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The simplest objects to calculate using the lattice QCD method are two-point 
correlation functions…they give access to energy spectrum and more.
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TABLE I: The parameters of the gauge-field ensembles used in this work. See Ref. [20] for more details.

ten Hybrid Monte Carlo evolution trajectories to reduce autocorrelations, with the total number of
configurations used for each ensemble, Ncfg given in Table I. An average of Nsrc measurements are
performed on each configuration. Various other properties of the ensembles are listed in Table I.
Given the large values of T and L relative to the inverse pion mass, both the thermal contamination
and the exponential finite-volume contamination of single-hadron masses and two-baryon energies
from pion propagation through the boundaries are strongly suppressed.

Sources are smeared with a gauge-invariant Gaussian profile with stout-smeared gauge links.
The quark propagators at the sink are either not smeared (smeared-point combination, SP) or
are smeared with the same smearing profile as that of the source operators (smeared-smeared
combination, SS). The plateau regions of the effective mass plots (EMPs) formed out of the SP and
SS correlation functions are found consistent in every case. Propagators are contracted at the sink
in blocks of three quarks to assemble a baryon field with given quantum numbers at the sink. In
particular, the baryon blocks are projected to a fixed three-momentum, enabling the two-baryon
interpolators at the sink to have either zero or non-zero CM momentum, with various possibilities for
the momentum of each baryon. As the next step, a fully-antisymmetrized quark-level wavefunction
with overall quantum numbers of the two-baryon system of interest is formed at the location of
the source. The contraction step is defined by the selection of the appropriate indices from the
baryon blocks at the source, in a way that is dictated by the quark-level wavefunction. More details
regarding the contraction algorithm for a general A-nucleon system are presented in Ref. [86] (with
a similar approach proposed in Refs. [87, 88]). The final products of the contraction step are two-
baryon correlation functions as a function of Euclidean time. These correspond to a definite total
momentum resulting from several (nearly orthogonal) choices of baryon momentum at the sink.

B. Analysis of correlation functions

To maximize confidence in the energy determinations and their uncertainties, five different anal-
ysis procedures were used, and the results obtained from each method were found to be consistent.
The statistical and fitting systematic uncertainties on the final results are taken from one analysis,
with an additional systematic uncertainty added to account for the small variations between the
five analyses.

The correlation function of a single or two-baryon system, projected to the total momentum
2⇡d/L, can be written as
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Not essential for bound states!

Three points:

i) Need to divide by appropriate two-point functions to cancel out unphysical overlap factors.

ii) Need to renormalize the operator from lattice scheme to continuum scheme.

iii) Need to turn the finite-volume matrix element to a physical transition amplitude.

Pictorially a three-point function looks like…
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Magnetic moments

Electric and magnetic polarizabilities

See e.g., BEANE et al (NPLQCD), Phys.Rev.Lett. 113 (2014) 25, 252001 and Phys.Rev. D92 (2015) 11, 
114502. for nuclear-physics calculations.

Traditionally they are used for constraining the 
response of hadrons/nuclei to external probes:

Background fields are non-dynamical, i.e., 
there will be no pair creation and annihilation 
in vacuum with a classical EM background 
field. This mean the photon zero mode is no 
problem: it is absent from the calculation!

d ~A d ~A

~E

U (QCD) ! U (QCD) ⇥ U (QED)

Modify the links when forming the quark propagators (quench approx).
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The proton radius puzzle

Measure the 2S − 2P splitting in µp

↓

determine the proton rms radius rp
(10× better )

But large discrepancy observed:
• 4σ from H spectroscopy value
• 6σ from e-proton scattering value

A. Antognini
MPQ, Garching, Germany
ETH, Zurich, Switzerland

A. Antognini, PANIC11, MIT, Cambridge, USA 25.07.2011 – p.1

2) Electric quadrupole moment

3) Form factors
4) Compton amplitude

ZD and Detmold, Phys. Rev. D 93, 014509 (2016).ZD and 
Detmold, 
Phys. Rev. 
D 93, 
014509 
(2016).

Detmold, Phys.Rev. D71, 054506 (2005).

Agadjanov, Meißner, Rusetsky, 
Phys. Rev. D 95, 031502 (2017).

Various other structure properties of hadrons and nuclei, as well as their transitions, can be 
studied using more complex background fields…just a two-point function calculation!
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is diagonal, then the first derivatives of the energy about ⁄0 are given by
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Otherwise, the derivatives of the eigenstates are not well-defined about ⁄0, and
instead the eigenvectors vr

n
of Wn determine new linear combinations of the original

eigenstates,

|„r

n
Í =

ÿ

s

(vr

n
)s |Âs

n
Í , (5.25)

which do have well-defined derivatives. The corresponding eigenvalues give the first
derivatives of the energies of the new eigenstates with respect to ⁄. The derivatives
of the energies also be found through Eq. (5.24) in terms of the new eigenstates.

There are a few important things to note about these results. Firstly, the
Hamiltonian is only required to be Hermitian at ⁄0, and hence the result applies to
Hamiltonians such as

Ĥ(⁄) = Ĥ + ⁄V̂ , (5.26)

where the potential V̂ is non-Hermitian. The energy shifts will in general be complex,
however. This will be important in our calculation of disconnected contributions to
quark axial charges in Chapter 6, where we include a non-Hermitian potential in the
QCD Lagrangian to avoid introducing a sign-problem in gauge-field generation.

Secondly, a su�cient condition for Wn to be diagonal is that the degenerate
eigenstates are distinct eigenstates of an operator Ô commuting with the derivative
of the Hamiltonian at ⁄0. That is, if the degenerate eigenstates can be distinguished
by their distinct eigenvalues with an expanded set of operators commuting with dĤ

d⁄
,

then these eigenstates are already ‘good’ eigenstates. This means that for derivatives
of the Hamiltonian commuting with the spin operator, for example, we do not need
to consider the e�ect of spin-degeneracy on the energy shifts.

5.2 Hamiltonian Lattice QCD
We can now translate the results of Section 5.1 to a lattice setting. The Hamiltonian
operator becomes an integrated Hamiltonian density,

Ĥ ≠æ
ÿ

x
�3x H(x) , (5.27)

and the natural particle eigenstates include definite momentum quantum numbers,

|Âr

n
Í ≠æ |X(p, r)Í , (5.28)

En ≠æ EX(p) . (5.29)

Here we are explicitly labelling degenerate states, which we generally ignored in
Chapter 4. These states have relativistic normalisation

ÈX(p, r)|Y(q, s)Í = 2EX(p)(2fi)3”XY”rs”
3(p ≠ q) . (5.30)

Hamiltonian as a function 
of a variable parameter

Energy eigenvalue

Energy eigenstate

38 Chapter 5. The Feynman-Hellmann Theorem

This application makes use of a parameter already present in the QCD Lagrangian.
The idea of the method implemented in this thesis is to calculate matrix elements of
an extended set of operators by introducing new terms to the Lagrangian. This is
based on the proposal of [124] amongst others, and several variants o the approach
are being pursued [125, 126].

In this chapter we begin in Section 5.1 by deriving the FH relation in quantum
mechanics. We then make a simple extension to lattice QCD through a substitution
argument in Section 5.2, and introduce the FH method. We finish by deriving the
same results through a path integral approach in Section 5.3.

5.1 Hamiltonian Quantum Mechanics
5.1.1 Non-Degenerate Eigenstates
Consider a Hermitian, ⁄-dependent Hamiltonian operator Ĥ with a set of orthogonal
eigenstates |ÂnÍ, such that at some point ⁄0,

Ĥ(⁄0) |Ân(⁄0)Í = En(⁄0) |Ân(⁄0)Í , (5.4)
ÈÂn(⁄0)|Âm(⁄0)Í = ”nm ÈÂn(⁄0)|Ân(⁄0)Í . (5.5)

Here we imply by the labelling of the energies and eigenstates in terms of ⁄ that
these quantities are continuous with respect to ⁄ about ⁄0. Taking the derivative of
Eq. (5.4) with respect to ⁄, we have

1
Ĥ ≠ En

2d |ÂnÍ
d⁄

+
A

dĤ

d⁄
≠ dEn

d⁄

B

|ÂnÍ = 0 , (5.6)

where we have omitted explicit ⁄-dependence for clarity, assuming all quantities are
to be evaluated at ⁄0. Taking the inner product of ÈÂn| with Eq. (5.6), and using
the Hermiticity of the Hamiltonian at ⁄0, we obtain

dEn

d⁄
=

ÈÂn|dĤ

d⁄
|ÂnÍ

ÈÂn|ÂnÍ . (5.7)

This is the familiar form of the FH theorem, and is true about any point ⁄0 where
the Hamiltonian is Hermitian, and the derivative of the wave function in Eq. (5.6) is
well-defined. That is, the wavefunctions are di�erentiable at ⁄0. The denominator
is often omitted by virtue of unit-normalised eigenstates, however we will retain it
for when we later consider the extension to lattice QCD, and the normalisation of
states is relativistic.

Next, let’s consider the derivative of the wavefunction as it appears in Eq. (5.6).
Since the unperturbed eigenstates form a complete set, we can write at ⁄0,

d |ÂnÍ
d⁄

=
ÿ

l
l ”=n

cnl |ÂlÍ . (5.8)

We are free to omit the m = n term, since if d|ÂnÍ

d⁄
satisfies Eq. (5.6), then so does

d|ÂnÍ

d⁄
+ – |ÂnÍ for any –, and we can choose to subtract this term from the expansion.

The perturbed wavefunction will not in general be normalised, however. Substituting

Example: sigma term

On the Feynman-Hellmann theorem in quantum field theory
and the calculation of matrix elements
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The Feynman-Hellmann theorem can be derived from the long Euclidean-time limit of correlation
functions determined with functional derivatives of the partition function. Using this insight, we
fully develop an improved method for computing matrix elements of external currents utilizing only
two-point correlation functions. Our method applies to matrix elements of any external bilinear
current, including nonzero momentum transfer, flavor-changing, and two or more current insertion
matrix elements. The ability to identify and control all the systematic uncertainties in the analysis
of the correlation functions stems from the unique time dependence of the ground-state matrix
elements and the fact that all excited states and contact terms are Euclidean-time dependent. We
demonstrate the utility of our method with a calculation of the nucleon axial charge using gradient-
flowed domain-wall valence quarks on the Nf = 2 + 1 + 1 MILC highly improved staggered quark
ensemble with lattice spacing and pion mass of approximately 0.15 fm and 310 MeV respectively.
We show full control over excited-state systematics with the new method and obtain a value of
gA = 1.213(26) with a quark-mass-dependent renormalization coe�cient.

I. INTRODUCTION

The Feynman-Hellmann theorem (FHT) in quantum
mechanics relates matrix elements to variations in the
spectrum [1–4]:

@En

@�
= hn|H�|ni , (1)

where the Hamiltonian is given by H = H0 + �H�. This
simple relation follows straightforwardly at first order in
perturbation theory. The method is applicable beyond
perturbation theory and is often used in lattice QCD
(LQCD) calculations, for example, to compute the scalar
quark matrix elements in the nucleon [5–20]

mq
@mN

@mq

����
mq=mphy

q

= hN|mq q̄q|N i , (2)

for the light (q = {u, d}) and strange (q = s) quarks.
Quantitative knowledge of these matrix elements is nec-
essary for interpreting direct searches for dark matter
which look for the elastic recoil of nuclei. In the sce-
nario that dark matter is heavy and couples through the
electroweak sector, the uncertainty on the strange and
charm nucleon matrix elements is one of the largest un-
certainties in spin-independent constraints upon direct

⇤ chris.bouchard@glasgow.ac.uk
† chiachang@lbl.gov
‡ tkurth@lbl.gov
§ kostas@wm.edu
¶ awalker-loud@lbl.gov

dark matter detection [21]. In particular, due to cancel-
lations in the amplitude at the level of quarks and gluons,
there is a particular sensitivity to the scalar charm quark
matrix elements with current uncertainties allowing for
several orders of magnitude variability in the cross sec-
tion; see Fig. 3 of Ref. [21]. A significant reduction over
the current uncertainty in these matrix elements would
be a welcome advancement for the field.

Recently, the FHT has been used to compute other
nucleon matrix elements, such as the spin content of
the nucleon [22, 23]. More recently, a hybrid method
using ideas from background field methods [24–30] and
the FHT has been introduced to compute few-nucleon
electroweak matrix elements [31]. An advantage of the
FHT is that it relates a three-point correlation function
to a change in a two-point correlation function induced
by an external source. Thus, one can take advantage
of the simplified analyses of two-point functions. Tradi-
tional lattice calculations of three-point functions, par-
ticularly those involving nucleons, face a number of chal-
lenging systematics beyond those present for two-point
functions: the stochastic noise of three-point functions is
more severe than the corresponding two-point functions
and also three-point functions have systematic contami-
nation from excited states which is constant in Euclidean
time for fixed source-sink(insertion) separation with iden-
tical initial and final states at zero momentum transfer.
Controlling these systematics requires a significant in-
crease in the numerical cost.

