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Scattering in D =1

Consider a short-range potential in one dimension, v : R — C,
so that |v(z)| tends to zero faster than |z|~! as 2 — 4oc0. Then,
every solution of the stationary Schrédinger equation,

—"(x) + v(z)p(z) = Kp(z) =z €R,

satisfies

W(z) = A_ehr 4 B_e7 T for 1z — —o0,
v Ape*® 4 B e for x — +oo,



Transfer Matrix

A4 and By are complex coefficients. The transfer matrix of the
potential v is a 2 x 2 matrix M that relates (A, B4) to

(A_, B_) according to
Ay | A_
o]l




Composition rule

If we divide R into n adjacent intervals of the form,
Il = (—OO,CL1>, 12 = [alaa2)a e In = [anfl,OO),

such that a; <az <--- <ap_1,let v; : R — C be the
truncation of v given by

oy Jov(x) for el
vi(@) = { 0 for z¢lIj,

and M; be the transfer matrix of v;, then the following
composition rule holds

M = M, M,_; --- M. (1)



1D

Dynamical formulation of stationary scattering

These results can be obtained by using the dynamical
formulation of stationary scattering in one dimension. In this
approach M is identified with the S-matrix of an effective
non-unitary two-level quantum system.

A. Mostafazadeh, “A Dynamical formulation of one-dimensional
scattering theory and its applications in optics,” Ann. Phys. (N.Y.)
341, 77 (2014).

A. Mostafazadeh, “Transfer matrices as non-unitary S-matrices,
multimode unidirectional invisibility, and perturbative inverse
scattering,” Phys. Rev. A 89, 012709 (2014).



1D

Let ¢ be the general bounded solution % of the stationary
Schrédinger equation, and define

(T (2))(p) = iei"’” [kp(z) £ig/(z)], ®(z):= [ v (x) } ,

The stationary Schrédinger equation reads
i0,%(z) = H(z)®(z), H(z):= ﬁe—ikmxeikm

where o3 is the diagonal Pauli matrix and

11
K':[—l —1}’



1D

We realize that

lim ¥(z) = [ A+ } lim ¥(z) = [ A ]

T—r00 B+ Tr—r—00 B_

and
S A~
M = T exp [—z/ dx H(x)] ,
—00
where .7 denotes the time-ordering operation with z playing the
role of “time.”



Higher Dimensions

Dynamical equation for transfer matrix in higher
dimensions

Adopt a coordinate system in which the source of the incident
wave and the detectors used to observe the scattered wave lie on
the planes z = +o0.

Consider the stationary Schrodinger equation in D + 1
dimensions,

{_89% - v2 + v(:c,y)]w(x,y) = k2¢(1’7}’)7 (x7Y) € RD+17

for a short-range potential v : RP*! — C and a wavenumber
k € RT. V2 stands for the D-dimensional Laplacian.



Higher Dimensions

Performing the Fourier transform of both sides of the
Schrédinger equation with respect to y, we find

o~

—"(z,p)+ (¥ (2)) (2, p) = w(p)? (=, p), (z,p) € RPHL,

where a prime stands for differentiation with respect to x,

¢($ap) = ]:y,p{T/J(%Y)},

1

T@NE) = Foplol@y)[0)} = g [ el p-a)fa),

and

w(p) ==

in/p? —k? for |p|>k.

{ K2 _p? for |p| <k,
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Higher Dimensions

We confine our attention to the class of potentials whose
supports along the x-axis is finite, i.e, , we suppose that there
are real numbers a1 such that a_ < ay and

v(z,y) =0 for = ¢ [a_,ay].
Then, o(z,p) = 0 for x ¢ [a_, a+], and we obtain

(07 + @ (p)’]d(2,p) = 0 for « ¢ [a_,ay].




Higher Dimensions

Ha.p) A_(p)e=®P)* 1 B (ple @@ for z<a_,
r,p) = . .
oy (p)e=PT L B, (ple @@ for z>a,.






Higher Dimensions

The Schrodinger equation reads
i0,®(z) = H(z)®(z)

in which

Recall IC := o3 + i09 and

(7 (2)f)(p) =

o5 | Caitep - a)f@.

