

Symmetries and their realization

Ulf-G. Meißner, Univ. Bonn & FZ Jülich

- Ulf-G. Meißner, Symmetries and their realization, - Lectures, Tiflis (online), November 8 & 9, 2021 -

CONTENTS

- Short introduction: Symmetries
- Symmetries and their realization
- Chiral symmetry in QCD
- Light quark flavor symmetries
- Dimensional transmutation, the trace anomaly and all that
- ullet Large- N_C QCD and the mass of the η'
- Heavy quark symmetries
- Summary & outlook

Short introduction: Symmetries

Some remarks on symmetries

- Generally, these are not perfect
 - \hookrightarrow breaking of symmetries
 - \hookrightarrow hidden symmetries
- Symmetries entail conservation laws \hookrightarrow Rotational O(3) symmetry
 - $\hookrightarrow [H,J]=0$
- In the quantum world, more is possible
 - \hookrightarrow spontaneous symmetry breaking
 - $\hookrightarrow \text{anomalous symmetry breaking}$

C Andreas./Flickr C.C. 2.0

- Explicit symmetry breaking
 - $\mathcal{L}_0 = \frac{1}{2}\dot{x}^2 + \frac{1}{2}x^2$, invariant under $x \to -x$ $\mathcal{L} = \mathcal{L}_0 + \epsilon x$, $|\epsilon| \ll 1 \longrightarrow$ approximate symmetry \rightarrow perturbation theory
- Spontaneous symmetry breaking (ground state has less symmetry than *L*)

$$V(\chi) = a\chi^2 + b\chi^4$$
 , with $V(-\chi) = V(\chi)$

 $\chi_{
m min}=\pm\sqrt{-a/2b}$

• Anomalous symmetry breaking

 \hookrightarrow upon quantization, no classical analogue

QCD – basic facts

•
$$\mathcal{L}_{QCD} = -\frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu,a} + \sum_{f} \bar{q}_{f} (i \not D - \mathcal{M}) q_{f} + \dots$$

$$D_{\mu} = \partial_{\mu} - ig A^{a}_{\mu} \lambda^{a} / 2$$

$$G^{a}_{\mu\nu} = \partial_{\mu} A^{a}_{\nu} - \partial_{\nu} A^{a}_{\mu} - g [A^{b}_{\mu}, A^{c}_{\nu}]$$

$$f = (u, d, s, c, b, t)$$

$$\dots \text{ covered by Andreas}$$

• running of $\alpha_s = \frac{g^2}{4\pi} \Rightarrow \Lambda_{\rm QCD} = 210 \pm 14 \,{\rm MeV} \quad (N_f = 5, \overline{MS}, \mu = 2 \,{\rm GeV})$

• light (u,d,s) and heavy (c,b,t) quark flavors:

 $egin{aligned} m_{ ext{light}} \ll \Lambda_{ ext{QCD}} & m_{ ext{heavy}} \gg \Lambda_{ ext{QCD}} & m_u &= 2.2^{+0.5}_{-0.4} \, ext{MeV} & m_c &= 1.27 \pm 0.02 \, ext{GeV} & m_d &= 4.7^{+0.5}_{-0.2} \, ext{MeV} & m_b &= 4.18^{+0.03}_{-0.02} \, ext{GeV} & m_b &= 4.18^{+0.03}_{-0.02} \, ext{GeV} & m_s &= 93^{+11}_{-5} \, ext{MeV} & m_t &= 172.8 \pm 0.3 \, ext{GeV} & \end{tabular}$

– Ulf-G. Meißner, Symmetries and their realization, – Lectures, Tiflis (online), November 8 & 9, 2021 –

Symmetries of QCD

- $SU(3)_c$ gauge symmetry (local)
 - basic construction principle: $q(x) o q^g(x) = U(x)q(x)$, $U(x) \in SU(3)$ $A_\mu(x) o A^g_\mu(x) = U(x)A_\mu(x)U(x)^\dagger - rac{i}{g}\partial_\mu U(x) \cdot U^\dagger(x)$
 - \hookrightarrow relates the fermion-gauge field coupling to the 3-gluons and 4-gluon couplings
- $SU(3)_L \times SU(3)_R$ chiral symmetry \rightarrow spontaneously broken / Goldstone bosons \rightarrow GBs clearly visible in the spectrum
- $U(1)_V imes U(1)_A$ "chiral" symmetry
 - $\rightarrow U(1)_V \sim \# \text{quarks} \# \text{antiquarks}$
 - $\rightarrow\,$ baryon number conservation
 - $ightarrow U(1)_A:$ anomalously broken ightarrow mass of the η'

Symmetries of QCD II

• Light quark flavor symmetries

- SU(2) isospin symmetry (u, d quarks)
- originally introduced by Heisenberg (NN int.)
- SU(3) flavor symmetry (u, d, s quarks)
- Gell-Mann's and Zweig's eightfold way
- Heavy quark spin-flavor symmetries
 - SU(2) flavor symmetry (c, b quarks)
 - SU(2) spin symmetry (c, b quarks)

\hookrightarrow these are all approximate symmetries

- combine these (also with chiral symmetry) in heavy-light systems
- light quarks: breakings controlled by $\Delta m_q/\Lambda_{
 m QCD}$
- heavy quarks: breakings controlled by $\Lambda_{
 m QCD}/m_Q$

© Fengkun Guo

Symmetries of QCD III

• Dilatation symmetry: Classical, massless QCD is invariant under scale trafo's

 $\psi(x) o \lambda^{3/2} \psi(\lambda x) \ , \ \ A_\mu(x) o \lambda A_\mu(\lambda x) \ , \ \ \lambda \in \mathbb{R} \setminus \{0\}$

 \rightarrow no massive states in QCD in this limit

 \rightarrow anomalously broken (trace anomaly)

- Discrete symmetries: P, C and T
 - \rightarrow Parity transformation: $(x_0, \vec{x}) \rightarrow (x_0, -\vec{x})$
 - ightarrow Charge conjugation: charge ightarrow -charge $\left. \left. \left. \right. \right.
 ight.
 ight.
 ight.$ fields $\psi(x), A_{\mu}(x)$ accordingly
 - \rightarrow Time (motion) reversal: $(x_0, \vec{x}) \rightarrow (-x_0, \vec{x})$
- \hookrightarrow QCD is a Lorentz-invariant, micro-causal theory \rightarrow CPT is conserved

Lüders, Wentzel, Pauli, ...

 \hookrightarrow QCD is separately invariant under P, C and T, if $\theta = 0$

Wheeler 1950s

"Mass without Mass" – Geons

 \rightarrow Andreas' lectures

Symmetries and their realization

Symmetry realization in QFT I

• Consider a Hamiltonian \mathcal{H} invariant under some group \mathcal{G}

$$ightarrow U \mathcal{H} U^\dagger = \mathcal{H} \; , \; \; U \in \mathcal{G}$$

• U connects states that form an irrep of the group: U|A
angle=|B
angle

 \rightarrow this implies a multiplet structure: $E_A = \langle A | \mathcal{H} | A \rangle = \langle A | U^{\dagger} \mathcal{H} U | A \rangle$ = $\langle B | \mathcal{H} | B \rangle = E_B$

• This is the Wigner-Weyl realization: $ig| Q^a | 0
angle = 0$ $[U = \exp(i \epsilon_a Q^a)]$

 \rightarrow vacuum is annihilated by the symmetry charges

 \rightarrow embodied in Coleman's theorem

Be Q^a a generator of a continous symmetry group \mathcal{G} given as a space-time integral over the current density $J^a_\mu(\vec{x},t)$ and $Q^a|0\rangle = 0$. Then it follows that \mathcal{H} remains invariant under transformatons of the fields according to \mathcal{G} and the current is conserved, $\partial^\mu J^a_\mu = 0$.

Symmetry realization in QFT II

- Nambu-Goldstone realization: for some a let $|Q^a|0
 angle
 eq 0$
- Broken charge, consider volume V: $Q_V^a(t) = \int_V d^3x \, J_0^a(ec{x},t)$

 \rightarrow since $\partial_{\mu}J^{\mu}_{a}=0$, for any local operator A we have

$$ightarrow \int_V [\partial_\mu J^a_\mu, A] d^3x = 0 \quad
ightarrow \lim_{V
ightarrow \infty} \left[\partial_t Q^a_V(t), A
ight] = 0$$

or
$$\lim_{V
ightarrow\infty}\left[Q_{V}^{a}(t),A
ight]\equiv B^{a}$$
 with $rac{dB^{a}}{dt}=0$

⇒ $\left| \langle 0|B^a|0 \rangle \neq 0 \right|$ signals the Nambu-Goldstone symmetry realization • Fabri-Picasso theorem: If $Q^a|0 \rangle \neq 0$ then $\lim_{V \to \infty} Q_V^a(t)$ does not exist \hookrightarrow never need the broken charge, only its well-defined commutators $\sqrt{}$

Symmetry realization in QFT III

Goldstone theorem:

In any local translationally invariant field theory with a conserved four-current, $\partial^{\mu}J^{a}_{\mu} = 0$, and a vacumm that is not annihilated by the charge $Q^{a}_{V}(t) = \int d^{3}x J^{a}_{0}(\vec{x}, t)$, i.e. $\langle 0 | \left[Q^{a}_{V}(t), A \right] | 0 \rangle \neq 0$, there are neccessarily particles with zero mass, the so-called Goldstone bosons (in SUSY also fermions).