Previous implementations of the FHT and related
methods [22, 23, 31] are also costly, as the calculation
must be performed for several values of the external pa-
rameter, �. In the case of the scalar quark matrix ele-
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There are a few important things to note about these results. Firstly, the
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quark axial charges in Chapter 6, where we include a non-Hermitian potential in the
QCD Lagrangian to avoid introducing a sign-problem in gauge-field generation.

Secondly, a su�cient condition for Wn to be diagonal is that the degenerate
eigenstates are distinct eigenstates of an operator Ô commuting with the derivative
of the Hamiltonian at ⁄0. That is, if the degenerate eigenstates can be distinguished
by their distinct eigenvalues with an expanded set of operators commuting with dĤ
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then these eigenstates are already ‘good’ eigenstates. This means that for derivatives
of the Hamiltonian commuting with the spin operator, for example, we do not need
to consider the e�ect of spin-degeneracy on the energy shifts.

5.2 Hamiltonian Lattice QCD
We can now translate the results of Section 5.1 to a lattice setting. The Hamiltonian
operator becomes an integrated Hamiltonian density,

Ĥ ≠æ
ÿ

x
�3x H(x) , (5.27)

and the natural particle eigenstates include definite momentum quantum numbers,
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Í ≠æ |X(p, r)Í , (5.28)

En ≠æ EX(p) . (5.29)

Here we are explicitly labelling degenerate states, which we generally ignored in
Chapter 4. These states have relativistic normalisation

ÈX(p, r)|Y(q, s)Í = 2EX(p)(2fi)3”XY”rs”
3(p ≠ q) . (5.30)
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Generalization to 
correlation functions

2

ments, the QCD action contains the operators of interest,
� = mq. The FHT is then simply used by varying the
values of the quark masses and determining the result-
ing variation of the spectrum, a routine step in present
LQCD calculations. In the case of the nucleon spin, the
operator � q̄�µ�5q is perturbatively added to the theory
for varying values of � and the resulting spectrum is com-
puted such that @�En(�) can be approximated via finite
di↵erence.

In this work, we develop an improved implementation
of the FHT and explore its connection with the partition
function of quantum field theory. This new method o↵ers
several advantages including: an improved implementa-
tion, improved stochastic sampling over computations of
equal computing time, a complete discussion of all sys-
tematics, and demonstrably rigorous control over all sys-
tematics associated with analysis of correlation functions.
To demonstrate these claims, we present the formulation
of our method, and perform a sample calculation of the
nucleon axial-vector charge. We then discuss the gener-
alizations and conclude.

II. THE FEYNMAN-HELLMANN THEOREM
AND A NEW METHOD

A. The new method

Consider a two-point correlation function computed in
the presence of some external source

C�(t) = h�|O(t)O†(0)|�i

=
1

Z�

Z
D�e�S�S�O(t)O†(0) (3)

with the external source coupled through some bilinear
current density j(x)

S� = �

Z
d
4
xj(x) , (4)

and partition function in the presence of the source,

Z� =

Z
D�e�S�S� . (5)

Here, � is a general field operator representing the var-
ious quantum fields of the theory. The state |�i is the
vacuum state in the presence of the external source. We
denote the sourceless vacuum state, partition function,
and two-point correlation function by

|⌦i = lim
�!0

|�i , (6)

Z = lim
�!0

Z� , (7)

C(t) = lim
�!0

C�(t) , (8)

respectively. The operator O†(0) creates a tower of states
with specified quantum numbers out of the vacuum at

time t = 0, which are later destroyed by a conjugate
operator O(t) at time t.
We are interested in the partial derivative of this cor-

relation function with respect to �, at � = 0. This par-
tial derivative can be built from an integral of uniform
functional derivatives over the space-time volume or, if
we wish for more general matrix elements (such as those
involving momentum transfer), an integral over nonuni-
form values of �(x). For now, we will focus on the sim-
plest case of a constant source, �(x) = �.
The partial derivative of interest is related to the ma-

trix elements of the current j(x)

�
@C�(t)

@�

����
�=0

=
@Z�

@�

����
�=0

C(t)

Z

+
1

Z

Z
D�e�S

Z
d
4
x
0
j(x0) O(t)O†(0) . (9)

The first term is proportional to the vacuum matrix ele-
ment of the current and vanishes unless the current has
vacuum quantum numbers. The second term involves an
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On the Feynman-Hellmann theorem in quantum field theory
and the calculation of matrix elements
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The Feynman-Hellmann theorem can be derived from the long Euclidean-time limit of correlation
functions determined with functional derivatives of the partition function. Using this insight, we
fully develop an improved method for computing matrix elements of external currents utilizing only
two-point correlation functions. Our method applies to matrix elements of any external bilinear
current, including nonzero momentum transfer, flavor-changing, and two or more current insertion
matrix elements. The ability to identify and control all the systematic uncertainties in the analysis
of the correlation functions stems from the unique time dependence of the ground-state matrix
elements and the fact that all excited states and contact terms are Euclidean-time dependent. We
demonstrate the utility of our method with a calculation of the nucleon axial charge using gradient-
flowed domain-wall valence quarks on the Nf = 2 + 1 + 1 MILC highly improved staggered quark
ensemble with lattice spacing and pion mass of approximately 0.15 fm and 310 MeV respectively.
We show full control over excited-state systematics with the new method and obtain a value of
gA = 1.213(26) with a quark-mass-dependent renormalization coe�cient.

I. INTRODUCTION

The Feynman-Hellmann theorem (FHT) in quantum
mechanics relates matrix elements to variations in the
spectrum [1–4]:

@En

@�
= hn|H�|ni , (1)

where the Hamiltonian is given by H = H0 + �H�. This
simple relation follows straightforwardly at first order in
perturbation theory. The method is applicable beyond
perturbation theory and is often used in lattice QCD
(LQCD) calculations, for example, to compute the scalar
quark matrix elements in the nucleon [5–20]

mq
@mN

@mq

����
mq=mphy

q

= hN|mq q̄q|N i , (2)

for the light (q = {u, d}) and strange (q = s) quarks.
Quantitative knowledge of these matrix elements is nec-
essary for interpreting direct searches for dark matter
which look for the elastic recoil of nuclei. In the sce-
nario that dark matter is heavy and couples through the
electroweak sector, the uncertainty on the strange and
charm nucleon matrix elements is one of the largest un-
certainties in spin-independent constraints upon direct

⇤ chris.bouchard@glasgow.ac.uk
† chiachang@lbl.gov
‡ tkurth@lbl.gov
§ kostas@wm.edu
¶ awalker-loud@lbl.gov

dark matter detection [21]. In particular, due to cancel-
lations in the amplitude at the level of quarks and gluons,
there is a particular sensitivity to the scalar charm quark
matrix elements with current uncertainties allowing for
several orders of magnitude variability in the cross sec-
tion; see Fig. 3 of Ref. [21]. A significant reduction over
the current uncertainty in these matrix elements would
be a welcome advancement for the field.

Recently, the FHT has been used to compute other
nucleon matrix elements, such as the spin content of
the nucleon [22, 23]. More recently, a hybrid method
using ideas from background field methods [24–30] and
the FHT has been introduced to compute few-nucleon
electroweak matrix elements [31]. An advantage of the
FHT is that it relates a three-point correlation function
to a change in a two-point correlation function induced
by an external source. Thus, one can take advantage
of the simplified analyses of two-point functions. Tradi-
tional lattice calculations of three-point functions, par-
ticularly those involving nucleons, face a number of chal-
lenging systematics beyond those present for two-point
functions: the stochastic noise of three-point functions is
more severe than the corresponding two-point functions
and also three-point functions have systematic contami-
nation from excited states which is constant in Euclidean
time for fixed source-sink(insertion) separation with iden-
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several advantages including: an improved implementa-
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of our method, and perform a sample calculation of the
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Here, � is a general field operator representing the var-
ious quantum fields of the theory. The state |�i is the
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Z = lim
�!0
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respectively. The operator O†(0) creates a tower of states
with specified quantum numbers out of the vacuum at

time t = 0, which are later destroyed by a conjugate
operator O(t) at time t.
We are interested in the partial derivative of this cor-

relation function with respect to �, at � = 0. This par-
tial derivative can be built from an integral of uniform
functional derivatives over the space-time volume or, if
we wish for more general matrix elements (such as those
involving momentum transfer), an integral over nonuni-
form values of �(x). For now, we will focus on the sim-
plest case of a constant source, �(x) = �.
The partial derivative of interest is related to the ma-
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is diagonal, then the first derivatives of the energy about ⁄0 are given by

dEr

n

d⁄
= W rr

n
=

ÈÂr

n
|dĤ

d⁄
|Âr

n
Í

ÈÂr
n
|Âr

n
Í , r not summed . (5.24)

Otherwise, the derivatives of the eigenstates are not well-defined about ⁄0, and
instead the eigenvectors vr

n
of Wn determine new linear combinations of the original

eigenstates,

|„r

n
Í =

ÿ

s

(vr

n
)s |Âs

n
Í , (5.25)

which do have well-defined derivatives. The corresponding eigenvalues give the first
derivatives of the energies of the new eigenstates with respect to ⁄. The derivatives
of the energies also be found through Eq. (5.24) in terms of the new eigenstates.

There are a few important things to note about these results. Firstly, the
Hamiltonian is only required to be Hermitian at ⁄0, and hence the result applies to
Hamiltonians such as

Ĥ(⁄) = Ĥ + ⁄V̂ , (5.26)

where the potential V̂ is non-Hermitian. The energy shifts will in general be complex,
however. This will be important in our calculation of disconnected contributions to
quark axial charges in Chapter 6, where we include a non-Hermitian potential in the
QCD Lagrangian to avoid introducing a sign-problem in gauge-field generation.

Secondly, a su�cient condition for Wn to be diagonal is that the degenerate
eigenstates are distinct eigenstates of an operator Ô commuting with the derivative
of the Hamiltonian at ⁄0. That is, if the degenerate eigenstates can be distinguished
by their distinct eigenvalues with an expanded set of operators commuting with dĤ

d⁄
,

then these eigenstates are already ‘good’ eigenstates. This means that for derivatives
of the Hamiltonian commuting with the spin operator, for example, we do not need
to consider the e�ect of spin-degeneracy on the energy shifts.

5.2 Hamiltonian Lattice QCD
We can now translate the results of Section 5.1 to a lattice setting. The Hamiltonian
operator becomes an integrated Hamiltonian density,

Ĥ ≠æ
ÿ

x
�3x H(x) , (5.27)

and the natural particle eigenstates include definite momentum quantum numbers,

|Âr

n
Í ≠æ |X(p, r)Í , (5.28)

En ≠æ EX(p) . (5.29)

Here we are explicitly labelling degenerate states, which we generally ignored in
Chapter 4. These states have relativistic normalisation

ÈX(p, r)|Y(q, s)Í = 2EX(p)(2fi)3”XY”rs”
3(p ≠ q) . (5.30)

Hamiltonian as a function 
of a variable parameter

Energy eigenvalue

Energy eigenstate
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This application makes use of a parameter already present in the QCD Lagrangian.
The idea of the method implemented in this thesis is to calculate matrix elements of
an extended set of operators by introducing new terms to the Lagrangian. This is
based on the proposal of [124] amongst others, and several variants o the approach
are being pursued [125, 126].

In this chapter we begin in Section 5.1 by deriving the FH relation in quantum
mechanics. We then make a simple extension to lattice QCD through a substitution
argument in Section 5.2, and introduce the FH method. We finish by deriving the
same results through a path integral approach in Section 5.3.

5.1 Hamiltonian Quantum Mechanics
5.1.1 Non-Degenerate Eigenstates
Consider a Hermitian, ⁄-dependent Hamiltonian operator Ĥ with a set of orthogonal
eigenstates |ÂnÍ, such that at some point ⁄0,

Ĥ(⁄0) |Ân(⁄0)Í = En(⁄0) |Ân(⁄0)Í , (5.4)
ÈÂn(⁄0)|Âm(⁄0)Í = ”nm ÈÂn(⁄0)|Ân(⁄0)Í . (5.5)

Here we imply by the labelling of the energies and eigenstates in terms of ⁄ that
these quantities are continuous with respect to ⁄ about ⁄0. Taking the derivative of
Eq. (5.4) with respect to ⁄, we have

1
Ĥ ≠ En

2d |ÂnÍ
d⁄

+
A

dĤ

d⁄
≠ dEn

d⁄

B

|ÂnÍ = 0 , (5.6)

where we have omitted explicit ⁄-dependence for clarity, assuming all quantities are
to be evaluated at ⁄0. Taking the inner product of ÈÂn| with Eq. (5.6), and using
the Hermiticity of the Hamiltonian at ⁄0, we obtain

dEn

d⁄
=

ÈÂn|dĤ

d⁄
|ÂnÍ

ÈÂn|ÂnÍ . (5.7)

This is the familiar form of the FH theorem, and is true about any point ⁄0 where
the Hamiltonian is Hermitian, and the derivative of the wave function in Eq. (5.6) is
well-defined. That is, the wavefunctions are di�erentiable at ⁄0. The denominator
is often omitted by virtue of unit-normalised eigenstates, however we will retain it
for when we later consider the extension to lattice QCD, and the normalisation of
states is relativistic.

