \tilde{G}^{a\mu\nu} + 3e_Q^2 \frac{\alpha_{\text{EM}}}{4\pi} F_{\mu\nu} \tilde{F}^{\mu\nu} \right)$$

 $\Rightarrow a\gamma\gamma$ coupling corrected by axion mixing with the lowest pseudoscalars:

$$3e_Q^2 \rightarrow 3e_Q^2 - \frac{4m_d + m_u}{3(m_u + m_d)}$$

$$\begin{aligned} \mathcal{L}_{a\gamma\gamma} &= \frac{G_{a\gamma\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu} & \text{in general:} \\ G_{a\gamma\gamma} &= \frac{\alpha_{\text{EM}}}{\pi f_a} \left[\frac{E}{2N} - \frac{4m_d + m_u}{3(m_d + m_u)} \right] \end{aligned}$$

E & *N* strength of em/strong anomaly, respectively:

DSFZ:
$$E/N = 8/3$$

= $3 \times \left[\left(\frac{2}{3}\right)^2 + \left(-\frac{1}{3}\right)^2 \right] + (-1)^2$,
KSVZ: $E/N = 0$ (if $e_Q := 0$)

A. Ringwald et al., PDG (2019)

Andreas Wirzba

Window for axion searches

S.Asztalos, ed. G.Bertone, Cambridge Univ. Press ('10)

Axion searches

- in Labs (Colliders, Lasers) light-shining-through-the-wall (e.g. ALPSII)
- for Astro-sources –Helioscopes (e.g. CAST, IAXO)
- for galactic axions Halioscopes/microwave cavities (e.g. ADMX)
- indirect constraints: from Astrophysics (red giants, SN 1987a)
 - and from Cosmology: DM bounds ($\Omega_{\textit{CDM}}\approx 0.22)$ on axion oscillations

$$\rightsquigarrow f_a^{\max} \leftrightarrow m_a^{\min}$$

Preliminary Summary: Axions

- predicted as a / the resolution of the *Strong CP problem*: to escape the fine-tuning problem $|\bar{\theta}| < 10^{-10}$ while $\delta_{KM} \sim O(1)$
- extendible to ALPS: axion-like particles with f_a and $g_{alps\gamma\gamma}$ decoupled
- couple feebly (~ 1/f_a) and gravitationally to matter and radiation
- can be candidates for Cold Dark Matter

i.e. with a well-determined and narrow window for searches:

however fine-tuning may back ...

Andreas Wirzba

Nov. 8-9, 2021

THE EMPIRE STRIKES BACK

Member of the Helmholtz Association

Andreas Wirzba

Nov. 8-9, 2021

Axions and EDMs: generic effective Lagrangian of the axion

Kiwoon Choi (Daejeon, Korea), Bethe-Lectures, Bonn, March 2015

$$\mathcal{L}_{eff}(a) = \underbrace{\mathcal{L}_{0}}_{\text{indep. of }a} + \underbrace{\frac{1}{2}(\partial_{\mu}a)^{2} + \frac{\partial_{\mu}a}{f_{a}}\tilde{J}^{\mu}(\bar{\psi}...\psi,\phi)}_{PQ-\text{invariant}} + \underbrace{\Delta\mathcal{L}_{UV}\left(=\epsilon m_{UV}^{4}\cos(a/f_{a}+\delta_{UV})\right)}_{PQ-\text{invariant}} \underbrace{\frac{a}{f_{a}}\frac{N}{32\pi^{2}}G\tilde{G}}_{expl. PQ-breaking}$$

a coupling from expl. PQ breaking at UV scale

 $\bar{\theta} = \langle a \rangle / f_a$ is calculable in terms of the *GP* phases (in the presence of axion !):

$$\begin{split} \delta_{\rm KM} &= {\rm Kobayashi-Maskawa phase in the PQ-invariant SM} \\ \delta_{\rm BSM} &= {\cal CP} {\rm phase in PQ-invariant }\underline{{\rm Beyond }\underline{{\rm SM}}} {\rm at the scale } m_{\rm BSM} \\ \delta_{\rm UV} &= {\cal CP} {\rm phase in explicit PQ-breaking sector at } m_{\rm UV} \sim M_{\rm Planck}, {\rm applying} \\ V(a) &= V_{\rm QCD} + V_{\rm KM} + V_{\rm BSM} + V_{\rm UV} \\ V_{\rm QCD} \sim -f_{\pi}^2 m_{\pi}^2 \cos(a/f_a) \quad ({\rm expl. PQ-breaking by low-energy QCD, min. at } \langle a \rangle = 0) \\ V_{\rm KM} \sim f_{\pi}^2 m_{\pi}^2 \times \underbrace{(f_{\pi}^2 f_{\pi}^4 \times 10^{-5} \sin \delta_{\rm KM} \times \sin(a/f_a))}_{\rm Ioop suppression} \times \frac{f_{\pi}^2}{m_{\rm BSM}^2} \sin \delta_{\rm BSM} \times \sin(a/f_a) \\ V_{\rm UV} \sim \epsilon m_{\rm UV}^4 \sin \delta_{\rm UV} \sin(a/f_a) \quad [{\rm from } \Delta {\cal L}_{\rm UV}] \\ \\ {\rm Member of the Helmholtz Association} \qquad {\rm Andreas Wirzba} \qquad {\rm Nov. 8-9, 2021} \qquad {\rm Slide 32139} \end{split}$$

