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Short introduction:
Symmetries
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4Some remarks on symmetries

c©Andreas./Flickr C.C. 2.0

c©NASA

• Symmetries are encountered in every day life

↪→ often related to beauty

• Generally, these are not perfect

↪→ breaking of symmetries

↪→ hidden symmetries

• Symmetries entail conservation laws

↪→ Rotational O(3) symmetry

↪→ [H,J ] = 0

• In the quantum world, more is possible

↪→ spontaneous symmetry breaking

↪→ anomalous symmetry breaking
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5First remarks on symmetry breaking

• Explicit symmetry breaking

L0 = 1
2 ẋ

2 + 1
2x

2 , invariant under x→ −x

L = L0 + εx , |ε| � 1 → approximate symmetry
→ perturbation theory

• Spontaneous symmetry breaking
(ground state has less symmetry than L)

V (χ) = aχ2 + bχ4 , with V (−χ) = V (χ)

χmin = ±
√
−a/2b

• Anomalous symmetry breaking

↪→ upon quantization, no classical analogue
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6QCD – basic facts

• LQCD = −1
4 G

a
µνG

µν,a +
∑
f

q̄f(iD/−M)qf + . . .

Dµ = ∂µ − igAaµλa/2
Gaµν = ∂µA

a
ν − ∂νAaµ − g[Abµ, Acν ]

f = (u, d, s, c, b, t)
. . . covered by Andreas

• running of αs =
g2

4π
⇒ ΛQCD = 210± 14 MeV (Nf = 5,MS, µ = 2 GeV)

• light (u,d,s) and heavy (c,b,t) quark flavors:

mlight � ΛQCD mheavy � ΛQCD

mu = 2.2+0.5
−0.4 MeV mc = 1.27± 0.02 GeV

md = 4.7+0.5
−0.2 MeV mb = 4.18+0.03

−0.02 GeV

ms = 93+11
−5 MeV mt = 172.8± 0.3 GeV
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7Symmetries of QCD

• SU(3)c gauge symmetry (local)

− basic construction principle: q(x)→ qg(x) = U(x)q(x) , U(x) ∈ SU(3)

Aµ(x) → Agµ(x) = U(x)Aµ(x)U(x)† − i
g
∂µU(x) · U†(x)

↪→ relates the fermion-gauge field coupling to the 3-gluons and 4-gluon couplings

• SU(3)L × SU(3)R chiral symmetry

→ spontaneously broken / Goldstone bosons

→ GBs clearly visible in the spectrum

• U(1)V × U(1)A “chiral” symmetry

→ U(1)V ∼ #quarks−#antiquarks

→ baryon number conservation

→ U(1)A : anomalously broken→ mass of the η′
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8Symmetries of QCD II

• Light quark flavor symmetries

− SU(2) isospin symmetry (u, d quarks)

− originally introduced by Heisenberg (NN int.)

− SU(3) flavor symmetry (u, d, s quarks)

− Gell-Mann’s and Zweig’s eightfold way

• Heavy quark spin-flavor symmetries

− SU(2) flavor symmetry (c, b quarks)

− SU(2) spin symmetry (c, b quarks)

↪→ these are all approximate symmetries

− combine these (also with chiral symmetry) in heavy-light systems

− light quarks: breakings controlled by ∆mq/ΛQCD

− heavy quarks: breakings controlled by ΛQCD/mQ

c©Fengkun Guo
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9Symmetries of QCD III

• Dilatation symmetry: Classical, massless QCD is invariant under scale trafo’s

ψ(x)→ λ3/2ψ(λx) , Aµ(x)→ λAµ(λx) , λ ∈ R \ {0}

→ no massive states in QCD in this limit

→ anomalously broken (trace anomaly)

• Discrete symmetries: P, C and T

→ Parity transformation: (x0, ~x)→ (x0,−~x)

→ Charge conjugation: charge→−charge

→ Time (motion) reversal: (x0, ~x)→ (−x0, ~x)

 fields ψ(x), Aµ(x) accordingly

↪→ QCD is a Lorentz-invariant, micro-causal theory→ CPT is conserved
Lüders, Wentzel, Pauli, ...

↪→ QCD is separately invariant under P, C and T, if θ = 0
→ Andreas’ lectures
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Symmetries
and their realization
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11Symmetry realization in QFT I

• Consider a HamiltonianH invariant under some group G

→ UHU† = H , U ∈ G

• U connects states that form an irrep of the group: U |A〉 = |B〉

→ this implies a multiplet structure: EA = 〈A|H|A〉 = 〈A|U†HU |A〉
= 〈B|H|B〉 = EB

• This is the Wigner-Weyl realization: Qa|0〉 = 0 [U = exp(iεaQa)]

→ vacuum is annihilated by the symmetry charges

→ embodied in Coleman’s theorem

Be Qa a generator of a continous symmetry group G given as a space-time
integral over the current density Jaµ(~x, t) and Qa|0〉 = 0. Then it follows thatH

remains invariant under transformatons of the fields according to G and the
current is conserved, ∂µJaµ = 0.
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12Symmetry realization in QFT II

• Nambu-Goldstone realization: for some a let Qa|0〉 6= 0

• Broken charge, consider volume V : QaV (t) =
∫
V

d3xJa0 (~x, t)

→ since ∂µJµa = 0, for any local operator A we have

→
∫
V

[∂µJ
a
µ , A]d3x = 0 → lim

V→∞

[
∂tQ

a
V (t), A

]
= 0

or lim
V→∞

[
QaV (t), A

]
≡ Ba with

dBa

dt
= 0

⇒ 〈0|Ba|0〉 6= 0 signals the Nambu-Goldstone symmetry realization

• Fabri-Picasso theorem: If Qa|0〉 6= 0 then lim
V→∞

QaV (t) does not exist

↪→ never need the broken charge, only its well-defined commutators
√
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13Symmetry realization in QFT III
• Goldstone theorem:

In any local translationally invariant field theory with a conserved four-current, ∂µJaµ = 0, and a
vacumm that is not annihilated by the charge QaV (t) =

∫
d3xJa0 (~x, t), i.e.