Next, let’s consider the derivative of the wavefunction as it appears in Eq. (5.6).
Since the unperturbed eigenstates form a complete set, we can write at ⁄0,

d |ÂnÍ
d⁄

=
ÿ

l
l ”=n

cnl |ÂlÍ . (5.8)

We are free to omit the m = n term, since if d|ÂnÍ

d⁄
satisfies Eq. (5.6), then so does

d|ÂnÍ

d⁄
+ – |ÂnÍ for any –, and we can choose to subtract this term from the expansion.

The perturbed wavefunction will not in general be normalised, however. Substituting
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for varying values of � and the resulting spectrum is com-
puted such that @�En(�) can be approximated via finite
di↵erence.
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of the FHT and explore its connection with the partition
function of quantum field theory. This new method o↵ers
several advantages including: an improved implementa-
tion, improved stochastic sampling over computations of
equal computing time, a complete discussion of all sys-
tematics, and demonstrably rigorous control over all sys-
tematics associated with analysis of correlation functions.
To demonstrate these claims, we present the formulation
of our method, and perform a sample calculation of the
nucleon axial-vector charge. We then discuss the gener-
alizations and conclude.
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and partition function in the presence of the source,
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D�e�S�S� . (5)

Here, � is a general field operator representing the var-
ious quantum fields of the theory. The state |�i is the
vacuum state in the presence of the external source. We
denote the sourceless vacuum state, partition function,
and two-point correlation function by

|⌦i = lim
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|�i , (6)

Z = lim
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Z� , (7)

C(t) = lim
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C�(t) , (8)

respectively. The operator O†(0) creates a tower of states
with specified quantum numbers out of the vacuum at

time t = 0, which are later destroyed by a conjugate
operator O(t) at time t.
We are interested in the partial derivative of this cor-

relation function with respect to �, at � = 0. This par-
tial derivative can be built from an integral of uniform
functional derivatives over the space-time volume or, if
we wish for more general matrix elements (such as those
involving momentum transfer), an integral over nonuni-
form values of �(x). For now, we will focus on the sim-
plest case of a constant source, �(x) = �.
The partial derivative of interest is related to the ma-
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The first term is proportional to the vacuum matrix ele-
ment of the current and vanishes unless the current has
vacuum quantum numbers. The second term involves an
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operator O(t) at time t.
We are interested in the partial derivative of this cor-
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of the FHT and explore its connection with the partition
function of quantum field theory. This new method o↵ers
several advantages including: an improved implementa-
tion, improved stochastic sampling over computations of
equal computing time, a complete discussion of all sys-
tematics, and demonstrably rigorous control over all sys-
tematics associated with analysis of correlation functions.
To demonstrate these claims, we present the formulation
of our method, and perform a sample calculation of the
nucleon axial-vector charge. We then discuss the gener-
alizations and conclude.

II. THE FEYNMAN-HELLMANN THEOREM
AND A NEW METHOD

A. The new method

Consider a two-point correlation function computed in
the presence of some external source
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and partition function in the presence of the source,
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Here, � is a general field operator representing the var-
ious quantum fields of the theory. The state |�i is the
vacuum state in the presence of the external source. We
denote the sourceless vacuum state, partition function,
and two-point correlation function by

|⌦i = lim
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respectively. The operator O†(0) creates a tower of states
with specified quantum numbers out of the vacuum at

time t = 0, which are later destroyed by a conjugate
operator O(t) at time t.
We are interested in the partial derivative of this cor-

relation function with respect to �, at � = 0. This par-
tial derivative can be built from an integral of uniform
functional derivatives over the space-time volume or, if
we wish for more general matrix elements (such as those
involving momentum transfer), an integral over nonuni-
form values of �(x). For now, we will focus on the sim-
plest case of a constant source, �(x) = �.
The partial derivative of interest is related to the ma-

trix elements of the current j(x)
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The first term is proportional to the vacuum matrix ele-
ment of the current and vanishes unless the current has
vacuum quantum numbers. The second term involves an
integral over matrix elements involving the current and
the creation/annihilation operators:
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where we have defined J (t) =
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3
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term is related to the hadronic matrix of interest in the
time region 0 < t

0
< t. In the other time regions, t0 < 0

and t
0
> t, the current J creates/destroys a tower of

states that also couple to the states created by O (in the
case of quark bilinear operators in QCD, these are just
the mesons coupled to the q̄ � q currents):
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Recall that the FHT relates matrix elements to deriva-
tives of the spectrum. In Euclidean calculations, the ef-
fective mass is a derived quantity which asymptotes to
the ground-state energy in the long-time limit,
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In analogy with the FHT, consider the linear response of
the e↵ective mass to the external current

@m
e↵
� (t, ⌧)

@�

����
�=0

=
1

⌧


@�C�(t)

C(t)
�

@�C�(t+ ⌧)

C(t+ ⌧)

�

�=0

. (13)

2

ments, the QCD action contains the operators of interest,
� = mq. The FHT is then simply used by varying the
values of the quark masses and determining the result-
ing variation of the spectrum, a routine step in present
LQCD calculations. In the case of the nucleon spin, the
operator � q̄�µ�5q is perturbatively added to the theory
for varying values of � and the resulting spectrum is com-
puted such that @�En(�) can be approximated via finite
di↵erence.

In this work, we develop an improved implementation
of the FHT and explore its connection with the partition
function of quantum field theory. This new method o↵ers
several advantages including: an improved implementa-
tion, improved stochastic sampling over computations of
equal computing time, a complete discussion of all sys-
tematics, and demonstrably rigorous control over all sys-
tematics associated with analysis of correlation functions.
To demonstrate these claims, we present the formulation
of our method, and perform a sample calculation of the
nucleon axial-vector charge. We then discuss the gener-
alizations and conclude.

II. THE FEYNMAN-HELLMANN THEOREM
AND A NEW METHOD

A. The new method

Consider a two-point correlation function computed in
the presence of some external source

C�(t) = h�|O(t)O†(0)|�i

=
1

Z�

Z
D�e�S�S�O(t)O†(0) (3)

with the external source coupled through some bilinear
current density j(x)

S� = �

Z
d
4
xj(x) , (4)

and partition function in the presence of the source,

Z� =

Z
D�e�S�S� . (5)

Here, � is a general field operator representing the var-
ious quantum fields of the theory. The state |�i is the
vacuum state in the presence of the external source. We
denote the sourceless vacuum state, partition function,
and two-point correlation function by

|⌦i = lim
�!0

|�i , (6)

Z = lim
�!0

Z� , (7)

C(t) = lim
�!0

C�(t) , (8)

respectively. The operator O†(0) creates a tower of states
with specified quantum numbers out of the vacuum at

time t = 0, which are later destroyed by a conjugate
operator O(t) at time t.
We are interested in the partial derivative of this cor-

relation function with respect to �, at � = 0. This par-
tial derivative can be built from an integral of uniform
functional derivatives over the space-time volume or, if
we wish for more general matrix elements (such as those
involving momentum transfer), an integral over nonuni-
form values of �(x). For now, we will focus on the sim-
plest case of a constant source, �(x) = �.
The partial derivative of interest is related to the ma-

trix elements of the current j(x)

�
@C�(t)

@�

����
�=0

=
@Z�

@�

����
�=0

C(t)

Z

+
1

Z

Z
D�e�S

Z
d
4
x
0
j(x0) O(t)O†(0) . (9)

The first term is proportional to the vacuum matrix ele-
ment of the current and vanishes unless the current has
vacuum quantum numbers. The second term involves an
integral over matrix elements involving the current and
the creation/annihilation operators:

�
@C�(t)

@�

����
�=0

= � C(t)

Z
dt

0
h⌦|J (t0)|⌦i

+

Z
dt

0
h⌦|T{O(t)J (t0)O†(0)}|⌦i (10)

where we have defined J (t) =
R
d
3
xj(t, ~x). The second

term is related to the hadronic matrix of interest in the
time region 0 < t

0
< t. In the other time regions, t0 < 0

and t
0
> t, the current J creates/destroys a tower of

states that also couple to the states created by O (in the
case of quark bilinear operators in QCD, these are just
the mesons coupled to the q̄ � q currents):

Z
dt

0
h⌦|T{O(t)J (t0)O†(0)}|⌦i =

Z 0

�1
dt

0
h⌦|O(t)O†(0)J (t0)|⌦i

+

Z t

0
dt

0
h⌦|O(t)J (t0)O†(0)|⌦i

+

Z 1

t
dt

0
h⌦|J (t0)O(t)O†(0)|⌦i . (11)

Recall that the FHT relates matrix elements to deriva-
tives of the spectrum. In Euclidean calculations, the ef-
fective mass is a derived quantity which asymptotes to
the ground-state energy in the long-time limit,

m
e↵ (t, ⌧) =

1

⌧
ln

✓
C(t)

C(t+ ⌧)

◆
�!
t!1

1

⌧
ln(eE0⌧ ). (12)

In analogy with the FHT, consider the linear response of
the e↵ective mass to the external current

@m
e↵
� (t, ⌧)

@�

����
�=0

=
1

⌧


@�C�(t)

C(t)
�

@�C�(t+ ⌧)

C(t+ ⌧)

�

�=0

. (13)

Integrated matrix element

Example: sigma term

On the Feynman-Hellmann theorem in quantum field theory
and the calculation of matrix elements

Chris Bouchard,1, 2, ⇤ Chia Cheng Chang (5∂�),3, †

Thorsten Kurth,3, 4, ‡ Kostas Orginos,2, 5, § and André Walker-Loud3, 2, 6, ¶
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The Feynman-Hellmann theorem can be derived from the long Euclidean-time limit of correlation
functions determined with functional derivatives of the partition function. Using this insight, we
fully develop an improved method for computing matrix elements of external currents utilizing only
two-point correlation functions. Our method applies to matrix elements of any external bilinear
current, including nonzero momentum transfer, flavor-changing, and two or more current insertion
matrix elements. The ability to identify and control all the systematic uncertainties in the analysis
of the correlation functions stems from the unique time dependence of the ground-state matrix
elements and the fact that all excited states and contact terms are Euclidean-time dependent. We
demonstrate the utility of our method with a calculation of the nucleon axial charge using gradient-
flowed domain-wall valence quarks on the Nf = 2 + 1 + 1 MILC highly improved staggered quark
ensemble with lattice spacing and pion mass of approximately 0.15 fm and 310 MeV respectively.
We show full control over excited-state systematics with the new method and obtain a value of
gA = 1.213(26) with a quark-mass-dependent renormalization coe�cient.

I. INTRODUCTION

The Feynman-Hellmann theorem (FHT) in quantum
mechanics relates matrix elements to variations in the
spectrum [1–4]:

@En

@�
= hn|H�|ni , (1)

where the Hamiltonian is given by H = H0 + �H�. This
simple relation follows straightforwardly at first order in
perturbation theory. The method is applicable beyond
perturbation theory and is often used in lattice QCD
(LQCD) calculations, for example, to compute the scalar
quark matrix elements in the nucleon [5–20]

mq
@mN

@mq

����
mq=mphy

q

= hN|mq q̄q|N i , (2)

for the light (q = {u, d}) and strange (q = s) quarks.
Quantitative knowledge of these matrix elements is nec-
essary for interpreting direct searches for dark matter
which look for the elastic recoil of nuclei. In the sce-
nario that dark matter is heavy and couples through the
electroweak sector, the uncertainty on the strange and
charm nucleon matrix elements is one of the largest un-
certainties in spin-independent constraints upon direct
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dark matter detection [21]. In particular, due to cancel-
lations in the amplitude at the level of quarks and gluons,
there is a particular sensitivity to the scalar charm quark
matrix elements with current uncertainties allowing for
several orders of magnitude variability in the cross sec-
tion; see Fig. 3 of Ref. [21]. A significant reduction over
the current uncertainty in these matrix elements would
be a welcome advancement for the field.

Recently, the FHT has been used to compute other
nucleon matrix elements, such as the spin content of
the nucleon [22, 23]. More recently, a hybrid method
using ideas from background field methods [24–30] and
the FHT has been introduced to compute few-nucleon
electroweak matrix elements [31]. An advantage of the
FHT is that it relates a three-point correlation function
to a change in a two-point correlation function induced
by an external source. Thus, one can take advantage
of the simplified analyses of two-point functions. Tradi-
tional lattice calculations of three-point functions, par-
ticularly those involving nucleons, face a number of chal-
lenging systematics beyond those present for two-point
functions: the stochastic noise of three-point functions is
more severe than the corresponding two-point functions
and also three-point functions have systematic contami-
nation from excited states which is constant in Euclidean
time for fixed source-sink(insertion) separation with iden-
tical initial and final states at zero momentum transfer.
Controlling these systematics requires a significant in-
crease in the numerical cost.