• Derivation in a nut-shell:

consider a broken generator [Q, H] = 0 but $Q|0\rangle \neq 0$ define $|\psi\rangle \equiv Q|0\rangle$ $\rightarrow H|\psi\rangle = HQ|0\rangle = QH|0\rangle = 0$ \rightarrow not only G.S. $|0\rangle$ has E = 0

There exist massless excitations |n
angle, non-interacting as $E_n, p_n
ightarrow 0$

• Important property of Goldstone bosons:

$$\langle 0|J_0^a(0)|n
angle
eq 0$$

Proof of Goldstone's theorem

• Consider the vev of B^a :

$$\lim_{V \to \infty} \sum_{n} \left[\langle 0 | Q_{V}^{a}(t) | n \rangle \langle n | A | 0 \rangle - (Q_{V}^{a} \leftrightarrow A) \right] = \langle 0 | B^{a}(\vec{x}) | 0 \rangle$$

$$= \lim_{V \to \infty} \sum_{n} \left[\langle 0 | \int_{V} d^{3}x J_{0}^{a}(x) | n \rangle \langle n | A | 0 \rangle - (J_{0}^{a} \leftrightarrow A) \right]$$

$$= \lim_{V \to \infty} \sum_{n} \left[\langle 0 | \int_{V} d^{3}x J_{0}^{a}(0) | n \rangle \langle n | A | 0 \rangle e^{-ip_{n}x} - (J_{0}^{a} \leftrightarrow A) e^{+ip_{n}x} \right]$$

$$= \sum_{n} (2\pi)^{3} \delta^{(3)}(\vec{p}_{n}) \left[\langle 0 | J_{0}^{a}(0) | n \rangle \langle n | A | 0 \rangle e^{-iE_{n}t} - \langle 0 | A | n \rangle \langle n | J_{0}^{a}(0) | 0 \rangle e^{+iE_{n}t} \right]$$
Now $\frac{d}{dt} (1.h.s.) \sim E_{n}$ but $\frac{d}{dt} (r.h.s.) \sim \dot{B}^{a} = 0$

 $\Rightarrow \exists$ states for which $E_n \delta^{(3)}(\vec{p_n})$ vanishes, i.e. $\vec{p_n} = 0$, $E_n = 0$, $M_n^2 = p^2 = 0$

- These massless states have the same quantum #s as J_0^a (scalar or pseudoscalar)
- Important property: $\langle 0|J_0^a(0)|n\rangle \neq 0$ (neccessary & sufficient condition for SSB)
- Theorem holds independently of perturbation theory
- Requires a minimum # of dimensions: d > 2 (continous symmetry), d > 1 (discrete symmetry)

Coleman, Mermin, Wagner

Spontaneous symmetry breaking

- Consider a scalar field theory
 - $\mathcal{L} = |\partial_\mu \phi|^2 V(|\phi|)$, ϕ complex

• Set:
$$\phi = \frac{1}{\sqrt{2}} \rho e^{i\theta}$$

- Rotational symmetry: $\theta \rightarrow \theta + \alpha$
- Select one value of $heta \Rightarrow$ SSB: $ho(x) =
 ho_0$, heta = 0
- Expand around this minimum: $ho =
 ho_0 + \chi$

$$\hookrightarrow \mathcal{L} = rac{1}{2} (\partial_\mu \chi)^2 + rac{1}{2}
ho_0^2 (\partial_\mu \theta)^2 - V(
ho_0/2) - rac{1}{2} \chi^2 \, V''(
ho_0/2) + \cdots$$

$$\hookrightarrow M_\chi^2 = V^{\prime\prime}(
ho_0/2)
eq 0 \ , \ M_ heta^2 = 0$$

 \hookrightarrow massless excitations in the θ -direction = Goldstone boson mode

• What is an anomaly?

Anomaly = classical symmetry broken upon quantization

• Consider $\mathcal{L}(\psi, ar{\psi}, \ldots)$ with a symmetry

$$\psi\mapsto\psi'=e^{iS}\psi\ \Rightarrow\ \mathcal{L}(\psi',ar{\psi}',\ldots)=\mathcal{L}(\psi,ar{\psi},\ldots)$$

• Quantum effects via the path integral:

$${\cal Z} = \int [d\psi] [dar{\psi}] \exp\left\{i\int d^4x {\cal L}(\psi,ar{\psi},\ldots)
ight\}$$

 e^{iS} :

: $[d\psi][d\bar{\psi}] \mapsto [d\psi'][d\bar{\psi}']\mathcal{J} \quad \leftarrow \mathcal{J} \text{ is the Jacobian}$

 $\mathcal{J} \neq 1 \Leftrightarrow \text{anomaly}$

Triangle anomaly

- ullet First observed in $\pi^0
 ightarrow 2\gamma$
- QED three-point (VAA) function (perturbative calc.)

$$T^{\mu\alpha\beta}(p_{1},p_{2}) = e^{2} \int \frac{d^{4}k}{(2\pi)^{4}i} \operatorname{tr} \left[\gamma^{\alpha} \frac{1}{m_{e} - \not{k}} \gamma^{\beta} \frac{1}{m_{e} - \not{k} + \not{p}_{2}} \gamma^{\mu} \gamma_{5} \frac{1}{m_{e} - \not{k} - \not{p}_{1}} \right]^{\overset{k+p_{1}}{\underset{p_{1}}{\overset{\gamma^{\alpha}}{\underset{p_{2}}{\overset{k}{\underset{p_{2}}{\overset{\gamma^{\alpha}}{\underset{p_{1}}{\overset{k}{\underset{p_{2}}{\overset{\gamma^{\alpha}}{\underset{p_{2}}{\overset{k}{\underset{p_{2}}{\overset{\gamma^{\alpha}}{\underset{p_{2}}{\overset{k}{\underset{p_{2}}{\overset{\gamma^{\alpha}}{\underset{p_{2}}{\overset{k}{\underset{p_{2}}{\overset{\gamma^{\alpha}}{\underset{p_{2}}{\overset{k}{\underset{p_{2}}{\overset{\gamma^{\alpha}}{\underset{p_{2}}{\overset{k}{\underset{p_{2}}{\overset{\gamma^{\alpha}}{\underset{p_{2}}{\overset{k}{\underset{p_{2}}{\overset{\gamma^{\alpha}}{\underset{p_{2}}{\overset{k}{\underset{p_{2}}{\overset{\gamma^{\alpha}}{\underset{p_{2}}{\overset{k}{\underset{p_{2}}{\overset{\gamma^{\alpha}}{\underset{p_{2}}{\overset{k}{\underset{p_{2}}{\overset{\gamma^{\alpha}}{\underset{p_{2}}{\overset{k}{\underset{p_{2}}{\underset{p_{2}}{\overset{\gamma^{\alpha}}{\underset{p_{2}}{\overset{k}{\underset{p_{2}}{\overset{\gamma^{\alpha}}{\underset{p_{2}}{\underset{p_{2}}{\overset{k}{\underset{p_{2}}{\underset{p_{2}}{\overset{\gamma^{\alpha}}{\underset{p_{2}}{\underset{p_{2}}{\overset{k}{\underset{p_{2}}}{\underset{p_{2}}}{\underset{p_{2}}{\underset{p_{2}}{\underset{p_{2}}{\underset{p_{2}}{\underset{p_{2}}{\underset{p_{2}}{\underset{p_{2}}{\underset{p_{2}}{\underset{p_{2}}{\underset{p_{2}}{\underset{p_{2}}{\underset{p_{2}}}{\underset{p_{2}}{\underset{p_{2}}{\underset{p_{2}}{\underset{p_{2}}{\underset{p_{2}}{\underset{p_{2}}{\underset{p_{2}}{\underset{p_{2}}{\underset{p_{2}}{\underset{p_{2}}{\underset{p_{2}}{\underset{p_{p_{2}}{p_{p_{p_{p_{p_{p_{p}}{p_{p_{p_{p_{p_{p}}{p_{p_{$$

• If we shift $k \to k - p_1$ or $k \to k + p_2$ in the integrand parts, then:

$$\begin{split} (p_1 + p_2)_{\mu} T^{\mu \alpha \beta}(p_1, p_2) &= -e^2 \int \frac{d^4 k}{(2\pi)^4 i} \operatorname{tr} \left[\gamma^{\alpha} \frac{1}{m_e - \not\!\!\! k} \, \gamma^{\beta} \frac{1}{m_e - \not\!\!\! k + \not\!\!\! p_2} \, 2m_e \gamma_5 \frac{1}{m_e - \not\!\!\! k - \not\!\!\! p_1} \right] \\ &+ [\alpha \leftrightarrow \beta, p_1 \leftrightarrow p_2] \end{split}$$

