

1

Measurement of the production cross-section of J/ψ and $\psi(2S)$ mesons at high transverse momentum in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

<u>T. Zakareishvili</u>¹, B. Chargeishvili¹, T. Djobava¹, V. Kartvelishvili²

1. High Energy Physics Institute of Tbilisi State University 2. Lancaster University

PhD School and Workshop ASPECT OF SYMMETRY 8-12 November 2001

The author was supported by Shota Rustaveli National Science Foundation of Georgia, grant projects: #FR 17-184, #48/04 and Volkswagenstiftung grant 93 562.

Outline

- Introduction
- ATLAS detector at LHC
- Inclusive quarkonium production study
- Summary

Introduction

- Quarkonia $(J/\psi \text{ and } \psi(2S))$ are formed from a quark pair of the same flavor and should represent one of the simplest systems described by QCD theory.
- However the mechanisms responsible for the production of quarkonia, are not fully understood in hadron collisions.
- Analysis goals are to:
 - Perform the measurement of J/ψ and $\psi(2S)$ production cross-sections;
 - Separately for prompt and non-prompt contributions;
 - Measure $\psi(2S)$ to J/ψ production ratios;
 - Achieve the widest possible range of transverse momenta, to help distinguish better different theoretical contributions;
 - This preliminary measurement covers only the high p_T part of measurement.
 - 12 bins in pT between 60 GeV up to 360 GeV, 3 bins in rapidity;
 - Broaden the scope of comparison between theory and experiment.

ATLAS detector at LHC

Strategy

- Full Run 2 statistics of LHC pp collisions at $\sqrt{s}=13$ TeV with ATLAS detector;
- Integrated luminosity $L = 139 \text{ fb}^{-1}$;
- Select charmonium candidates, J/ψ and $\psi(2S)$, as pairs of oppositely charged muons: J/ψ ($\rightarrow \mu^+ \mu^-$).

- Used a single-muon trigger, with $p_T > 50$ GeV;
- Perform 2-dimensional unbinned maximum-likelihood fits to mass and pseudo-proper time to extract yields.
- Apply corrections for acceptance, efficiency and bin migration.

Prompt and Non-prompt production

Prompt production: J/ψ and $\psi(2S)$ produced in the hard scattering process. They have a pseudo-proper time consistent with zero within resolution.

Non-prompt production: J/ψ and $\psi(2S)$ produced in the decay of a B hadron, decay vertex separated from the primary vertex. Their decay vertices are displaced from the primary vertex and have positive pseudo-proper time on average.

$$\tau = \frac{m}{p_T} \frac{L_{xy}}{c}$$

Fit model

The 2D fit model is described by a sum of the following terms:

$$PDF(m,\tau) = \sum_{i=1}^{\prime} \kappa_i f_i(m) \cdot (h_i(\tau) \otimes R(\tau)) \cdot C_i(m,\tau).$$

Where m is the dimuon invariant mass, while τ is the pseudo-proper lifetime of the dimuon. R(τ) in the equation is the function describing the experimental resolution in pseudo-proper lifetime. It is parameterised as a weighted sum of three Gaussians, with $\sigma_2 = 2 \sigma_1$ and $\sigma_3 = 3 \sigma_1$, where the relative weights and σ_1 are free parameters.

i	Туре	P/NP	$f_i(m)$	$h_i(\tau)$	$C_i(m,\tau)$
1	J/ψ	Р	$\omega G_1(m) + (1 - \omega)CB_1(m)$	$\delta(au)$	$BV(m,\tau,\rho)$
2	J/ψ	NP	$\omega G_1(m) + (1-\omega)CB_1(m)$	$E_1(\tau)$	1
3	$\psi(2S)$	Р	$\omega G_2(m) + (1-\omega)CB_2(m)$	$\delta(au)$	1
4	$\psi(2S)$	NP	$\omega G_2(m) + (1-\omega)CB_2(m)$	$E_2(\tau)$	1
5	Bkg	Р	В	$\delta(au)$	1
6	Bkg	NP	$E_4(m)$	$E_5(\tau)$	1
7	Bkg	NP	$E_6(m)$	$E_7(\tau)$	1

Notations: G – Gaussian; CB – Crystal Ball; E – Exponential; B – Bernstein polynomials; BV – Correlation term of the bivariate Gaussian distr.

Differential cross sections: prompt production

- The 2D fits produce corrected yields $N_{\psi}^{P,NP}$ for prompt (P) and non-prompt (NP) ψ states, where $\psi = J/\psi$, $\psi(2S)$.
- The respective double-differential cross sections are then calculated using the formula:

$$\frac{d^2 \sigma^{P,NP}(pp \to \psi)}{dp_T dy} \times \mathcal{B}(\psi \to \mu^+ \mu^-) = \frac{1}{\mathcal{A}(\psi)} C_{BM} C_{AP} \frac{N_{\psi}^{P,NP}}{\Delta p_T \Delta y \int \mathcal{L} dt},$$

where Δp_T and Δy are one would united transverse
momentum and rapidity respectively, $\int L dt$ is the
integrated luminosity, $A(\psi)$ is the kinematic acceptance
for a given ψ mass, C_{BM} is a migration correction factor and
 C_{AP} factor is to correct for the dependence of the
efficiencies on pileup conditions.

Differential cross sections: non-prompt production

Non-prompt production results are compared with FONLL* and gives good agreement at the lower p_T , but with FONLL predicting somewhat higher cross-sections at high- p_T .

* FONLL Heavy Quark Production, M. Cacciari, http://www.lpthe.jussieu.fr/~cacciari/fonll/fonllform.html.

Production fractions

Non-prompt production fraction of J/ψ and $\psi(2S)$ is presented:

• The $p_{_T}$ dependence of prompt and non-prompt contributions in the $p_{_T}$ range covered by this measurement is similar, resulting in the non-prompt fractions being close to constant, for both J/ψ and $\psi(2S)$.

evolution with collision energy

Production fractions

Ratio of $\psi(2S)$ production with respect to $J/\psi,$ for prompt and non-prompt production is presented:

Summary

- For J/ψ and $\psi(2S)$ charmonium states, the cross-sections are measured separately for prompt and non-prompt production mechanisms.
- The results show similar p_T -dependence for prompt and non-prompt differential cross sections, with non-prompt fractions close to constant for both J/ψ and $\psi(2S)$ in this range of transverse momenta.
- Where they overlap, results for prompt production are consistent with similar results obtained by the CMS collaboration [4].

- The results for non-prompt production are compared with the predictions of the FONLL model with default set of parameters.
- These predictions are consistent with the present measurement at the low end of the p_T range, but exceed the experimental values at large transverse momenta.
- The measurements of the full accessible range of p_T starting from about 8 GeV are in progress.

Thank you!

References

[1] ATLAS Collaboration, Measurement of the production cross-section of J/ ψ and ψ (2S) mesons at high transverse momentum in pp collisions at √s = 13 TeV with the ATLAS detector, ATLAS-CONF-2019-047.
[2] ATLAS collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, 2008 JINST 3 S08003.
[3] FONLL Heavy Quark Production, M. Cacciari, http://www.lpthe.jussieu.fr/~cacciari/fonll/fonllform.html.
[4] CMS Collaboration, Measurement of quarkonium production cross sections in pp collisions at √s=13TeV, Phys. Lett. B780(2018) 251.

Backup

Colour-Singlet (CS) and Colour-Octet (CO) states

Perturbative calculations of heavy quarkonium production in hadronic collisions distinguish between terms that produce a heavy quark system (Q^-Q) in a colour-singlet (CS) or a colour-octet (CO) state.

