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� Gravity & Thermodynamics

• Distinctive feature of gravity is its universality.

• Thermodynamics has a similar universality.

• These two universal theories seem to be deeply related:

– Black holes [Carter-Bardeen-Hawking & Hawking, Bekenstein
(early 1970’s)], [Wald (1993,4)];

– Accelerated observers see a thermal bath [Unruh (1976)];

– Einstein equations from thermodynamics [Jacobson (1995)];

– Gravity as entropic force [E. Verlide (2010)];

– Holographic principle & AdS/CFT.
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� Boundary symmetries and d.o.f.

• Presence of boundaries in spacetime brings in boundary d.o.f.

• This boundary may be asymptotic boundary or any arbitrary codimen-
sion one surface in spacetime.

• For gauge or diff. inv. theories the boundary d.o.f. may be labeled
by non-trivial gauge/diff. transf..

• These boundary/asymptotic d.of. have been proposed to be relevant
to BH information problem [Hawking-Perry-Strominger (2016)].

• We discuss the relation between thermodynamic description of gravity
& the boundary d.o.f.......

3



Outline

• Einstein GR and equivalence principle in presence of boundaries

• Null surfaces and boundaries as models for BH horizons

• Null boundary symmetries and charges, D dimensional example

• Null Surface Thermodynamics

• Summary and Outlook
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� Gauge theories in presence of boundaries

• Consider a gauge theory with generic fields Φα described by the action

S[Φα] =
∫
M
dDx L(Φα)

where L is the Lagrangian which is a D-form.

• Φα belong to representation Rα of the gauge Lie algebra A,

Φα → Φ̃α = Rα ·Φα.

• In the above Rα is a function over the spacetime and

S[Φα] = S[Φ̃α]
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• In gauge theories fields are defined up to gauge equivalence classes

and physical observables are gauge invariant quantities.

• Gauge symmetry is in fact a redundancy of description which should

be removed by gauge fixing, but yet, there may be nontrivial gauge

transformations in presence of boundary ∂M in spacetime M.

• In a different viewpoint, we may define our boundary/initial value

problem by specifying the behavior of Φα at the boundary:

Φα

∣∣∣
∂M

:= ϕα, δΦα

∣∣∣
∂M

:= δϕα

• ϕα may be non-invariant under a certain measure-zero subset of gauge

transformations at ∂M. These may be called boundary non-trivial,

physical gauge transformations.
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• boundary d.o.f may be labelled through ϕα.

• The nontrivial boundary gauge transformations are a handy and pow-
erful method to identify and formulate boundary d.o.f without invok-
ing addition of extra d.o.f by hand.

I As an example one may consider Maxwell theory in a box,

• Besides the photons in the box we have b.o.d.f.

• Their response to the EM fields in the box is the boundary currents.

• Boundary currents are specified, choosing boundary conditions.

• This gives a macroscopic formulation of b.d.o.f and fixes the bound-
ary/bulk interactions.
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� Einstein GR and its local (gauge) symmetry

• Einstein GR is a generally (in/co)variant theory.

• Physical observables in the Einstein GR are all defined through local

diffeomorphism invariant quantities.

• In particular, any two metric tensors related by diffeomorphisms are

physically equivalent:

xµ → xµ + ξµ(x), gην → gµν + δgµν, δgµν = ∇µξν +∇νξµ

• We typically fix diffeomorphisms through choice of observers.
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� Einstein GR, generic structure of d.o.f & EoM

• In a D dimensional spacetime, metric has D(D + 1)/2 components:

D(D − 3)/2 propagating gravitons,

D diffeos.

• Out of D(D + 1)/2 field equations, Gµν = 8πGTµν,

D(D − 3)/2 are second order diff.eq.,

D constraints (∇µGµν = 0) and D first order equations.

• Solutions are fully specified specifies boundary and/or initial data,

which in the most general case involves 2D functions over codimension

one boundary.

9



� Null boundaries as models of horizons

• In a stationary black hole setup, horizon is the boundary of outside

observers.

B i0

i+

i−

I+

I−

H+

H−

singularity

• Horizons are tpyically one way surfaces.
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Depiction of a null surface

v

infalling
null rays

r
=

0

Σ

r > 0

r < 0

b.d.of. are residing on Σ.

b.d.o.f. interact with themselves and with infalling flux. Interaction with

infalling flux is fixed by diff invariance (generalized Bondi news/balance

equation).