• This corresponds to the naive identity:

$$\partial_\mu A^\mu(x) = \partial_\mu ig[ar \psi(x) \gamma^\mu \gamma_5 \psi(x) ig] = 2 i m_e ar \psi(x) \gamma_5 \psi(x)$$

 \hookrightarrow as on the classical level (no π^0 decay)

Sutherland, Adler, Bell, Jackiw

Triangle anomaly - a second look

• The integrals are divergent, use a Pauli-Villars type regularization:

$$\begin{split} T_{\text{reg}}^{\mu\alpha\beta}(p_1,p_2) &= T^{\mu\alpha\beta}(p_1,p_2) - T_{\Lambda}^{\mu\alpha\beta}(p_1,p_2) \\ \Rightarrow (p_1 + p_2)_{\mu} T_{\text{reg}}^{\mu\alpha\beta}(p_1,p_2) \\ &= \left(-e^2 \int \frac{d^4k}{(2\pi)^4 i} \operatorname{tr} \left[\gamma^{\alpha} \frac{1}{m_e - \not k} \gamma^{\beta} \frac{1}{m_e - \not k + \not p_2} \, 2m_e \gamma_5 \frac{1}{m_e - \not k - \not p_1} \right] \\ &+ e^2 \int \frac{d^4k}{(2\pi)^4 i} \operatorname{tr} \left[\gamma^{\alpha} \frac{1}{\Lambda - \not k} \gamma^{\beta} \frac{1}{\Lambda - \not k + \not p_2} \, 2\Lambda \gamma_5 \frac{1}{\Lambda - \not k - \not p_1} \right] \right) \\ &+ [\alpha \leftrightarrow \beta, p_1 \leftrightarrow p_2] \end{split}$$

• Using Feynman parametrization and some algebra leads to:

$$\lim_{\Lambda \to \infty} (p_1 + p_2)_{\mu} T^{\mu \alpha \beta}_{\Lambda}(p_1, p_2) = -\frac{ie^2}{2\pi^2} \, \varepsilon^{\alpha \beta \lambda \rho} p_{1\lambda} p_{2\rho}$$
$$\hookrightarrow \boxed{\partial_{\mu} A^{\mu}(x) = 2im_e \bar{\psi}(x) \gamma_5 \psi(x) - \underbrace{\frac{e^2}{16\pi^2} \, \varepsilon_{\mu\nu\alpha\beta} \mathcal{F}^{\mu\nu}(x) \mathcal{F}^{\alpha\beta}(x)}_{\text{anomaly}}}_{\text{anomaly}}$$

Triangle anomaly - more remarks

- Requires regularization, same results with dim. reg. or point-split techniques
- In more detaill: Add a polynomial in p_1, p_2 to $T^{\mu\alpha\beta}(p_1, p_2)$, use Lorentz-invariance, invariance under parity and Bose symmetry: $T^{\mu\alpha\beta}(p_1, p_2) \rightarrow T^{\mu\alpha\beta}(p_1, p_2) + a\varepsilon^{\mu\alpha\beta\nu}(p_1 - p_2)_{\nu}$ $\hookrightarrow (p_1 + p_2)_{\mu}T^{\mu\alpha\beta}(p_1, p_2) \rightarrow (p_1 + p_2)_{\mu}T^{\mu\alpha\beta}(p_1, p_2) - 2a\varepsilon^{\mu\nu\alpha\beta}p_{1\mu}p_{2\nu}$

• Choose $a = -\frac{ie^2}{4\pi^2} \rightarrow \text{anomalous term disappears}$

- But what happens to the Ward identities for the vector current? $p_{1\alpha}T^{\mu\alpha\beta}(p_1, p_2) = p_{2\beta}T^{\mu\alpha\beta}(p_1, p_2) = 0$ since $p_{1\alpha}\varepsilon^{\mu\alpha\beta\nu}(p_1 - p_2)_{\nu} = -\varepsilon^{\mu\alpha\beta\nu}p_{1\alpha}p_{2\nu} \neq 0 \implies a = 0$
- No choice of a that allows for both naive Ward identities to hold
- \hookrightarrow Choose *a* so that the conserved vector current is anomaly free (QED, QCD) \hookrightarrow Requires anomaly cancellation in the Standard model

Fujikawa determinant

Fujikawa, PRD 21 (1980) 2848, PRD 22 (1980) 1499 [E]

• Path integral formulation: Non-invariance of the fermionic measure = anomaly

$$Z = \int d\psi d\bar{\psi} \exp\left\{-\int d^4x \bar{\psi}(x) \gamma_\mu D_\mu \psi(x)
ight\}, \ \underbrace{D_\mu = \partial_\mu + G_\mu}_{ ext{Dirac operator}}$$

• Expand the massless Dirac operator in eigenfunctions

$$onumber \psi_{\lambda} = i\lambda\psi_{\lambda} , \ ar{\psi}_{\lambda} (ar{p}) = i\lambdaar{\psi}_{\lambda} , \ \int d^{4}x \,ar{\psi}_{\lambda}(x)\psi_{\lambda'}(x) = \delta_{\lambda\lambda'}$$
 $\psi(x) = \sum_{\lambda} a_{\lambda}\psi_{\lambda}(x) , \ ar{\psi}(x) = \sum_{\lambda} ar{\psi}_{\lambda}(x)ar{a}_{\lambda} \
ightarrow \left[d\psi dar{\psi} = \prod_{\lambda} da_{\lambda}dar{a}_{\lambda} da_{\lambda}dar{a}_{\lambda}
ight]$

• Local singlet axial transformations:

$$a_{\lambda} \mapsto \int d^4x \, \bar{\psi}_{\lambda}(x)(1+i\beta^0(x)\gamma^5)\psi(x) = \sum_{\lambda'} (\delta_{\lambda\lambda'} + C_{\lambda\lambda'})a_{\lambda'}$$

 $C_{\lambda\lambda'} = i \int d^4x \, \beta^0(x) \, \bar{\psi}_{\lambda}(x)\gamma^5 \psi_{\lambda'}(x)$

• Jacobian: $d\psi d\bar\psi\mapsto J^{-2}d\psi d\bar\psi$

$$\hookrightarrow J = \det(\mathbb{1} + C) = \exp(\operatorname{Tr}(\ln(\mathbb{1} + C))) = \exp\left\{\sum_{\lambda} C_{\lambda\lambda} + O(\beta^2)\right\}$$

Fujikawa determinant continued

• Evaluation of the Jacobian:
$$\ln J = i \int d^4x \beta^0(x) \sum_{\lambda} \bar{\psi}_{\lambda}(x) \gamma^5 \psi_{\lambda}(x)$$

 $= S(x)$

• Regulate the divergent sum over EV:

$$\sum_{\lambda} \bar{\psi}_{\lambda}(x) \gamma^{5} \psi_{\lambda}(x) \to \lim_{M \to \infty} \sum_{\lambda} e^{-\lambda^{2}/M^{2}} \bar{\psi}_{\lambda}(x) \gamma^{5} \psi_{\lambda}(x) = \lim_{M \to \infty} S_{M}(x)$$

$$S_{M}(x) = \sum_{\lambda} \bar{\psi}_{\lambda}(x) \gamma^{5} e^{\mathcal{P}^{2}/M^{2}} \psi_{\lambda}(x) = \left\langle x \left| \operatorname{tr} \left(\gamma^{5} e^{\mathcal{P}^{2}/M^{2}} \right) \right| x \right\rangle, \quad \mathcal{P}^{2} = D^{2} - \frac{i}{2} \sigma_{\mu\nu} F_{\mu\nu}$$

$$\operatorname{tr} = \operatorname{trace} \operatorname{over} \operatorname{Dirac} \operatorname{color} \operatorname{and} \operatorname{flavor} \operatorname{indic}$$

ac, color and flavor indices

• After some algebra:
$$\lim_{M \to \infty} S_M(x) = \frac{N_f}{32\pi^2} \varepsilon_{\mu\nu\alpha\beta} \text{tr}_c(F_{\mu\nu}F_{\alpha\beta})$$
$$\hookrightarrow J = \exp\left\{i \int d^4x \beta^0(x) \frac{N_f}{32\pi^2} \varepsilon_{\mu\nu\alpha\beta} \text{tr}_c(F_{\mu\nu}F_{\alpha\beta}) + O(\beta^2)\right\}$$
anomaly

 $\hookrightarrow \partial_{\mu}A^{0}_{\mu}(x) = \frac{N_{f}}{16\pi^{2}} \varepsilon_{\mu\nu\alpha\beta} \text{tr}_{c}(F_{\mu\nu}F_{\alpha\beta}) \rightarrow \text{known result w/o perturbation th'y!}$

More on anomalies

- Anomalies appear rather often, a generic feature of most QFTs
- In the general non-abelian case, the following diagrams can lead to anomalies

• Anomaly matching relates anomalous W.I. between fundamental & effective theories

't Hooft (1980)

 In the language of the EFT of QCD, anomalies are represented in terms of the Wess-Zumino–Witten effective action + Witten-Veneziano formula + ...