$\bar{\theta} = \langle a \rangle / f_a \text{ and contributions to the nucleon EDM}$ $\bar{\theta} \sim 10^{-19} \sin \delta_{\text{KM}} + \underbrace{(10^{-2} - 10^{-3}) \times f_{\pi}^2 / \text{TeV}^2}_{(10^{-10} - 10^{-11})} \times \left(\frac{\text{TeV}}{m_{\text{BSM}}}\right)^2 \sin \delta_{\text{BSM}}$ $+ \epsilon \frac{m_{\text{UV}}^4}{f_{\pi}^2 m_{\pi}^2} \sin \delta_{\text{UV}} \quad (\text{with } \epsilon < 10^{-10} f_{\pi}^2 m_{\pi}^2 / m_{\text{UV}}^4 \sim 10^{-88} \text{ for } m_{\text{UV}} \sim M_{\text{Pl}})$

→ Regardless of the existence of BSM physics near the TeV scale,

 $\bar{\theta} = \langle a \rangle / f_a$ can have *any value* below the present bound ~ 10⁻¹⁰.

likely dominated by $\overline{\theta}_{UV}$ induced by \mathcal{CP} in the PQ sector @ $m_{UV}(\sim M_{PI})$, and/or by the BSM contribution near the TeV scale.

Member of the Helmholtz Association

Andreas Wirzba

Dialectics: from the $U(1)_A$ problem to axions

The Hare and the Hedgehog – a fairy tale

- $U(1)_A$ problem of QCD: $m_{\eta,\eta'} > \sqrt{3}m_{\pi} \approx 240 \,\text{MeV}$
 - proposed solution: $U(1)_A$ anomaly
- Problem: resulting current proportional to a total derivative in perturbation theory

 solution: non-perturbative QCD vacuum including instantons
- Problem: vacuum $|n\rangle$ not unique, not gauge inv., cluster decomposition viol.
 - solution: θ vacuum (superposition of all $|n\rangle$ vacua $\times e^{i\theta n}$)
- Problem: neutron EDM bound \sim strong CP problem
 - proposed solution: Peccei-Quinn mechanism and axions
- Problem: original Peccei-Quinn model w. $f_a = v_F$ excluded by exp.
 - solution: invisible axions with $f_a \gg v_F$
- Problem: how to detect an (invisible) axion
 - possible solution: direct/indirect searches in rather narrow window
- Problem: fine-tuning back from explicit PQ-breaking at the UV scale
 - possible solution: check several EDMs (e.g. $d_n, d_p, d_D, d_{^3\text{He}}, ...)$

Road map from EDM measurements to the sources

Experimentalist's point of view →

← Theorist's point of view

Measured upper bounds for EDMs

K. Kirch, J. Pretz & A.W., Physik Journal 16 (2017) Nr. 11

Note: $d_{\theta}^{\rm SM}$, $d_{\mu}^{\rm SM}$, and $d_{\tau}^{\rm SM}$ should be 10⁻⁶ times smaller as indicated above, see M. Pospelov & A. Ritz, PRD 89 (2014)

1st goal: measurement of any non-zero permanent EDM to establish CP violation beyond the SM 2nd goal: measurements of several non-zero EDMs to narrow down the underlying mechanism

Oscillating EDMs: back to axions/ALPs

P.W. Graham & S. Rajendran, PRD 84 (2011) & 88 (2013)

a test of hypothesis that Dark Matter (DM) in our Galaxy is saturated by classical oscillating field of axions (or ALPs) of mass 10^{-22} eV $\leq m_a \leq 10^{-7}$ eV

$$\mathcal{L}_{axion} = C_G \frac{a}{f_a} \frac{g_s^2}{16\pi^2} \text{tr } G\tilde{G} + \frac{1}{2} \partial_\mu a \partial^\mu a - \frac{1}{2} m_a^2 a^2 \qquad \text{(for axions: } C_G := 1)$$

(axion-mass range $\leftrightarrow 10^{29} \text{GeV} \gtrsim f_a \gtrsim 10^{14} \text{GeV}$ if $m_a \approx 0.5 m_\pi f_\pi / f_a$ in QCD epoch)

Bounds on oscillating ALPs from Astrophysics and nEDM searches?

Member of the Helmholtz Association

Andreas Wirzba

Bounds on oscillating ALPs from storage ring EDM searches?