〈0|
[
QaV (t), A

]
|0〉 6= 0, there are neccessarily particles with zero mass, the so-called

Goldstone bosons (in SUSY also fermions).

• Derivation in a nut-shell:

consider a broken generator [Q,H] = 0 but Q|0〉 6= 0
define |ψ〉 ≡ Q|0〉

→H|ψ〉 = HQ|0〉 = QH|0〉 = 0
→ not only G.S. |0〉 has E = 0

There exist massless excitations |n〉, non-interacting as En, pn → 0

• Important property of Goldstone bosons: 〈0|Ja0 (0)|n〉 6= 0
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14Proof of Goldstone’s theorem
• Consider the vev of Ba:

lim
V→∞

∑
n

[
〈0|QaV (t)|n〉〈n|A|0〉 − (QaV ↔ A)

]
= 〈0|Ba(~x)|0〉

= lim
V→∞

∑
n

[
〈0|
∫
V

d3xJa0 (x)|n〉〈n|A|0〉 − (Ja0 ↔ A)

]
= lim
V→∞

∑
n

[
〈0|
∫
V

d3xJa0 (0)|n〉〈n|A|0〉e−ipnx − (Ja0 ↔ A)e+ipnx
]

=
∑
n

(2π)3δ(3)(~pn)
[
〈0|Ja0 (0)|n〉〈n|A|0〉e−iEnt − 〈0|A|n〉〈n|Ja0 (0)|0〉e+iEnt

]
Now d

dt
(l.h.s.) ∼ En but d

dt
(r.h.s.) ∼ Ḃa = 0

⇒ ∃ states for which Enδ(3)(~pn) vanishes, i.e. ~pn = 0 , En = 0 , M2
n = p2 = 0

• These massless states have the same quantum #s as Ja0 (scalar or pseudoscalar)

• Important property: 〈0|Ja0 (0)|n〉 6= 0 (neccessary & sufficient condition for SSB)

• Theorem holds independently of perturbation theory

• Requires a minimum # of dimensions: d > 2 (continous symmetry), d > 1 (discrete symmetry)
Coleman, Mermin, Wagner
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15Spontaneous symmetry breaking

• Consider a scalar field theory

L = |∂µφ|2 − V (|φ|) , φ complex

• Set: φ =
1
√

2
ρeiθ

• Rotational symmetry: θ → θ + α

• Select one value of θ⇒ SSB: ρ(x) = ρ0 , θ = 0

• Expand around this minimum: ρ = ρ0 + χ

↪→L =
1
2

(∂µχ)2 +
1
2
ρ2

0(∂µθ)2 − V (ρ0/2)−
1
2
χ2 V ′′(ρ0/2) + · · ·

↪→M2
χ = V ′′(ρ0/2) 6= 0 , M2

θ = 0

↪→ massless excitations in the θ-direction = Goldstone boson mode
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16Anomalous symmetry breaking

•What is an anomaly?

Anomaly = classical symmetry broken upon quantization

• Consider L(ψ, ψ̄, . . .) with a symmetry

ψ 7→ ψ′ = eiSψ ⇒ L(ψ′, ψ̄′, . . .) = L(ψ, ψ̄, . . .)

• Quantum effects via the path integral:

Z =
∫

[dψ][dψ̄] exp
{
i

∫
d4xL(ψ, ψ̄, . . .)

}
eiS : [dψ][dψ̄] 7→ [dψ′][dψ̄′]J ← J is the Jacobian

J 6= 1⇔ anomaly
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17Triangle anomaly

• First observed in π0 → 2γ Sutherland, Adler, Bell, Jackiw

• QED three-point (VAA) function (perturbative calc.) γµγ5

γα γβ

p1 p2

k

k + p2 k − p1

+

γµγ5

γα γβ

p1 p2

k

k + p1 k − p2

Tµαβ(p1, p2)

= e2

∫
d4k

(2π)4i
tr
[
γα

1
me− 6k

γβ
1

me− 6k+ 6p2
γµγ5

1
me− 6k− 6p1

]
+[α↔ β, p1 ↔ p2]

• If we shift k→ k − p1 or k→ k + p2 in the integrand parts, then:

(p1 + p2)µTµαβ(p1, p2) = −e2
∫

d4k

(2π)4i
tr
[
γα

1
me− 6k

γβ
1

me− 6k+ 6p2
2meγ5

1
me− 6k− 6p1

]
+[α↔ β, p1 ↔ p2]

• This corresponds to the naive identity:

∂µA
µ(x) = ∂µ

[
ψ̄(x)γµγ5ψ(x)

]
= 2imeψ̄(x)γ5ψ(x)

↪→ as on the classical level (no π0 decay)
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18Triangle anomaly - a second look

• The integrals are divergent, use a Pauli-Villars type regularization:

T
µαβ
reg (p1, p2) = Tµαβ(p1, p2)− TµαβΛ (p1, p2)

⇒ (p1 + p2)µTµαβreg (p1, p2)

=
(
−e2

∫
d4k

(2π)4i
tr
[
γα

1
me− 6k

γβ
1

me− 6k+ 6p2
2meγ5

1
me− 6k− 6p1

]
+e2

∫
d4k

(2π)4i
tr
[
γα

1
Λ− 6k

γβ
1

Λ− 6k+ 6p2
2Λγ5

1
Λ− 6k− 6p1

])
+[α↔ β, p1 ↔ p2]