Previous implementations of the FHT and related
methods [22, 23, 31] are also costly, as the calculation
must be performed for several values of the external pa-
rameter, �. In the case of the scalar quark matrix ele-
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�q ;�

(x, y) = S(q)(x, y) + �

Z
dz S(q)(x, z)�S(q)(z, y)
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One way to implement 
this is to modify the 
usual quark propagators:
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FIG. 2. The field-strength dependency of sample correlation functions constructed from compound prop-
agators on a given configuration at a given time. The quantities shown are correlation functions with the

zero-field limit subtracted: Ĉ(h)
�u;�d

(t) = C(h)
�u;�d

(t) � C(h)
�u=0;�d=0(t). The polynomial fits (solid curves) are

used to extract the requisite linear and quadratic responses. The points denote the results of numerical
calculations at six values of the field strength.

produce one value for each of the 437 configurations. These averaged values are then resampled
using a bootstrap procedure, with the variation over the bootstrap ensembles propagated to define
the statistical uncertainty of all derived quantities. Systematic uncertainties are addressed by
consideration of the choice of temporal fit ranges, higher-order terms (where appropriate), and
from the comparison of multiple independent analyses in which specific details of the fit procedures
were di↵erent. In what follows, figures from a single analysis are presented, but the final numerical
values include this additional uncertainty.

To determine the matrix elements of interest from the hadronic correlation functions, these
functions must be separated into linear, quadratic and higher powers of insertions of the up-
quark and down-quark axial-current operators, as described in Sec. III B. In Fig. 2, the field-
strength dependence of representative correlations functions is shown at a given timeslice and
on a particular gauge-field configuration, along with the fitted functional forms that enable the
extraction of the linear and quadratic responses. As discussed previously, with the number of field
strengths being equal to the number of terms in the polynomial, the fit is a direct solution. Fits
can be performed with additional field strengths, but they will only depart from the expected
polynomial behavior through numerical truncations. With the required linear and quadratic
field-strength dependencies of the correlation functions determined, the remaining task is to isolate
the matrix elements of interest through the time dependences of the combinations of correlation
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Tiburzi et al (NPLQCD), Phys. Rev. D 96, 054505 (2017).
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IV. RESULTS

The search for the remaining unknown neutrino oscillation parameters, in particular for
the CP-violating phase �CP , requires the study of genuinely three-flavor oscillation e↵ects
through the so-called “golden channel” ⌫µ,e ! ⌫e,µ. Neglecting higher-order terms in ↵ ⌘

|�m2

21
|/|�m2

31
| ⇠ 0.03 and in sin ✓13 ⇠ 0.15, the oscillation probability of ⌫µ ! ⌫e for DUNE

can be cast as [48, 49]:

P (⌫µ ! ⌫e) ⇠= sin2 ✓23 sin
2 2✓13

sin2[�(A� 1)]

(A� 1)2

+ ↵J sin �CP sin�
sin(A�) sin[(1� A)�]

A(1� A)

+ ↵J cos �CP cos�
sin(A�) sin[(1� A)�]

A(1� A)

+ ↵2 cos2 ✓23 sin
2 2✓12

sin2(A�)

A2
, (5)

where J = cos ✓13 sin 2✓13 sin 2✓12 sin 2✓23, � = �m2

31
L/4E,A = 2

p
3GFneE/�m2

31
, GF is

the weak coupling constant and ne is the number density of electrons in the propagation
medium. An asymmetry in neutrino versus antineutrino oscillations is induced both by the
presence of a CP-odd term (/ sin �CP ) and by the matter e↵ect A, which changes sign
going from ⌫µ ! ⌫e to the ⌫̄µ ! ⌫̄e channel. The asymmetry induced by the matter e↵ect
depends on the sign of �m2

31
and increases with the neutrino energy (E) and the baseline

(L). The degeneracy between the CP-violation and matter e↵ect induced asymmetries can
thus be resolved with long baselines and high energies, like the ones adopted by DUNE.
This experiment enhances so much the matter e↵ect that the associated asymmetry cannot
be mimicked by any possible value of �CP . In this case the CP-violating asymmetry would
represent a far more sub-leading - and therefore challenging to discover - e↵ect.

On the other hand, these strong matter e↵ects not only lead to a great enhancement of the
(anti)neutrino channel for NH (IH), but also to the suppression of the oscillation probability
for the other channel. This implies that the search for leptonic CP violation cannot rely
so strongly on its most natural physics e↵ect: an asymmetry between the neutrino and
antineutrino oscillation probabilities - since one of them is very suppressed; it must rather
exploit the characteristic energy dependence of the CP-violating term in Eq. (5).

Furthermore, the fact that ✓13 turned out to be relatively large, saturating previous upper
bounds, implies that the expansion in Eq. (5) is not symmetric since the terms suppressed
by sin ✓13 ⇠ 0.15 dominate over those suppressed by ↵ ⇠ 0.03. In particular, the first term
of the equation tends to dominate over the second and third, which are those containing
the dependence on �CP . A possible way to alleviate this is to observe the oscillation prob-
ability beyond the first oscillation peak, so that the slower, �m2

21
-driven oscillation has

developed further and the CP-violating interference with the sin ✓13-modulated term repre-
sents a more significant contribution to the final oscillation probability [50–52]. Thus, one
of the widely-advertised benefits of a wide-band beam - such as the one envisioned for the
DUNE experiment - is that it would allow to cover not only the first oscillation peak, but
also beyond it and, in particular, the second oscillation maximum. However, in Ref. [53] it
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Search for CP violation in neutrino oscillation experiment is entering a new era with the next 
generation experiments such as DUNE in the U.S. and HyperK in Japan.

Probability of muon neutrino to electron neutrino conversion, that holds information about 
CP violation, depends on the neutrino energy:

De Romeri et al, JHEP 09 (2016) 030.

Why neutrino-nucleus scattering?

Unfortunately the neutrino energy is undetermined a priori and must be reconstructed 
from its collision with target nuclear isotopes such as Argon: A very complex problem!
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Unfortunately the neutrino energy is undetermined a priori and must be reconstructed 
from its collision with target nuclear isotopes such as Argon: A very complex problem!

Search for CP violation in neutrino oscillation experiment is entering a new era with the next 
generation experiments such as DUNE in the U.S. and HyperK in Japan.

Probability of muon neutrino to electron neutrino conversion, that holds information about 
CP violation, depends on the neutrino energy:

spectrum, as shown in Fig. 1, so the center-of-mass energy of a collision is not known. In
contrast, quark-flavor experiments, for which lattice QCD has been crucial, study decays
of strange, charmed, or b-flavored hadrons of precisely known mass. Here, the energy of
the incident neutrino must be inferred from measurements of the final state. The targets
in neutrino experiments are medium- to large-sized nuclei, such as 12C, 16O, or 40Ar, the
remnants of which are not, in practice, be detected. That means that the mapping between
final-state measurements and the initial energy inevitably requires theoretical knowledge of
the neutrino interaction with the struck nucleus.

Consistency with QCD is a clearly desirable characteristic of nuclear models used to
deduce the connection between final and initial states. Thus, it makes sense to incorporate
lattice QCD as soon as results with full, reliable error budgets are available. As discussed
in more detail in Ref. [16], the nuclear models rely in part on properties of the nucleon
as inputs. Many of these quantities can be calculated in lattice QCD in the near term,
with the precision depending on the quantity. Of course, single-nucleon calculations are
not in themselves enough. Calculations of the properties of multi-nucleon systems must be
developed concurrently and, once mature, also incorporated into the nuclear modeling.

The theory behind neutrino-nucleus collisions is complex because it spans a range of en-
ergies that probe all aspects of the target nucleus. Nuclear excitation energies are, typically,
dozens of keV, while the average binding energy is 8.6 MeV (in 40Ar), and the typical Fermi
motion of a nucleon is around 250 MeV. In the regime relevant to oscillation experiments,
the energy transfer to the nucleus ranges between ⇠200 MeV and the neutrino energy itself,
although much of transferred energy is carried o↵ by nucleons and pions, rather than the
nuclear remnant. Thus, it is a challenge to arrive at a comprehensive approach to the entire
problem. Most approaches start with nuclear many-body theories, in which the nucleus is
described by a nuclear wave function of a collection of interacting nucleons; see, for exam-
ple, Ref. [17, 18]. It is at this point in the analysis that nucleon-level matrix elements enter.
One should bear in mind, however, that single-nucleon physics is not enough: multi-body

FIG. 1. Energy spectrum of the neutrino beam for several experiments. In particular, most of
DUNE’s beam lies in the range 1 GeV < Eµ < 7 GeV. Courtesy Laura Fields [15].
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One needs to constrain nuclear response to incoming 
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e↵ects are needed for scattering events that knock out two (or more) nucleons. Even in
nuclear spectroscopy, three-body potentials improve the agreement with observed nuclear
levels [18–20]. Often these calculations use phenomenological potentials, but e↵ective field
theory (EFT) o↵ers a direct connection to QCD [21–24]. Chiral EFTs are, however, limited
to a kinematic range where the momenta are small relative to the chiral symmetry breaking
scale ⇤� ⇠ 700 MeV. Even then, the reliability of the application of nuclear EFT to large
atomic number systems, such as argon, requires significant development, testing, and, even-
tually, verification. These issues are further intertwined with the constraints of how event
generators [25–29] and detector simulations are implemented. Inconsistencies arise in the
current approach where, for example, the axial form factor of the nucleon is extracted from
⌫A scattering data assuming one nuclear model and then used in event generators employing
another.

A central goal of nuclear theory in this arena should therefore be to define a path for-
ward that allows for a quantified nuclear uncertainty to be presented for experiments such
as DUNE and HyperK. Achieving this is a challenging task and will require input and con-
straints from lattice QCD in order for it to be successful. In addition to the single- and
few-nucleon amplitudes noted above, it will be valuable to compute directly the properties
of small nuclei. At present, calculations involving nuclei up to 4He are possible. In addition
to being interesting in their own right, such lattice-QCD calculations of few nucleon systems
can be used to constrain low energy constants (LECs) in the EFTs. This approach has
already been applied to static quantities, such as magnetic moments. A next step will be
to work with matrix elements of electroweak currents, to build up e↵ects associated with
two- and higher-body contributions, as well as more complex contributions such as pion
production. In combination with experimental constraints from eA scattering, and neutrino
scattering on light nuclear targets,1 it is hoped a robust uncertainty can be determined.

To study neutrino oscillations, we are interested in the processes

⌫`A ! `�X, ⌫̄`A ! `+X, (1.1)

where A denotes the nucleus and X the combination of all final-state hadrons including
the remnant of the nucleus. The charged weak current responsible for these interactions
has the well-known V � A structure. Properties of the vector current can be inferred from
electromagnetic scattering, up to isospin corrections (which are negligible for the needed
precision; see Sec. IV). On the other hand, because the weak charge of the proton is so
small, Qp

w = 0.0719 ± 0.0045 [31], at the energies of interest, only neutron-neutrino (and
proton-antineutrino) scattering is sensitive to the axial current. These circumstances o↵er
the possibility of testing lattice-QCD methodology with the vector current before relying on
it for the axial current.

The quantity needed to describe the strong-interaction side of the scattering depends
on the energy transferred. At the lowest energies, the only possibility is coherent elastic
scattering via the weak neutral current, with X = A [32, 33]. Coherent neutrino-nucleus
interactions have recently been observed for the first time [34]. As the energy increases
slightly, the excitation spectrum of A is traced out: X = A⇤. The needed quantities are
matrix elements between di↵erent nuclear levels. In lattice QCD, one would have to simulate
the whole nucleus directly, which is currently feasible only for nuclei much smaller than those
in the cesium-iodide detector of Ref. [34].

1 Indeed, recent discussions of future experiments with deuterium or hydrogen targets [30] hinge on noting

the utility of nucleon-level amplitudes in nuclear many-body theory.
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e↵ects are needed for scattering events that knock out two (or more) nucleons. Even in
nuclear spectroscopy, three-body potentials improve the agreement with observed nuclear
levels [18–20]. Often these calculations use phenomenological potentials, but e↵ective field
theory (EFT) o↵ers a direct connection to QCD [21–24]. Chiral EFTs are, however, limited
to a kinematic range where the momenta are small relative to the chiral symmetry breaking
scale ⇤� ⇠ 700 MeV. Even then, the reliability of the application of nuclear EFT to large
atomic number systems, such as argon, requires significant development, testing, and, even-
tually, verification. These issues are further intertwined with the constraints of how event
generators [25–29] and detector simulations are implemented. Inconsistencies arise in the
current approach where, for example, the axial form factor of the nucleon is extracted from
⌫A scattering data assuming one nuclear model and then used in event generators employing
another.

