Quarks in the SM: $SU(2)_L \times U(1)_Y$ Leptons In the Standard Model Peculiarities of Flavour in the Standard Model

FLAVOUR PHYSICS and HEAVY QUARKS

Thomas Mannel

Theoretical Physics I, Siegen University

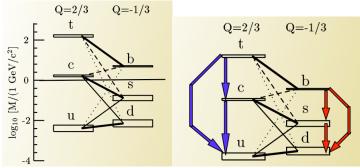
School on "Physics in the Standard Model and Beyond" Tblisi, 28.09. - 30.09.2017

(4回) (日) (日)

Preliminary Remarks

• Flavour Physics:

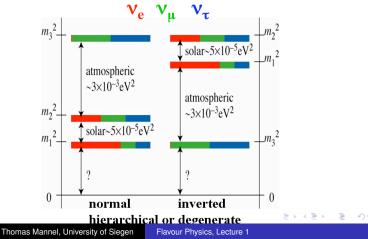
Transitions between different kinds of Quarks



- Its all about weak interactions ...
- Strong interactions as a "background"

Quarks in the SM: $SU(2)_L \times U(1)_Y$ Leptons In the Standard Model Peculiarities of Flavour in the Standard Model

- Likewise for Leptons, but
- no strong interactions here
- Neutrinos hard to detect
 - \rightarrow Flavour Identification



More reading ...

- R. Fleischer: Flavour Physics and CP Violation Lectures given at European School of High-Energy Physics 2005 hep-ph/0608010 → Non-leptonics and CP
- A. Buras: Flavor physics and CP violation Lectures given at European School of High-Energy Physics 2004 hep-ph/0505175 → rare FCNC decays
- A. Buras: Minimal flavor violation
 Lectures given at 43rd Cracow School of Theoretical
 Physics 2003
 hep-ph/0310208 → MFV and New Physics

ヘロン 人間 とくほ とくほ とう

- Y. Nir: Probing new physics with flavor physics Lectures given at 2nd Joint Fermilab-CERN Hadron Collider Physics Summer School 2007 arXiv:0708.1872 [hep-ph] → Mainly New Physics
- A. Bevan, B. Golob, T. Mannel, S. Prell, B. Yabsley (eds.) The Physics of the *B* Factories Eur.Phys.J. C74 (2014) 3026, (926 pages)

ヘロト ヘアト ヘビト ヘビト

Outline of the course

- Lecture 1: Flavour in the Standard Model
- Lecture 2: Theoretical Tools and Phenomenology
- Lecture 3: Flavour beyond the Standard Model

・ 同 ト ・ ヨ ト ・ ヨ ト

Lecture 1 Flavour in the Standard Model

Thomas Mannel

Theoretische Physik I

Universität Siegen

School on "Physics in the Standard Model and Beyond" Tblisi, 28.09. - 30.09.2017

Outline of Lecture 1

- Quarks in the SM: $SU(2)_L \times U(1)_Y$
- Symmetries and Quantum Numbers
- Quark Mixing and CKM Matrix
- 2 Leptons In the Standard Model
 - Assignement of Quantum Numbers
 - See Saw Mechanism
 - PMNS Matrix
- Peculiarities of Flavour in the Standard Model
 - Peculiarities of SM CP / Flavour

・ 同 ト ・ ヨ ト ・ ヨ ト ・

ヘロト ヘアト ヘビト ヘビト

Gauge Structure of the Standard Model

I assume a few things to be known:

- The Standard Model is a gauge theory based on $SU(3)_{QCD} \otimes SU(2)_{Weak} \otimes U(1)_{Hypercharge}$
- Eight gluons, three weak gauge bosons, one photon
- Matter (quarks and leptons): Multiplets of the gauge group → Quantum numbers
- Spontaneous Symmetry Breaking: Introduction of scalar fields
- Massless Goldstone Modes: Higgs Mechanism:

 $\phi
ightarrow$ longitudinal modes of gauge bosons: $\phi \sim \partial_{\mu} W^{\mu}$

Symmetries and Quantum Numbers Quark Mixing and CKM Matrix

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Matter Fields: Quarks

Left Handed Quarks: SU(3)_C Triplets, SU(2)_L Doublets

$$Q_1 = \left(egin{array}{c} u_L \ d_L \end{array}
ight) \, Q_2 = \left(egin{array}{c} c_L \ s_L \end{array}
ight) \, Q_3 = \left(egin{array}{c} t_L \ b_L \end{array}
ight)$$

$SU(2)_L$ will be gauged

 Right Handed Quarks: SU(3)_C Triplets, SU(2)_R Doublets

$$q_1=\left(egin{array}{c} u_R\ d_R\end{array}
ight) \, q_2=\left(egin{array}{c} c_R\ s_R\end{array}
ight) \, q_3=\left(egin{array}{c} t_R\ b_R\end{array}
ight)$$

 $SU(2)_R$ introduced "artificially"

Quarks in the SM: $SU(2)_L \times U(1)_Y$

Leptons In the Standard Model Peculiarities of Flavour in the Standard Model Symmetries and Quantum Numbers Quark Mixing and CKM Matrix

<ロト <回 > < 注 > < 注 > 、

ъ

Quantum Numbers

• Hypercharge

$$Y=T_{3,R}+\frac{1}{2}(B-L)$$

• Charge

$$q = T_{3,L} + Y = T_{3,L} + T_{3,R} + \frac{1}{2}(B-L)$$

Symmetries and Quantum Numbers Quark Mixing and CKM Matrix

・ロト ・同ト ・ヨト ・ヨトー

Higgs Fields: Standard Model

• Single SU(2) Doublett: Two Complex Fields

$$\Phi = \left(\begin{array}{c} \phi_+\\ \phi_0 \end{array}\right)$$

• Charge Conjugate Field is also an SU(2) Doublett

$$\widetilde{\Phi} = (i au_2)\Phi^* = \left(egin{array}{c} \phi_0^* \ -\phi_- = -\phi_+^* \end{array}
ight)$$

• It is useful to gather these into a 2×2 matrix

$${m H}=\left(egin{array}{cc} \phi_0^* & \phi_+ \ -\phi_- & \phi_0 \end{array}
ight)$$