Member of the Helmholtz Association

Andreas Wirzba

Nov. 8-9, 2021

EW Baryogenesis: Standard Model

Andreas Wirzba

Nov. 8-9, 2021

EW Baryogenesis: Standard Model

Sakharov criteria

- B violation $\sqrt{(\Delta(B+L) \neq 0 \text{ sphaleron transitions})}$
- 2 C & CP violation x (CKM determinant)
- Nonequilibrium dynamics x (only fast cross over for µ_{chem} = 0)

Nov. 8-9, 2021

Andreas Wirzba

Construction of the CKM matrix

Since weak interactions do not respect the global flavor symmetry, there is mixing within the groups of quarks with the same charge:

$$U \equiv \begin{pmatrix} u \\ c \\ t \end{pmatrix} \rightarrow \tilde{U} = M_U U, \qquad D \equiv \begin{pmatrix} d \\ s \\ b \end{pmatrix} \rightarrow \tilde{D} = M_D D,$$

where $M_U \& M_D$ are 3×3 unitary matrices

$$\hookrightarrow \text{ charged weak current: } J_{\mu} = \overline{\tilde{U}}^{\mu} \gamma_{\mu} (1 - \gamma_5) \widetilde{D}^{\mu} = \overline{U} \gamma_{\mu} (1 - \gamma_5) \underbrace{\mathcal{M}_{U}^{\dagger} \mathcal{M}_{D}}_{U} D.$$

CKM matrix M

• *M* unitary $n_G \times n_G$ matrix for n_G quark generations $\sim n_G^2$ real parameters.

■ $2n_G - 1$ of these can be absorbed by the relative phases of the quark wave functions $\rightarrow (n_G - 1)^2$ remaining parameters:

 n_G = 2: one remaining real parameter: *Cabibbo angle*

 $n_G = 3$: 4 real parameters: O(3) matrix with $\frac{1}{2}3 \cdot (3-1) = 3$ angles plus 1 GP phase

- Lepton case: neutrinos may be Majoranas: ~> 3 angles plus 3 GP phases
- If phase(s) present, *M* complex matrix, whereas CP invariance $\rightarrow M^* = M$!

Hidden Symmetry and Goldstone Bosons

 $\begin{bmatrix} Q_V^a, H \end{bmatrix} = 0, \quad \text{and} \quad e^{-iQ_V^a} |0\rangle = |0\rangle \Leftrightarrow Q_V^a |0\rangle = 0 \quad (\text{Wigner-Weyl realization}) \\ \begin{bmatrix} Q_A^a, H \end{bmatrix} = 0, \quad \text{but} \quad e^{-iQ_A^a} |0\rangle \neq |0\rangle \Leftrightarrow Q_A^a |0\rangle \neq 0 \quad (\text{Nambu-Goldstone realiz.})$

• Consequence: $e^{-iQ_A^a}|0\rangle \neq |0\rangle$ is not the vacuum, but

 $He^{-iQ_A^a}|0\rangle = e^{-iQ_A^a}H|0\rangle = 0$ is a massless state!

Goldstone theorem: for *continuous* global symmetry that does *not* leave the ground state invariant ('hidden' or 'spontaneously broken' symmetry)

- mass- and spinless particles, "Goldstone bosons" (GBs)
- number of (relativistic) GBs = number of broken symmetry generators
- axial generators broken ⇒ GBs should be pseudoscalars
- finite masses via (small) quark masses
 - \hookrightarrow 8 lightest hadrons: π^{\pm} , π^{0} , K^{\pm} , K^{0} , \bar{K}^{0} , η (not η')
- Goldstone bosons decouple (non-interacting) at vanishing energy & momentum

Andreas Wirzba

Illustration: spontaneous symmetry breaking

The symmetries of QCD

$$\mathcal{L}_{QCD} = -\frac{1}{2} \operatorname{Tr} \left(G_{\mu\nu} G^{\mu\nu} \right) + \sum_{f} \bar{q}_{f} (i \not D - m_{f}) q_{f} + \dots$$
$$D_{\mu} = \partial_{\mu} - i g A_{\mu} \equiv \partial_{\mu} - i g A_{\mu}^{a} \frac{\lambda^{a}}{2}, \qquad G_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} - i g [A_{\mu}, A_{\nu}]$$

- Lorentz-invariance, P, C, T invariance, SU(3)_c gauge invariance
- The masses of the u, d, s quarks are small: $m_{u,d,s} \ll 1 \text{ GeV} \approx \Lambda_{\text{hadron}}$.
- Chiral decomposition of quark fields:

$$q = \frac{1}{2}(1 - \gamma_5)q + \frac{1}{2}(1 + \gamma_5)q = q_L + q_R.$$

For massless fermions: left-/right-handed fields do not interact

 $\mathcal{L}[q_L, q_R] = i\bar{q}_L \not D q_L + i\bar{q}_R \not D q_R - m(\bar{q}_L q_R + \bar{q}_R q_L)$ and \mathcal{L}^0_{QCD} invariant under (global) chiral U(3)_L×U(3)_R transformations: \Rightarrow rewrite U(3)_L×U(3)_R = SU(3)_L×SU(3)_A×U(1)_V×U(1)_A.