Wess, Zumino (1971), Witten (1979, 1983), Veneziano (1979

Chiral symmetry in QCD

Introduction to chiral symmetry

• Massless fermions exhibit chiral symmetry:

$${\cal L}=iar\psi\gamma_\mu\partial^\mu\psi$$

• left/right-decomposition:

$$\psi=rac{1}{2}(1-\gamma_5)\psi+rac{1}{2}(1+\gamma_5)\psi=P_L\psi+P_R\psi=\psi_L+\psi_R$$

• projectors:

$$P_L^2 = P_L, \ P_R^2 = P_R, \ P_L \cdot P_R = 0, \ P_L + P_R = 1$$

• helicity eigenstates:

$$rac{1}{2}\hat{h}\psi_{L,R}=\pmrac{1}{2}\psi_{L,R} \quad \hat{h}=ec{\sigma}\cdotec{p}/|ec{p}|$$

• L/R fields do **not** interact \rightarrow conserved L/R currents

$${\cal L}=iar{\psi}_L\gamma_\mu\partial^\mu\psi_L+iar{\psi}_R\gamma_\mu\partial^\mu\psi_R$$

• mass terms break chiral symmetry: $\bar{\psi}\mathcal{M}\psi = \bar{\psi}_R\mathcal{M}\psi_L + \bar{\psi}_L\mathcal{M}\psi_R$

Chiral symmetry of QCD

• Three flavor QCD:

$$egin{aligned} \mathcal{L}_{ ext{QCD}} = \mathcal{L}_{ ext{QCD}}^0 - ar{q} \mathcal{M} q \ \end{bmatrix}, \,\,\, q = egin{pmatrix} u \ d \ s \end{pmatrix}, \,\,\,\,\, \mathcal{M} = egin{pmatrix} m_u & & \ & m_d \ & & m_s \end{pmatrix} \end{aligned}$$

• \mathcal{L}^0_{QCD} is invariant under **chiral** $SU(3)_L \times SU(3)_R$ (split off U(1)'s)

• conserved L/R-handed [vector/axial-vector] Noether currents:

$$egin{aligned} J_{L,R}^{\mu,a} &= ar{q}_{L,R} \gamma^{\mu} rac{\lambda^a}{2} q_{L,R} \,, & a = 1, \dots, 8 \ \partial_{\mu} J_{L,R}^{\mu,a} &= 0 & [ext{or} \ V^{\mu} &= J_L^{\mu} + J_R^{\mu} \,, & A^{\mu} = J_L^{\mu} - J_R^{\mu}] \end{aligned}$$

• Is this symmety reflected in the vacuum structure/hadron spectrum?

The fate of QCD's chiral symmetry

- The chiral symmetry is not "visible", it is "hidden" (spontaneously broken)
 - no parity doublets
 - $\hookrightarrow M_{
 ho}
 eq M_{a_1}, M_N
 eq M_{S_{11}}, \dots$
 - $\langle 0|AA|0
 angle \neq \langle 0|VV|0
 angle$ $\hookrightarrow \int \frac{ds}{s} [
 ho_V(s) -
 ho_A(s)] = F_{\pi}^2$
 - scalar condensate $\bar{q}q = \bar{q}_L q_R + \bar{q}_R q_L$ acquires v.e.v.
 - \hookrightarrow another order parameter of SSB
 - Vafa-Witten theorem [NPB 234 (1984) 173]
 - \hookrightarrow If $\theta = 0$, vector symmetries can not be spontaneously broken
 - (almost) massless pseudoscalar bosons

The fate of QCD's chiral symmetry II

- Wigner mode $|Q_5^a|0
 angle=Q^a|0
 angle=0~(a=1,\ldots,8)$?
- parity doublets: $dQ_5^a/dt = 0 \rightarrow [H,Q_5^a] = 0$

single particle state: $H|\psi_p
angle=E_p|\psi_p
angle$

axial rotation:
$$H(e^{iQ_5^a}|\psi_p\rangle) = e^{iQ_5^a}H|\psi_p\rangle = \underbrace{E_p(e^{iQ_5^a}|\psi_p\rangle)}_{\text{same mass but opposite parity}}$$

• VV and AA spectral functions (without pion pole):

$$\begin{array}{l} \langle 0|VV|0\rangle = \langle 0|(L+R)(L+R)|0\rangle = \langle 0|L^2 + R^2 + 2LR|0\rangle = \langle 0|L^2 + R^2|0\rangle \\ \| \\ \langle 0|AA|0\rangle = \langle 0|(L-R)(L-R)|0\rangle = \langle 0|L^2 + R^2 - 2LR|0\rangle = \langle 0|L^2 + R^2|0\rangle \end{array}$$

since L and R are orthogonal

The fate of QCD's chiral symmetry III

• Chiral symmetry is realized in the Nambu-Goldstone mode

- pions indeed couple to the vacuum
- $arpropto \langle 0|A^j_\mu(0)|\pi^k(p)
 angle = i F_\pi p_\mu \delta^{jk}$, $F_\pi \simeq 92\,{
 m MeV}$
- weakly interacting massless pseudoscalar excitations \hookrightarrow this can be tested experimentally
- approximate symmetry (small quark masses)
- $\hookrightarrow M_{\pi^{\pm}}^2 \sim (m_u + m_d)$
- $\hookrightarrow \pi, K, \eta$ as Pseudo-Goldstone Bosons
- An appropriately tailored effective field theory can be set up
- \hookrightarrow Chiral Perturbation Theory
- \hookrightarrow perturbative expansion in p/Λ and M_{π}/Λ including loops

 π (140)

800

600

400

200

0

ap

O

mass

28

Weinberg, Gasser, Leutwyler

Chiral perturbation theory in a nutshell

- Low-energy EFT of QCD: $\mathcal{L}_{QCD}(q, \bar{q}, G) \rightarrow \mathcal{L}_{eff}(U, s, p, v, a)$
 - \hookrightarrow same Ward identities = exact mapping
- Chiral effective Lagrangian:
 - $\mathcal{L}_{\mathrm{eff}} = \mathcal{L}^{(2)} + \mathcal{L}^{(4)} + \dots$
 - $\hookrightarrow \text{systematic expansion in small momenta} \\ \text{and quark (pion) masses}$

$$D = 2 + \sum_{d}^{l} N_{d} (d-2) + 2N_{L}$$

- → leading order: trees
 next-to-leading order:
 trees and one-loop graphs , ...
- $\hookrightarrow \text{order-by-order renormalization}$
- \hookrightarrow some processes to two loops

- Ulf-G. Meißner, Symmetries and their realization, -

 $\hookrightarrow \text{very successful framework}$

$$d=2, N_{L}=0 \implies D=2$$

$$NexT-TD-LEADING ORDER O(q^{4})$$

$$1) \quad d=4, N_{L}=0 \implies D=4$$

$$2) \quad d=2, N_{L}=1 \implies D=4$$

$$q_{L}:q_{2} \sim d=2 \implies q_{1}:q_{2} \sim d=2$$

$$-\int d^{4}q \frac{q_{1}\cdot q_{2}}{(q^{2}-H_{q}^{2})(q^{2}-H_{q}^{2})} \sim O(q^{4})$$
Lectures, Tiflis (online), November 8 & 9, 2021 –

PUWER COUNTING: ONE EXAMPLE

. LOWEST OKDER O(92)

· IL IL -> IL IL

Leutwyler, Weinberg

Elastic pion-pion scattering

- Purest process in two-flavor chiral dynamics (really light quarks)
- Scattering amplitude at threshold: two numbers (a_0, a_2)
- Very precise prediction: match 2-loop representation to Roy equation solution

Roy + 2-loop: $a_0 = 0.220 \pm 0.005$

Colangelo, Gasser, Leutwyler, Phys. Lett . B488 (2000) 261

- Same precision for a_2 , but corrections very small . . .
- Experiment: Kaon decays $(K_{\ell 4}, K
 ightarrow 3\pi)$ and the lifetime of pionium

 $a_0 = 0.2210 \pm 0.0047_{
m stat} \pm 0.0040_{
m sys}$

 $a_2 = -0.0429 \pm 0.0044_{
m stat} \pm 0.0028_{
m sys}$

Batley et al. [NA48/2 Coll.] EPJ C70 (2010) 635

 $|a_0 - a_2| = 0.2533^{+0.0107}_{-0.0137}$

Adeva et al. [DIRAC Coll.] Phys. Lett. B704 (2011) 24

Elastic pion-pion scattering – lattice a_0

- ullet Only a few lattice determinations of a_0
 - $\hookrightarrow \text{disconnected diagrams difficult}$
 - \hookrightarrow quantum numbers of the vacuum
 - \hookrightarrow qualitative insight from large- N_C Guo, Liu, UGM, Wang, Phys. Rev. D88 (2013) 074506
- Available unquenched lattice results:

Author(s)	a_0	Fermion action	Pion mass range
Fu	0.214(4)(7)	asqtad staggered	240 - 430 MeV
Liu et al.	0.198(9)(6)	twisted mass	250 - 320 MeV

Fu, PRD87 (2013) 074501; Liu et al., PRD96 (2017) 054516

 \rightarrow use EFT of PQQCD to investigate these contributions

Acharya, Guo, UGM, Seng, Nucl. Phys. B922 (2017) 480

 \rightarrow more work needed!