ヘロト 人間 とくほとくほとう

1

• Transformation Properties: $L \in SU(2)_L$:

$$\Phi \to L \Phi \qquad \widetilde{\Phi} \to L \widetilde{\Phi}$$

• Transformation Properties: $R \in SU(2)_R$:

$$\left(\begin{array}{c}\phi_{0}\\\phi_{-}\end{array}\right)\to \mathcal{R}\left(\begin{array}{c}\phi_{0}\\\phi_{-}\end{array}\right)\qquad \left(\begin{array}{c}\phi_{+}\\-\phi_{0}^{*}\end{array}\right)\to \mathcal{R}\left(\begin{array}{c}\phi_{+}\\-\phi_{0}^{*}\end{array}\right)$$

In total:

 $H
ightarrow LHR^{\dagger}$ (remember Q
ightarrow LQ q
ightarrow Rq)

• Hypercharges

$$Y\Phi = -\Phi$$
 $Y\widetilde{\Phi} = \widetilde{\Phi}$ $YH = -HT_{3,R}$

Symmetries and Quantum Numbers Quark Mixing and CKM Matrix

Gauge Interactions

- *SU*(3)_{color} is gauged (not relevant for us now)
- SU(2)_L is gauged Three W^µ_a Bosons
- Hypercharge is gauged One *B^µ* Boson
- Recipe: Replace the ordinary derivative in the kinetic terms by the covariant one

$$\partial^{\mu} \rightarrow D^{\mu} = \partial^{\mu} - igT_{L,a}W^{\mu}_{a} - iYB^{\mu} + QCD \text{ interactions}$$

- Weinberg rotation between W_3^{μ} and B^{μ} · · ·
- I assume you have heard the rest of the story ...
- This is not relevant for the phenomenon of masses and mixing !

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Structure of the Standard Model

- Start out from an $SU(2)_L \times SU(2)_R$ symmetric case:
- Kinetic Term for Quarks and Higgs (i: Generation)

$$\mathcal{L}_{kin} = \sum_{i} \left[\bar{Q}_{i} \partial \!\!\!/ Q_{i} + \bar{q}_{i} \partial \!\!\!/ q_{i} \right] + \frac{1}{2} \mathrm{Tr} \left[(\partial_{\mu} H)^{\dagger} (\partial^{\mu} H) \right]$$

Potential for the Higgs field

$$V = V(H) = V(\operatorname{Tr} [H^{\dagger}H])$$

Interaction between Quarks and Higgs

$$\mathcal{L}_I = -\sum_{ij} y_{ij} ar{Q}_i H q_j + ext{ h.c.}$$

ヘロン ヘアン ヘビン ヘビン

• *y_{ij}* can be made diagonal: Any Matrix *y* can be diagonalized by a Bi-Unitary Transformation:

$$y = U^{\dagger} y_{diag} W$$

Thus

$$\mathcal{L}_I = -\sum_{ijk}ar{Q}_i(U^\dagger)_{ik} y_k W_{kj} H q_j + ext{ h.c.}$$

• Rotation of Q_i and q_j :

$$Q' = UQ \quad q' = Wq$$

• This has no effect on the kinetic term: $y_{ij} = y_i \delta_{ij}$ is the general case!

$$\mathcal{L}_I = -\sum_i y_i \bar{Q}_i H q_i + \text{ h.c.}$$

Quarks in the SM: $SU(2)_L \times U(1)_Y$ Leptons In the Standard Model Peculiarities of Flavour in the Standard Model

(4回) (日) (日)

Sponaneous Symmetry Breaking

• The Higgs Potential is (Renormalizability):

$$\mathbf{V} = \kappa \left(\operatorname{Tr} \left[\mathbf{H}^{\dagger} \mathbf{H} \right] \right) + \lambda \left(\operatorname{Tr} \left[\mathbf{H}^{\dagger} \mathbf{H} \right] \right)^{2}$$

For κ < 0 we have SSB:
 H acquires a Vacuum Expectation Value (VEV)

$$\mathrm{Tr}\left[\langle H^{\dagger}\rangle\langle H\rangle\right] = -\frac{\kappa}{2\lambda} > 0$$

• Choice of the VEV

$$<\mathsf{Re}\phi_0>=v ext{ or } < H>=v extsf{1}_{2 imes 2}$$

ヘロト 人間 とくほとく ほとう

- Three massless fields: φ₊, φ₋, Imφ₀: Goldstone Bosons
- $\phi_0 \rightarrow \mathbf{v} + \phi_0'$: One massive field
- Higgs Mechanism: The massless scalars become the longitudinal modes of the massive vector bosons:

*
$$\phi_{\pm} \sim \partial^{\mu} W^{\pm}_{\mu}$$

* Im
$$\phi_{0}\sim\partial^{\mu}Z_{\mu}$$

• ϕ'_0 : Physical Higgs Boson

Quarks in the SM: $SU(2)_L \times U(1)_Y$ Leptons In the Standard Model Peculiarities of Flavour in the Standard Model

Symmetries and Quantum Numbers Quark Mixing and CKM Matrix

・ロト ・同ト ・ヨト ・ヨトー

• The Quarks become massive:

$$\mathcal{L}_{I} = -\sum_{i} y_{i} v \bar{Q}_{i} q_{i} + \text{ h.c. } + \cdots$$

• We have $\bar{Q}_1 q_1 = \bar{u}_L u_R + \bar{d}_L d_R$ etc.

Thus

 $\mathcal{L}_{mass} = -m_u(\bar{u}u + \bar{d}d) - m_c(\bar{c}c + \bar{s}s) - m_t(\bar{t}t + \bar{b}b)$

This is not (yet) what we want ...We still have too much symmetry!

Symmetries and Quantum Numbers Quark Mixing and CKM Matrix

Custodial SU(2)

• Symmetry of the Higgs Sector in the Standard Model:

$$SU(2)_L \otimes SU(2)_R \stackrel{SSB}{\longrightarrow} SU(2)_{L+R} = SU(2)_C$$

• Note that we cannot have explicit breaking of *SU*(2)_{*R*} in the Higgs sector:

$$\mathrm{Tr}\left[\boldsymbol{H}\boldsymbol{\tau}_{i}\boldsymbol{H}^{\dagger}\right]=\mathbf{0}$$

- *SU*(2)_C: Custodial Symmetry!
 - \rightarrow Extra Symmetry in the Higgs sector !
- This is more than needed: Only $U(1)_Y$ is needed
- $U(1)_Y$ will be related to the τ_3 direction of $SU(2)_R$