- $SU(3)_V = SU(3)_{R+L}$: still conserved for $m_u = m_d = m_s > 0$
- $U(1)_V = U(1)_{R+L}$: quark or baryon number is conserved
- U(1)_A = U(1)_{R-L}: broken by quantum effects (U(1)_A anomaly + instantons)

✓ back

Mass term of U(3) pseudo-Goldstone bosons

S. Weinberg, Phys. Rev. D 11 (1975) 3583 & The Quantum Theory of Fields, Vol. II, Ch. 19.10 (1996)

$$\frac{F_{\pi}^{2}(2B_{0})}{4}\operatorname{Tr}\left(\mathcal{M}(U+U^{\dagger})\right) \quad \text{with} \quad U = \exp\left(i\sum_{a=1}^{8}\lambda^{a}\phi^{a}/F_{\pi} + i\lambda^{0}\eta^{0}/F_{s}\right) \equiv e^{i\tilde{\phi}/F_{\pi}}$$

where
$$\tilde{\phi} = \begin{bmatrix} \pi^0 + \frac{1}{\sqrt{3}} \eta^6 & \sqrt{2}\pi^+ & \sqrt{2}K^+ \\ \sqrt{2}\pi^- & -\pi^0 + \frac{1}{\sqrt{3}} \eta^8 & \sqrt{2}K^0 \\ sqrt2K^- & \sqrt{2}K^0 & -\frac{2}{\sqrt{3}} \eta^8 \end{bmatrix} + \sqrt{\frac{2}{3}} \frac{F_\pi}{F_s} \begin{bmatrix} \eta^0 & 0 & 0 \\ 0 & \eta^0 & 0 \\ 0 & 0 & \eta^0 \end{bmatrix} \& \mathcal{M} = \begin{bmatrix} m_u & 0 & 0 \\ 0 & m_d & 0 \\ 0 & 0 & m_s \end{bmatrix}$$

For flavor-neutral and flavor-charged pGBs:

Me

$$B_{0}\operatorname{Tr}\left(\mathcal{M}\tilde{\phi}^{2}\right) = B_{0}\left[m_{u}\left(\pi^{0} + \frac{1}{\sqrt{3}}\eta^{8} + \sqrt{\frac{2}{3}}\frac{F_{\pi}}{F_{s}}\eta^{0}\right)^{2} + m_{d}\left(-\pi^{0} + \frac{1}{\sqrt{3}}\eta^{8} + \sqrt{\frac{2}{3}}\frac{F_{\pi}}{F_{s}}\eta^{0}\right)^{2} + 2(m_{u} + m_{s})\kappa^{+}\kappa^{-} + 2(m_{d} + m_{s})\kappa^{0}\bar{\kappa}^{0}\right]$$

 \Rightarrow the mass-mixing matrix of the flavor-neutrals has two pseudo-zero modes for $m_{u,d} \ll m_s$ fixed:

't Hooft's explicit instanton solution for SU(2)

G. 't Hooft, Phys. Rev. D 14 (1976) 3432-3450

In terms of the anti-symmetric 't Hooft symbols

the one-(anti)instanton [=(anti-)self-dual] solution reads

$$A^{a}_{\mu}(x) = \stackrel{(-)_{a}}{\eta_{\mu\nu}} \partial_{\nu} \ln\left(1 + \frac{(x - \bar{x})^{2}}{\rho^{2}}\right) = \frac{2 \stackrel{(-)_{a}}{\eta_{\mu\nu}} (x_{\nu} - \bar{x}_{\nu})}{(x - \bar{x})^{2} + \rho^{2}} \implies G^{a}_{\mu\nu} = \frac{-4\rho^{2} \stackrel{(-)_{a}}{\eta_{\mu\nu}}}{\left[(x - \bar{x})^{2} + \rho^{2}\right]^{2}}.$$

The pertinent **Yang-Mills action** $S_E = 8\pi^2/g_s^2$ itself is **independent** of the instanton **position** \bar{x}_{μ} , **scale** (size) ρ , and (gauge) **rotations**.

Instanton solutions for bigger unitary unimodular groups (e.g. SU(3)) can be obtained by **natural embedding** $SU(2) \subset SU(N)$ from the SU(2) solution: $\begin{pmatrix} SU(2) & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \end{pmatrix}$.

Topological charge and susceptibility

- Topological density $q(x) = \frac{g_s^2}{32\pi^2} G^a_{\mu\nu}(x) \tilde{G}^{a\mu\nu}(x)$
- Topological charge $Q = \int d^4x q(x)$
- Partition function (Ω is space-time volume)

$$Z(\theta) = \int \mathcal{D}Ae^{-S_{YM}[A]+i\theta Q} \equiv e^{-\Omega F(\theta)} \text{ such that } Q = \frac{1}{i} \frac{\partial}{\partial \theta} \ln Z(\theta) \Big|_{\theta=0}.$$

$$\to \mathcal{A}_{\theta}^{I=1} \propto e^{-\int d^4 x_E \left(\frac{1}{8g_S^2} (G \pm \tilde{G})^2 + \left(\frac{8\pi^2}{g_S^2} \mp i\theta\right) \frac{1}{32\pi^2} G\tilde{G}\right)} \propto e^{-\frac{8\pi^2}{g_S^2(\mu)} \pm i\theta} \text{ (note } \theta \in [-\pi, \pi]) \text{ one-instanton amplitude.}$$

