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1D Higher Dimensions Regularization

Scattering in D = 1

Consider a short-range potential in one dimension, v : R→ C,
so that |v(x)| tends to zero faster than |x|−1 as x→ ±∞. Then,
every solution of the stationary Schrödinger equation,

−ψ′′(x) + v(x)ψ(x) = k2ψ(x) x ∈ R,

satisfies

ψ(x)→
{
A−e

ikx +B−e
−ikx for x→ −∞,

A+e
ikx +B+e

−ikx for x→ +∞,
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1D Higher Dimensions Regularization

Transfer Matrix

A± and B± are complex coefficients. The transfer matrix of the
potential v is a 2× 2 matrix M that relates (A+, B+) to
(A−, B−) according to[

A+

B+

]
= M

[
A−
B−

]
.
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1D Higher Dimensions Regularization

Composition rule

If we divide R into n adjacent intervals of the form,

I1 := (−∞, a1), I2 := [a1, a2), · · · In := [an−1,∞),

such that a1 < a2 < · · · < an−1, let vj : R→ C be the
truncation of v given by

vj(x) :=

{
v(x) for x ∈ Ij ,

0 for x /∈ Ij ,

and Mj be the transfer matrix of vj , then the following
composition rule holds

M = MnMn−1 · · ·M1. (1)
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Dynamical formulation of stationary scattering

These results can be obtained by using the dynamical
formulation of stationary scattering in one dimension. In this
approach M is identified with the S-matrix of an effective
non-unitary two-level quantum system.

A. Mostafazadeh, “A Dynamical formulation of one-dimensional
scattering theory and its applications in optics,” Ann. Phys. (N.Y.)
341, 77 (2014).
A. Mostafazadeh, “Transfer matrices as non-unitary S-matrices,
multimode unidirectional invisibility, and perturbative inverse
scattering,” Phys. Rev. A 89, 012709 (2014).
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1D Higher Dimensions Regularization

Let ψ be the general bounded solution ψ of the stationary
Schrödinger equation, and define

(
Ψ±(x))(p) :=

1

2k
e±ikx

[
kψ(x)± i ψ′(x)

]
, Ψ(x) :=

[
Ψ−(x)
Ψ+(x)

]
,

The stationary Schrödinger equation reads

i∂xΨ(x) = Ĥ(x)Ψ(x), Ĥ(x) :=
v(x)

2k
e−ikxσ3K eikxσ3

where σ3 is the diagonal Pauli matrix and

K :=

[
1 1
−1 −1

]
,
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1D Higher Dimensions Regularization

We realize that

lim
x→∞

Ψ(x) =

[
A+

B+

]
lim

x→−∞
Ψ(x) =

[
A−
B−

]
and

M = T exp

[
−i
∫ ∞
−∞

dx Ĥ(x)

]
,

where T denotes the time-ordering operation with x playing the
role of “time.”
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Dynamical equation for transfer matrix in higher
dimensions

Adopt a coordinate system in which the source of the incident
wave and the detectors used to observe the scattered wave lie on
the planes x = ±∞.
Consider the stationary Schrödinger equation in D + 1
dimensions,

[−∂2x −∇2 + v(x,y)]ψ(x,y) = k2ψ(x,y), (x,y) ∈ RD+1,

for a short-range potential v : RD+1 → C and a wavenumber
k ∈ R+. ∇2 stands for the D-dimensional Laplacian.
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1D Higher Dimensions Regularization

Performing the Fourier transform of both sides of the
Schrödinger equation with respect to y, we find

−ψ̃′′(x,p)+(V̂ (x)ψ̃)(x,p) = $(p)2 ψ̃(x,p), (x,p) ∈ RD+1,

where a prime stands for differentiation with respect to x,
ψ̃(x,p) := Fy,p{ψ(x,y)},

(V̂ (x)f̃)(p) := Fy,p{v(x,y)f(y)} =
1

(2π)D

∫
dDqṽ(x,p−q)f̃(q),

and

$(p) :=

{ √
k2 − p2 for |p| < k,

i
√

p2 − k2 for |p| ≥ k.
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We confine our attention to the class of potentials whose
supports along the x-axis is finite, i.e, , we suppose that there
are real numbers a± such that a− < a+ and

v(x,y) = 0 for x /∈ [a−, a+].

Then, ṽ(x,p) = 0 for x /∈ [a−, a+], and we obtain

[∂2x +$(p)2]ψ̃(x, p) = 0 for x /∈ [a−, a+].
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1D Higher Dimensions Regularization

ψ̃(x,p) =

{
A−(p)ei$(p)x + B−(p)e−i$(p)x for x ≤ a−,

A+(p)ei$(p)x +B+(p)e−i$(p)x for x ≥ a+.

[
A+

B+

]
= M̂

[
A−
B−

]
.
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Auxiliary transfer matrix

(
Φ±(x))(p) :=

e±i$(p)x

2$(p)

[
$(p)ψ̃(x,p)± i ψ̃′(x,p)

]
,

Φ(x) :=

[
Φ−(x)
Φ+(x)

]
,
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The Schrödinger equation reads

i∂xΦ(x) = Ĥ(x)Φ(x)

in which

Ĥ(x) :=
1

2
$(p̂)−1 e−i$(p̂)xσ3V̂ (x)K ei$(p̂)xσ3 .