- Consequences of $SU(2)_C$:
 - Relation between charged and neutral currents: ρ parameter
 - Masses of W^{\pm} and of Z^0 are equal
 - Up- and Down-type quark masses are equal in each family
 - No mixing occurs among the families
- $SU(2)_C$ is broken by:
 - Yukawa Couplings
 - Gauging only the Hypercharge

$$Y = T_3^{(R)} + \frac{1}{2}(B - L)$$

ヘロン 人間 とくほ とくほ とう

ヘロト ヘアト ヘビト ヘビト

Breaking $SU(2)_C$: Yukawa Couplings

• Explicit breaking of *SU*(2)_C by Yukawa Couplings:

$$\mathcal{L}'_I = -\sum_{ij} y'_{ij} ar{Q}_i H(2T_{3,R}) q_j + ext{ h.c.}$$

- Effect of this term:
 - Introduces a splitting between up- and down quark masses
 - Introduces mixing between different families
 - Affects the ρ parameter
- Total Yukawa Coupling term:

$$\mathcal{L}_I + \mathcal{L}'_I = -\sum_{ij} \bar{Q}_i \mathcal{H}(y_i \delta_{ij} + 2T_{3,R}y'_{ij})q_j + \text{ h.c.}$$

Symmetries and Quantum Numbers Quark Mixing and CKM Matrix

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Quark Mass Matrices

• Use the projections

$$P_{\pm} = \frac{1}{2} \pm T_{3,R} \quad \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) \text{ or } \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right)$$

• Up quark Yukawa couplings:

$$\mathcal{L}^u_{mass} = -\sum_{ij} ar{Q}_i \mathcal{H}(m{y}_i \delta_{ij} + m{y}'_{ij}) \mathcal{P}_+ m{q}_j + ext{ h.c.}$$

• Down quark Yukawa couplings:

$$\mathcal{L}^d_{mass} = -\sum_{ij} ar{m{Q}}_i m{H}(m{y}_i \delta_{ij} - m{y}'_{ij}) m{P}_- m{q}_j + ext{ h.c.}$$

• \rightarrow mass terms, once $\text{Re}\phi_0 \rightarrow v$

Symmetries and Quantum Numbers Quark Mixing and CKM Matrix

イロン 不得 とくほ とくほ とうほ

• More compact notation

$$\mathcal{U}_{L/R} = \left[\begin{array}{c} u_{L/R} \\ c_{L/R} \\ t_{L/R} \end{array} \right] \quad \mathcal{D}_{L/R} = \left[\begin{array}{c} d_{L/R} \\ s_{L/R} \\ b_{L/R} \end{array} \right]$$

• Mass Term for Up-type quarks

$$\mathcal{L}^u_{mass} = - v \ ar{\mathcal{U}}_L Y^u \mathcal{U}_R + ext{ h.c.}$$

with $Y^{u} = (y + y')$

Mass Term for down-type quarks

$$\mathcal{L}_{mass}^{d} = -v \ \bar{\mathcal{D}}_{L} Y^{d} \mathcal{D}_{R} + \text{ h.c.}$$

with $Y^{d} = (y - y')$

ヘロト 人間 ト ヘヨト ヘヨト

ъ

• Mass matrices:

$$\mathcal{M}^{u} = \mathbf{v} \mathbf{Y}^{u} \qquad \mathcal{M}^{d} = \mathbf{v} \mathbf{Y}^{d}$$

 In general non-diagonal: Diagonalization by a bi-unitary transformation:

$$\mathcal{M} = \textit{U}^{\dagger}\mathcal{M}_{\textit{diag}}\textit{W}$$

• New basis for the quark fields

$$\mathcal{L}_{mass}^{u} = - \bar{\mathcal{U}}_{L} U^{u,\dagger} \mathcal{M}_{diag}^{u} W^{u} \mathcal{U}_{R} + \text{ h.c.}$$

and

$$\mathcal{L}^{d}_{mass} = - ar{\mathcal{D}}_{L} oldsymbol{U}^{d,\dagger} \mathcal{M}^{d}_{\textit{diag}} oldsymbol{W}^{d} oldsymbol{\mathcal{D}}_{R} + ext{ h.c.}$$

Symmetries and Quantum Numbers Quark Mixing and CKM Matrix

ヘロン 人間 とくほど くほとう

Quark Mixing: The CKM Matrix

- Effect of the basis transformation:
 - Mass matrices become diagonal
 - Interaction with $\operatorname{Re} \phi_0$ (= Physical Higgs Boson) becomes diagonal !
 - Interaction with $\operatorname{Im} \phi_0$ (= Z_0) becomes diagonal !

$$\mathcal{L}_{\operatorname{Re}\phi_{0}} = -\operatorname{Re}\phi_{0}[\mathcal{U}_{L}Y^{u}\mathcal{U}_{R} + \mathcal{D}_{L}Y^{d}\mathcal{D}_{R}]$$

$$\mathcal{L}_{\operatorname{Im}\phi_{0}} = -\operatorname{Im}\phi_{0}[\mathcal{U}_{L}Y^{u}\mathcal{U}_{R} - \mathcal{D}_{L}Y^{d}\mathcal{D}_{R}]$$

- NO FLAVOUR CHANGING NEUTRAL CURRENTS (at tree level in the Standard Model)
- $\bullet \ \rightarrow \text{GIM Mechanism}$

イロト イポト イヨト イヨト

 Effect on the charged current ONLY: Interaction with φ_:

$$\sum_{ij} \bar{Q}_i (y_i \delta_{ij} + y'_{ij}) \phi_- \tau_- P_+ q_j + \text{ h.c.}$$

= $\mathcal{D}_L Y^u \mathcal{U}_R \phi_- + \text{ h.c.}$
= $\bar{\mathcal{D}}_L U^{d,\dagger} (U^d U^{u,\dagger}) Y^u_{diag} W^u \mathcal{U}_R \phi_- + \text{ h.c.}$

- In the charged currents flavour mixing occurs!
- Parametrized through the Cabbibo-Kobayashi-Maskawa Matrix:

$$V_{CKM} = U^d U^{u,\dagger}$$

ヘロト ヘアト ヘヨト ヘ

Properties of the CKM Matrix

- *V_{CKM}* is unitary (by our construction)
- Number of parameters for *n* families
 - Unitary $n \times n$ matrix: n^2 real parameters
 - Freedom to rephase the 2n quark fields:
 2n 1 relative phases
- $n^2 2n + 1 = (n 1)^2$ real parameters
 - * (n-1)(n-2)/2 are phases
 - * n(n-1)/2 are angles
- Phases are sources of CP violation
- n = 2: One angle, no phase \rightarrow no *CP* violation
- n = 3: Three angles, one phase
- n = 4: Six angles, three phases