A central goal of nuclear theory in this arena should therefore be to define a path for-
ward that allows for a quantified nuclear uncertainty to be presented for experiments such
as DUNE and HyperK. Achieving this is a challenging task and will require input and con-
straints from lattice QCD in order for it to be successful. In addition to the single- and
few-nucleon amplitudes noted above, it will be valuable to compute directly the properties
of small nuclei. At present, calculations involving nuclei up to 4He are possible. In addition
to being interesting in their own right, such lattice-QCD calculations of few nucleon systems
can be used to constrain low energy constants (LECs) in the EFTs. This approach has
already been applied to static quantities, such as magnetic moments. A next step will be
to work with matrix elements of electroweak currents, to build up e↵ects associated with
two- and higher-body contributions, as well as more complex contributions such as pion
production. In combination with experimental constraints from eA scattering, and neutrino
scattering on light nuclear targets,1 it is hoped a robust uncertainty can be determined.

To study neutrino oscillations, we are interested in the processes

⌫`A ! `�X, ⌫̄`A ! `+X, (1.1)

where A denotes the nucleus and X the combination of all final-state hadrons including
the remnant of the nucleus. The charged weak current responsible for these interactions
has the well-known V � A structure. Properties of the vector current can be inferred from
electromagnetic scattering, up to isospin corrections (which are negligible for the needed
precision; see Sec. IV). On the other hand, because the weak charge of the proton is so
small, Qp

w = 0.0719 ± 0.0045 [31], at the energies of interest, only neutron-neutrino (and
proton-antineutrino) scattering is sensitive to the axial current. These circumstances o↵er
the possibility of testing lattice-QCD methodology with the vector current before relying on
it for the axial current.

The quantity needed to describe the strong-interaction side of the scattering depends
on the energy transferred. At the lowest energies, the only possibility is coherent elastic
scattering via the weak neutral current, with X = A [32, 33]. Coherent neutrino-nucleus
interactions have recently been observed for the first time [34]. As the energy increases
slightly, the excitation spectrum of A is traced out: X = A⇤. The needed quantities are
matrix elements between di↵erent nuclear levels. In lattice QCD, one would have to simulate
the whole nucleus directly, which is currently feasible only for nuclei much smaller than those
in the cesium-iodide detector of Ref. [34].

1 Indeed, recent discussions of future experiments with deuterium or hydrogen targets [30] hinge on noting

the utility of nucleon-level amplitudes in nuclear many-body theory.
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ideal way to compute them in the so-called shallow-inelastic region with energy above the
resonance region but insu�cient for the OPE; see Sec. III.

In summary, then, the goals for lattice QCD for neutrino oscillation physics are to calcu-
late matrix elements of the form

hf |J⌫ |ii, hf |J†
µJ⌫ |ii, hf |O|ii, (1.3)

where the initial and final states are single nucleons, two nucleons, nucleons with a pion
(including resonances), or small nuclei. In the last case, O denotes an operator appearing in
the OPE, or a bilocal, spatially-separated operator arising in the calculation of PDFs. The
lattice-QCD calculations of these and related matrix elements have a long history, motivated
principally by the desire to understand nucleon and nuclear structure. For a broad survey,
see our companion whitepaper “Hadrons and Nuclei” [4].

Recall that lattice QCD calculates hadronic correlation functions, which contain in-
formation about the masses and matrix elements of interest; the information is extracted
by fitting the behavior of the correlation functions in (Euclidean) time. Several technical
di�culties make baryon calculations more di�cult than the corresponding calculations for
mesons. First, statistical errors on baryon correlation functions are larger and more poorly
behaved in time [41–43]. Second, it has proven more di�cult, in practice, to disentangle
matrix elements of the ground-state baryons from that of their excitations [44]. Last, the
dependence of baryon properties on the light quark mass (used in the simulation) is less
well described by the low-energy EFT of pions and baryons. All these di�culties can be
addressed with more computing. The signal-to-noise problem can clearly be attacked with
higher statistics. It can also be mitigated by choosing more sophisticated operators to create
and annihilate baryon states; this method is also the way to better filter out the excited
states. Finally, more computing also enables simulations with lighter and even physical
quark masses [39, 40, 45].

The rest of this whitepaper is organized as follows. In Sec. II, we discuss calculations
that are relatively straightforward. These include nucleon form factors, which are needed
to describe quasielastic scattering, and moments of PDFs, which are needed in the deep-
inelastic region. We discuss the form factors in considerable detail, because the time to
incorporate these results into event generators is soon or, arguably, now. In particular,
having the correct slopes for the form factors is crucial to gaining quantitative control of the
cross section. More challenging calculations are covered in Sec. III. This class of problems is
large and varied: transitions to resonances and multibody states, calculations for shallow-
and deep-inelastic scattering, and the vector and axial matrix elements of small nuclei.
Section IV turns to calculations that are far enough beyond that state of the art that new
ideas or computing facilities greater than exascale are needed. Foreseeable computing needs
are covered in Sec. V, noting the separate needs for both capability and capacity computing.

II. STRAIGHTFORWARD CALCULATIONS

The most straightforward matrix elements to calculate are those with one stable hadron
in the initial state, and one or none in the final state. Here we focus on the matrix elements
of electroweak currents, hN |Jµ|Ni, which directly enter neutrino-nucleon scattering, and
matrix elements of local operators, hN |O|Ni, where O appears in the operator-product
expansion of two J currents, which arise in the analysis of deep-inelastic scattering.
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of small nuclei. At present, calculations involving nuclei up to 4He are possible. In addition
to being interesting in their own right, such lattice-QCD calculations of few nucleon systems
can be used to constrain low energy constants (LECs) in the EFTs. This approach has
already been applied to static quantities, such as magnetic moments. A next step will be
to work with matrix elements of electroweak currents, to build up e↵ects associated with
two- and higher-body contributions, as well as more complex contributions such as pion
production. In combination with experimental constraints from eA scattering, and neutrino
scattering on light nuclear targets,1 it is hoped a robust uncertainty can be determined.

To study neutrino oscillations, we are interested in the processes

⌫`A ! `�X, ⌫̄`A ! `+X, (1.1)

where A denotes the nucleus and X the combination of all final-state hadrons including
the remnant of the nucleus. The charged weak current responsible for these interactions
has the well-known V � A structure. Properties of the vector current can be inferred from
electromagnetic scattering, up to isospin corrections (which are negligible for the needed
precision; see Sec. IV). On the other hand, because the weak charge of the proton is so
small, Qp

w = 0.0719 ± 0.0045 [31], at the energies of interest, only neutron-neutrino (and
proton-antineutrino) scattering is sensitive to the axial current. These circumstances o↵er
the possibility of testing lattice-QCD methodology with the vector current before relying on
it for the axial current.

The quantity needed to describe the strong-interaction side of the scattering depends
on the energy transferred. At the lowest energies, the only possibility is coherent elastic
scattering via the weak neutral current, with X = A [32, 33]. Coherent neutrino-nucleus
interactions have recently been observed for the first time [34]. As the energy increases
slightly, the excitation spectrum of A is traced out: X = A⇤. The needed quantities are
matrix elements between di↵erent nuclear levels. In lattice QCD, one would have to simulate
the whole nucleus directly, which is currently feasible only for nuclei much smaller than those
in the cesium-iodide detector of Ref. [34].

1 Indeed, recent discussions of future experiments with deuterium or hydrogen targets [30] hinge on noting
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ΠR(Γ,!q) = ZOΠ(Γ,!q) . (2.4)

Finally, the nucleon matrix elements can be parameterized in terms of Generalized Form Fac-
tors (GFFs). As an example we take the axial current insertion which decomposes into two Lorentz
invariant Form Factors (FFs), the axial (GA) and pseudoscalar (Gp):

〈N(p′,s′)|ψ̄(x)γµ γ5ψ(x)|N(p,s)〉= i

(

m2
N

EN(p′)EN(p)

)1/2

ūN(p′,s′)

[

GA(q2)γµγ5+
qµγ5

2mN
Gp(q2)

]

uN(p,s) ,

(2.5)
where q2 is the momentum transfer in Minkowski space (hereafter, Q2 =−q2).

In these proceedings I will mostly consider the flavor isovector combination for which the
disconnected contribution cancels out; strictly speaking, this happens for actions with exact isospin
symmetry. Another advantage of the isovector combination is that the renormalization simplifies
considerably.

2.1 Nucleon Axial Charge

One of the fundamental nucleon observables is the axial charge, gA ≡ GA(0), which is deter-
mined from the forward matrix element of the axial current. gqA gives the intrinsic quark spin in the
nucleon. It governs the rate of β -decay and has been measured precisely. In the lattice QCD it can
be determined directly from the evaluation of the matrix element and thus, there is no ambiguity
asocciated to fits. For this reasons, gA is an optimal benchmark quantity for hadron structure com-
putations. It is thus essential for lattice QCD to reproduce its experimental value or if a deviation
is observed to understand its origin.
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Figure 2: Collection of lattice results for gA. In chronological order these correspond to: Nf=2+1 DWF
(RBC/UKQCD [11, 12], RBC/UKQCD [13], χQCD [14]), Nf=2+1 DWF on asqtad sea (LHPC [15]),
Nf=2 TMF (ETMC [16]), Nf=2 Clover (QCDSF/UKQCD [17], CLS/MAINZ [18], QCDSF [19],
RQCD [20, 21]), Nf=1+2 Clover (LHPC [22], CSSM [23]), Nf=2+1+1 TMF (ETMC [24]), Nf=2+1+1
HISQ (PNDME [25, 26]), Nf=2 TMF with Clover (ETMC [27]). The asterisk is the experimental value.
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fraction, as well as the nucleon spin, including disconnected contributions. The systematic un-
certainties are investigated and where possible we compare with experimental / phenomenological
data. Recent results on Generalized Form Factors for other baryons and mesons are also presented,
as well as, perspectives and future directions.

2. Nucleon Sector
Although the nucleon is the only stable hadron in the Standard Model, its structure is not fully

understood. Being one of the building-blocks in the universe, the nucleon provides an extremely
valuable laboratory for studying strong dynamics providing important input that can also shed
light in new Physics searches. There have been numerous recent lattice QCD results on nucleon
observables. Here, we discuss selected achievements, as well as, challenges involved in these
computations.

In a nutshell, in the evaluation of nucleon matrix elements in lattice QCD there are two type
of diagrams entering shown in Fig. 1. The disconnected diagram has been neglected in most of the
studies because it is very noisy and expensive to compute. During the last few years a number of
groups are studying various techniques for its computation and first results already appear in the
literature [7 – 10].

q = p p

(x , t)
(x i , ti)(x f , tf )

O Γ

q = p ′ − p

(x , t)
(x i , ti)(x f , tf )

O Γ

Figure 1: Connected (left) and disconnected (right) contributions to the nucleon three-point function.

In the computation of nucleon matrix elements one needs appropriate two- and three-point
correlation functions defined as:

G2pt(!q, t f ) = ∑
!x f
e−i!x f ·!qΓ0βα 〈Jα(!x f , t f )Jβ (0)〉 , (2.1)

G3pt
O

(Γµ ,!q, t f ) = ∑
!x f ,!x

ei!x·!q e−i!x f ·!p
′
Γµβα 〈Jα(!x f , t f )O(!x, t)Jβ (0)〉 . (2.2)

The projectors Γµ are defined as Γ0 ≡ 1
4(1+ γ0), Γk ≡ Γ0 · γ5 · γk . Other Γ-variations can be em-

ployed, in order to compute the quantities of interest. The lattice data are extracted from dimen-
sionless ratio of the two- and three-point correlation functions:

RO(Γ,!q, t, t f )=
G3pt

O
(Γ,!q, t)

G2pt(!0, t f )
×

√

G2pt(−!q, t f−t)G2pt(!0, t)G2pt(!0, t f )
G2pt(!0, t f−t)G2pt(−!q, t)G2pt(−!q, t f )

→
t f−t→∞
t−ti→∞

Π(Γ,!q) . (2.3)

The above ratio is considered optimized since it does not contain potentially noisy two-point func-
tions at large separations and because correlations between its different factors reduce the statistical
noise. The most common method to extract the desired matrix element is to look for a plateau with
respect to the current insertion time, t (or, alternatively, the sink time, t f ), which should be located
at a time well separated from the creation and annihilation times in order to ensure single state
dominance. To establish proper connection to experiments we apply renormalization which, for
the quantities discussed in this review, is multiplicative:
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where q2 is the momentum transfer in Minkowski space (hereafter, Q2 =−q2).
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symmetry. Another advantage of the isovector combination is that the renormalization simplifies
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One of the fundamental nucleon observables is the axial charge, gA ≡ GA(0), which is deter-
mined from the forward matrix element of the axial current. gqA gives the intrinsic quark spin in the
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be determined directly from the evaluation of the matrix element and thus, there is no ambiguity
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Nf=2 TMF (ETMC [16]), Nf=2 Clover (QCDSF/UKQCD [17], CLS/MAINZ [18], QCDSF [19],
RQCD [20, 21]), Nf=1+2 Clover (LHPC [22], CSSM [23]), Nf=2+1+1 TMF (ETMC [24]), Nf=2+1+1
HISQ (PNDME [25, 26]), Nf=2 TMF with Clover (ETMC [27]). The asterisk is the experimental value.
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FIG. 9. Comparison between the 2⇤ and 3⇤ fits to the axial charge gu�d