• Using Feynman parametrization and some algebra leads to:

lim
Λ→∞

(p1 + p2)µTµαβΛ (p1, p2) = −
ie2

2π2 ε
αβλρp1λp2ρ

↪→ ∂µA
µ(x) = 2imeψ̄(x)γ5ψ(x)−

e2

16π2 εµναβF
µν(x)Fαβ(x)︸ ︷︷ ︸

anomaly
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19Triangle anomaly - more remarks
• Requires regularization, same results with dim. reg. or point-split techniques

• In more detaill: Add a polynomial in p1, p2 to Tµαβ(p1, p2),
use Lorentz-invariance, invariance under parity and Bose symmetry:

Tµαβ(p1, p2)→ Tµαβ(p1, p2) + aεµαβν(p1 − p2)ν

↪→ (p1 + p2)µTµαβ(p1, p2)→ (p1 + p2)µTµαβ(p1, p2)− 2aεµναβp1µp2ν

• Choose a = −
ie2

4π2 → anomalous term disappears

• But what happens to the Ward identities for the vector current?

p1αT
µαβ(p1, p2) = p2βT

µαβ(p1, p2) = 0

since p1αε
µαβν(p1 − p2)ν = −εµαβνp1αp2ν 6= 0 ⇒ a = 0

• No choice of a that allows for both naive Ward identities to hold

↪→ Choose a so that the conserved vector current is anomaly free (QED, QCD)

↪→ Requires anomaly cancellation in the Standard model
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20Fujikawa determinant
Fujikawa, PRD 21 (1980) 2848, PRD 22 (1980) 1499 [E]

• Path integral formulation: Non-invariance of the fermionic measure = anomaly

Z =
∫
dψdψ̄ exp

{
−
∫
d4xψ̄(x) γµDµψ(x)

}
, Dµ = ∂µ +Gµ︸ ︷︷ ︸

Dirac operator

• Expand the massless Dirac operator in eigenfunctions

6Dψλ = iλψλ , ψ̄λ
←

( 6D)= iλψ̄λ ,
∫
d4x ψ̄λ(x)ψλ′(x) = δλλ′

ψ(x) =
∑

λ
aλψλ(x) , ψ̄(x) =

∑
λ
ψ̄λ(x)āλ → dψdψ̄ =

∏
λ
daλdāλ

• Local singlet axial transformations:

aλ 7→
∫
d4x ψ̄λ(x)(1 + iβ0(x)γ5)ψ(x) =

∑
λ′(δλλ′ + Cλλ′)aλ′

Cλλ′ = i
∫
d4xβ0(x) ψ̄λ(x)γ5ψλ′(x)

• Jacobian: dψdψ̄ 7→ J−2dψdψ̄

↪→ J = det(1 + C) = exp(Tr(ln(1 + C))) = exp
{∑

λ
Cλλ + O(β2)

}
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21Fujikawa determinant continued

• Evaluation of the Jacobian: ln J = i

∫
d4xβ0(x)

∑
λ

ψ̄λ(x)γ5ψλ(x)︸ ︷︷ ︸
.
=S(x)

• Regulate the divergent sum over EV:∑
λ

ψ̄λ(x)γ5ψλ(x)→ lim
M→∞

∑
λ

e−λ
2/M2

ψ̄λ(x)γ5ψλ(x) = lim
M→∞

SM (x)

SM (x) =
∑
λ

ψ̄λ(x)γ5e 6D
2/M2

ψλ(x) =
〈
x

∣∣∣tr(γ5e 6D
2/M2

)∣∣∣x〉 , 6D2 = D2 − i
2 σµνFµν

tr = trace over Dirac, color and flavor indices

• After some algebra: lim
M→∞

SM(x) =
Nf

32π2 εµναβtrc(FµνFαβ)

↪→ J = exp
{
i

∫
d4xβ0(x)

Nf

32π2 εµναβtrc(FµνFαβ)︸ ︷︷ ︸
anomaly

+O(β2)
}

↪→ ∂µA
0
µ(x) =

Nf

16π2 εµναβtrc(FµνFαβ)→ known result w/o perturbation th’y!
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22More on anomalies
• Anomalies appear rather often, a generic feature of most QFTs

• In the general non-abelian case, the following diagrams can lead to anomalies

AA

A

A

AV

A

A

A

VV

A

A

V

AA

V

A

A

AA

A

A

V

VV

V

VV

A

V

V

A

V

• Anomaly matching relates anomalous W.I. between fundamental & effective theories
’t Hooft (1980)

• In the language of the EFT of QCD, anomalies are represented in terms
of the Wess-Zumino–Witten effective action + Witten-Veneziano formula + ...

Wess, Zumino (1971), Witten (1979, 1983), Veneziano (1979
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Chiral symmetry
in QCD
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Introduction to chiral symmetry

• Massless fermions exhibit chiral symmetry:
L = iψ̄γµ∂

µψ

• left/right-decomposition:
ψ = 1

2(1− γ5)ψ + 1
2(1 + γ5)ψ = PLψ + PRψ = ψL + ψR

• projectors:
P 2
L = PL, P

2
R = PR, PL · PR = 0, PL + PR = 1

• helicity eigenstates:
1
2 ĥψL,R = ±1

2ψL,R ĥ = ~σ · ~p/|~p |

• L/R fields do not interact→ conserved L/R currents

L = iψ̄Lγµ∂
µψL + iψ̄Rγµ∂

µψR
ψ
L

ψ
R

• mass terms break chiral symmetry: ψ̄Mψ = ψ̄RMψL + ψ̄LMψR
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25Chiral symmetry of QCD

• Three flavor QCD:

LQCD = L0
QCD − q̄Mq , q =

ud
s

 , M =

mu

md

ms


• L0

QCD is invariant under chiral SU(3)L × SU(3)R (split off U(1)’s)

L0
QCD(Gµν , q′, Dµq′) = L0

QCD(Gµν , q,Dµq)

q′ = RPRq + LPLq = RqR + LqL R,L ∈ SU(3)R,L

• conserved L/R-handed [vector/axial-vector] Noether currents:

Jµ,aL,R = q̄L,Rγ
µ λ

a

2 qL,R , a = 1, . . . , 8

∂µJ
µ,a
L,R = 0 [or V µ = JµL + JµR , A

µ = JµL − J
µ
R]

• Is this symmety reflected in the vacuum structure/hadron spectrum?
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26The fate of QCD’s chiral symmetry

• The chiral symmetry is not “visible”, it is “hidden” (spontaneously broken)

• no parity doublets

↪→Mρ 6= Ma1 , MN 6= MS11 , . . .