Symmetries and Quantum Numbers Quark Mixing and CKM Matrix

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

CKM Basics

• Three Euler angles θ_{ij}

$$U_{12} = \left[\begin{array}{ccc} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{array} \right] \ , \quad U_{13} = \left[\begin{array}{cccc} c_{13} & 0 & s_{13} \\ 0 & 1 & 0 \\ -s_{13} & 0 & c_{13} \end{array} \right] \ , \quad U_{23} = \left[\begin{array}{cccc} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{array} \right]$$

- Single phase δ : $u_{\delta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-i\delta_{13}} \end{bmatrix}$.
- PDG CKM Parametrization:

$$V_{\rm CKM} = U_{23} U_{\delta}^{\dagger} U_{13} U_{\delta} U_{12}$$

• Large Phases in $V_{ub} = |V_{ub}|e^{-i\gamma} = s_{13}e^{-i\delta_{13}}$ and $V_{td} = |V_{td}|e^{i\beta}$

Quarks in the SM: $SU(2)_L \times U(1)_Y$

Leptons In the Standard Model Peculiarities of Flavour in the Standard Model Symmetries and Quantum Numbers Quark Mixing and CKM Matrix

CKM Unitarity Relations

$$V_{CKM} = \left(egin{array}{ccc} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{array}
ight)$$

• Off diagonal zeros of $V_{CKM}^{\dagger} V_{CKM} = 1 = V_{CKM} V_{CKM}^{\dagger}$ • $V_{CKM}^{\dagger} V_{CKM} = 1$: $\begin{cases} V_{ub} V_{ud}^{*} + V_{cb} V_{cd}^{*} + V_{tb} V_{td}^{*} = 0 \\ V_{ub} V_{us}^{*} + V_{cb} V_{cs}^{*} + V_{tb} V_{ts}^{*} = 0 \\ V_{us} V_{ud}^{*} + V_{cs} V_{cd}^{*} + V_{ts} V_{td}^{*} = 0 \end{cases}$ • $V_{CKM} V_{CKM}^{\dagger} = 1$: $\begin{cases} V_{ud} V_{td}^{*} + V_{us} V_{ts}^{*} + V_{ub} V_{tb}^{*} = 0 \\ V_{ud} V_{cd}^{*} + V_{us} V_{cs}^{*} + V_{ub} V_{tb}^{*} = 0 \\ V_{cd} V_{td}^{*} + V_{cs} V_{ts}^{*} + V_{cb} V_{tb}^{*} = 0 \end{cases}$ Quarks in the SM: $SU(2)_L \times U(1)_Y$ Leptons In the Standard Model Peculiarities of Flavour in the Standard Model

ヘロト 人間 ト ヘヨト ヘヨト

Wolfenstein Parametrization of CKM

- Diagonal CKM matrix elements are almost unity
- CKM matrix elements decrease as we move off the diagonal
- Wolfenstein Parametrization:

$$V_{CKM} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & \lambda^3 A(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & \lambda^2 A \\ \lambda^3 A(1 - \rho - i\eta) & -\lambda^2 A & 1 \end{pmatrix}$$

- Expansion in $\lambda \approx$ 0.22 up to λ^3
- A, ρ , η of order unity

Symmetries and Quantum Numbers Quark Mixing and CKM Matrix

< < >> < </>

Unitarity Triangle(s)

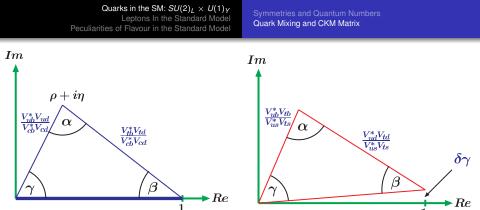
- The unitarity relations: Sum of three complex numbers = 0
- Triangles in the complex plane
- Only two out of the six unitarity relations involve terms of the same order in λ:

$$V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} = 0$$
$$V_{ud}^* V_{td} + V_{us}^* V_{ts} + V_{ub}^* V_{tb} = 0$$

Both correspond to

$$A\lambda^{3}(\rho+i\eta-1+1-\rho-i\eta)=0$$

• This is THE unitarity triangle ...



- Definition of the CKM angles $\alpha,\,\beta$ and γ
- To leading order Wolfenstein:

$$V_{ub} = |V_{ub}|e^{-i\gamma}$$
 $V_{tb} = |V_{tb}|e^{-i\beta}$

ヘロト ヘアト ヘビト ヘビト

ъ

all other CKM matrix elements are real.

• $\delta\gamma$ is order λ^5

<ロ> (四) (四) (三) (三) (三)

- Aerea of the Triangle(s): Measure of CP Violation
- Invariant measure of CP violation:

 $\mathrm{Im}\Delta = \mathrm{Im}\,V_{ud}\,V_{td}^*\,V_{tb}\,V_{ub}^* = c_{12}s_{12}c_{13}^2s_{13}s_{23}c_{23}\sin\delta_{13}$

- Maximal possible value $\delta_{\text{max}} = \frac{1}{6\sqrt{3}} \sim 0.1$
- CP Violation is a small effect: Measured value $\delta_{exp} \sim 0.0001$
- CP Violation vanishes in case of degeneracies: (Jarlskog)

$$J = \text{Det}([M_u, M_d])$$

= 2*i*Im $\Delta(m_u - m_c)(m_u - m_t)(m_c - m_t)$
 $\times (m_d - m_s)(m_d - m_b)(m_s - m_b)$

Quarks in the SM: $SU(2)_L \times U(1)_Y$ Leptons In the Standard Model Peculiarities of Flavour in the Standard Model Assignement of Quantum Numbers See Saw Mechanism PMNS Matrix

◆□ > ◆□ > ◆豆 > ◆豆 > →

Leptons in the Standard Model

- If the neutrinos are massless:
 - Only left handed neutrinos couple
 - Right handed neutrinos do not have any $SU(2)_L \times U(1)_Y$ quantum numbers
 - No mixing in the lepton sector
- Recent evidence for neutrino mixing:
 - Right handed components couple through the mass term
 - Mixing in the Lepton Sector
- It could be just a copy of the quark sector, but it may be different due to the properties of the right-handed neutrino

Assignement of Quantum Numbers See Saw Mechanism PMNS Matrix

Multiplets and Quantum Numbers

• Left Handed Leptons: SU(2)_L Doublets

$$L_{1} = \begin{pmatrix} \nu_{e,L} \\ e_{L} \end{pmatrix} L_{2} = \begin{pmatrix} \nu_{\mu,L} \\ \mu_{L} \end{pmatrix} L_{3} = \begin{pmatrix} \nu_{\tau,L} \\ \tau_{L} \end{pmatrix}$$