A
data from the a ⇡ 0.15 fm (top row) and a ⇡ 0.12 fm

(bottom 4 rows) ensembles. The results of the fits are summarized in Table XIII along with the number of points tskip skipped.
The first two columns show 2⇤ fits to data versus t at a single value of ⌧ , while the third panel shows the 3⇤ fit using data at
multiple values of ⌧ . The labels give the ensemble ID, and the values of ⌧ used in the fits. The ⌧ ! 1 value is given by the
grey band in each panel.
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FIG. 9. Comparison between the 2⇤ and 3⇤ fits to the axial charge gu�d

A
data from the a ⇡ 0.15 fm (top row) and a ⇡ 0.12 fm

(bottom 4 rows) ensembles. The results of the fits are summarized in Table XIII along with the number of points tskip skipped.
The first two columns show 2⇤ fits to data versus t at a single value of ⌧ , while the third panel shows the 3⇤ fit using data at
multiple values of ⌧ . The labels give the ensemble ID, and the values of ⌧ used in the fits. The ⌧ ! 1 value is given by the
grey band in each panel.
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FIG. 2. The 11-point CCFV fit using Eq. (12) to the data for the renormalized isovector charges gu�d
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scheme at 2 GeV. The result of the simultaneous extrapolation to the physical point defined by a ! 0, M⇡ ! Mphys

⇡0 = 135 MeV
and M⇡L ! 1 are marked by a red star. The pink error band in each panel is the result of the simultaneous fit but shown as
a function of a single variable. The overlay in the left (middle) panels with the dashed line within the grey band is the fit to
the data versus a (M2

⇡), i.e., neglecting dependence on the other two variables. The symbols used to plot the data are defined
in the left panels.
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Error From gu�d

A
gu�d

S
gu�d

T

SESC 0.02 * 0.03 * 0.01 +

Z 0.01 + 0.04 * 0.03 +

a 0.02 + 0.04 * 0.01 +

Chiral 0.01 * 0.01 + 0.02 +

Finite volume 0.01 * 0.01 * 0.01 *

Guesstimate error 0.033 0.066 0.04
Error quoted 0.025 0.080 0.032
Fit ansatz 0.03 0.06 0.01

TABLE IX. Estimates of the error budget for the three isovec-
tor charges due to each of the five systematic e↵ects described
in the text. The symbols * and + indicate the direction in
which a given systematic is observed to drive the central value
obtained from the 11-point fit. The sixth row gives a guessti-
mate of error obtained by combining these five systematics
in quadrature. This guesstimate is consistent with the actual
errors obtained from the 11-point fit and quoted in Eq. 13
and reproduced in the seventh row. The last row gives the
additional systematic error assigned to account for possible
uncertainty due to the using the CCFV fit ansatz with just
the lowest order correction terms as described in the text.

MN �MP Nf {md,mu}
QCD

(MeV) Flavors (MeV)

2.58(32) 2+1 md = 4.68(14)(7),mu = 2.16(9)(7) [50]

2.73(44) 2+1+1 md = 5.03(26),mu = 2.36(24) [50]

2.41(27) 2+1 md �mu = 2.41(6)(4)(9) [51]

2.63(27) 2+1+1 md = 4.690(54),mu = 2.118(38) [52]

TABLE X. Results for the mass di↵erence (MN � MP )
QCD

obtained using the CVC relation with our estimate gu�d

S
=

1.022(80)(60) and lattice results for the up and down quark
masses from the FLAG review [50] and recent results [51, 52].

Figs. 5, 6 and 7. They show the steady improvement in
results from lattice QCD. In this section we compare our
results with two calculations published after the analy-
sis and the comparison presented in Ref. [3], and that
include data from physical pion mass ensembles. These
are the ETMC [36, 37, 53] and CalLat results [47].

The ETMC results gu�d

A
= 1.212(40), gu�d

S
= 0.93(33)

and g
u�d

T
= 1.004(28) [36, 37, 53] were obtained from

a single physical mass ensemble generated with 2-flavors
of maximally twisted mass fermions with a clover term
at a = 0.0938(4) fm, M⇡ = 130.5(4) MeV and M⇡L =
2.98. Assuming that the number of quark flavors and
finite volume corrections do not make a significant di↵er-
ence, one could compare them against our results from
the a09m130W ensemble with similar lattice parame-
ters: g

u�d

A
= 1.249(21), gu�d

S
= 0.952(74) and g

u�d

T
=

1.011(30). We remind the reader that this comparison is
at best qualitative since estimates from di↵erent lattice
actions are only expected to agree in the continuum limit.

Based on the trends observed in our CCFV fits shown
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FIG. 5. A summary of results for the axial isovec-
tor charge, gu�d

A
, for Nf = 2- 2+1- and 2+1+1-

flavors. Note the much finer x-axis scale for the plot
showing experimental results for gu�d

A
. The lattice re-

sults (top panel) are from: PNDME’18 (this work);
PNDME’16 [3]; CalLat’18 [47]; LHPC’14 [54]; LHPC’10 [55];
RBC/UKQCD’08 [56]; Lin/Orginos’07 [57]; ETMC’17 [37,
53]; Mainz’17 [58] RQCD’14 [59]; QCDSF/UKQCD’13 [60];
ETMC’15 [61] and RBC’08 [62]. Phenomenological and other
experimental results (middle panel) are from: AWSR’16 [63]
and COMPASS’15 [64]. The results from neutron de-
cay experiments (bottom panel) have been taken from:
Brown’17 [9]; Mund’13 [10]; Mendenhall’12 [8]; Liu’10 [65];
Abele’02 [66]; Mostovoi’01 [67]; Liaud’97 [68]; Yerozolim-
sky’97 [69] and Bopp’86 [70]. The lattice-QCD estimates in
red indicate that estimates of excited-state contamination,
or discretization errors, or chiral extrapolation were not pre-
sented. When available, systematic errors have been added to
statistical ones as outer error bars marked with dashed lines.

in Figs. 2–4, we speculate where one may expect to see a
di↵erence due to the lack of a continuum extrapolation in
the ETMC results. The quantities that exhibit a signifi-
cant slope versus a are g

u�d

A
and g

u�d

S
. Again, under the

assumptions stated above, we would expect ETMC val-
ues gu�d

A
= 1.212(40) to be larger and g

u�d

S
= 0.93(33) to

be smaller than our extrapolated values given in Eq. (13).
We find that the scalar charge (ignoring the large error)
fits the expected pattern, but the axial charge does not.
We also point out that the ETMC error estimates are

taken from a single ensemble and a single value of the
source-sink separation using the plateau method. Our re-
sults from the comparable calculation on the a09m130W
ensemble with ⌧ = 14 (see Figs. 10 and 16 and results in
Table XIII), have much smaller errors.

FLAG Review (2019), EPJC 80, 113 (2020).
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FIG. 4. Electric (left) and isovector axial (right) form factors of the nucleon vs Q2 = �q2. Data
from Ref. [66, 75].

tors for a long time. A representative set of recent work can be found in Refs. [60–74]
Significant improvements have been made to investigate the quark-mass, finite-volume, and
finite-lattice-spacing dependence, and the e↵ects of excited-state contamination in the corre-
lation functions. With these technical and algorithmic advances, lattice QCD can calculate
not only the isovector contribution but also the computationally more demanding isoscalar
and strange-quark contributions, which are needed for neutral-current processes, discussed
below.

Sample lattice-QCD calculations [66, 75] of the nucleon isovector electric and axial form
factors—GE and FA—are shown in Fig. 4. Eight di↵erent 2 + 1 + 1-flavor HISQ ensembles
generated by the MILC collaboration [40] with lattice spacings in the range 0.06–0.12 fm
and pion mass in the range 130–310 MeV are employed. In this calculation, excited-state
contamination is controlled via a three-state fit. The results are in good agreement with the
experimental data for the nucleon electromagnetic form factorGE(q2) On the other hand, the
axial form factor is not as steep as experimental determinations with mA ⇡ 1 GeV [76], yet
is compatible with MiniBooNE’s mA ⇡ 1.35 GeV [55]. Despite the many laudable aspects
of Ref. [66], a full and robust accounting of all systematics involved in these lattice-QCD
calculations has not yet been feasible. Reliable confrontation with precise experimental
data for GE—and, hence, a solid prediction of FA—requires an increase in computational
resources to overcome the technical obstacles to nucleon matrix elements, discussed in Sec. I.

The status of lattice-QCD calculations of gA and r2
A is shown in Fig. 5. The left plot [77],

for gA, shows that lattice-QCD is at this time much less precise than the results from neutron
� decay.2 Note, however, that bottle and beam experiments measuring the neutron lifetime
yield values of gA that di↵er by 3�. For example, a 2015 bottle measurement leads to
gA = 1.2749(11) [80], while a 2013 beam measurement leads to gA = 1.2684(20) [81]. It
would be interesting to know the answer from lattice QCD. The precision required depends
on whether the (average of several) calculation(s) lands between the two neutron-lifetime
values or outside the interval. In the latter case, at least percent-level precision is needed,
which is likely to be achieved with three years (assuming sustained computing support). If

2 The color code here is adapted from the Flavor Lattice Averaging Group [78], as specified in the Appendix

of Ref. [79].
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FIG. 4. The left panel shows the quantity R
+
3S1,1S0

(t) used to extract the pp ! d bare transition matrix

element from the constant fit to its late-time region [16]. The right panel is a plot of quantity R
+
3S1,1S0

(t) used
to estimate the magnitude of excited-state contamination to the extraction of pp ! d bare matrix element,
see Sec. III B 2. Blue circles and orange diamonds denote results determined using SP and SS correlation
functions, respectively. The horizontal bands show constant correlated SP-SS fits to the late-time behavior
of the quantities.

transition matrix element and is shown in the right panel of Fig. 4. The late-time behavior of
this quantity returns a very small value indicating that the Nc scaling is borne out, recalling from
Sec. III B 2 that this quantity vanishes as 1/N4

c in the SU(4) Wigner-symmetry limit. With this
supporting evidence, it is reasonable to conclude that the contaminating term c� in Eq. (20) is
O(1/N4

c ) ⇠ O(1%) of the dominant term.
Fits to both the mass di↵erence, �, and to the bare pp ! d matrix element on each boot-

strap ensemble allow for the deuteron pole term to be determined and subtracted (in all cases,
the statistically-cleaner SP results are used for the fits shown below). The results obtained for
Rnn!pp(t) and R̂nn!pp(t) are shown in Fig. 5 for both the SS and SP source–sink combinations.
Comparing Fig. 5(b) with Fig. 5(a) (note the di↵erent scales), it is clear that the subtracted long-

(a) (b)

FIG. 5. The (a) ratio Rnn!pp(t) and (b) subtracted ratio R(sub)
nn!pp(t) that are constructed from the SP and

SS correlation functions, as given in Eq. (31) and Eq. (33) respectively. Blue circles and orange diamonds
denote results determined using SP and SS correlation functions, respectively. The horizontal bands show
constant correlated SP-SS fits to the late-time behavior of the quantities.
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FIG. 6. (a) The combination R(lin)
nn!pp(t) corresponding at late times to the unrenormalized short-distance

contribution to the matrix element as shown in Eq. (32) and Eq. (33). (b) R(full)
nn!pp(t), the sum of the

long-distance and short-distance contributions to the matrix element. In both panels, the orange diamonds
and blue circles correspond to the SS and SP results, respectively. The horizontal bands denote fits to the
SP results at late times, used to extract the final values of the matrix elements. NORMALISE by g2
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alter the results herein. In the future it will be important to investigate these limitations of the
current work. DISCUSS FURTHER

V. SECOND-ORDER WEAK PROCESSES IN PIONLESS EFT

In this section, the results of the LQCD calculations are matched to EFT(⇡/), and explicitly
used to determine the coe�cient of a short-distance two-nucleon, second-order weak field operator
in the dibaryon formalism. In principle, with this contribution constrained, EFT(⇡/) can be used to
calculate ��-decay rates of light nuclei at this pion mass. EFT(⇡/) [19, 49–53] is a natural approach
to use at this heavy pion mass as the momenta involved in a 2⌫�� decay are small compared
with the start of the nucleon-nucleon t-channel cut when isospin breaking and electromagnetic are
included (in the current, isospin-symmetric numerical work, the transition is below threshold for
massive leptons). At lighter pion masses, including the physical point, and for 0⌫�� decay, pionfull
EFTs will be required [54].