11



• Motivated by problems in BHs, we choose Σ to be a null surface,

sitting at r = 0:

ds2 = −Fdv2 + 2ηdrdv + hij(dx
i + gidv)(dxi + gjdv) (1)

F, gi, hij are functions of r, v, xi, i = 1,2, · · · , D − 2 and η = η(v, xi),

grr
∣∣∣
r=0

= 0 =⇒ (Fh+ g2)
∣∣∣
r=0

= 0,

where h := dethij, g
2 := hijgigj.

• We choose r = 0 to be the boundary of our spacetime and restrict

ourselves to r ≥ 0.
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� Solution space

• Metric (1) has 1 + 1 + (D − 2) + (D − 1)(D − 2)/2 functions in it.

• These may be decomposed into

– three scalars (F, h; η),

– one vector gi and

– one symmetric-traceless tensor Hij := hij/h
1/(D−2),

from the viewpoint of codimension two surface Σv, (constant v slice
on Σ).

• These functions are subject to field equations, which here we take
Einstein vacuum equations, determine their r dependence.
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• The r dependence of the tensor mode Hij is determined through

H
(0)
ij (v, xi) := Hij(r = 0; v, xi), H

′(0)
ij (v, xi) := ∂rHij(r = 0; v, xi).

• The r dependence of the vector mode obeys first order eq. in r and

is completely specified by Gi(v, xi) := gi(r = 0; v, xi).

• Raychaudhuri equation + the condition that Σ is null, allows for solv-

ing F in terms of Gi, h, η.

• The r dependence of the other two are determined in terms of η :=

η(v, xi), Ω(v, xi) :=
√
h(r = 0; v, xi).
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• Solution phase space is determined by

– “Tensor modes” (gravitons) H(0)
ij , H

′(0)
ij ,

– Vector mode Gi,

– Scalars modes Ω, η,

• These are respectively, D(D − 3), D − 2,2 functions of v, xi.

• We have only assumed smoothness of metric at r = 0,

• but no particular behavior (falloff condition), around r = 0.
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• The boundary r = 0 is not a special place in spacetime and can be

any given (null) D − 1 dimensional hypersurface.

• By construction there can’t be any solution geometry which is smooth

around r = 0 and is not in the form (1) and

F = −η
(

Γ−
2

D − 2

DvΩ
Ω

+
Dvη
η

)
r +O(r2)

gi = Gi − r
η

Ω
J i +O(r2)

gij = Ωij +O(r)

(2)

where all the fields are functions of v, xi
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Ωij = Ω2/(D−2)γij, Ω :=
√

det Ωij, det γij = 1.

Ωij and Ωij raise and lower capital Latin indices.

Dv := ∂v − LG,

where LG is the Lie derivative along Gi direction.

Θ expansion of vector field generating the null surface N : Θ := Dv ln Ω,

Nijthe news tensor associated with flux of gravitons through N :

Nij := 1
2Ω2/(D−2)Dvγij

Nij as defined above is a symmetric-traceless tensor.
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� Einstein Field Equations at r = 0

DvΩ = Θ Ω, (3a)

DvP = Γ +
2

Θ
NijN

ij, (3b)

DvJi + ΘΩ∂iP + Ω∂iΓ + 2Ω∇̄jNij = 0. (3c)

where

P := ln
η

Θ2
,

and ∇̄i is covariant derivative w.r.t Ωij.

So the solution space may be parametrized by

Ω,P,Ji, Nij and H ′ij(r = 0).

and Einstein equations may be used to solve for Γ,Gi in terms of these.
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� Residual diffeos over the null surface Σ

• We have used diffeos to fix the null surface Σ at r = 0.

• There is a measure zero subset of them that keep r = 0 intact re-
mained unfixed:

v → v + T (v, xi) +O(r)

r →
(
∂vT (v, xi)−W (v, xi)

)
r +O(r2)

xi → xi + Y i(v, xi) +O(r)

(4)

• Subleading terms in r may be fixed order-by-order requiring that (4)
keep the form of metric in solution space (1).

• Residual diffeos are specified by two scalar functions T (v, xi),W (v, xi)
and one vector Y i(v, xi) over r = 0 null surface.
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� Symmetries of the solution space

• Upon (4) metric (1) keep its form but with transformed functions:

Gi → Gi + δGi, η → η + δη, Ω→ Ω + δΩ,

H
(0)
ij → H

(0)
ij + δH

(0)
ij , H

′(0)
ij → H

′(0)
ij + δH

′(0)
ij ,

(5)

where δX are linear in residual diffeo functions T,W, Y i.