- Topological susceptibility $\chi = \frac{\partial^2 F(\theta)}{\partial \theta^2}\Big|_{\theta=0} = \int d^4 x_{\mathsf{E}} \langle q(x)q(0) \rangle = \lim_{\Omega \to \infty} \frac{\langle Q^2 \rangle}{\Omega}$
- Note: $2N_F$ from $\partial_\mu J^\mu_A = 2N_F q(x)$ & $\chi = \mathcal{O}(N^0_c)$ since $g_s \sim 1/\sqrt{N_c}$ and $\langle G\tilde{G}(x)G\tilde{G}(0) \rangle \sim N^2_c$:

$$\sim \frac{F_{\eta'}^{2} m_{\eta'}^{2}}{2N_{F}} = \int d^{4}x \langle q(x)q(0) \rangle = \left(\frac{g_{s}^{2}}{32\pi^{2}}\right)^{2} \int d^{4}x \left(G_{\mu\nu}^{a}(x)\tilde{G}_{\rho\sigma}^{a\mu\nu}(x)G_{\rho\sigma}^{b}(0)\tilde{G}_{\rho\sigma}^{b\rho\sigma}(0)\right) = \mathcal{O}(N_{c}^{0})$$

$$\Rightarrow m_{\eta'} = \mathcal{O}(N_{c}^{-1/2})$$

 since

$$F_{\eta'} = \mathcal{O}(N_{c}^{1/2})$$

$$= \mathcal{O}(N_{c}^{1/2})$$

Member of the Helmholtz Association

Andreas Wirzba

Instanton amplitudes

• Since $G^{a}_{\mu\nu}\tilde{G}^{a\mu\nu} = \partial_{\mu}K^{\mu}$ is a total derivative,

$$\mathcal{L}_{\text{QCD}} = -\bar{\theta} \frac{g_s^2}{32\pi^2} \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma}$$

is irrelevant in perturbation theory.

Non-perturbatively, large gauge transformations (instantons) exist:

$$\int_{R^4} d^4 x_E \, \frac{1}{32\pi^2} G\tilde{G} = \text{ integer}$$

Some amplitudes depend on the periodic angle parameter

$$\begin{split} \bar{\theta} &= \bar{\theta} + 2\pi : \\ \mathcal{A}_{\theta} &\propto e^{-S_{E}} \propto e^{-\int d^{4}x_{E} \left(\frac{1}{8g_{s}^{2}}(G \pm \tilde{G})^{2} \mp \left(\frac{8\pi^{2}}{g_{s}^{2}} \mp i\bar{\theta}\right)\frac{1}{32\pi^{2}}G\tilde{G}\right)} \propto e^{-\frac{8\pi^{2}}{g_{s}^{2}(\mu)} \pm i\bar{\theta}} \end{split}$$

- Weak coupling $g_s^2(\mu) \ll 1$: instanton amplitudes exponentially small.
- For strong coupling $g_s^2(\mu) \sim 8\pi^2$, no suppression

Double Well Potential and Spontaneous Symmetry Breaking

Comparison of classical with quantum scenario for sequence:

(1) symmetric case \rightarrow (2) explicit perturbation of a symmetry \rightarrow (3) restored symmetry

Double Well Potential and Spontaneous Symmetry Breaking

Comparison of classical with quantum scenario for sequence:

(1) symmetric case \rightarrow (2) explicit perturbation of a symmetry \rightarrow (3) restored symmetry

Let $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle = d \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle$ with $\vec{d} \equiv \int \vec{r} \rho(\vec{r}) d^3 r$ be an EDM operator in a stationary state $|j^{\mathsf{P}} \rangle$ of definite parity P and nonzero spin *j*, such that

 $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle \to \mp \langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle \quad \& \quad \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle \to \pm \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle \quad \text{under} \quad \begin{cases} \text{space reflection,} \\ \text{time reversal.} \end{cases}$

If $d \neq 0$ and $|j^{P}\rangle$ has *no* degeneracy (besides rotational), then $\mathcal{P} \& \mathcal{T}$.

^t non-selfconjugate particle is not its own antiparticle \Rightarrow at least one "charge" non-zero

Werner Bernreuther (2012)

Let $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle = d \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle$ with $\vec{d} \equiv \int \vec{r} \rho(\vec{r}) d^3 r$ be an EDM operator in a stationary state $|j^{\mathsf{P}} \rangle$ of definite parity P and nonzero spin *j*, such that

 $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle \to \mp \langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle \quad \& \quad \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle \to \pm \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle \quad \text{under} \quad \left\{ \begin{array}{c} \text{space reflection,} \\ \text{time reversal.} \end{array} \right.$

If $d \neq 0$ and $|j^{P}\rangle$ has no degeneracy (besides rotational), then $\mathbb{P} \& \mathbb{X}$.