• Right Handed Leptons: SU(2)_R Doublets

$$\ell_{1} = \begin{pmatrix} \nu_{e,R} \\ e_{R} \end{pmatrix} \ell_{2} = \begin{pmatrix} \nu_{\mu,R} \\ \mu_{R} \end{pmatrix} \ell_{3} = \begin{pmatrix} \nu_{\tau,R} \\ \tau_{R} \end{pmatrix}$$

• Charge and Hypercharge

$$Y = T_{3,R} + \frac{1}{2}(B - L) = T_{3,R} - \frac{1}{2}$$
 $q = T_{3,L} + Y$

• Y (and q) project the lower component: Right handed Neutrinos: No charge, no Hypercharge

Assignement of Quantum Numbers See Saw Mechanism PMNS Matrix

Majorana Fermions

- A "neutral" fermion can have a Majorana mass
- Charged fermions \Leftrightarrow complex scalar fields
- Majorana fermion: "Real (= neutral) fermion"
- Definition of "complex conjugation" in this case: Charge Conjugation:

$$\psi \to \psi^{c} = \boldsymbol{C} \bar{\psi}^{T} \quad \boldsymbol{C} = i \gamma_{2} \gamma_{0} = \begin{pmatrix} 0 & -i \sigma_{2} \\ -i \sigma_{2} & 0 \end{pmatrix}$$

• Properties of C

$$-C = C^{-1} = C^T = C^{\dagger}$$

• Majorana fermion: $\psi_{Majorana} = \psi^{c}_{Majorana}$ (Just as $\phi^{*} = \phi$ for a real scalar field)

Assignement of Quantum Numbers See Saw Mechanism PMNS Matrix

Majorana Mass Terms

- Mass term for a Majorana fermion: The charge conjugate of a right handed fermion is left handed.
- Possible mass term

$$\mathcal{L}_{MM}=-rac{1}{2}M\left(ar{
u}_R(
u_R^c)_L+h.c.
ight)$$

- Only for fields without U(1) quantum numbers
- In the SM: only for the right handed neutrinos !
- Remarks:
 - The Majorana mass of the right handed neutrinos is NOT due to the Higgs mechanism.
 - Thus this majorana mass can be "large"
 - Natural explanation of the small neutrino masses: see-saw mechanism

Assignement of Quantum Numbers See Saw Mechanism PMNS Matrix

ヘロン 人間 とくほど くほとう

See Saw Mechanism

- Simplification: One family: ν_L and ν_R
- Total Mass term: Dirac and Majorana mass

$$\mathcal{L}_{mass} = -m(\bar{\nu}_L \nu_R + \bar{\nu}_R \nu_L) \\ -\frac{1}{2}M(\nu_R^T C \nu_R + \bar{\nu}_R C \bar{\nu}_R^T)$$

We use

$$\overline{(\nu_R^c)}_L(\nu_L^c)_R = \overline{\nu}_L \overline{\nu}_R$$

and the properties of the C matrix ...

$$\mathcal{L}_{mass} = -rac{1}{2} \left(ar{
u}_L \ \overline{(
u_R^c)}_L
ight) \left(egin{array}{c} 0 & m \ m & M \end{array}
ight) \left(egin{array}{c} (
u_L^c)_R \
u_R \end{array}
ight) + h.c.$$

Quarks in the SM: $SU(2)_L \times U(1)_Y$ Leptons In the Standard Model Peculiarities of Flavour in the Standard Model Assignement of Quantum Numbers See Saw Mechanism PMNS Matrix

 Diagonalization of the mass matrix:
 → Majorana mass eigenstates of the Neutrinos For *M* ≫ *m* we get

$$m_1 pprox rac{m^2}{M} \quad m_2 pprox M$$

- One very heavy, practically right handed neutrino
- One very light, practically left handed neutrino
- At energies small compared to M: Majorana mass term for the left handed neutrino

$$\mathcal{L}_{mass} = -rac{1}{2}rac{m^2}{M}\left(
u_L^{\mathsf{T}} \mathcal{C}
u_L + ar{
u_L} \mathcal{C} ar{
u_L}^{\mathsf{T}}
ight)$$

• Majorana mass is small if $M \gg m$

Quarks in the SM: $SU(2)_L \times U(1)_Y$ Leptons In the Standard Model Peculiarities of Flavour in the Standard Model Assignement of Quantum Numbers See Saw Mechanism PMNS Matrix

Right handed neutrinos in the Standard Model

- In case of three families: Neutrino Mixing
- Compact notation for the Leptons:

$$\mathcal{N}_{L/R} = \begin{bmatrix} \nu_{e,L/R} \\ \nu_{\mu,L/R} \\ \nu_{\tau,L/R} \end{bmatrix} \quad \mathcal{E}_{L/R} = \begin{bmatrix} \mathbf{e}_{L/R} \\ \mu_{L/R} \\ \tau_{L/R} \end{bmatrix}$$

• Dirac masses are generated by the Higgs mechanism: (as for the quarks)

$$\mathcal{L}_{DM}^{N} = -\mathcal{N}_{L}m^{N}\mathcal{N}_{R} + h.c.$$

 $\mathcal{L}_{DM}^{E} = -\mathcal{E}_{L}m^{E}\mathcal{E}_{R} + h.c.$

m^N: Dirac mass matrix for the neutrinos
 m^E: (Dirac) mass matrix for *e*, μ, τ

 Quarks in the SM: $SU(2)_L \times U(1)_Y$ Assignment of Quantum

 Leptons In the Standard Model
 See Saw Mechanism

 Peculiarities of Flavour in the Standard Model
 PMNS Matrix

• Right handed neutrinos \rightarrow Majorana mass term:

$$\mathcal{L}_{MM} = -rac{1}{2} \left(N_R^T M C N_R + ar{N}_R M C ar{N}_R^T
ight)$$

- M: (Symmetric) Majorana Mass Matrix
- This term is perfectly $SU(2)_L \otimes U(1)$ invariant
- Implementation of the see saw mechanism: Assume that all Eigenvalues of *M* are large
- Effective Theory at low energies: Only light, practically left handed neutrinos
- Effect of right handed neutrino: Majorana mass term for the light neutrinos

$$\mathcal{L}_{mass} = -\frac{1}{2} \left(N_L^T m^T M^{-1} m C N_L + \bar{N}_L m^T M^{-1} m C \bar{N}_L^T \right)$$