• Besides dynamical, propagating gravitons, there are 2 + (D−2) func-
tions over Σ in our solution space.

• There are 2 + (D − 2) functions over Σ in our residual diffeos.

• Residual diffeos rotate us within the solution space. They are hence
symmetry generators in the usual classical Noether sense.
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• There are two classes of fields/states in our solution space:

– D(D−3) propagating tensor modes H(0)
ij , H

′(0)
ij , one may call them

bulk modes,

– D scalar and vector modes, one may call them boundary modes.

• Boundary modes only reside on D−1 dimensional hypersurface Σ and

do not propagate into the bulk (away from r = 0).

• In our example we have chosen Σ to be null surface, like future horizon

of a BH.
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� Symmetries of the solution phase space

• One may use Covariant Phase Space Formalism (CPSF) to show

solution space is a phase space and there is a charge (Hamiltonian

generator) associated with the boundary symmetries.

• These surface charges are given by integrals over codimension-2 com-

pact spacelike surfaces, constant v slices on Σ, Σv.

• Surface charges are linear in symmetry generators T (v, xi),W (v, xi)

and Y i(v, xj), but may have different field/states dependence, i.e.

• integrands of the surface charge integrals may have different func-

tional dependence on Ω, η,Gi as well as H(0)
ij , H

′(0)
ij .
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� Surface charges and their algebra

• Standard computations yields the following surface charge variations

associated with the symmetry generators ξ

/δQξ =
1

16πG

∫
Nv

dD−2x

[
(W − ΓT ) δΩ + (Y i + GiT )δJA

+ TΩΘδP − TΩΩijδNij

]
,

(6)

• Charge variation is an integral over
∑4
A=1 CA δQA,

• QA parameterize the solution phase space:

Nij corresponds to the bulk degrees of freedom,

Ω,Ji,P parameterize boundary information.

Γ,Gi functions which appear in CA are subject to field equations.
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• Charge variation may be split into Noether (integrable) part QN and

the ‘flux’ part F :

/δQξ = δQN
ξ + Fξ(δg; g).

• QN may be computed for the Einstein-Hilbert action using the standard

Noether procedure, yielding

QN
ξ =

1

16πG

∫
Nv

dD−2x
[
W Ω + Y iJi + T

(
−ΓΩ + GiJi

)]
, (7)

• Non-integrable flux part

Fξ(δg; g) =
1

16πG

∫
Nv

dD−2xT
(
ΩδΓ− JiδGi + ΩΘδP−ΩΩijδNij

)
. (8)

• Symmetry generators T,W, Y i are assumed to be field-independent,

i.e. δT = δW = 0 = δY i.
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• Note that P and Nij only appear in the flux and not in the Noether

charges.

• The zero mode Noether charges,

QN
−r∂r =

1

16πG

∫
Nv

dD−2x Ω,

QN
∂i

=
1

16πG

∫
Nv

dD−2x Ji,

QN
∂v := E =

1

16πG

∫
Nv

dD−2x (−ΓΩ + GiJi) ,

(9)

• Note that the charge variation associated with ∂v is

/δQ∂v := /δH =
1

16πG

∫
Nv

dD−2x
(
−ΓδΩ + GiδJi + ΩΘδP −ΩΩijδNij

)
.
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• Balance equation

d

dv
QN
ξ ≈ −F∂v(δξg; g), (10)

where ≈ denotes on-shell equality.

• The abov Eq. is

– a manifestation of the boundary EoM written in terms of charges;

– a generalized charge conservation equation as it relates time de-

pendence, or non-conservation, of the charge (as viewed by the

null boundary observer) to the flux passing through the boundary;

– and shows how passage of flux through the null boundary is ‘bal-

anced’ by the rearrangements in the charges.
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� Review of Thermodynamics

• Consider a thermodynamical system with

– chemical potentials µa (a = 1,2, · · · , N) and temperature T ,

– charges Qi, the entropy S and the energy E;

• There are N + 2 charges and N + 1 chemical potentials.

• In microcanonical ensemble (which we assume), the first law takes
the form

dE = T dS +
N∑
i=a

µa dQa. (11)

• The LHS is an exact one-form over the thermodynamic space.
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• Chemical potentials and the charges are related by the Gibbs-Duhem

relation

S dT +
N∑
i=a

Qa dµa = 0. (12)

• Together with the first law, this yields E = TS +
∑
a µaQa.

• This equation relates E to the other charges and chemical potentials,

e.g. E = E(S,Qa).