1 o ~ o
H(x) := 512(]5)_16_m(”)m3”//(:1:)ICem(p)MS.




Higher Dimensions




Higher Dimensions

Composition rule for the auxiliary transfer matrix

Let ¢ be a positive integer, and ag, a1, az,- - - ,ap are arbitrary
real numbers such that

a_=aqy<ar<ap<--<ay1<ay=ay,
and v; : R — C be truncations of the potential v given by

L U(SU,y) for = € (am)am-‘rl]v
Umi1(2,y) = { 0 for z ¢ (am,am—HL

with m € {0,1,--- ,¢ —1}. Let 9:71]- be the analogs of M for the
potentials v;. Then,

M = V,D,_q -~ M.



Higher Dimensions

Perfect broadband invisibility

The omnidirectional invisibility for a wavenumber k£ corresponds
to the requirement that, for this particular value of k, the
restriction of 9 to the subspace of asymptotically oscillating
modes equals the corresponding identity operator:

i, 9t i, — .

where R )
I, ;= II,I, I := lim e @@=

projects ¥ = Yoge + Wey 10 Wose- Yose 1S & combination of Fourier
modes p such that ||p|| < k while ey is a combination of
Fourier modes p such that ||p| > k.



Higher Dimensions

Theorem

Let « be a positive real number, € be a unit vector lying in the
y plane and v : RD +1 5 C be a short-range potential such that

o(x, ﬁ) =0 for & &< 2a. Then v is omnidirectionally invisible
for every wavenumber k that does not exceed a.

Hint: For such potentials
¥ ()1l = 0.
This implies that for all n € Z* and 1,29, - , 2, € R,

~
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Higher Dimensions

Theorem

Let £ € ]0,27), o, € RT, k € (0,a], and v : 1@3 — C be a
short-range potential such that for all z € R, 9(&, z) = 0 for

R1 < 5. Then, M =T for B > 2a, and
_— (204/5 11

M:i (—i /dzn/ dzp—1 - /dxl[

for 0 < B < 2av.

Corollary: Let a be a positive real number, € be a unit vector
lying in the y plane, and v be a short-range potential such that
3(z, &) = 0 for & - € < a. Then the first Born approximation
gives the exact expression for the scattering amplitude of v for
wavenumbers k < «,



Regularization

Implicit regularization of delta-function potential in 2D

Suppose that the potential is given by

v(p) =30*(p—po), p:=(,Y),
with 3 € C and p, € R2.

@ The coupling constant 3 is dimensionless.
© The Schrodinger equation is invariant under p — Ap, A > 0.
@ The scattering amplitude is logarithmically UV divergent.



Regularization

Transfer Matrix

Transfer matrix gives the correct scattering amplitude without
consulting a regularization scheme.
Consider a left incident wave. We should solve the equation

[ A+0(p) } _ (i+ rTl) { W;(]j (;)pO) ]

where

~ i3 —iw(p)acs 117 ; [T, oiw(p)aocs
m:=—-———¢ KI1,0(i0, — b)IIe'™@'\?

and we have assumed p, = (a,b).



Regularization

~ 2775(17_1)0) _ i3 —ipb —iw(p)acs 1
m( B-(p) )" 2 >€ ‘ -1

c:=ePoPo 4 Fol{em @B (p)} (2)
This gives
_ ijc —ipb iw(p)a
B_(p) = ————¢ Pe!'@WP)e pe(—kk 3
) = 500 (kK G

Using (3) in (2) we can compute c. Using it in (3) we obtain

___ b & ipop)
B_ — _ Po—P) Po
) 2w(p) 1+ %6

N
N
V]



Regulariz

We note that for p — oo and 6 € (%, 37”)

1 g : —iw(p)x
wscat(P) = 27 de_(p)e’pye (»)
TJ—k

_L‘e—mﬂ 2 ik
4+ i3 wkp



Regularization

Lippmann-Schwinger equation

o a3(k) 2 ik
77/}scat(p) = n Zg Wkpe €

1 1 1 1 < k )
-~ = = — —1n
3(k) 5(kref) 27 kref

where
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