イロト イポト イヨト イヨト

Assignement of Quantum Numbers See Saw Mechanism PMNS Matrix

Lepton Mixing: PMNS Matrix

- Diagonalization of the Mass matrices:
 - Charged leptons:

$$m^E = U^\dagger m^E_{diag} W$$

• Neutrinos: "Orthogonal" transformation:

$$m^T M^{-1} m = O^T m_{diag}^{\nu} O$$
 with $O^{\dagger} O = 1$

- Again no Effect on neutral currents
- Charged Currents: Interaction with ϕ_+ :

$$\frac{1}{v} \mathcal{N}_L m^E \mathcal{E}_R \phi_+ + \text{ h.c.}$$
$$= \frac{1}{v} \overline{\mathcal{N}}_L O^T (O^* U^{\dagger}) m^E_{diag} W \mathcal{E}_R \phi_+ + \text{ h.c.}$$

ヘロア ヘビア ヘビア・

Quarks in the SM: $SU(2)_L \times U(1)_Y$ Leptons In the Standard Model Peculiarities of Flavour in the Standard Model Assignement of Quantum Numbers See Saw Mechanism PMNS Matrix

• A Mixing Matrix occurs:

$$V_{PMNS}=O^{*}U^{\dagger}$$

Pontecorvo Maki Nakagawa Sakata Matrix

- V_{PMNS} is unitary like the CKM Matrix
- Left handed neutrinos are Majorana: No freedom to rephase these fields!
 - For *n* families: *n*² Parameters
 - Only *n* Relative phases free
 - $\longrightarrow n(n-1)$ Parameters
 - n(n-1)/2 are angles
 - n(n-1)/2 are phases: More sources for *CP* violation

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

3

Quarks in the SM: $SU(2)_L \times U(1)_Y$ Assignement of Quantum NumbersLeptons In the Standard ModelSee Saw MechanismPeculiarities of Flavour in the Standard ModelPMNS Matrix

Almost like CKM: Three Euler angles θ_{ij}

$$\mathcal{U}_{12} = \left[\begin{array}{ccc} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{array} \right] \ , \quad \mathcal{U}_{13} = \left[\begin{array}{ccc} c_{13} & 0 & s_{13} \\ 0 & 1 & 0 \\ -s_{13} & 0 & c_{13} \end{array} \right] \ , \quad \mathcal{U}_{23} = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{array} \right]$$

• A Dirac Phase δ and two Majorana Phases α_1 and α_2

$$U_{\delta} = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-i\delta} 13 \end{array} \right] \quad U_{\alpha} = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & e^{-i\alpha} 1 & 0 \\ 0 & 0 & e^{-i\alpha} 2 \end{array} \right]$$

イロト 不得 とくほ とくほ とう

- PMNS Parametrization: $V_{\text{PMNS}} = U_{23}U_{\delta}^{\dagger}U_{13}U_{\delta}U_{12}U_{\alpha}$
- $\Theta_{23} \sim 45^\circ$ is "maximal" (atmospheric ν 's)
- $\Theta_{13} \sim 0$ is small (ν 's from reaktors)
- $\sin \Theta_{13} \sim 1/\sqrt{3}$ is large (solar ν 's)

 Quarks in the SM: SU(2)_L × U(1)_Y
 Assignement of Quantum Numbers

 Leptons In the Standard Model
 See Saw Mechanism

 Peculiarities of Flavour in the Standard Model
 PMNS Matrix

Maltoni et al '04

・ロン ・四 と ・ ヨ と ・ ヨ と …

æ

parameter	best fit	2σ	3σ	5σ
$\Delta m_{21}^2 [10^{-5} \mathrm{eV}^2]$	6.9	6.0 - 8.4	5.4 - 9.5	2.1 - 28
$\Delta m_{31}^2 [10^{-3} {\rm eV}^2]$	2.6	1.8 - 3.3	1.4 - 3.7	0.77 - 4.8
$\sin^2 \theta_{12}$	0.30	0.25 - 0.36	0.23 - 0.39	0.17 - 0.48
$\sin^2 \theta_{23}$	0.52	0.36 - 0.67	0.31 - 0.72	0.22 - 0.81
$\sin^2 \theta_{13}$	0.006	≤ 0.035	≤ 0.054	≤ 0.11

$$egin{aligned} \mathcal{V}_{ ext{PMNS}} &\sim \left[egin{aligned} & \mathcal{C}_{12} & \mathcal{S}_{12} & 0 \ & -rac{s_{12}}{\sqrt{2}} & rac{c_{12}}{\sqrt{2}} & -\sqrt{rac{1}{2}} \ & -rac{s_{12}}{\sqrt{2}} & rac{c_{12}}{\sqrt{2}} & -\sqrt{rac{1}{2}} \end{array}
ight] &\sim \left[egin{aligned} & \sqrt{rac{2}{3}} & \sqrt{rac{1}{3}} & 0 \ & -\sqrt{rac{1}{6}} & \sqrt{rac{1}{3}} & -\sqrt{rac{1}{2}} \ & -\sqrt{rac{1}{2}} & rac{s_{12}}{\sqrt{2}} & -\sqrt{rac{1}{2}} \end{array}
ight] \end{aligned}$$

• No Hierarchy !

Assignement of Quantum Numbers See Saw Mechanism PMNS Matrix

ヘロト ヘアト ヘビト ヘビト

Consequences of Lepton Mixing

• FCNC Processes in the leptonic Sector:

$$au o \mu\gamma \quad \mu o e\gamma \quad au o eee$$
 etc.
 $u_{ au} o \nu_{e}\gamma \quad \nu_{ au} - \nu_{e} \text{ mixing}$

• Lepton Number Violation:

Right handed Neutrinos are Majorana fermions: No conserved quantum number corresponding to the rephasing of the right handed neutrino fields Lepton number violation could feed via conserved B - L into Baryon number violation Relation to the Baryon Asymmetry of the Universe ?