Recall K := σ3 + iσ2 and

(V̂ (x)f̃)(p) =
1

(2π)D

∫
dDqṽ(x,p− q)f̃(q),
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1D Higher Dimensions Regularization

lim
x→−∞

Φ(x) = Φ(a−) =

[
A−
B−

]
, lim

x→+∞
Φ(x) = Φ(a+) =

[
A+

B+

]
.

Thus
M̂ = T exp

[
−i
∫ ∞
−∞

dx Ĥ(x)

]
,
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Composition rule for the auxiliary transfer matrix

Let ` be a positive integer, and a0, a1, a2, · · · , a` are arbitrary
real numbers such that

a− = a0 < a1 < a2 < · · · < a`−1 < a` = a+,

and vj : R→ C be truncations of the potential v given by

vm+1(x, y) :=

{
v(x, y) for x ∈ (am, am+1],

0 for x /∈ (am, am+1],

with m ∈ {0, 1, · · · , `− 1}. Let M̂j be the analogs of M̂ for the
potentials vj . Then,

M̂ = M̂`M̂`−1 · · ·M̂1.
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Perfect broadband invisibility

The omnidirectional invisibility for a wavenumber k corresponds
to the requirement that, for this particular value of k, the
restriction of M̂ to the subspace of asymptotically oscillating
modes equals the corresponding identity operator:

Π̂k M̂ Π̂k = Π̂k,

where
Π̂k := Π̂kI, Π̂k := lim

x→∞
e−$i(p̂)x

projects ψ = ψosc + ψev to ψosc. ψosc is a combination of Fourier
modes p such that ‖p‖ ≤ k while ψev is a combination of
Fourier modes p such that ‖p‖ > k.
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Theorem

Let α be a positive real number, ~e be a unit vector lying in the
y plane, and v : RD+1 → C be a short-range potential such that
ṽ(x, ~K) = 0 for ~K · ~e ≤ 2α. Then v is omnidirectionally invisible
for every wavenumber k that does not exceed α.

Hint: For such potentials

V̂ (x) Π̂k = 0.

This implies that for all n ∈ Z+ and x1, x2, · · · , xn ∈ R,

Π̂kĤ(xn)Ĥ(xn−1) · · · Ĥ(x1)Π̂k = 0̂.
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Theorem

Let ξ ∈ [0, 2π), α, β ∈ R+, k ∈ (0, α], and v : R3 → C be a
short-range potential such that for all z ∈ R, ˜̃v(~K, z) = 0 for

K1 ≤ β. Then, ̂̆M = Î for β ≥ 2α, and

̂̆
M = Î +

d2α/β−1e∑
n=1

(−i)n
∫ z

z0

dzn

∫ zn

z0

dzn−1 · · ·
∫ z2

z0

dx1

[
Π̂k

̂̆H(zn)
̂̆H(zn−1) · · · ̂̆H(z1)Π̂k

]
,

for 0 < β < 2α.

Corollary: Let α be a positive real number, ~e be a unit vector
lying in the y plane, and v be a short-range potential such that
ṽ(x, ~K) = 0 for ~K · ~e ≤ α. Then the first Born approximation
gives the exact expression for the scattering amplitude of v for
wavenumbers k ≤ α,

19 / 24



1D Higher Dimensions Regularization

Implicit regularization of delta-function potential in 2D

Suppose that the potential is given by

v(ρ) = z δ2(ρ− ρ0), ρ := (x, y),

with z ∈ C and ρ0 ∈ R2.

1 The coupling constant z is dimensionless.
2 The Schrodinger equation is invariant under ρ→ λρ, λ > 0.
3 The scattering amplitude is logarithmically UV divergent.
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Transfer Matrix

Transfer matrix gives the correct scattering amplitude without
consulting a regularization scheme.
Consider a left incident wave. We should solve the equation[

A+(p)
0

]
=
(
Î + m̂

)[ 2πδ(p− p0)
B−(p)

]
where

m̂ := − iz

2$(p)
e−i$(p)aσ3KΠ̂kδ(i∂p − b)Π̂ke

i$(p)aσ3

and we have assumed ρ0 = (a, b).
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m̂

(
2πδ(p− p0)
B−(p)

)
= − iz c

2$(p)
e−ipbe−i$(p)aσ3

(
1
−1

)
c := eip0·ρ0 + F−1p,b {e

−i$(p)aB−(p)} (2)

This gives

B−(p) = − iz c

2$(p)
e−ipbei$(p)a, p ∈ (−k, k) (3)

Using (3) in (2) we can compute c. Using it in (3) we obtain

B−(p) = − i

2$(p)

z

1 + iz
4

ei(p0−p)·ρ0
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We note that for ρ→∞ and θ ∈
(
π
2 ,

3π
2

)
ψscat(ρ) =

1

2π

∫ k

−k
dpB−(p)eipye−i$(p)x

→ − iz

4 + iz
e−iπ/4

√
2

πkρ
eikρ
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Lippmann-Schwinger equation

ψscat(ρ) = − īz(k)

4 + īz

√
2

πkρ
e−iπ/4eikρ

where
1

z̄(k)
=

1

z̄(kref)
− 1

2π
ln

(
k

kref

)
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