• 〈0|AA|0〉 6= 〈0|V V |0〉

↪→
∫
ds
s

[ρV (s)− ρA(s)] = F 2
π

• scalar condensate q̄q = q̄LqR + q̄RqL acquires v.e.v.

↪→ another order parameter of SSB

• Vafa-Witten theorem [NPB 234 (1984) 173]

↪→ If θ = 0, vector symmetries can not be
spontaneously broken

• (almost) massless pseudoscalar bosons

-1

-0.5

0

0.5

1

1.5

2

2.5

3

0 1 2 3
Mass2 (GeV/c2)2

v 1-
a 1

ALEPH 91-95

τ−→(V,A,I=1)ντ

Perturbative QCD/Parton model
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The fate of QCD’s chiral symmetry II

•Wigner mode Qa5 |0〉 = Qa|0〉 = 0 (a = 1, . . . , 8) ?

• parity doublets: dQa5/dt = 0→ [H,Qa5 ] = 0

single particle state: H|ψp〉 = Ep|ψp〉

axial rotation: H(eiQa5 |ψp〉) = eiQa5H|ψp〉 = Ep(eiQ
a
5 |ψp〉)︸ ︷︷ ︸

same mass but opposite parity

• VV and AA spectral functions (without pion pole):

〈0|V V |0〉 = 〈0|(L+R)(L+R)|0〉 = 〈0|L2 +R2 + 2LR|0〉 = 〈0|L2 +R2|0〉
‖ ‖

〈0|AA|0〉 = 〈0|(L−R)(L−R)|0〉 = 〈0|L2 +R2− 2LR|0〉 = 〈0|L2 +R2|0〉

since L and R are orthogonal
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28The fate of QCD’s chiral symmetry III

• Chiral symmetry is realized in the Nambu-Goldstone mode

• pions indeed couple to the vacuum

↪→ 〈0|Ajµ(0)|πk(p)〉 = iFπpµδ
jk , Fπ ' 92 MeV

• weakly interacting massless pseudoscalar excitations

↪→ this can be tested experimentally

• approximate symmetry (small quark masses)

↪→ M2
π±
∼ (mu +md)

↪→ π,K, η as Pseudo-Goldstone Bosons

• An appropriately tailored effective field theory can be set up

↪→ Chiral Perturbation Theory Weinberg, Gasser, Leutwyler

↪→ perturbative expansion in p/Λ and Mπ/Λ including loops
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29Chiral perturbation theory in a nutshell

• Low-energy EFT of QCD: LQCD(q, q̄, G)→ Leff(U, s, p, v, a)

↪→ same Ward identities = exact mapping Leutwyler, Weinberg

• Chiral effective Lagrangian:

Leff = L(2) + L(4) + . . .

↪→ systematic expansion in small momenta
and quark (pion) masses

↪→ leading order: trees
next-to-leading order:
trees and one-loop graphs , ...

↪→ order-by-order renormalization

↪→ some processes to two loops

↪→ very successful framework
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30Elastic pion-pion scattering

• Purest process in two-flavor chiral dynamics (really light quarks)

• Scattering amplitude at threshold: two numbers (a0, a2)

• Very precise prediction: match 2-loop representation to Roy equation solution

Roy + 2-loop: a0 = 0.220± 0.005
Colangelo, Gasser, Leutwyler, Phys. Lett . B488 (2000) 261

• Same precision for a2, but corrections very small . . .

• Experiment: Kaon decays (K`4,K → 3π) and the lifetime of pionium

a0 = 0.2210± 0.0047stat ± 0.0040sys

a2 = −0.0429± 0.0044stat ± 0.0028sys

Batley et al. [NA48/2 Coll.] EPJ C70 (2010) 635

|a0 − a2| = 0.2533+0.0107
−0.0137 Adeva et al. [DIRAC Coll.] Phys. Lett. B704 (2011) 24
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31Elastic pion-pion scattering – lattice a0

• Only a few lattice determinations of a0

↪→ disconnected diagrams difficult

↪→ quantum numbers of the vacuum

↪→ qualitative insight from large-NC

Guo, Liu, UGM, Wang, Phys. Rev. D88 (2013) 074506

• Available unquenched lattice results:

Author(s) a0 Fermion action Pion mass range

Fu 0.214(4)(7) asqtad staggered 240 - 430 MeV

Liu et al. 0.198(9)(6) twisted mass 250 - 320 MeV

Fu, PRD87 (2013) 074501; Liu et al., PRD96 (2017) 054516

→ use EFT of PQQCD to investigate these contributions
Acharya, Guo, UGM, Seng, Nucl. Phys. B922 (2017) 480

→ more work needed!
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32Chiral anomaly and the Wess-Zumino-Witten term

• Redundant symmetries of the chiral effective Lagrangian, consider (massless) L(2)

L(2) =
F 2
π

4
〈∂µU∂µU†〉 , U(x) = exp (iλaφa(x)/Fπ) , U ∈ SU(3)

• Parity: PU(~x, t)P−1 = U†(−~x, t) like QCD

• L(2) has two extra symmetries, unlike QCD

U(~x, t) 7→ U(−~x, t) , U(~x, t) 7→ U†(~x, t) conserves intrinsic parity (PI )

• Intrinsic parity: PI = +1/− 1 for a true/pseudo-tensor of rank k

• Examples

ππ → ππ (−1) · (−1) = (−1) · (−1)
√

π0 → 2γ (−1) = (+1) · (+1) ?