Chiral anomaly and the Wess-Zumino-Witten term

• Redundant symmetries of the chiral effective Lagrangian, consider (massless) $\mathcal{L}^{(2)}$

$${\cal L}^{(2)}=rac{F_\pi^2}{4}\langle \partial_\mu U\partial^\mu U^\dagger
angle\,,\,\,\, U(x)=\exp\left(i\lambda^a\phi^a(x)/F_\pi
ight)\,,\,\,U\in SU(3)$$

• Parity: $PU(\vec{x},t)P^{-1} = U^{\dagger}(-\vec{x},t)$ like QCD

- $\mathcal{L}^{(2)}$ has two extra symmetries, unlike QCD $U(\vec{x},t) \mapsto U(-\vec{x},t), U(\vec{x},t) \mapsto U^{\dagger}(\vec{x},t)$ conserves intrinsic parity (P_I)
- Intrinsic parity: $P_I = +1/-1$ for a true/pseudo-tensor of rank k

• Examples

$$\begin{aligned} \pi\pi &\to \pi\pi \quad (-1)\cdot(-1) = (-1)\cdot(-1) \ \sqrt{\ \pi^0} \to 2\gamma \qquad (-1) = (+1)\cdot(+1) \ ? \\ \gamma\pi^+ \to \pi^+ \quad (+1)\cdot(-1) = (-1) \ \sqrt{\ \gamma} \to \pi^+\pi^-\pi^0 \quad (+1) = (-1)\cdot(-1)\cdot(-1) \ ? \\ \eta \to \pi^+\pi^-\pi^0 \quad (-1) = (-1)\cdot(-1)\cdot(-1) \ \sqrt{\ K\bar{K}} \to \pi^+\pi^-\pi^0 \quad (-1)^2 = (-1)^3 \ ? \end{aligned}$$

 $\hookrightarrow \mathcal{L}^{(2)}$ conserves P_I , i.e. the number of Goldstone bosons mod 2 [holds for all $\mathcal{L}^{(2n)}$] but QCD does **not**!

Chiral anomaly and the Wess-Zumino-Witten term II 33

• Break the redundenat symmetries (EoM)

$$rac{i}{2}F_{\pi}^{2}\partial^{\mu}L_{\mu}+\lambda\epsilon^{\mu
ulphaeta}L_{\mu}L_{
u}L_{lpha}L_{eta}=0~,~L_{\mu}=U^{\dagger}\partial_{\mu}U$$

• This can not be written as a 4-dimensional Lagrangian, so [some algebra]

$$S_{WZW} = -rac{in}{240\pi^2} \int_{S^5} d^5x \epsilon^{\mu
ulphaeta\gamma} \langle L_{\mu}L_{
u}L_{lpha}L_{eta}L_{\gamma}
angle ~~, ~~ S^5 = \partial M^5$$

- ullet topological quantization to resolve path ambiguity in S^5
- ullet electromagnetic gauging $ightarrow n = N_C$ (c.f. $T(\pi^0
 ightarrow 2\gamma)$)
- many testable predictions, e.g.

$$T(\gamma \to \pi^+ \pi^- \pi^0) = -\epsilon_{\mu\nu\alpha\beta} \epsilon^\mu k^\nu p^\alpha_- p^\beta_+ F(s,t,u)$$
$$\hookrightarrow F(0,0,0) = \frac{eN_c}{12\pi^2 F_\pi^3} = 9.7 \text{ GeV}^{-3}$$

Light quark flavor symmetries

Isospin symmetry

• Nucleon-nucleon interactions are approximately invariant under

$$N \mapsto N' = UN$$
, $U \in SU(2)$, $N = \begin{pmatrix} p \\ n \end{pmatrix}$ Heisenberg (1932)

• For $m_u = m_d$, QCD is invariant under SU(2) isospin transformations

$$q\mapsto q'=U\,q\,,\quad q=egin{pmatrix} u\ d\end{pmatrix}\quad U=egin{pmatrix} a^*&b^*\ -b&a\end{pmatrix}\quad |a|^2+|b|^2=1$$

• Rewrite the QCD quark mass term

$$\mathcal{H}_{\text{QCD}}^{\text{mass}} = m_u \, \bar{u}u + m_d \, \bar{d}d = \underbrace{\frac{1}{2}(m_u + m_d)(\bar{u}u + \bar{d}d)}_{I=0} + \underbrace{\frac{1}{2}(m_u - m_d)(\bar{u}u - \bar{d}d)}_{I=1}$$

• Sources of isospin breaking: $m_u
eq m_d$ and electromagnetism

 \hookrightarrow strong breaking expected to be small:

$$\left(rac{m_d}{m_u}\simeq 2 ~~{
m but}~~rac{m_d-m_u}{\Lambda_{
m QCD}}\ll 1
ight)$$

 \hookrightarrow em breaking small $\sim lpha \sim 1/137$

The proton-neutron mass difference

- Two contributions of similar size to combine to $m_n-m_p=1.3~{
 m MeV}$
- Mass difference given by: $m_p m_n = \underbrace{4c_5 B(m_d m_u)}_{\text{strong}} \underbrace{F_\pi^2 e^2 f_2}_{\text{em}}$
- EM contribution form the Cottingham sum rule

$$\delta m_N^{
m em} \sim e^2 \int d^4 q D(q^2) g_{\mu
u} \left(T_p^{\mu
u}(p,q) - T_n^{\mu
u}(p,q)
ight)$$
 $= 0.58 \pm 0.16 \; {
m MeV} \; {
m Gasser, Leutwyler, Rusetsky (2021)}$
 $ightarrow \delta m_N^{
m strong} = -1.87 \mp 0.15 \; {
m MeV} \; {
m July}$

• Other determinations of $\delta m_N^{\rm em}$ using the Cottingham sum rule or lattice QCD (also $\delta m_N^{\rm strong}$)

Gasser, Leutwyler, Rusetsky (2020)

Borsanyi et al. (2015)

 $T^{\mu\nu}$

SU(3) flavor symmetry

 Introduced to bring order into the hadron zoo, the (constituent) quark model Gell-Mann, Zweig (1964)

- Flavor SU(3) in QCD refers to the light up, down and strange (current) quarks
- For $m_u = m_d = m_s$, QCD is invariant under SU(3) flavor transformations [the unbroken SU(3)]

$$q\mapsto q'=U\,q\,,\quad q=egin{pmatrix} u\ d\ s\end{pmatrix} \quad U\in SU(3) \ \ ext{[Gell-Mann matrices]}$$

- Sources of SU(3) flavor breaking: $m_s
 eq m_d, m_u$ and electromagnetism
 - \hookrightarrow strong breaking expected to be sizeable: \hookrightarrow em breaking small $\sim \alpha \sim 1/137$

$$\left(m_s \gg m_d, m_u \text{ and } rac{m_s}{\Lambda_{ ext{QCD}}} \simeq rac{1}{2}
ight)$$

• Still, some rather precise predictions (Gell-Mann–Okubo mass formula):

$$rac{1}{4} \left(m_N + m_\Xi
ight) = rac{3}{4} \left(m_\Lambda + m_\Sigma
ight)$$
 i.e. 1128.5 MeV \simeq 1135.3 MeV

Calculation of hadron masses

• SU(3) limit $m_s=m_d=m_u$ is

 \hookrightarrow starting point in lattice QCD calculations

 \hookrightarrow increase m_s & decrease m_d, m_u

 \hookrightarrow fan-plots & rather accurate calculations

Bietenholz et al., Phys. Rev. D 84 (2011) 054509

• SU(3) limit $m_s = m_d = m_u$ is

 \hookrightarrow starting point in unitarized CHPT calculations

 $\hookrightarrow x = 0
ightarrow 1$ from the sym. pt. to the phys. world

 \hookrightarrow two-pole structure of the $\Lambda(1405)$ emerges

Jido, Oller, Oset, Ramos, UGM, Nucl. Phys. 725 (2003) 181

Dimensional transmutation, the trace anomaly & all that

Scale invariance and its breaking

- Massless classical QCD is scale-invariant, no massive particles emerge
 - \hookrightarrow this scale invariance is obviously broken (anomaly), e.g. $m_p
 eq 0$
 - \hookrightarrow dimensional transmutation generates a scale $\Lambda_{
 m QCD}$, so $m_p \sim \Lambda_{
 m QCD}$
 - \hookrightarrow how are these phenomena linked?
- Classical QCD, rewritten in a symmetrized form:

$$\mathcal{L}_{\mathsf{QCD}} = rac{1}{2g^2} \operatorname{tr}_{m{c}}(F_{\mu
u}F^{\mu
u}) + ar{\psi}ig(rac{i}{2}\,\gamma^{\mu} \stackrel{\leftrightarrow}{D}_{\mu} - \mathcal{M}ig)\psi$$