* non-selfconjugate particle is not its own antiparticle \Rightarrow at least one "charge" non-zero

It can be interpreted as a special case of the theorem:

Any *finite* quantum system without *explicit* symmetry breaking cannot have a spontaneously broken groundstate.

Keywords: symmetric double-well potential and quantum tunneling (instantons)

Let $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle = d \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle$ with $\vec{d} \equiv \int \vec{r} \rho(\vec{r}) d^3 r$ be an EDM operator in a stationary state $|j^{\mathsf{P}} \rangle$ of definite parity P and nonzero spin *j*, such that

 $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle \to \mp \langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle \quad \& \quad \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle \to \pm \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle \quad \text{under} \quad \left\{ \begin{array}{c} \text{space reflection,} \\ \text{time reversal.} \end{array} \right.$

If $d \neq 0$ and $|j^{P}\rangle$ has *no* degeneracy (besides rotational), then $\mathcal{P} \& \mathcal{T}$.

non-selfconjugate particle is *not* its own antiparticle \Rightarrow at least one "charge" *non*-zero

State $|j^{P}\rangle$ can be *'elementary'* particle (quark, charged lepton, W^{\pm} boson, Dirac neutrino, ...)

Let $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle = d \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle$ with $\vec{d} \equiv \int \vec{r} \rho(\vec{r}) d^3 r$ be an EDM operator in a stationary state $|j^{\mathsf{P}} \rangle$ of definite parity P and nonzero spin *j*, such that

 $\langle j^{\mathsf{P}} \big| \, \vec{d} \, \big| \, j^{\mathsf{P}} \rangle \to \mp \langle j^{\mathsf{P}} \big| \, \vec{d} \, \big| \, j^{\mathsf{P}} \rangle \quad \& \quad \langle j^{\mathsf{P}} \big| \, \vec{J} \, \big| \, j^{\mathsf{P}} \rangle \to \pm \langle j^{\mathsf{P}} \big| \, \vec{J} \, \big| \, j^{\mathsf{P}} \rangle \quad \text{under} \quad \left\{ \begin{array}{l} \text{space reflection,} \\ \text{time reversal.} \end{array} \right.$

If $d \neq 0$ and $|j^{P}\rangle$ has *no* degeneracy (besides rotational), then $\mathbb{P} \& \mathbb{Y}$.

non-selfconjugate particle is *not* its own antiparticle \Rightarrow at least one "charge" *non*-zero

State $|j^{P}\rangle$ can be *'elementary'* particle (quark, charged lepton, W^{\pm} boson, Dirac neutrino, ...)

'Isn't an elementary particle a point-particle without structure? How can such a particle be polarized and support an EDM?'

Let $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle = d \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle$ with $\vec{d} \equiv \int \vec{r} \rho(\vec{r}) d^3 r$ be an EDM operator in a stationary state $|j^{\mathsf{P}} \rangle$ of definite parity P and nonzero spin *j*, such that

 $\langle j^{\mathsf{P}} \big| \, \vec{d} \, \big| \, j^{\mathsf{P}} \rangle \to \mp \langle j^{\mathsf{P}} \big| \, \vec{d} \, \big| \, j^{\mathsf{P}} \rangle \quad \& \quad \langle j^{\mathsf{P}} \big| \, \vec{J} \, \big| \, j^{\mathsf{P}} \rangle \to \pm \langle j^{\mathsf{P}} \big| \, \vec{J} \, \big| \, j^{\mathsf{P}} \rangle \quad \text{under} \quad \left\{ \begin{array}{l} \text{space reflection,} \\ \text{time reversal.} \end{array} \right.$

If $d \neq 0$ and $|j^{P}\rangle$ has *no* degeneracy (besides rotational), then $\mathcal{P} \& \mathcal{T}$.

^t non-selfconjugate particle is not its own antiparticle \Rightarrow at least one "charge" non-zero

State $|j^{P}\rangle$ can be *'elementary'* particle (quark, charged lepton, W^{\pm} boson, Dirac neutrino, ...)

'Isn't an elementary particle a point-particle without structure? How can such a particle be polarized and support an EDM?'

There are always vacuum polarizations with rich short-distance structure

(g-2 of the electron and muon aren't exactly zero either)

Let $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle = d \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle$ with $\vec{d} \equiv \int \vec{r} \rho(\vec{r}) d^3 r$ be an EDM operator in a stationary state $|j^{\mathsf{P}} \rangle$ of definite parity P and nonzero spin *j*, such that

 $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle \to \mp \langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle \quad \& \quad \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle \to \pm \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle \quad \text{under} \quad \begin{cases} \text{space reflection,} \\ \text{time reversal.} \end{cases}$

If $d \neq 0$ and $|j^{P}\rangle$ has *no* degeneracy (besides rotational), then $\mathcal{P} \& \mathcal{T}$.

non-selfconjugate particle is *not* its own antiparticle \Rightarrow at least one "charge" *non*-zero

State $|j^{P}\rangle$ can be 'elementary' particle (quark, charged lepton, W^{\pm} boson, Dirac neutrino, ...) or a 'composite' neutron, proton, nucleus, atom, molecule.