<ロ> <四> <四> <四> <三</td>

Peculiarities of SM Flavour Mixing

- Hierarchical structure of the CKM matrix
- Quark Mass spectrum ist widely spread $m_u \sim 10$ MeV to $m_t \sim 170$ GeV
- PMNS Matrix for lepton flavour mixing is not hierarchical
- Only the charged lepton masses are hierarchical $m_e \sim 0.5~{
 m MeV}$ to $m_ au \sim 1772~{
 m MeV}$
- $\bullet~$ Up-type leptons \sim Neutrinos have very small masses
- (Enormous) Suppression of Flavour Changing Neutral Currents:

$$m{b}
ightarrow m{s}, \, m{c}
ightarrow m{u}, \, au
ightarrow \mu, \, \mu
ightarrow m{e}, \,
u_2
ightarrow
u_1$$

ヘロト ヘアト ヘビト ヘビト

Peculiarities of SM CP Violation

- Strong CP remains mysterious
- Flavour diagonal CP Violation is well hidden:
 e.g electric dipole moment of the neutron: At least three loops (Shabalin)

$$\begin{array}{cccc} & \underset{u_{i}}{\overset{u_{i}}{\underbrace{\qquad}}} & \underset{u_{j}}{\overset{u_{j}}{\underbrace{\qquad}}} & \underset{u_{i}}{\overset{u_{i}}{\underbrace{\qquad}}} & \begin{array}{c} & d_{e} & \sim & e \frac{\alpha_{s}}{\pi} \frac{G_{F}^{2}}{(16\pi^{2})^{2}} \frac{m_{t}^{2}}{M_{W}^{2}} \operatorname{Im} \Delta \mu^{3} \\ & & \sim & 10^{-32} e \, cm & \text{with} \, \mu \sim 0.3 \, \text{GeV} \\ & & d_{exp} & \leq & 3.0 \times 10^{-26} e \, cm \end{array}$$

ヘロト 人間 ト ヘヨト ヘヨト

- Pattern of mixing and mixing induced CP violation determined by GIM: Tiny effects in the up quark sector
 - $\Delta C = 2$ is very small
 - Mixing with third generation is small: charm physics basically "two family"
 - $\bullet \ \to \text{CP}$ violation in charm is small in the SM
- Fully consistent with particle physics observations
- ... but inconsistent with matter-antimatter asymmetry

Quarks in the SM: $SU(2)_L \times U(1)_Y$ Leptons In the Standard Model Peculiarities of Flavour in the Standard Model

??? Many Open Questions ???

- Our Understanding of Flavour is unsatisfactory:
 - 22 (out of 27) free Parameters of the SM originate from the Yukawa Sector (including Lepton Mixing)
 - Why is the CKM Matrix hierarchical?
 - Why is CKM so different from the PMNS?
 - Why are the quark masses (except the top mass) so small compared with the electroweak VEV?
 - Why do we have three families?
- Why is CP Violation in Flavour-diagonal Processes not observed? (e.g. z.B. electric dipolmoments of electron and neutron)
- Where is the CP violation needed to explain the matter-antimatter asymmetry of the Universe?

Lecture 2 Theory Tools and Phenomenology

Thomas Mannel

Theoretische Physik I Universität Siegen

School on "Physics in the Standard Model and Beyond"

Tblisi, 28.09. - 30.09.2017

What is the Problem?

- Weak interaction: Transitions between quarks
- Observations: Transitions between Hadrons
- We have to deal with nonperturbative QCD
- Extraction of fundamental parameters (CKM Elements, CP Phases) requires precise predictions, including error estimates
- $\bullet \ \rightarrow \text{Simple models are out } \ldots$
- Effective Field Theory methods
- QCD Sum Rules
- Lattice QCD

・ 同 ト ・ ヨ ト ・ ヨ ト …

Contents

Effective Field Theories

- EFT in a nutshell
- Effective Weak Hamiltonian
- Introduction to Renormalization Group

Heavy Mass Limit

- Heavy Quark Effective Theory
- Heavy Quark Expansion
- Soft Collinear Effective Theory

QCD Sum Rules

EFT in a nutshell Effective Weak Hamiltonian Introduction to Renormalization Group

Effective Field Theories

Weak decays:

Very different mass scales are involved:

- $\Lambda_{QCD}\sim 200$ MeV: Scale of strong interactions
- $m_c \sim 1.5$ GeV: Charm Quark Mass
- $m_b \sim 4.5$ GeV: Bottom Quark Mass
- *m_t* ~ 175 GeV and *M_W* ~ 81 GeV: Top Quark Mass and Weak Boson Mass
- Λ_{NP} Scale of "new physics"
- At low scales the high mass particles / high energy degrees of freedom are irrelevant.
- Construct an "effective field theory" where the massive / energetic degrees of freedom are removed ("integrated out")

EFT in a nutshell Effective Weak Hamiltonian Introduction to Renormalization Group

(本間) (本語) (本語)

Integrating out heavy degrees of freedom

- ϕ : light fields, Φ : heavy fields with mass Λ
- Generating functional as a functional integral Integration over the heavy degrees of freedom

$$Z[j] = \int [d\phi] [d\Phi] \exp\left(\int d^4x \left[\mathcal{L}(\phi, \Phi) + j\phi\right]\right)$$

= $\int [d\phi] \exp\left(\int d^4x \left[\mathcal{L}_{eff}(\phi) + j\phi\right]\right)$ with
 $\exp\left(\int d^4x \mathcal{L}_{eff}(\phi)\right) = \int [d\Phi] \exp\left(\int d^4x \mathcal{L}(\phi, \Phi)\right)$

- Effective Field Theories
 EFT in a nutshell

 Heavy Mass Limit
 Effective Weak Hamiltonian

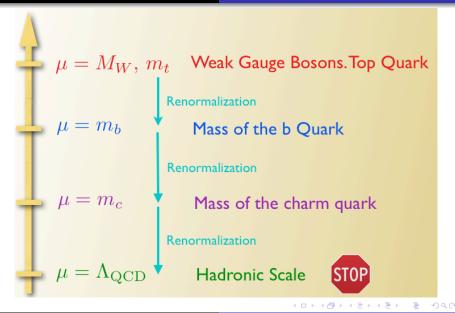
 QCD Sum Rules
 Introduction to Renormalization Group
- For length scales $x \gg 1/\Lambda$: local effective Lagrangian
- Technically: (Operator Product) Expansion in inverse powers of Λ

$$\mathcal{L}_{\mathrm{eff}}(\phi) = \mathcal{L}_{\mathrm{eff}}^{(4)}(\phi) + rac{1}{\Lambda} \mathcal{L}_{\mathrm{eff}}^{(5)}(\phi) + rac{1}{\Lambda^2} \mathcal{L}_{\mathrm{eff}}^{(6)}(\phi) + \cdots$$

- \mathcal{L}_{eff} is in general non-renormalizable, but ...
- $\mathcal{L}_{eff}^{(4)}$ is the renormalizable piece
- For a fixed order in 1/Λ: Only a finite number of insertions of L⁽⁴⁾_{eff} is needed!
- ullet ightarrow can be renormalized
- Renormalizability is not an issue here

・ロット (雪) () () () ()