A. Review of pionless EFT in the dibaryon approach

At momenta well below the pion mass, |p| ⌧ m⇡, the strong interactions of two-nucleon systems,
as well as their interactions with external currents, can be systematically studied in the framework
of EFT(⇡/) [19, 50, 52, 53]. As s-wave interactions in the two-nucleon sector drive the system
towards an infrared fixed point, they require summation to all orders and generate anomalously
large two-nucleon scattering lengths. However, interactions in higher partial waves can be included
perturbatively. In the dibaryon formulation of the EFT [53, 55], this resummation fully dresses the
s-wave dibaryon propagators. In terms of the nucleon field, N , and the isosinglet, ti, and isotriplet,
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large two-nucleon scattering lengths. However, interactions in higher partial waves can be included
perturbatively. In the dibaryon formulation of the EFT [53, 55], this resummation fully dresses the
s-wave dibaryon propagators. In terms of the nucleon field, N , and the isosinglet, ti, and isotriplet,
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FIG. 4. The left panel shows the quantity R
+
3S1,1S0

(t) used to extract the pp ! d bare transition matrix

element from the constant fit to its late-time region [16]. The right panel is a plot of quantity R
+
3S1,1S0

(t) used
to estimate the magnitude of excited-state contamination to the extraction of pp ! d bare matrix element,
see Sec. III B 2. Blue circles and orange diamonds denote results determined using SP and SS correlation
functions, respectively. The horizontal bands show constant correlated SP-SS fits to the late-time behavior
of the quantities.

transition matrix element and is shown in the right panel of Fig. 4. The late-time behavior of
this quantity returns a very small value indicating that the Nc scaling is borne out, recalling from
Sec. III B 2 that this quantity vanishes as 1/N4

c in the SU(4) Wigner-symmetry limit. With this
supporting evidence, it is reasonable to conclude that the contaminating term c� in Eq. (20) is
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strap ensemble allow for the deuteron pole term to be determined and subtracted (in all cases,
the statistically-cleaner SP results are used for the fits shown below). The results obtained for
Rnn!pp(t) and R̂nn!pp(t) are shown in Fig. 5 for both the SS and SP source–sink combinations.
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SS correlation functions, as given in Eq. (31) and Eq. (33) respectively. Blue circles and orange diamonds
denote results determined using SP and SS correlation functions, respectively. The horizontal bands show
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nn!pp(t), the sum of the
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A/� ??

alter the results herein. In the future it will be important to investigate these limitations of the
current work. DISCUSS FURTHER

V. SECOND-ORDER WEAK PROCESSES IN PIONLESS EFT

In this section, the results of the LQCD calculations are matched to EFT(⇡/), and explicitly
used to determine the coe�cient of a short-distance two-nucleon, second-order weak field operator
in the dibaryon formalism. In principle, with this contribution constrained, EFT(⇡/) can be used to
calculate ��-decay rates of light nuclei at this pion mass. EFT(⇡/) [19, 49–53] is a natural approach
to use at this heavy pion mass as the momenta involved in a 2⌫�� decay are small compared
with the start of the nucleon-nucleon t-channel cut when isospin breaking and electromagnetic are
included (in the current, isospin-symmetric numerical work, the transition is below threshold for
massive leptons). At lighter pion masses, including the physical point, and for 0⌫�� decay, pionfull
EFTs will be required [54].
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Nf = 3, m⇡ = 0.806 GeV, a = 0.145(2) fm

Tiburzi et al (NPLQCD), Phys. Rev.D96,054505(2017)

Shanahan et al (NPLQCD), Phys. Rev. Lett.119,062003(2017).

Matrix element from QCD using the Feynman-Hellmann 
(modified propagator) method (hiding all technicalities):

S H O R T- D I S TA N C E  C O N T R I B U T I O N

+

F U L L  C O N T R I B U T I O N



Tiburzi et al (NPLQCD), Phys. Rev.D96,054505(2017)

Shanahan et al (NPLQCD), Phys. Rev. Lett.119,062003(2017).
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FIG. 5. The e↵ective one-body (left) and two-body (center) operators contributing to a single insertion
of the axial current, A+

µ , described by Eq. (44), with coe�cients gA and l1,A respectively, and the e↵ective
two-body operator corresponding to two insertions of the axial current (right), A+

µ A+
⌫ , described by Eq. (45),

with coe�cient h2,S . The first two interactions gives rise to an e↵ectively quenched value of gA in medium,
while the third does not contribute the �-decay.

C. The correlation function for nn ! pp process within pionless EFT

The LECs of the e↵ective Lagrangian, including couplings to the external fields, can be de-
termined by matching the EFT and LQCD correlation functions. To study the nn ! pp matrix
element induced by the background axial field used in this work (A+

3 ⇠ ⌧+�3), it is convenient to
construct the correlation function matrix in the {nn, np(3S1), pp} channel channels. Explicitly,

CNN,NN ⌘

0

@
Cnn,nn Cnn,np(3S1) Cnn,pp

Cnp(3S1),nn Cnp(3S1),np(3S1) Cnp(3S1),pp

Cpp,nn Cpp,np(3S1) Cpp,pp

1

A . (46)

The goal is to express the elements of this matrix in terms of the LECs, including couplings
to the background axial field, while including the s-wave strong interactions in the two-nucleon
sector to all orders using the dibaryon approach. This can be accomplished with the diagrammatic
representation of the correlation function matrix, as depicted in Fig. 6. In momentum space, the
expansion can be cast in the following form

iCNN,NN (E) = Z · D(E) ·
1

13⇥3 � I(E) · D(E)
· Z†, (47)

where E denotes the total energy of the two-nucleon state, and the total momentum is projected
to zero. The overlap matrix Z is defined as

Z ⌘

0

@
Zs 0 0
0 Zt 0
0 0 Zs

1

A , (48)

where Zs and Zt are the overlaps onto the isotriplet and isosinglet two-nucleon states, respectively.
A generalized bare propagator matrix, D, at second order in the weak field is introduced,

D ⌘

0

B@
Ds �il̃1,ADsDt� (�ih̃2,S � l̃21,ADt)Ds

2�2

�il̃1,ADsDt� Dt �il̃1,ADsDt�
(�ih̃2,S � l̃21,ADt)Ds

2�2
�il̃1,ADsDt� Ds

1

CA ,

(49)

to incorporate the e↵ect of channel-changing contact interactions on the bare dibaryon propagators.
The LECs have been redefined as l̃1,A = 1

2M
p
r1r3

l1,A and h̃2,S = 1
2Mr1

h2,S , and � denotes the

3S1
1S0
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C. The correlation function for nn ! pp process within pionless EFT

The LECs of the e↵ective Lagrangian, including couplings to the external fields, can be de-
termined by matching the EFT and LQCD correlation functions. To study the nn ! pp matrix
element induced by the background axial field used in this work (A+

3 ⇠ ⌧+�3), it is convenient to
construct the correlation function matrix in the {nn, np(3S1), pp} channel channels. Explicitly,
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The goal is to express the elements of this matrix in terms of the LECs, including couplings
to the background axial field, while including the s-wave strong interactions in the two-nucleon
sector to all orders using the dibaryon approach. This can be accomplished with the diagrammatic
representation of the correlation function matrix, as depicted in Fig. 6. In momentum space, the
expansion can be cast in the following form

iCNN,NN (E) = Z · D(E) ·
1

13⇥3 � I(E) · D(E)
· Z†, (47)

where E denotes the total energy of the two-nucleon state, and the total momentum is projected
to zero. The overlap matrix Z is defined as
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where Zs and Zt are the overlaps onto the isotriplet and isosinglet two-nucleon states, respectively.
A generalized bare propagator matrix, D, at second order in the weak field is introduced,
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to incorporate the e↵ect of channel-changing contact interactions on the bare dibaryon propagators.
The LECs have been redefined as l̃1,A = 1
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r1r3

l1,A and h̃2,S = 1
2Mr1

h2,S , and � denotes the
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Let’s see how we can match this result to a 
low-energy EFT and constrain unknown LECs

⇠ l1,A⇠ gA ⇠ h2,S

* Note “dibaryon” fields are used.
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whilethethirddoesnotcontributethe�-decay.

C.Thecorrelationfunctionfornn!ppprocesswithinpionlessEFT

TheLECsofthee↵ectiveLagrangian,includingcouplingstotheexternalfields,canbede-
terminedbymatchingtheEFTandLQCDcorrelationfunctions.Tostudythenn!ppmatrix
elementinducedbythebackgroundaxialfieldusedinthiswork(A+
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constructthecorrelationfunctionmatrixinthe{nn,np(3S1),pp}channelchannels.Explicitly,
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ThegoalistoexpresstheelementsofthismatrixintermsoftheLECs,includingcouplings
tothebackgroundaxialfield,whileincludingthes-wavestronginteractionsinthetwo-nucleon
sectortoallordersusingthedibaryonapproach.Thiscanbeaccomplishedwiththediagrammatic
representationofthecorrelationfunctionmatrix,asdepictedinFig.6.Inmomentumspace,the
expansioncanbecastinthefollowingform

iCNN,NN(E)=Z·D(E)·
1

13⇥3�I(E)·D(E)
·Z†,(47)

whereEdenotesthetotalenergyofthetwo-nucleonstate,andthetotalmomentumisprojected
tozero.TheoverlapmatrixZisdefinedas

Z⌘

0
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Zs00
0Zt0
00Zs
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A,(48)

whereZsandZtaretheoverlapsontotheisotripletandisosinglettwo-nucleonstates,respectively.
Ageneralizedbarepropagatormatrix,D,atsecondorderintheweakfieldisintroduced,
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FIG. 5. The e↵ective one-body (left) and two-body (center) operators contributing to a single insertion
of the axial current, A+

µ , described by Eq. (44), with coe�cients gA and l1,A respectively, and the e↵ective
two-body operator corresponding to two insertions of the axial current (right), A+

µ A+
⌫ , described by Eq. (45),

with coe�cient h2,S . The first two interactions gives rise to an e↵ectively quenched value of gA in medium,
while the third does not contribute the �-decay.

C. The correlation function for nn ! pp process within pionless EFT

The LECs of the e↵ective Lagrangian, including couplings to the external fields, can be de-
termined by matching the EFT and LQCD correlation functions. To study the nn ! pp matrix
element induced by the background axial field used in this work (A+

3 ⇠ ⌧+�3), it is convenient to
construct the correlation function matrix in the {nn, np(3S1), pp} channel channels. Explicitly,
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The goal is to express the elements of this matrix in terms of the LECs, including couplings
to the background axial field, while including the s-wave strong interactions in the two-nucleon
sector to all orders using the dibaryon approach. This can be accomplished with the diagrammatic
representation of the correlation function matrix, as depicted in Fig. 6. In momentum space, the
expansion can be cast in the following form

iCNN,NN (E) = Z · D(E) ·
1

13⇥3 � I(E) · D(E)
· Z†, (47)

where E denotes the total energy of the two-nucleon state, and the total momentum is projected
to zero. The overlap matrix Z is defined as
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where Zs and Zt are the overlaps onto the isotriplet and isosinglet two-nucleon states, respectively.
A generalized bare propagator matrix, D, at second order in the weak field is introduced,
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The goal is to express the elements of this matrix in terms of the LECs, including couplings
to the background axial field, while including the s-wave strong interactions in the two-nucleon
sector to all orders using the dibaryon approach. This can be accomplished with the diagrammatic
representation of the correlation function matrix, as depicted in Fig. 6. In momentum space, the
expansion can be cast in the following form
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where E denotes the total energy of the two-nucleon state, and the total momentum is projected
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C. The correlation function for nn ! pp process within pionless EFT

The LECs of the e↵ective Lagrangian, including couplings to the external fields, can be de-
termined by matching the EFT and LQCD correlation functions. To study the nn ! pp matrix
element induced by the background axial field used in this work (A+

3 ⇠ ⌧+�3), it is convenient to
construct the correlation function matrix in the {nn, np(3S1), pp} channel channels. Explicitly,

CNN,NN ⌘

0

@
Cnn,nn Cnn,np(3S1) Cnn,pp

Cnp(3S1),nn Cnp(3S1),np(3S1) Cnp(3S1),pp

Cpp,nn Cpp,np(3S1) Cpp,pp

1

A . (46)

The goal is to express the elements of this matrix in terms of the LECs, including couplings
to the background axial field, while including the s-wave strong interactions in the two-nucleon
sector to all orders using the dibaryon approach. This can be accomplished with the diagrammatic
representation of the correlation function matrix, as depicted in Fig. 6. In momentum space, the
expansion can be cast in the following form
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⌫ , described by Eq. (45),

with coe�cient h2,S . The first two interactions gives rise to an e↵ectively quenched value of gA in medium,
while the third does not contribute the �-decay.
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The goal is to express the elements of this matrix in terms of the LECs, including couplings
to the background axial field, while including the s-wave strong interactions in the two-nucleon
sector to all orders using the dibaryon approach. This can be accomplished with the diagrammatic
representation of the correlation function matrix, as depicted in Fig. 6. In momentum space, the
expansion can be cast in the following form
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C. The correlation function for nn ! pp process within pionless EFT
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The goal is to express the elements of this matrix in terms of the LECs, including couplings
to the background axial field, while including the s-wave strong interactions in the two-nucleon
sector to all orders using the dibaryon approach. This can be accomplished with the diagrammatic
representation of the correlation function matrix, as depicted in Fig. 6. In momentum space, the
expansion can be cast in the following form
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1
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where Zs and Zt are the overlaps onto the isotriplet and isosinglet two-nucleon states, respectively.
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FIG. 5. The e↵ective one-body (left) and two-body (center) operators contributing to a single insertion
of the axial current, A+

µ , described by Eq. (44), with coe�cients gA and l1,A respectively, and the e↵ective
two-body operator corresponding to two insertions of the axial current (right), A+

µ A+
⌫ , described by Eq. (45),

with coe�cient h2,S . The first two interactions gives rise to an e↵ectively quenched value of gA in medium,
while the third does not contribute the �-decay.
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Let’s see how we can match this result to a 
low-energy EFT and constrain unknown LECs

⇠ l1,A⇠ gA ⇠ h2,S

A coupling related to                above.⇠ h2,S
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Will eventually constrain such models 
more reliably.
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⇡+⇡�

+

Prezeau, Ramsey-Musolf, Vogel Phys.Rev. D68 03401 (2003).