Let $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle = d \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle$ with $\vec{d} \equiv \int \vec{r} \rho(\vec{r}) d^3 r$ be an EDM operator in a stationary state $|j^{\mathsf{P}} \rangle$ of definite parity P and nonzero spin *j*, such that

 $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle \to \mp \langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle \quad \& \quad \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle \to \pm \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle \quad \text{under} \quad \begin{cases} \text{space reflection,} \\ \text{time reversal.} \end{cases}$

If $d \neq 0$ and $|j^{P}\rangle$ has no degeneracy (besides rotational), then $\mathbb{P} \& \mathbb{X}$.

non-selfconjugate particle is *not* its own antiparticle \Rightarrow at least one "charge" *non*-zero

State $|j^{P}\rangle$ can be 'elementary' particle (quark, charged lepton, W^{\pm} boson, Dirac neutrino, ...) or a 'composite' neutron, proton, nucleus, atom, molecule.

'What about the huge EDMs of H₂O or NH₃ molecules?'

Let $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle = d \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle$ with $\vec{d} \equiv \int \vec{r} \rho(\vec{r}) d^3 r$ be an EDM operator in a stationary state $|j^{\mathsf{P}} \rangle$ of definite parity P and nonzero spin *j*, such that

 $\langle j^{\mathsf{P}} \big| \, \vec{d} \, \big| j^{\mathsf{P}} \rangle \to \mp \langle j^{\mathsf{P}} \big| \, \vec{d} \, \big| j^{\mathsf{P}} \rangle \quad \& \quad \langle j^{\mathsf{P}} \big| \, \vec{J} \, \big| \, j^{\mathsf{P}} \rangle \to \pm \langle j^{\mathsf{P}} \big| \, \vec{J} \, \big| \, j^{\mathsf{P}} \rangle \quad \text{under} \quad \left\{ \begin{array}{l} \text{space reflection,} \\ \text{time reversal.} \end{array} \right.$

If $d \neq 0$ and $|j^{P}\rangle$ has no degeneracy (besides rotational), then $\mathbb{P} \& \mathbb{X}$.

non-selfconjugate particle is *not* its own antiparticle \Rightarrow at least one "charge" *non*-zero

State $|j^{P}\rangle$ can be 'elementary' particle (quark, charged lepton, W^{\pm} boson, Dirac neutrino, ...) or a 'composite' neutron, proton, nucleus, atom, molecule.

'What about the huge EDMs of H_2O or NH_3 molecules?'

The ground states of these molecules at non-zero temperatures or strong *E*-fields are mixtures of at least 2 opposite parity states:

The theorem doesn't apply for degenerate states: neither \mathcal{X} nor \mathcal{P}' !

Let $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle = d \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle$ with $\vec{d} \equiv \int \vec{r} \rho(\vec{r}) d^3 r$ be an EDM operator in a stationary state $|j^{\mathsf{P}} \rangle$ of definite parity P and nonzero spin *j*, such that

 $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle \to \mp \langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle \quad \& \quad \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle \to \pm \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle \quad \text{under} \quad \begin{cases} \text{space reflection,} \\ \text{time reversal.} \end{cases}$

If $d \neq 0$ and $|j^{P}\rangle$ has *no* degeneracy (besides rotational), then $\mathcal{P} \& \mathcal{T}$.

non-selfconjugate particle is *not* its own antiparticle \Rightarrow at least one "charge" *non*-zero

State $|j^{P}\rangle$ can be *'elementary'* particle (quark, charged lepton, W^{\pm} boson, Dirac neutrino, ...) or a *'composite'* neutron, proton, nucleus, atom, molecule.

'But what about the induced EDM (polarization)?'

Let $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle = d \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle$ with $\vec{d} \equiv \int \vec{r} \rho(\vec{r}) d^3 r$ be an EDM operator in a stationary state $|j^{\mathsf{P}} \rangle$ of definite parity P and nonzero spin *j*, such that

 $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle \to \mp \langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle \quad \& \quad \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle \to \pm \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle \quad \text{under} \quad \left\{ \begin{array}{c} \text{space reflection,} \\ \text{time reversal.} \end{array} \right.$

If $d \neq 0$ and $|j^{P}\rangle$ has *no* degeneracy (besides rotational), then $\mathcal{P} \& \mathcal{T}$.

^t non-selfconjugate particle is not its own antiparticle \Rightarrow at least one "charge" non-zero

State $|j^{P}\rangle$ can be 'elementary' particle (quark, charged lepton, W^{\pm} boson, Dirac neutrino, ...) or a 'composite' neutron, proton, nucleus, atom, molecule.

'But what about the induced EDM (polarization)?'