• N + 1 number of chemical potentials and/or charges may be taken to

be ‘independent’ variables parameterizing the thermodynamical con-

figuration space and the rest of N + 1 of them as functions of the

former N + 1 variables.
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� Null Boundary Thermodynamical Phase Space

I. Null boundary thermodynamics consists of three parts:

I.1) (D−1) dimensional ‘thermodynamic sector’ parametrized by (Γ,Gi)
and conjugate charges (Ω,Ji);

I.2) P, which only appears in the flux and not in the Noether charge;

I.3) the bulk mode parameterized by determinant free part of Ωij and

its ‘conjugate charge’ Nij which appear in the flux.

II. Nij parameterizes effects of the bulk and how they take the boundary

system out-of-thermal-equilibrium (OTE) whereas P parameterizes

OTE within the boundary dynamics.

Put differently, OTE may come from inner boundary dynamics and/or

from the gravity-waves passing through the null boundary.
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III. Expansion parameter Θ is a measure of OTE, from both bulk and
boundary viewpoints. When Θ = 0 the system is completely specified
by the D − 1 dimensional thermodynamic phase space.

IV. The rest of the in-falling graviton modes parameterized through O(r)
terms in Hij, do not enter in the boundary/thermo dynamics, as of
course expected from usual causality and that the boundary is a null
surface.

Below we give local first law, then local Gibbs-Duhem equation and come
to local zeroth law, specifying the subsectors which can be brought to a
(local) equilibrium.

Notation: X we will denote the density of the quantity X,

X :=
∫
Nv

dD−2x X .



� Local First Law at Null Boundary

• Defining P := P/(16πG) and N ij := (16πG)−1Nij,

/δH = TN δS + Gi δJ i + ΩΘδP −ΩΩij δN ij, TN := −
Γ

4π

• The above is true at each v, xi over the null surface and represents
the local null boundary first law.

• LHS, unlike the usual first law , is not a complete variation; the system
is describing an open thermodynamic system due to the existence of
the expansion and the flux.

• The above reduces to a usual first law for closed systems when Nij = 0
or in the non-expanding Θ = 0 case.
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� Local Extended Gibbs-Duhem Equation at Null Boundary

• For the densities in the our notation, we have

E = TNS + GiJ i
which is an analogue of the Gibbs-Duhem equation if E is viewed as

energy, S as entropy and J i as other conserved charges and Γ,Gi as

the respective chemical potentials.

• Note that it is a local equation at the null boundary, unlike its usual

thermodynamic counterpart.

• This equation also holds for non-stationary/non-adiabatic cases when

the system is out-of-thermal-equilibrium (OTE) it is ‘local extended

Gibbs-Duhem’ (LEGD) equation at the null boundary.
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• LEGD equation, like the local first law, is a manifestation of diffeo-
morphism invariance of the theory.

• We expect them to be universally true for any diff-invariant theory of
gravity in any dimension.

• This equation is on par with the first law of thermodynamics but
extends it in two important ways:

it is a local equation in v, xi and holds also for OTE.

• Since the integrable parts of the charge are (by definition) independent
of the bulk flux Nij and also of P, the LEGD also do not involve P
and Nij.

• The chemical potentials, Γ and Gi, implicitly depend on Nij and P
through Raychaudhuri and Damour equations.
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� Local Zeroth Law

• Zeroth law is a statement of thermal equilibrium: as a consequence

of the zeroth law, two (sub)systems with the same temperature and

chemical potentials are in thermal equilibrium.

• Flow of charges is proportional to the gradient of associated chemical

potentials and hence the absence of such fluxes can be taken as a

statement of the zeroth law.

• Here the system is parameterized by chemical potentials Γ,Gi and γij

which are functions of charges Qα ∈ {Ω,P,Ji, Nij}.

• This system is not in general in equilibrium but there could be special

subsectors which are. The zeroth law is to specify such subsectors.
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• Zeroth law requires existence of G = G(Ω,P,Ji, Nij) such that,

δG = −S (δTN − 4GΘδP)−J i δGi + ΩN ijδΩ
ij (13)

admits non-zero solutions.

• Integrability condition for the zeroth law is δ(δG) = 0, yielding an

equation like ∑
α,β

CαβδQα ∧ δQβ = 0,

where Qα are generic charges and Cαβ is skew-symmetric. This equa-

tion is satisfied only for Cαβ = 0.