γπ+ → π+ (+1) · (−1) = (−1)
√

γ → π+π−π0 (+1) = (−1) · (−1) · (−1) ?

η → π+π−π0 (−1) = (−1) · (−1) · (−1)
√

KK̄ → π+π−π0 (−1)2 = (−1)3 ?

↪→L(2) conserves PI , i.e. the number of Goldstone bosons mod 2 [holds for all L(2n)]

but QCD does not!
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33Chiral anomaly and the Wess-Zumino-Witten term II

• Break the redundenat symmetries (EoM) Witten (1983)

i

2
F 2
π∂

µLµ + λεµναβLµLνLαLβ = 0 , Lµ = U†∂µU

• This can not be written as a 4-dimensional Lagrangian, so [some algebra]

SWZW = −
in

240π2

∫
S5
d5xεµναβγ〈LµLνLαLβLγ〉 , S5 = ∂M5

• topological quantization to resolve path ambiguity in S5

• electromagnetic gauging→ n = NC (c.f. T (π0 → 2γ))

• many testable predictions, e.g.

T (γ → π+π−π0) = −εµναβεµkνpα−p
β
+ F (s, t, u)

↪→ F (0, 0, 0) =
eNc

12π2F 3
π

= 9.7 GeV−3
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Light quark
flavor symmetries
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35Isospin symmetry
• Nucleon-nucleon interactions are approximately invariant under

N 7→ N ′ = U N , U ∈ SU(2) , N =

(
p

n

)
Heisenberg (1932)

• For mu = md, QCD is invariant under SU(2) isospin transformations

q 7→ q′ = U q , q =

(
u

d

)
U =

(
a∗ b∗

−b a

)
|a|2 + |b|2 = 1

• Rewrite the QCD quark mass term

Hmass
QCD = mu ūu+md d̄d =

1
2

(mu +md)(ūu+ d̄d)︸ ︷︷ ︸
I=0

+
1
2

(mu −md)(ūu− d̄d)︸ ︷︷ ︸
I=1

• Sources of isospin breaking: mu 6= md and electromagnetism

↪→ strong breaking expected to be small:

�
�

�



md

mu

' 2 but
md −mu

ΛQCD
� 1

↪→ em breaking small ∼ α ∼ 1/137
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36The proton-neutron mass difference

• Two contributions of similar size to combine to mn −mp = 1.3 MeV

• Mass difference given by: mp −mn = 4c5B(md −mu)︸ ︷︷ ︸
strong

−F 2
πe

2f2︸ ︷︷ ︸
em

• EM contribution form the Cottingham sum rule Cottingham (1968)

δmem
N ∼ e2

∫
d4qD(q2)gµν

(
Tµνp (p, q)− Tµνn (p, q)

)
= 0.58± 0.16 MeV Gasser, Leutwyler, Rusetsky (2021)

↪→ δmstrong
N = −1.87∓ 0.15 MeV

• Other determinations of δmem
N

using the Cottingham sum rule
or lattice QCD (also δmstrong

N )
Gasser, Leutwyler, Rusetsky (2020)

Borsanyi et al. (2015)
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37SU(3) flavor symmetry
• Introduced to bring order into the hadron zoo, the (constituent) quark model

Gell-Mann, Zweig (1964)

• Flavor SU(3) in QCD refers to the light up, down and strange (current) quarks

• For mu = md = ms, QCD is invariant under SU(3) flavor transformations
[the unbroken SU(3)]

q 7→ q′ = U q , q =

(
u

d

s

)
U ∈ SU(3) [Gell-Mann matrices]

• Sources of SU(3) flavor breaking: ms 6= md,mu and electromagnetism

↪→ strong breaking expected to be sizeable:
�
�

�
�ms � md,mu and ms

ΛQCD
' 1

2

↪→ em breaking small ∼ α ∼ 1/137

• Still, some rather precise predictions (Gell-Mann–Okubo mass formula):

1
4 (mN +mΞ) = 3

4 (mΛ +mΣ) i.e. 1128.5 MeV ' 1135.3 MeV

– Ulf-G. Meißner, Symmetries and their realization, – Lectures, Tiflis (online), November 8 & 9, 2021 –



38Calculation of hadron masses
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• SU(3) limit ms = md = mu is

↪→ starting point in lattice QCD calculations

↪→ increase ms & decrease md,mu

↪→ fan-plots & rather accurate calculations
Bietenholz et al., Phys. Rev. D 84 (2011) 054509

• SU(3) limit ms = md = mu is

↪→ starting point in unitarized CHPT calculations

↪→ x = 0→ 1 from the sym. pt. to the phys. world

↪→ two-pole structure of the Λ(1405) emerges
Oller, UGM, Phys. Lett. 500 (2001) 263

Jido, Oller, Oset, Ramos, UGM, Nucl. Phys. 725 (2003) 181
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Dimensional transmutation,
the trace anomaly & all that
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40Scale invariance and its breaking

• Massless classical QCD is scale-invariant, no massive particles emerge

↪→ this scale invariance is obviously broken (anomaly), e.g. mp 6= 0

↪→ dimensional transmutation generates a scale ΛQCD, so mp ∼ ΛQCD

↪→ how are these phenomena linked?