The induced EDM is *quadratic* in the electric field and *neither* \mathcal{P} nor \mathcal{X}

induced EDM	\longleftrightarrow	quadratic Stark effect ($\propto E^2$)
permanent EDM	\longleftrightarrow	linear Stark effect ($\propto E$)

Theorem: Permanent EDMs of *non*-selfconjugate^{*} particles with spin $i \neq 0$

Let $(j^{P}|\vec{d}|j^{P}) = d(j^{P}|\vec{J}|j^{P})$ with $\vec{d} = (\vec{r}\rho(\vec{r})d^{3}r)$ be an EDM operator in a stationary state $|j^{P}\rangle$ of definite parity P and nonzero spin *j*, such that

 $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle \to \mp \langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle \& \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle \to \pm \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle$ under time reversal.

If $d \neq 0$ and $|i^{P}\rangle$ has no degeneracy (besides rotational), then $\mathbb{P} \& \mathbb{Y}$.

non-selfconjugate particle is not its own antiparticle \Rightarrow at least one "charge" non-zero

State $|i^{P}\rangle$ can be 'elementary' particle (quark, charged lepton, W^{\pm} boson, Dirac neutrino, ...) or a *'composite'* neutron, proton, nucleus, atom, molecule.

If the interactions are described by an action which is

local, Lorentz-invariant, and hermitian

then CPT invariance holds: thus $T \iff CP$

The essence of electric dipole moments (EDMs)

A spherical cow has no EDM

Member of the Helmholtz Association

Andreas Wirzba

Nov. 8-9, 2021

The essence of electric dipole moments (EDMs)

A spherical cow has no EDM and a spherical bastard* has no EDM either

* according to Fritz Zwicky a person who is a bastard no matter from which direction you look at him or her

- even worse than a blockhead !

l back

Andreas Wirzba

Nov. 8-9, 2021

Matter Excess in the Universe

- **1** End of inflation: $n_B = n_{\bar{B}}$
- 2 Cosmic Microwave Bkgr.
 - SM(s) prediction: (n_B -)γ_{CMB} ~ 10⁻¹⁸
 - WMAP+PLANCK ('13): n_B/n_γ|_{CMB}=(6.05±0.07)10⁻¹⁰

Sakharov conditions ('67) for dyn. generation of net *B*:

- 1 *B* violation to depart from initial *B*=0
- 2 C & CP violation to distinguish *B* from \overline{B} prod. rates
- Either CPT violation or out-of-thermal equilibrium to distinguish *B* production from back reaction and to escape (*B*)=0

if CPT holds Uback

Andreas Wirzba

R. Battesti et al., Springer Lect. Notes Phys. 741 (2008)

- Time-reversed *Primakoff effect*: $a + \gamma_{\text{virtual}} \rightarrow \gamma$
- most sensitive for $10^{-5} \text{ eV} \le m_a \le 1 \text{ eV}$
- depends on field *B*, length *L*, transferred momentum $q = m_a/2E$
- and solar models

CAST experiment (CERN Axion Solar Telescope)

- *m_a* < 1.17 eV (intersecting the KSVZ band)
- Next generation: IAXO (International Axion Oberservatory)@CERN

Andreas Wirzba

Nov. 8-9, 2021

Halioscopy

R. Battesti et al., Springer Lect. Notes Phys. 741 (2008)

- Search for galactic axions via Primakoff effect: $a + \gamma_{virtual} \rightarrow \gamma$
- Tunable cavity search for microwave resonances
- Most sensitive detectors for CDM axions ($\mu eV \leq m_a \leq meV$)

ADMX (Axion Dark Matter eXperiment) @University of Washington

- sensitivity to KVSZ axions between 1.9 μ eV $\leq m_a \leq$ 3.3, μ eV
- still on-going (ADMX II)

Supernovae (SN1987a)

- Axions emitted by nucleon Bremsstrahlung NN → NNa
 - depends therefore on g_{aNN}
- Constraints:
 - energy loss rate $\epsilon_{axion} \lesssim 10^{19} erg g^{-1} s^{-1}$
 - Neutrino burst duration

Resonance method for oscillating ALPs searches at storage rings

Spin precession in magnetic field in particle rest frame:

$$\frac{d\vec{S}}{dt} = \vec{\mu} \times \vec{B} + \vec{d} \times \vec{E} = (\vec{\Omega}_{g-2} + \vec{\Omega}_{EDM}) \times \vec{S}$$

$$= \underbrace{-\frac{e}{m} \frac{g-2}{2} \vec{B} \times \vec{S}}_{\text{in ring plane}} + \underbrace{\frac{-e}{2m} \eta(t) \left(\vec{\beta} \times \vec{B}\right) \times \vec{S}}_{\text{perp. to ring plane}} \quad \text{with } \eta(t) = \eta_{\text{stat}} + \eta_{\text{osc}} \cos(m_a t + \phi)$$

- Idea: measure vertical spin polarization for different g 2 frequencies
- off resonance: averaging to zero / on resonance: accumulation ~> jump