• Conserved and gauge-invariant *energy-momentum tensor*:

$$\bar{\theta}_{\mu\nu} = \frac{i}{2} \, \bar{\psi} \gamma_{\mu} \overset{\leftrightarrow}{D_{\nu}} \psi + 2 \text{tr}_{c} \big(F_{\mu\lambda} F_{\nu}^{\lambda} - \frac{1}{4} \, g_{\mu\nu} F_{\lambda\rho} F^{\lambda\rho} \big) \,, \quad \bar{\theta}_{\mu}^{\mu} = \bar{\psi} \mathcal{M} \psi$$

• M.E. of $\bar{\theta}_{\mu\nu}$ in some hadron $|k\rangle$:

 $\langle k|ar{ heta}_{\mu
u}(0)|k
angle=ak_{\mu}k_{
u}+bg_{\mu
u}
ightarrow a=2,\,b=0$ from momentum operator

 $\hookrightarrow \langle k | \bar{\theta}^{\mu}_{\mu}(0) | k \rangle = 2M^2 \to$ all hadrons are massless as $\mathcal{M} \to 0$???

Scale transformations in QCD

- Scale transformations: $\psi(x) \mapsto \lambda^{3/2} \psi(\lambda x) , \ G_{\mu}(x) \mapsto \lambda G_{\mu}(\lambda x) , \ \lambda \in \mathbb{R} \setminus \{0\}$
- Simplified derivation of the trace anomaly, gluons described by an external field

$$Z(G_{\mu}) = \int d\psi dar{\psi} \, \expigg\{ i \int d^4 x {\cal L}_{ extsf{QCD}} igg\}$$

• Inf. scale trafo's: $\psi(x)\mapstoig(1-rac{\epsilon(x)}{2}ig)\psi(x),\ ar{\psi}(x)\mapstoig(1-rac{\epsilon(x)}{2}ig)ar{\psi}(x)$

$$\hookrightarrow Z(G_{\mu}) = \int d\psi dar{\psi} \, J^{-2} \, \exp \Bigl\{ i \int d^4x \bigl(\mathcal{L}_{\mathsf{QCD}} - \epsilon(ar{ heta}^{\mu}_{\mu}(x) - ar{\psi}(x) \mathcal{M}\psi(x)) \bigr) \Bigr\}$$

• Ward identity of first order in $\epsilon(x)$:

$$\int d\psi dar{\psi} \left(i\int d^4x\,\epsilon(x)(ar{ heta}^\mu_\mu(x)-ar{\psi}(x)\mathcal{M}\psi(x))+2\ln J
ight) \expigg\{ i\int d^4x\,\mathcal{L}_{ extsf{QCD}}igg\}=0$$

- if J = 1, same as on the classical level

- the anomaly will emerge from the femionic measure, let's calculate it!

Trace anomaly

• Use the Fujikawa method:

$$\ln J = \ln(\det(e^{-\epsilon/2})) = -\lim_{M \to \infty} \left\{ \int d^4x \, \frac{\epsilon(x)}{2} \, \langle x \Big| \mathrm{tr} \left(e^{(i \not\!\!D)^2/M^2} \right) \Big| x \right\rangle \right\}$$

ullet Use $[D_{\mu},D_{
u}]=F_{\mu
u}$ and let $M o\infty$:

$$\ln J = i \int d^4x \, \frac{\epsilon(x)}{2} \, \frac{N_f}{24\pi^2} \, \text{tr}_c(F_{\mu\nu}(x)F^{\mu\nu}(x))$$

 \Rightarrow the trace of the energy-momentum tensor is:

$$ar{ heta}^{\mu}_{\mu} = ar{\psi}\mathcal{M}\psi - rac{N_f}{24\pi^2}\operatorname{tr}_c(F_{\mu
u}(x)F^{\mu
u}(x))
eq 0 ext{ as } \mathcal{M} o 0$$

• Full calculation:

Collins, Crewther, Chanowitz, Ellis, Nielsen

$$\bar{\theta}^{\mu}_{\mu}(x) = (1 + \gamma_m(g_r))[\bar{\psi}(x)\mathcal{M}_r\psi(x)]_r - \frac{\beta(g_r)}{g_r^3} [\operatorname{tr}_c(F_{\mu\nu}(x)F^{\mu\nu}(x))]_r$$

Anatomy of the nucleon mass

• Dissect the various contributions:

$$\star \langle N(p) | m_u \bar{u}u + m_d \bar{d}d | N(p) \rangle = 40 \dots 70 \text{ MeV} \doteq \sigma_{\pi N}$$

from the analysis of the pion-nucleon sigma term & lattice QCD (before 2015)

Gasser, Leutwyler, Sainio; Borasoy & M., Büttiker & M., Pavan et al., Alarcon et al. . . .

- $\star \langle N(p) | m_s \bar{s}s | N(p) \rangle = 20 \dots 60 \text{ MeV}$ from lattice
- \Rightarrow bulk of the nucleon mass is generated by the gluon fields / field energy
- \Rightarrow this is a central result of QCD
- \Rightarrow requires better Roy-Steiner analysis of πN and lattice data

 \hookrightarrow discuss this w/o all details

σ -term basics

• Scalar form factor of the nucleon (isospin limit $\hat{m} = (m_u + m_d)/2$):

$$\sigma_{\pi N}(t) = \langle N(p') | \hat{m}(ar{u}u + ar{d}d) | N(p)
angle$$
 , $t = (p'-p)^2$,

• Cheng-Dashen Low-Energy Theorem (LET):

Cheng, Dashen (1971)

$$ar{D}^+(
u=0,t=2M_\pi^2)=\sigma(2M_\pi^2)+\Delta_R ~~[
u=rac{s-u}{4m_N}]$$

• \bar{D}^+ – isospin-even, Born-term subtracted pion-nucleon scattering amplitude

$$ar{D}^+(0,2M_\pi^2) = A^+(m_N^2,2M_\pi^2) - rac{g_{\pi N}^2}{m_N}$$

 \hookrightarrow best determined from πN data using dispersion relations (unphysical region)

• reminder Δ_R , calculated in CHPT to $\mathcal{O}(p^4)$, no chiral logs

$$\Delta_{oldsymbol{R}} \lesssim 2\,{\sf MeV}$$

Bernard, Kaiser, UGM (1996)

- Ulf-G. Meißner, Symmetries and their realization, - Lectures, Tiflis (online), November 8 & 9, 2021 -

σ -term basics continued

• Standard decomposition of the σ -term: $\sigma_{\pi N} = \sigma_{\pi N}(0)$

$$\left(\sigma_{\pi N} = \Sigma_d + \Delta_D - \Delta_\sigma - \Delta_R
ight)$$

 $\Sigma_d = F_\pi^2 (d_{00}^+ + 2M_\pi^2 d_{01}^+) \longrightarrow \text{full RS analysis}$

• d_{00}^+, d_{01}^+ – subthreshold expansion coefficients (around $\nu = t = 0$)

• Strong $\pi\pi$ rescattering in Δ_D and Δ_σ , the difference is small!