• Classical QCD, rewritten in a symmetrized form:

LQCD = 1
2g2 trc(FµνFµν) + ψ̄

(
i
2 γ

µ
↔
Dµ −M

)
ψ

• Conserved and gauge-invariant energy-momentum tensor:

θ̄µν = i
2 ψ̄γµ

↔
Dνψ + 2trc

(
FµλF

λ
ν −

1
4 gµνFλρF

λρ
)

, θ̄µµ = ψ̄Mψ

• M.E. of θ̄µν in some hadron |k〉:

〈k|θ̄µν(0)|k〉 = akµkν + bgµν → a = 2, b = 0 from momentum operator

↪→ 〈k|θ̄µµ(0)|k〉 = 2M2→ all hadrons are massless asM→ 0 ???
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41Scale transformations in QCD

• Scale transformations: ψ(x) 7→ λ3/2ψ(λx) , Gµ(x) 7→ λGµ(λx) , λ ∈ R\{0}

• Simplified derivation of the trace anomaly, gluons described by an external field

Z(Gµ) =
∫
dψdψ̄ exp

{
i

∫
d4xLQCD

}

• Inf. scale trafo’s: ψ(x) 7→
(
1− ε(x)

2

)
ψ(x), ψ̄(x) 7→

(
1− ε(x)

2

)
ψ̄(x)

↪→ Z(Gµ) =
∫
dψdψ̄ J−2 exp

{
i

∫
d4x

(
LQCD − ε(θ̄µµ(x)− ψ̄(x)Mψ(x))

)}
•Ward identity ot first order in ε(x):∫
dψdψ̄

(
i

∫
d4x ε(x)(θ̄µµ(x)− ψ̄(x)Mψ(x)) + 2 ln J

)
exp

{
i

∫
d4xLQCD

}
= 0

− if J = 1, same as on the classical level

− the anomaly will emerge from the femionic measure, let’s calculate it!
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42Trace anomaly
• Use the Fujikawa method:

ln J = ln(det(e−ε/2)) = − lim
M→∞

{∫
d4x

ε(x)
2
〈x
∣∣∣∣tr(e(i6D)2/M2

)∣∣∣∣x〉}
• Use [Dµ, Dν ] = Fµν and let M →∞:

ln J = i

∫
d4x

ε(x)
2

Nf

24π2 trc(Fµν(x)Fµν(x))

⇒ the trace of the energy-momentum tensor is:

θ̄µµ = ψ̄Mψ −
Nf

24π2 trc(Fµν(x)Fµν(x)) 6= 0 asM→ 0

• Full calculation: Collins, Crewther, Chanowitz, Ellis, Nielsen

θ̄µµ(x) = (1+γm(gr))[ψ̄(x)Mrψ(x)]r−β(gr)
g3
r

[trc(Fµν(x)Fµν(x))]r
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43Anatomy of the nucleon mass

mN = 〈N(p)|θµµ|N(p)〉

= 〈N(p)|
βQCD

2g
GaµνG

µν
a︸ ︷︷ ︸

field energy

+muūu+mdd̄d+mss̄s︸ ︷︷ ︸
Higgs

|N(p)〉

• Dissect the various contributions:

? 〈N(p)|muūu+mdd̄d|N(p)〉 = 40 . . . 70 MeV .= σπN

from the analysis of the pion-nucleon sigma term & lattice QCD (before 2015)
Gasser, Leutwyler, Sainio; Borasoy & M., Büttiker & M., Pavan et al., Alarcon et al. . . .

? 〈N(p)|mss̄s|N(p)〉 = 20 . . . 60 MeV from lattice

⇒ bulk of the nucleon mass is generated by the gluon fields / field energy

⇒ this is a central result of QCD

⇒ requires better Roy-Steiner analysis of πN and lattice data

↪→ discuss this w/o all details
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44σ-term basics

• Scalar form factor of the nucleon (isospin limit m̂ = (mu +md)/2):

σπN(t) = 〈N(p′)|m̂(ūu+ d̄d)|N(p)〉 , t = (p′ − p)2

• Cheng-Dashen Low-Energy Theorem (LET): Cheng, Dashen (1971)

D̄+(ν = 0, t = 2M2
π) = σ(2M2

π) + ∆R

[
ν = s−u

4mN

]

• D̄+ – isospin-even, Born-term subtracted pion-nucleon scattering amplitude

D̄+(0, 2M2
π) = A+(m2

N , 2M2
π)−

g2
πN

mN

↪→ best determined from πN data using dispersion relations (unphysical region)

• reminder ∆R, calculated in CHPT to O(p4), no chiral logs

∆R . 2 MeV Bernard, Kaiser, UGM (1996)
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45σ-term basics continued

• Standard decomposition of the σ-term: σπN = σπN(0)�� ��σπN = Σd + ∆D −∆σ −∆R

Σd = F 2
π(d+

00 + 2M2
πd

+
01) → full RS analysis

∆D = D̄+(0, 2M2
π)− Σd

∆σ = σ(2M2
π)− σπN

• d+
00, d

+
01 – subthreshold expansion coefficients (around ν = t = 0)

• Strong ππ rescattering in ∆D and ∆σ, the difference is small!
Gasser, Leutwyler, Sainio (1991)

• Most precise analysis of the scalar form factor of the nucleon:
Hoferichter, Ditsche, Kubis, UGM (2012)

∆D −∆σ = (−1.8± 0.2) MeV

}→ RS t-channel analysis
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Roy-Steiner equations in a nutshell

•Roy-Steiner (RS) equations = hyperbolic dispersion relations (HDRs):

(s− a)(u− a) = b , a, b ∈ R [b = b(s, t, a)]
Steiner (1968), Roy(1971), Hite, Steiner (1973)

• why HDRs?