• One can immediately see Nij = 0 = δNij is a necessary (but not

sufficient) condition for the zeroth law to have non-trivial solutions.
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• Let us note that when zeroth law is fulfilled the charge H, which
appears in the LHS of the local first law, becomes integrable and we
obtain

H = G + TNS + GiJ i

• Besides Nij = 0, in terms ofH =H(S,JA,P) local zeroth law implies,

TN =
δH
δS

, Gi =
δH
δJ i

, DvS = SΘ =
1

4G

δH
δP

last equation may be seen as the equation of state.

• For the special case of Θ = 0, one simply deduces that H does not
depend on P.

• It ensures that total energy and angular momentum are conserved
on-shell.
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Generic Θ 6= 0 case.

Zeroth law requires Nij = 0 and we have Einstein boundary field equations

TN = −4GDvP, Dv
[
J i + 4G∇̄i(SP)

]
= 0.

Zeroth law is satisfied for any H = H(S,P,J i), when S,P and J i have
the following basic Poisson brackets:

{S(x, v),P(y, v)} =
1

4G
δD−2(x− y),

{S(x, v),S(y, v)} = {P(x, v),P(y, v)} = 0,

{S(x, v),J i(y, v)} = S(y, v)
∂

∂xi
δD−2(x− y),

{P(x, v),J i(y, v)} =

(
P(y, v)

∂

∂xi
+P(x, v)

∂

∂yi

)
δD−2(x− y),

{J i(x, v),J j(y, v)} =
1

16πG

(
J i(y, v)

∂

∂xj
−J j(x, v)

∂

∂yi

)
δD−2(x− y)
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• The above Poisson brackets imply

∂vX = {H,X}.

• That is, H is the Hamiltonian over the thermodynamic phase space.

• Θ = 0 case. may be worked out similarly

– in this case P = 0 = Nij and the thermodynamic phase space is

described by S,Ji and their chemical potentials.

– Local zeroth law is satisfied by any scalar HamiltonianH =H(S,J i),

together with basic Poisson brackets given above, but with P
dropped and again with ∂vX = {H,X}.
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• Zeroth law is just defining the Poisson bracket structure over the

thermodynamic phase space and existence of Hamiltonian dynamics,

but does not specify a Hamiltonian.

• Choice of Hamiltonian fixes a boundary Lagrangian and the boundary

dynamical equations which in turn specifies local dynamics of charges

on the null boundary N .

• In analogy with isolated horizon of black holes, if the zeroth law holds

the null surface may be called an ‘isolated null surface’.

• Our zeroth law is a weaker condition than stationarity as ∂v of the

chemical potentials need not vanish.
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Discussion, Concluding Remarks and Outlook
——————————–

~ Presence of Boundaries brings in new ‘boundary d.o.f.’.

• The b.d.o.f. may be classified and labelled by nontrivial diffeos.

• Using CPSM one can construct the boundary phase space which gov-
ern b.d.o.f.

• Motivated by identification and formulation of BH microstates we
discussed null boundaries Σ.

• Σ ∼ Rv ×Σv, where Σv is a codim. two compact surface.

• Σ may be viewed as the null limit of the stretched horizon.
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• Physics in the outside horizon region is then described by

b.d.o.f ⊕ bulk d.o.f.

• The Hilbert space of b.d.o.f, Hbdof may be labeled by the surface

charges associated with nontrivial diffeos on Σ.

Boundary d.o.f interact with bulk d.of. through the Bondi news

through the horizon. The balance equation equates time derivative

of boundary charges to the flux through the boundary.

• We identified null surface thermodynamic phase space, which in gen-

eral describes an open system.
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• The thermodynamics phase space is described by D − 1 charges and

associated chemical potentials as well as the flux.

• We showed that local laws of thermodynamics governs the thermo-

dynamics phase space.

• Zeroth law of thermodynamics ensures that we have a phase space

by specifying the Poisson bracket structure.

• Our laws of thermodynamics are nothing but a manifestation of dif-

feomorphism invariance of the theory at the boundary.

• Einstein field equations then appear as boundary Hamilton equations,

but boundary Hamiltonian is still free to be chosen.
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• Second law of thermodynamics and how it can be realized in our

setting is an important problem that should be tackled. Focusing

theorem may be of use.

• Our analysis can provide a new framework to formulate a general

memory effect, especially a horizon memory effect.

• The analysis so far is classical and we should quantize the system.

• It should be possible to perform a semiclassical analysis in which the

boundary d.o.f are quantized while the bulk is classical.

42



Formulating quantum dynamics of the boundary thermodynamic phase

space will hopefully shed light on BH micorstate & information puzzle.

Thank You For Your Attention
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