Gasser, Leutwyler, Sainio (1991)

• Most precise analysis of the scalar form factor of the nucleon:

Hoferichter, Ditsche, Kubis, UGM (2012)

$$\Delta_D - \Delta_\sigma = (-1.8 \pm 0.2)\,{
m MeV}$$

Roy-Steiner equations in a nutshell

•Roy-Steiner (RS) equations = hyperbolic dispersion relations (HDRs):

$$egin{aligned} (s-a)(u-a) = b \ , \quad a,b \in \mathbb{R} \quad [b=b(s,t,a)] \ & ext{Steiner (1968), Roy(1971), Hite, Steiner (1973)} \end{aligned}$$

- why HDRs?
 - → combine all *physical regions* very important for a reliable continuation to the subthreshold region Stahov (1999)
 - \hookrightarrow especially powerful for the determination of the σ -term

Koch (1982)

- $\hookrightarrow s \leftrightarrow u \text{ crossing is explicit}$
- \hookrightarrow absorptive parts are only needed in regions where the corresponding partial expansions converge
- \hookrightarrow judicious choice of a allows to increase the range of convergence

Results for the \sigma-term

• Basic formula: $\sigma_{\pi N} = F_{\pi}^2 (d_{00}^+ + 2M_{\pi}^2 d_{01}^+) + \Delta_D - \Delta_{\sigma} - \Delta_R$

• Subthreshold parameters output of the RS equations:

 $d_{00}^{+} = -1.36(3)M_{\pi}^{-1} \qquad [\text{KH:} -1.46(10)M_{\pi}^{-1}]$

 $d_{01}^+ = 1.16(3) M_\pi^{-3}$ [KH: 1.14(2) M_π^{-3}]

 $ullet \Delta_D - \Delta_\sigma = (1.8 \pm 0.2)\,{
m MeV}$

Hoferichter, Ditsche, Kubis, UGM (2012)

 $ullet \Delta_R \lesssim 2\, {\sf MeV}$

Bernard, Kaiser, UGM (1996)

• Isospin breaking in the CD theorem shifts $\sigma_{\pi N}$ by +3.0 MeV

 $\Rightarrow \sigma_{\pi N} = (59.1 \pm 1.9_{\rm RS} \pm 3.0_{\rm LET}) \,\,{
m MeV} = (59.1 \pm 3.5) \,\,{
m MeV}$

[NB: recover $\sigma_{\pi N} = 45$ MeV if KH80 scattering lengths are used]

Sanity check – no hadronic atom input

- Fit to the pion-nucleon data base (GWU), electromagnetic corrections to the data à la Tromberg et al and treat normalizations of the data as fit parameters
- Fit to low-energy data based on the RS representation that are dominated from the scattering lengths (up to $T_\pi^{
 m max}=33-55\,{
 m MeV}$)

black: data with readjusted norm red triangles: RS solution with hadronic atom input

green triangles: new RS solution blue triangles: KH80

Sanity check – no hadronic atom input cont'd

• Scattering lengths in $[10^{-3}/M_{\pi}]$ and σ -term:

$$a^{1/2} = -86.7(3.5) \;,\; a^{3/2} = 167.9(3.2) \;,\;\; \sigma_{\pi N} = 58(5) \; {\sf MeV}$$

consistent picture!

[details in Ruiz De Elvira, Hoferichter, Kubis, UGM, J. Phys. G 45 (2018) 024001]

- Ulf-G. Meißner, Symmetries and their realization, - Lectures, Tiflis (online), November 8 & 9, 2021 -

Results for the proton mass

• Precise determination of the pion-nucleon σ -term:

$$\sigma_{\pi N} = (59.1 \pm 3.5)\,{
m MeV}$$

• Consistency check w/o pionic atom data:

$$\sigma_{\pi N} = (58\pm5)\,{
m MeV}$$

• Not consistent w/ lattice determinations (presumably excited state contaminations)

Gupta et al. (2021)

• Strange σ -term: $\sigma_s = \langle N | m_s \bar{s}s | N
angle$ (more safe in LQCD)

$$\hookrightarrow \mathsf{FLAG average:} \quad \underbrace{\sigma_s = 52.9(7.0) \,\mathrm{MeV}}_{N_f = 2+1} \quad \text{or} \quad \underbrace{\sigma_s = 41.0(8.4) \,\mathrm{MeV}}_{N_f = 2+1+1}$$

Consequences for the proton mass: About 100 MeV from the Higgs, the rest is gluon field energy

Large- N_C QCD and the mass of the η'

Large- N_C QCD

t 'Hooft , Nucl. Phys. **B72** (1974) 461

- QCD is difficult to solve, often only numerical approaches allow ab initio calc's
- There is no small parameter except for very high-energy processes $\alpha_S
 ightarrow 0$ (still confinement)
- Idea: Consider the limit $N_C
 ightarrow \infty$ with $g^2 N_C = ext{constant}$

ightarrow This gives a smooth limit as $N_C
ightarrow\infty$

- To leading order in $1/N_c$, only planar diagrams contribute
 - \rightarrow Mesons are stable with masses $\mathcal{O}(N_C^0)$ and widths $\mathcal{O}(1/N_C)$
 - \rightarrow Meson interactions are weak, of order $\mathcal{O}(N_C^0)$
 - \rightarrow The OZI rule is exact in this limit

A few details on large- N_C

t 'Hooft, Nucl. Phys. B72 (1974) 461

• Double line notation

• Planar diagrams dominate

suppressed by $1/N_C$ by $1/N_C^2$

A sample calculation

• Color singlet contribution from a $Q\bar{Q}$ pair

$$\begin{split} |Q^{lpha}ar{Q}^{eta}
angle_{ ext{color singlet}} &\sim rac{1}{\sqrt{N_C}} b_i^{lpha} d_i^{eta^{\dagger}} |0
angle \ lpha, eta = ext{flavor labels} \ i = 1, \dots N_C = ext{color label} \ 1/\sqrt{N_c} = ext{w.f.} ext{ must be normalized to one} \end{split}$$

 \Rightarrow Propagator = quark loop \times w.f. normalizations = $N_C \left(N_C^{-1/2} \right)^2 = \mathcal{O}(1)$

• Meson deacy widths:

3 meson w.f. normalizations \times one quark loop

$$= \left(N_C^{-1/2}
ight)^3 N_C = N_C^{-1/2}$$

 \Rightarrow Meson become stable, i.e. $\Gamma/M o 0$, as $N_C o \infty$

Spontaneous symmetry breaking in large-N_C

- ullet Now we have $U(3)_L imes U(3)_R o U(3)_V$
 - \hookrightarrow There is a ninth Goldstone boson, the η'
- However, at finite N_C , the residual $U(1)_A$ symmetry is anomalous
- Two-point function of the isosinglet axial current:
 - \hookrightarrow disconnected diagrams vanish as $N_C o \infty$
 - \hookrightarrow related to the vacuum structure

 \rightarrow Andreas' lecture

• Explicit calculations give the Witten-Veneziano formula:

Witten (1979), Veneziano (1979)

$$\left(M_{\eta^\prime}^2 = rac{2N_f}{F_\pi^2}\,\chi_{
m top} = rac{const.}{N_c}
ight)$$

 \hookrightarrow in terms of the topological suszeptibility of the QCD vacuum

 \hookrightarrow obviously $M^2_{\eta'} o 0$ when $N_C o \infty$

Heavy quark symmetries

Heavy quark Lagrangian

Caswell, Lepage, Voloshin, Shifman, Isgur, Wise, Neubert, Mannel, ...

• The heavy quark Lagrangian at leading order takes the form:

$$\left[{{{\cal L}_{
m{LO}}} = ar Q \left({iv \cdot D}
ight)Q + {\cal O}(1/m_Q)}
ight]$$
, $Q = inom{c}{b}$, $D_\mu = \partial _\mu - igG^a _\mu T^a$

 \hookrightarrow SU(2) flavor symmetry: $Q\mapsto Q'=UQ~,~~U\in SU(2)$

- \hookrightarrow SU(2) spin symmetry: $S^3_Q |P
 angle = -rac{1}{2} |V
 angle$, $S^3_Q |V
 angle = -rac{1}{2} |P
 angle$
- ullet HQ symmetry breaking $\sim \Lambda_{
 m QCD}/m_Q$ [better for b quarks]

$$\mathcal{L}_{\text{NLO}} = \underbrace{\frac{1}{2m_Q} \bar{Q} (iD_{\perp})^2 Q}_{\text{breaks SU(2) flavor}} \underbrace{-c_F \frac{g}{4m_Q} \bar{Q} \sigma_{\alpha\beta} G^{\alpha\beta} Q}_{\text{breaks SU(2) spin \& flavor}} \underbrace{D^{\mu}_{\perp} = D^{\mu} - v^{\mu}v \cdot D}_{[D^{\mu}, D^{\nu}] = gG^{\mu\nu}}$$

- non-relativistic kinetc energy and chromo-magnetic term
- must be "dressed" to form physical states: $Q\bar{q}$, Qqq, etc.