MATRIX ELEMENTS OF LOCAL 
FOUR-QUARK OPERATORS



⌫e

ud

(0, 0) (x, ⌧)(x1, ⌧1)

d̄ū
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FIG. 6. Within the Weinberg power counting of nuclear forces, an organizational scheme was proposed in
Ref. [82] to identify the dominant contributions to the 0⌫�� decay of two neutrons at low energies, as depicted
in the upper panel. The CalLat collaboration performed the first calculation of the MEs of �L = 2 four-quark
operators (arising from heavy-scale scenarios for 0⌫��) in the pion, hence constraining part of the amplitude
for nn ! ppee in which the pion exchanged between the two nucleons undergoes a 0⌫�� decay [81]. The
study was performed on USQCD’s MILC ensembles of gauge-field configurations and included continuum,
finite-volume and chiral extrapolations. The lower-right plot displays the MEs h⇡+|Oi|⇡�i corresponding
to a set of �I = 2 four-quark operators, Oi, as defined in the reference. Within the next five years, further
developments will enable computations of more challenging hp⇡

+|Oi|ni, hpp|Oi|nni MEs.

5-year goals and plans: In a model-independent approach, we organize the discussion of LQCD
contributions that will be computed in the next five years according to the underlying mechanism
(i.e., dimension of the �L = 2 operator), as well as their level of di�culty. Within an EFT approach
to Lepton Number Violation (LNV), operators with �L = 2 arise at odd dimensions starting at
dimension five [11, 94–96]. As was alluded to above, depending on the scale of new physics and
the mechanism by which it appears, operators of dimension five, seven and nine can contribute to
0⌫�� decay at levels comparable to the current and planned experimental sensitivities:

– LNV from the dimension-5 operator (light Majorana-neutrino exchange): Here, the main
phenomenological goal is to assess what kind of sensitivity the next generation searches
will have to the e↵ective neutrino Majorana mass, m�� =

P
i U

2

eimi. To connect to the
nuclear ME in larger nuclei, a LQCD calculation must first determine the MEs h⇡+|SNL|⇡�i,
hp⇡

+|SNL|ni, hpp|SNL|nni, where the nonlocal e↵ective action SNL (up to factors of GF ,
m�� , etc.) is defined as follows:

SNL =

Z
d

4
x d

4
y S0(x � y) T

n
J

+

↵ (x)J+

� (y)
o

g
↵�

. (1)

Here, S0(x � y) is the massless scalar propagator representing the Majorana neutrino prop-
agator and J

+
↵ = ū�↵(1� �5)d, where u and d are up and down quarks. The nn ! pp ME is
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EFT approach makes the case for LQCD even 
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continuum / infinite volume extrapolation and examine the resulting variance in the
fit parameters. Here the di↵erences in central values between fits (A3) and (A4) are
used as an estimate of this systematic.

The main results of this work, extrapolated to the physical pion mass, continuum, and
infinite volume limits, and including all sources of statistical and systematic uncertainty
discussed in the text, are:

g
⇡⇡
⌫ (770 MeV) = �10.78(12)stat(4)fit(50)FV(9)�PT,

S⇡⇡ = 1.1054(14)stat(6)fit(61)FV(10)�PT,

M
0⌫ = 0.01880(6)stat(2)fit(10)FV(2)�PT GeV2

.

(30)

IV. DISCUSSION

The final results, including all sources of error — g
⇡⇡
⌫ (770 MeV) = �10.78(12)stat(51)sys

and S⇡⇡ = 1.1054(14)stat(62)sys — are in good agreement with an independent lattice QCD
study of the long-distance ⇡

�
! ⇡

+
e
�
e
� amplitude by Tuo, Feng, and Jin [10], which de-

termined g
⇡⇡
⌫ (m⇢) = �10.89(28)stat(74)sys and S⇡⇡ = 1.1045(34)stat(74)sys. This calculation

also used a variant of the domain wall fermion discretization for the quarks, but was per-
formed on a di↵erent set of ensembles with near-physical pion masses and coarser a ⇡ 0.2
fm lattice spacings. In addition, this calculation used a di↵erent set of techniques more
traditionally associated with lattice QCD+QED calculations to implement the Majorana
neutrino in a finite volume, and compared the QEDL [27] and infinite volume reconstruction
[28] techniques for this purpose. Since the calculation was performed at the physical pion
mass, g⇡⇡⌫ (µ) could be extracted directly by inverting

S⇡⇡ = 1 +
m

2

⇡

8⇡2f 2
⇡

✓
3 log

✓
µ
2

m2
⇡

◆
+ 6 +

5

6
g
⇡⇡
⌫ (µ)

◆
, (31)

rather than by performing a chiral fit as in Section III C of this work. The same authors
also calculated g

⇡⇡
⌫ (m⇢) = �11.96(31) from the related ⇡

�
⇡
�
! e

�
e
� decay amplitude in

Ref. [11], which is in ⇡ 4� tension with the determinations from ⇡
�
! ⇡

+
e
�
e
�. This latter

calculation does not attempt to quantify any sources of systematic error, which, presumably,
would help to explain the disagreement. Finally, in Ref. [18] Cirigliano et al. estimate
g
⇡⇡
⌫ (m⇢) ' �7.6 with an expected uncertainty of 30-50% by relating this LEC to known
LECs describing electromagnetic corrections within �PT [41, 42], which is also in reasonable
agreement with the results presented here.

One advantage of the approach taken in this work is that performing simulations at a
range of di↵erent pion masses allows for a controlled study of how well NLO �PT describes
lattice data. Since connecting first-principles lattice QCD calculations to predictions for
the matrix elements of large nuclei used in 0⌫�� searches will almost certainly involve an
analogous matching to an e↵ective field theory — allowing for an extrapolation from the
few-body systems accessible on the lattice to the many-body systems relevant to experi-
ment — this study is important to bridge from theory to phenomenology and experiment.
Furthermore, lattice calculations of nuclear systems are currently performed at significantly
heavier than physical pion masses to ameliorate the signal-to-noise problem, making it cru-
cial to understand how reliably such calculations can be matched to existing e↵ective field
theory formalisms.

The unknown ChiPT LEC to be 
determined with lattice QCD.
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FIG. 5. The chiral (top left), continuum (top/bottom right), and infinite volume (bottom left)
extrapolations corresponding to the preferred fit (A3) in Table IV. In all but the bottom right
plot the fit has been used to shift the lattice data to the physical point (m⇡ = mPDG

⇡� , f⇡ =
fPDG
⇡ , a = 0, L = 1), excluding the quantity specified on the horizontal axis. For the continuum
extrapolation we also plot the raw data without correcting in m⇡, f⇡, and the lattice volume
(bottom right) to illustrate that most of the uncertainty in the top right figure is associated with
applying this correction. The vertical dashed line in the upper left plot corresponds to the physical
m⇡� = 139.5702(4) MeV [13]. In the continuum extrapolation (top right) a slight horizontal shift
has been applied successively to each ensemble with the same lattice spacing for clarity.

of the di↵erences in central values between fits (A3) and (B1) or (C1) is used as a
conservative estimate of this systematic.

3. Truncation of the chiral expansion: It is possible that higher-order terms in the chiral
expansion are needed to accurately describe the lattice simulations over the full range
of pion masses reported in this work4. One way to estimate the potential influence
of higher order terms is to successively prune the heaviest data from the chiral /

4 It was found in Ref. [34], for example, that next-to-next-to-leading-order corrections to the quark mass

dependence of f⇡ were needed to obtain a good fit describing a range of lattice data extending from the

physical point to the heaviest m⇡ ⇡ 430 MeV 24I ensemble.
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continuum / infinite volume extrapolation and examine the resulting variance in the
fit parameters. Here the di↵erences in central values between fits (A3) and (A4) are
used as an estimate of this systematic.

The main results of this work, extrapolated to the physical pion mass, continuum, and
infinite volume limits, and including all sources of statistical and systematic uncertainty
discussed in the text, are:

g
⇡⇡
⌫ (770 MeV) = �10.78(12)stat(4)fit(50)FV(9)�PT,

S⇡⇡ = 1.1054(14)stat(6)fit(61)FV(10)�PT,

M
0⌫ = 0.01880(6)stat(2)fit(10)FV(2)�PT GeV2

.

(30)

IV. DISCUSSION

The final results, including all sources of error — g
⇡⇡
⌫ (770 MeV) = �10.78(12)stat(51)sys

and S⇡⇡ = 1.1054(14)stat(62)sys — are in good agreement with an independent lattice QCD
study of the long-distance ⇡

�
! ⇡

+
e
�
e
� amplitude by Tuo, Feng, and Jin [10], which de-

termined g
⇡⇡
⌫ (m⇢) = �10.89(28)stat(74)sys and S⇡⇡ = 1.1045(34)stat(74)sys. This calculation

also used a variant of the domain wall fermion discretization for the quarks, but was per-
formed on a di↵erent set of ensembles with near-physical pion masses and coarser a ⇡ 0.2
fm lattice spacings. In addition, this calculation used a di↵erent set of techniques more
traditionally associated with lattice QCD+QED calculations to implement the Majorana
neutrino in a finite volume, and compared the QEDL [27] and infinite volume reconstruction
[28] techniques for this purpose. Since the calculation was performed at the physical pion
mass, g⇡⇡⌫ (µ) could be extracted directly by inverting

S⇡⇡ = 1 +
m

2

⇡

8⇡2f 2
⇡

✓
3 log

✓
µ
2

m2
⇡

◆
+ 6 +

5

6
g
⇡⇡
⌫ (µ)

◆
, (31)

rather than by performing a chiral fit as in Section III C of this work. The same authors
also calculated g

⇡⇡
⌫ (m⇢) = �11.96(31) from the related ⇡

�
⇡
�
! e

�
e
� decay amplitude in

Ref. [11], which is in ⇡ 4� tension with the determinations from ⇡
�
! ⇡

+
e
�
e
�. This latter

calculation does not attempt to quantify any sources of systematic error, which, presumably,
would help to explain the disagreement. Finally, in Ref. [18] Cirigliano et al. estimate
g
⇡⇡
⌫ (m⇢) ' �7.6 with an expected uncertainty of 30-50% by relating this LEC to known
LECs describing electromagnetic corrections within �PT [41, 42], which is also in reasonable
agreement with the results presented here.

One advantage of the approach taken in this work is that performing simulations at a
range of di↵erent pion masses allows for a controlled study of how well NLO �PT describes
lattice data. Since connecting first-principles lattice QCD calculations to predictions for
the matrix elements of large nuclei used in 0⌫�� searches will almost certainly involve an
analogous matching to an e↵ective field theory — allowing for an extrapolation from the
few-body systems accessible on the lattice to the many-body systems relevant to experi-
ment — this study is important to bridge from theory to phenomenology and experiment.
Furthermore, lattice calculations of nuclear systems are currently performed at significantly
heavier than physical pion masses to ameliorate the signal-to-noise problem, making it cru-
cial to understand how reliably such calculations can be matched to existing e↵ective field
theory formalisms.

Detmold and Murphy, 2004.07404 [hep-lat]. 

See also: Tuo, Feng, Jin, 
phys.Rev.D 100 (2019) 9, 094511.
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Dark Matter and New Physics 
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Factors

Dark Matter Experiments,

Precision Measurements



A few more examples where lattice QCD can have an impact…

Physics Target Quantity Experiments

Baryon Number Violation and 
Grand Unified Theories Proton Decay Matrix Elements DUNE, Hyper-Kamiokande

Baryon Number minus Lepton 
Number Violation

Neutron-antineutron Matrix 
Elements

ILL, ESS

Super-K, DUNE and other 

reactors

Lepton  
Flavor Violation

 Nucleon and Nuclei Form 
Factors Mu2e, COMET 

Lepton  
Number Violation 0νββ Matrix Elements EXO, Tonne-scale 0νββ

CP Violation and Baryon 
Asymmetry in Universe Electric Dipole Moment Hg, Ra,  n EDM at SNS and 

LANL

Dark Matter and New Physics 
Searches

Nucleon and Nuclei Form 
Factors

Dark Matter Experiments,

Precision Measurements

T. L
uu’s t

alk!



THANK YOU

[Concluding remark] Lattice QCD (combined with EFTs and finite-volume 
methods) can be extremely useful in constraining important quantities in 
nuclear physics, particularly in support of the program in searches for new 
physics and violation of fundamental symmetries.