↪→ combine all physical regions
very important for a reliable continuation to the subthreshold region

Stahov (1999)

↪→ especially powerful for the determination of the σ-term
Koch (1982)

↪→ s↔ u crossing is explicit

↪→ absorptive parts are only needed in regions where
the corresponding partial expansions converge

↪→ judicious choice of a allows to increase the range of convergence
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47Results for the σ-term

• Basic formula: σπN = F 2
π(d+

00 + 2M2
πd

+
01) + ∆D −∆σ −∆R

• Subthreshold parameters output of the RS equations:

d+
00 = −1.36(3)M−1

π [KH: −1.46(10)M−1
π ]

d+
01 = 1.16(3)M−3

π [KH: 1.14(2) M−3
π ]

•∆D −∆σ = (1.8± 0.2) MeV Hoferichter, Ditsche, Kubis, UGM (2012)

•∆R . 2 MeV Bernard, Kaiser, UGM (1996)

• Isospin breaking in the CD theorem shifts σπN by +3.0 MeV

⇒ σπN = (59.1± 1.9RS ± 3.0LET) MeV = (59.1± 3.5) MeV

[NB: recover σπN = 45 MeV if KH80 scattering lengths are used]
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48Sanity check – no hadronic atom input

• Fit to the pion-nucleon data base (GWU), electromagnetic corrections to the data
à la Tromberg et al and treat normalizations of the data as fit parameters

• Fit to low-energy data based on the RS representation that are dominated
from the scattering lengths (up to Tmax

π = 33− 55 MeV)
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red triangles: RS solution with hadronic atom input blue triangles: KH80
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49Sanity check – no hadronic atom input cont’d

• Scattering lengths in [10−3/Mπ] and σ-term:

a1/2 = −86.7(3.5) , a3/2 = 167.9(3.2) , σπN = 58(5) MeV

-110 -105 -100 -95 -90 -85 -80 -75
160

165

170

175

180
a
1
/
2
[ 10

−
3
M

−
1

π

]

a3/2
[
10−3M−1

π

]

π−p → π−p

π+p → π+p

π−p → π0n

KH80

πH
πD

• consistent picture!
[details in Ruiz De Elvira, Hoferichter, Kubis, UGM, J. Phys. G 45 (2018) 024001]

← all channels

← elastic channels
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50Results for the proton mass

• Precise determination of the pion-nucleon σ-term:

σπN = (59.1± 3.5) MeV

• Consistency check w/o pionic atom data:

σπN = (58± 5) MeV

• Not consistent w/ lattice determinations (presumably excited state contaminations)
Gupta et al. (2021)

• Strange σ-term: σs = 〈N |mss̄s|N〉 (more safe in LQCD)

↪→ FLAG average: σs = 52.9(7.0) MeV︸ ︷︷ ︸
Nf=2+1

or σs = 41.0(8.4) MeV︸ ︷︷ ︸
Nf=2+1+1

Consequences for the proton mass:
About 100 MeV from the Higgs, the rest is gluon field energy
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Large-NC QCD
and the mass of the η′
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52Large-NC QCD
t ’Hooft , Nucl. Phys. B72 (1974) 461

• QCD is difficult to solve, often only numerical approaches allow ab initio calc’s

• There is no small parameter except for very high-energy processes αS → 0
(still confinement)

• Idea: Consider the limit NC →∞ with g2NC = constant

→ This gives a smooth limit as NC →∞

• To leading order in 1/Nc, only planar diagrams contribute

→ Mesons are stable with masses O(N0
C) and widths O(1/NC)

→ Meson interactions are weak, of order O(N0
C)

→ The OZI rule is exact in this limit
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A few details on large-NC

t ’Hooft, Nucl. Phys. B72 (1974) 461

• Double line notation • Planar diagrams dominate

suppressed by 1/NC by 1/N2
C

– Ulf-G. Meißner, Symmetries and their realization, – Lectures, Tiflis (online), November 8 & 9, 2021 –



54

A sample calculation

xM Mx

• Color singlet contribution from a QQ̄ pair

|QαQ̄β〉color singlet ∼
1
√
NC

bαi d
β †
i |0〉

α, β = flavor labels
i = 1, . . . NC = color label
1/
√
Nc = w.f. must be normalized to one

⇒ Propagator = quark loop × w.f. normalizations = NC

(
N
−1/2
C

)2
= O(1)

• Meson deacy widths:

3 meson w.f. normalizations × one quark loop

=
(
N
−1/2
C

)3
NC = N

−1/2
C

⇒ Meson become stable, i.e. Γ/M → 0, as NC →∞

x

x

x

M

M

M

1

2

3
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55Spontaneous symmetry breaking in large-NC

• Now we have U(3)L × U(3)R → U(3)V
↪→ There is a ninth Goldstone boson, the η′

• However, at finite NC , the residual U(1)A symmetry is anomalous

• Two-point function of the isosinglet axial current:

↪→ disconnected diagrams vanish as NC →∞

↪→ related to the vacuum structure
→ Andreas’ lecture

• Explicit calculations give the Witten-Veneziano formula: Witten (1979), Veneziano (1979)�
�

�

M2

η′ =
2Nf

F 2
π

χtop =
const.

Nc

↪→ in terms of the topological suszeptibility of the QCD vacuum

↪→ obviously M2
η′ → 0 when NC →∞
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Heavy quark
symmetries
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57Heavy quark Lagrangian
Caswell, Lepage, Voloshin, Shifman, Isgur, Wise, Neubert, Mannel, ...

• The heavy quark Lagrangian at leading order takes the form:�� ��LLO = Q̄ (iv ·D)Q+O(1/mQ) , Q =
(
c

b

)
, Dµ = ∂µ − igGaµT a

↪→ SU(2) flavor symmetry: Q 7→ Q′ = UQ , U ∈ SU(2)

↪→ SU(2) spin symmetry: S3
Q|P 〉 = −1

2 |V 〉 , S3
Q|V 〉 = −1

2 |P 〉

• HQ symmetry breaking ∼ ΛQCD/mQ [better for b quarks]

LNLO =
1

2mQ

Q̄ (iD⊥)2Q︸ ︷︷ ︸
breaks SU(2) flavor

−cF
g

4mQ

Q̄ σαβG
αβ Q︸ ︷︷ ︸

breaks SU(2) spin & flavor

D
µ
⊥ = Dµ − vµv ·D

[Dµ,Dν ] = gGµν

• non-relativistic kinetc energy and chromo-magnetic term

• must be “dressed” to form physical states: Qq̄, Qqq, etc.
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58Heavy quark effective Lagrangian

• consider the quark field as a static, heavy source→ four-velocity vµ:
Georgi (1990)

pµ = mQvµ + `µ

with v2 = 1, p2 = m2
Q, v · `� mQ

• velocity-projection: Ψ(x) = exp(−imQv · x) [Q(x) +Q(x)]

with v/Q = Q, v/Q = −Q [“large/small” components]

• Q- andQ-components decouple, separated by large mass gap 2mQ:

L(1)
Q = Ψ̄

(
iD/−mQ + . . .