Heavy quark effective Lagrangian

• consider the quark field as a static, heavy source \rightarrow four-velocity v_{μ} :

Georgi (1990)

$$p_{\mu}=m_{Q}v_{\mu}+\ell_{\mu}$$

with
$$v^2=1, \quad p^2=m_Q^2, \; v\cdot\ell \ll m_Q$$

• velocity-projection: $\Psi(x) = \exp(-im_Q v \cdot x) \left[Q(x) + \mathcal{Q}(x)
ight]$

with $\psi Q = Q, \ \psi Q = -Q$ ["large/small" components]

• Q- and Q-components decouple, separated by large mass gap $2m_Q$:

$${\cal L}_Q^{(1)} = ar{\Psi} igg(i D \!\!\!/ - m_Q + \ldots igg) \Psi$$

$$ightarrow \left[egin{array}{c} \mathcal{L}_Q^{(1)} = ar{Q} \left(iv \cdot D + \ldots
ight) Q + \mathcal{O} \left(rac{1}{m_Q}
ight)
ight.$$

Heavy hadron masses

- Hadron mass in HQET is $m_H m_Q$
- Leading order: all heavy hadrons containing Q have the same mass

 $rac{1}{2}\langle H^{(Q)}|\mathcal{H}_Q|H^{(Q)}
angle\equivar{\Lambda}$

 $\hookrightarrow \overline{\Lambda} \text{ for } B, B^*, D, D^*$, $\overline{\Lambda}_{\Lambda} \text{ for } \Lambda_b, \Lambda_c$, $\overline{\Lambda}_{\Sigma} \text{ for } \Sigma_b, \Sigma_b^*, \Sigma_c, \Sigma_c^* \text{ states}$ $\hookrightarrow \text{ in case of SU(3) breaking: } \overline{\Lambda}_{u,d} \text{ and } \overline{\Lambda}_s$

• Next-to-leading order: two non-perturbative constants

 $\langle H^{(Q)}|ar{Q}D_{ot}^2\,Q|H^{(Q)}
angle=-2\lambda_1$

 $\langle H^{(Q)} | \bar{Q} a(\mu) g \sigma_{lpha eta} G^{lpha eta} \, Q | H^{(Q)}
angle = 16 (ec{S}_Q \cdot ec{S}_\ell) \lambda_2(m_Q)$

 \hookrightarrow note renormalzation of the chromo-magnetic operator $\hookrightarrow \lambda_{1,2}$ are the same for all states in a spin-flavor multiplet

Heavy hadron masses continued

• after a bit of algebra:

$$\begin{split} m_{B} &= m_{b} + \bar{\Lambda} - \frac{\lambda_{1}}{2m_{b}} - \frac{3\lambda_{2}(m_{b})}{2m_{b}} , \qquad m_{D} = m_{c} + \bar{\Lambda} - \frac{\lambda_{1}}{2m_{c}} - \frac{3\lambda_{2}(m_{c})}{2m_{c}} \\ m_{B^{*}} &= m_{b} + \bar{\Lambda} - \frac{\lambda_{1}}{2m_{b}} + \frac{\lambda_{2}(m_{b})}{2m_{b}} , \qquad m_{D^{*}} = m_{c} + \bar{\Lambda} - \frac{\lambda_{1}}{2m_{c}} + \frac{\lambda_{2}(m_{c})}{2m_{c}} \\ m_{\Lambda_{b}} &= m_{b} + \bar{\Lambda}_{\Lambda} - \frac{\lambda_{\Lambda,1}}{2m_{b}} , \qquad m_{\Lambda_{c}} = m_{c} + \bar{\Lambda}_{\Lambda} - \frac{\lambda_{\Lambda,1}}{2m_{c}} \\ m_{\Sigma_{b}} &= m_{b} + \bar{\Lambda}_{\Sigma} - \frac{\lambda_{\Sigma,1}}{2m_{b}} - \frac{2\lambda_{\Sigma,2}(m_{b})}{2m_{b}} , \qquad m_{\Sigma_{c}} = m_{c} + \bar{\Lambda}_{\Sigma} - \frac{\lambda_{\Sigma,1}}{2m_{c}} - \frac{2\lambda_{\Sigma,2}(m_{c})}{2m_{c}} \\ m_{\Sigma_{b}^{*}} &= m_{b} + \bar{\Lambda}_{\Sigma} - \frac{\lambda_{\Sigma,1}}{2m_{b}} + \frac{\lambda_{\Sigma,2}(m_{b})}{2m_{b}} , \qquad m_{\Sigma_{c}^{*}} = m_{c} + \bar{\Lambda}_{\Sigma} - \frac{\lambda_{\Sigma,1}}{2m_{c}} + \frac{\lambda_{\Sigma,2}(m_{c})}{2m_{c}} \end{split}$$

• so that (ignore m_Q dependence of λ_2):

$$egin{aligned} 0.49~{
m GeV}^2 &\simeq m_{B^*}^2 - m_B^2 \simeq 4\lambda_2 \simeq m_{D^*}^2 - m_D^2 \simeq 0.55~{
m GeV}^2 \ (90\pm 3)~{
m GeV} &= m_{B_s} - m_{B_d} = ar{\Lambda}_s - ar{\Lambda}_{u,d} = m_{D_s} - m_{D_d} = (99\pm 1)~{
m GeV} \ (345\pm 9)~{
m GeV} &= m_{\Lambda_b} - m_B = ar{\Lambda}_\Lambda - ar{\Lambda}_{u,d} = m_{\Lambda_c} - m_D = (416\pm 1)~{
m GeV} \end{aligned}$$

Summary

Summary

• QCD is a remarkably easy to write down theory

 $= \frac{1}{4\pi g^{\alpha}} \left(\int_{uv}^{\alpha} \int_{uv}^{\alpha} + \frac{1}{2} \overline{g}_{i} \left((\partial^{*} D_{u} + m_{i}) g_{i} \right) \right)$ where $\left(\int_{uv}^{\alpha} = \partial_{u} R_{v}^{\alpha} - \partial_{v} R_{u}^{\alpha} + 4 \int_{vu}^{\alpha} R_{u}^{\beta} R_{v}^{\alpha} \right)$ and $D_{u} = \partial_{u} + i t^{\alpha} R_{u}^{\alpha}$ $\frac{T h_{\alpha} t_{is} it}{t_{is}} \left(\int_{uv}^{u} \frac{1}{2} + i t_{is}^{\alpha} R_{u}^{\alpha} \right)$

@ Frank Wilczek

- ... but has this rich cornucopia of symmetries and their realizations with many fascinating physical consequences & phenomena
- ... and this is not even all! \rightarrow Andreas' lectures

SPARES

Pion-nucleon scattering

• s-channel:
$$\pi(q) + N(p) \rightarrow \pi(q') + N(p')$$

t-channel: $\pi(q) + \pi(-q') \rightarrow \overline{N}(-p) + N(p')$

• Mandelstam variables:

$$s = (p+q)^2, t = (p-p')^2, u = (p-q')^2$$

 $s + t + u = 2m_N^2 + 2M_\pi^2, \ s = W^2$

• Isospin structure:

$$T^{ba}(s,t) = \delta^{ba} T^+(s,t) + i\epsilon_{abc}\tau^c T^-(s,t)$$

• Lorentz structure:

$$egin{aligned} &8\pi\sqrt{s}T^{I}(s,t) = ar{u}(p')\left\{A^{I}(s,t) + rac{1}{2}(a\!\!\!/ + a\!\!\!/)B^{I}(s,t)
ight\}u(p)\,, \quad I=+,- &I=1/2,3/2 \end{aligned}$$

• Crossing:

$$A^{\pm}(
u,t) = \pm A^{\pm}(-
u,t) \;, \;\; B^{\pm}(
u,t) = \mp B^{\pm}(-
u,t) \;, \;\;
u = rac{s-u}{4m_N}$$

• Partial wave projection:

$$X^{I}_{\ell}(s) = \int\limits_{-1}^{+1} dz_{s} P_{\ell}(z_{s}) X^{I}(s,t) \Big|_{t=-2q^{2}(1-z_{s})}, \quad X \in \{A,B\}$$

 $\Rightarrow \text{ partial wave expansion (total isospin I, ang. mom. } \ell, j = \ell \pm 1/2):$ $f_{\ell\pm}^{I}(W) = \frac{1}{16\pi W}$ $\times \left\{ (E+m) \left[A_{\ell}^{I}(s) + (W-m) B_{\ell}^{I}(s) \right] + (E-m) \left[-A_{\ell\pm1}^{I}(s) + (W+m) B_{\ell\pm1}^{I}(s) \right] \right\}$

- MacDowell symmetry: $f^I_{\ell+}(W) = -f^I_{(\ell+1)-}(-W) \quad \forall \ l \geq 0$ MacDowell (1959)
- Low-energy region: only S- and P-waves are relevant

 $f_{0+}^{\pm}, f_{1+}^{\pm}, f_{1-}^{\pm}$

 \Rightarrow low-energy amplitude can eventually be matched to chiral perturbation theory

Subthreshold expansion

• For the σ -term extraction, the πN amplitude $D = A + \nu B$ is most useful:

$$\bar{D}^+(\nu,t) = D^+(\nu,t) - \frac{g_{\pi N}^2}{m_N} - \nu g_{\pi N}^2 \left(\frac{1}{m_N^2 - s} - \frac{1}{m_N^2 - u}\right)$$

 \star subtraction of pseudovector Born terms $\to \bar{D}$

• Subthreshold expansion: expand around $\nu = t = 0$:

$$\overline{X(\nu,t) = \sum_{m,n} x_{mn} \,\nu^{2m} \,t^n} \,\,, \quad X \in \left\{ \bar{A}^+, \frac{\bar{A}^-}{\nu}, \frac{\bar{B}^+}{\nu}, \bar{B}^-, \bar{D}^+, \frac{\bar{D}^-}{\nu} \right\}$$

 $\star x_{mn}$ are the subthreshold parameters \rightarrow can be calculated via sum rules

* inside the Mandelstam triangle, scattering amplitudes are real polynomials