)
Ψ

→ L(1)
Q = Q̄ (iv ·D + . . .)Q+O

( 1
mQ

)
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59Heavy hadron masses

• Hadron mass in HQET is mH −mQ

• Leading order: all heavy hadrons containing Q have the same mass

1
2〈H

(Q)|HQ|H(Q)〉 ≡ Λ̄

↪→ Λ̄ for B,B∗, D,D∗ , Λ̄Λ for Λb,Λc , Λ̄Σ for Σb,Σ∗b ,Σc,Σ∗c states

↪→ in case of SU(3) breaking: Λ̄u,d and Λ̄s

• Next-to-leading order: two non-perturbative constants

〈H(Q)|Q̄D2
⊥Q|H(Q)〉 = −2λ1

〈H(Q)|Q̄a(µ)gσαβGαβ Q|H(Q)〉 = 16(~SQ · ~S`)λ2(mQ)

↪→ note renormalzation of the chromo-magnetic operator

↪→ λ1,2 are the same for all states in a spin-flavor multiplet
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60Heavy hadron masses continued
• after a bit of algebra:

mB = mb + Λ̄−
λ1

2mb

−
3λ2(mb)

2mb

, mD = mc + Λ̄−
λ1

2mc

−
3λ2(mc)

2mc

mB∗ = mb + Λ̄−
λ1

2mb

+
λ2(mb)

2mb

, mD∗ = mc + Λ̄−
λ1

2mc

+
λ2(mc)

2mc

mΛb = mb + Λ̄Λ −
λΛ,1

2mb

, mΛc = mc + Λ̄Λ −
λΛ,1

2mc

mΣb = mb + Λ̄Σ −
λΣ,1

2mb

−
2λΣ,2(mb)

2mb

, mΣc = mc + Λ̄Σ −
λΣ,1

2mc

−
2λΣ,2(mc)

2mc

mΣ∗
b

= mb + Λ̄Σ −
λΣ,1

2mb

+
λΣ,2(mb)

2mb

, mΣ∗c = mc + Λ̄Σ −
λΣ,1

2mc

+
λΣ,2(mc)

2mc

• so that (ignore mQ dependence of λ2):

0.49 GeV2' m2
B∗ −m2

B ' 4λ2 ' m2
D∗ −m2

D ' 0.55 GeV2

(90± 3) GeV= mBs −mBd = Λ̄s − Λ̄u,d = mDs −mDd = (99± 1) GeV

(345± 9) GeV= mΛb −mB = Λ̄Λ − Λ̄u,d = mΛc −mD = (416± 1) GeV
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Summary
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62Summary

• QCD is a remarkably easy to write down theory

@ Frank Wilczek

• ... but has this rich cornucopia of symmetries and their realizations
with many fascinating physical consequences & phenomena

• ... and this is not even all! → Andreas’ lectures
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SPARES
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64Pion-nucleon scattering

• s-channel: π(q) +N(p) → π(q′) + N(p′)
t-channel: π(q) + π(−q′)→ N̄(−p) +N(p′)

• Mandelstam variables:

s = (p+ q)2, t = (p− p′)2, u = (p− q′)2

s+ t+ u = 2m2
N + 2M2

π, s = W 2

• Isospin structure:

T ba(s, t) = δba T+(s, t) + iεabcτ
c T−(s, t)

• Lorentz structure:

8π
√
sT I(s, t) = ū(p′)

{
AI(s, t) + 1

2(q/+ q′/ )BI(s, t)
}
u(p) , I = +,−

I = 1/2, 3/2

• Crossing:

A±(ν, t) = ±A±(−ν, t) , B±(ν, t) = ∓B±(−ν, t) , ν =
s− u
4mN

t Ν
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65Pion-nucleon scattering continued

• Partial wave projection:

XI
` (s) =

+1∫
−1

dzsP`(zs)XI(s, t)
∣∣∣
t=−2q2(1−zs)

, X ∈ {A,B}

⇒ partial wave expansion (total isospin I, ang. mom. `, j = `± 1/2):

fI`±(W ) =
1

16πW

×
{

(E +m)
[
AI` (s) + (W −m)BI` (s)

]
+ (E −m)

[
−AI`±1(s) + (W +m)BI`±1(s)

]}
• MacDowell symmetry: fI`+(W ) = −fI(`+1)−(−W ) ∀ l ≥ 0 MacDowell (1959)

• Low-energy region: only S- and P-waves are relevant f±0+, f±1+, f±1−

⇒ low-energy amplitude can eventually be matched to chiral perturbation theory
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Subthreshold expansion

• For the σ-term extraction, the πN amplitude D = A+ νB is most useful:

D̄+(ν, t) = D+(ν, t)−
g2
πN

mN

− νg2
πN

( 1
m2
N − s

−
1

m2
N − u

)
? subtraction of pseudovector Born terms→ D̄

• Subthreshold expansion: expand around ν = t = 0:

X(ν, t) =
∑
m,n

xmn ν
2m tn , X ∈

{
Ā+,

Ā−

ν
,
B̄+

ν
, B̄−, D̄+,

D̄−

ν

}

? xmn are the subthreshold parameters→ can be calculated via sum rules

? inside the Mandelstam triangle, scattering amplitudes are real polynomials
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