EFT in a nutshell Effective Weak Hamiltonian Introduction to Renormalization Group

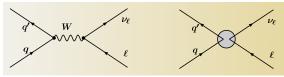


Thomas Mannel, University of Siegen Flavour Physics, Lecture 2

EFT in a nutshell Effective Weak Hamiltonian Introduction to Renormalization Group

Effective Weak Hamiltonian

- Start out from the Standard Model
- W^{\pm} , Z^{0} , top: much heavier than any hadron mass
- "integrate out" these particles at the scale $\mu \sim M_{
 m Hadron}$



- *W* has zero range in this limit: $\langle 0|T[W^*_{\mu}(x)W_{\nu}(y)]|0\rangle \rightarrow g_{\mu\nu}\frac{1}{M^2_W}\delta^4(x-y)$
- Effective Interaction (Fermi Coupling)

$$H_{\rm eff} = \frac{g^2}{\sqrt{2}M_W^2} V_{q'q} [\bar{q}'\gamma_\mu(1-\gamma_5)q] [\bar{\nu}_\ell\gamma_\mu(1-\gamma_5)\ell] = \frac{4G_F}{\sqrt{2}} V_{q'q} j_{\mu,\rm had} j_{\rm lep}^\mu$$

EFT in a nutshell Effective Weak Hamiltonian Introduction to Renormalization Group

Decays of Hadrons

Leptonic and semi-leptonic decays

$$H_{\rm eff} = \frac{4G_F}{\sqrt{2}} V_{q'q} [\bar{q}' \gamma_\mu \frac{(1-\gamma_5)}{2} q] [\bar{\nu}_\ell \gamma_\mu \frac{(1-\gamma_5)}{2} \ell]$$

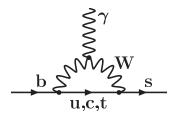
Hadronic decays

$$H_{\rm eff} = \frac{4G_F}{\sqrt{2}} V_{q'q} V_{QQ'}^* [\bar{q}' \gamma_\mu \frac{(1-\gamma_5)}{2} q] [\bar{Q} \gamma_\mu \frac{(1-\gamma_5)}{2} Q']$$

 Rare (FCNC) Decays: Loop Corrections (QCD and electroweak) Effective Field Theories

Heavy Mass Limit QCD Sum Rules EFT in a nutshell Effective Weak Hamiltonian Introduction to Renormalization Group

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで



• Example:
$$b \rightarrow s\gamma$$

 $\mathcal{A}(b
ightarrow s \gamma) = V_{ub} V_{us}^* f(m_u) + V_{cb} V_{cs}^* f(m_c) + V_{tb} V_{ts}^* f(m_t)$

In case of degenarate masses up-type masses:

$$\mathcal{A}(b \to s\gamma) = f(m) \left[V_{ub} V_{us}^* + V_{cb} V_{cs}^* + V_{tb} V_{ts}^* \right] = 0$$

EFT in a nutshell Effective Weak Hamiltonian Introduction to Renormalization Group

ヘロン ヘアン ヘビン ヘビン

Renormalization Group Running

*H*_{eff} is defined at the scale Λ, where we integrated out the particles with mass Λ: General Structure

$$H_{\mathrm{eff}} = rac{4G_F}{\sqrt{2}} \lambda_{\mathrm{CKM}} \sum_k \hat{C}_k(\Lambda) \mathcal{O}_k(\Lambda)$$

- *O_k*(Λ): The matrix elements of *O_k* have to be evaluated ("normalized") at the scale Λ.
- *Ĉ_k*(Λ): Short distance contribution, contains the information about scales μ > Λ
- Matrixelements of *O_k*(Λ): Long Distance Contribution, contains the information about scales μ < Λ

 Effective Field Theories
 EFT in a nutshell

 Heavy Mass Limit
 Effective Weak Hamiltonian

 QCD Sum Rules
 Introduction to Renormalization Group

 We could as well imagine a situation with a different definition of "long" and "short" distances, defined by a scale μ, in which case

$$H_{ ext{eff}} = rac{4G_F}{\sqrt{2}} \lambda_{ ext{CKM}} \sum_k C_k (\Lambda/\mu) \mathcal{O}_k(\mu)$$

• Key Observation: The matrix elements of $H_{\rm eff}$ are physical Quantities, thus cannot depend on the arbitrary choice of μ

$$\mathsf{0}=\murac{\mathsf{d}}{\mathsf{d}\mu}\mathsf{H}_{ ext{eff}}$$

ヘロト ヘアト ヘビト ヘビト

compute this

EFT in a nutshell Effective Weak Hamiltonian Introduction to Renormalization Group

$$\mathbf{0} = \sum_{i} \left(\mu \frac{d}{d\mu} C_{i}(\Lambda/\mu) \right) \mathcal{O}_{i}(\mu) + C_{i}(\Lambda/\mu) \left(\mu \frac{d}{d\mu} \mathcal{O}_{i}(\mu) \right)$$

 Operator Mixing: Change in scale can turns the operator O_i into a linear combination of operators (of the same dimension)

$$\mu rac{d}{d\mu} \mathcal{O}_i(\mu) = \sum_j \gamma_{ij}(\mu) \mathcal{O}_j(\mu)$$

and so $\sum_{i} \sum_{j} \left(\left[\delta_{ij} \mu \frac{d}{d\mu} + \gamma_{ij}(\mu) \right] C_{i}(\Lambda/\mu) \right) O_{j}(\mu) = 0$ Effective Field Theories EFT in a nutshell Heavy Mass Limit Effective Weak Hamiltonian QCD Sum Rules Introduction to Renormalization Group

• Assume: The operators \mathcal{O}_i from a basis, then

$$\sum_{i} \left[\delta_{ij} \mu \frac{d}{d\mu} + \gamma_{ij}^{T}(\mu) \right] C_{j}(\Lambda/\mu) = 0$$

• QCD: Coupling constant α_s depends on μ : β -function

$$\mu \frac{d}{d\mu} \alpha_{s}(\mu) = \beta(\alpha_{s}(\mu))$$

• C_j depend also on α_s

$$\mu \frac{\mathbf{d}}{\mathbf{d}\mu} = \left(\mu \frac{\partial}{\partial \mu} + \beta(\alpha_{s}) \frac{\partial}{\partial \alpha_{s}}\right)$$

• In an appropriate scheme γ_{ij} depend on μ only trough α_s : $\gamma_{ij}(\mu) = \gamma_{ij}(\alpha_s(\mu))$ Effective Field Theories EFT in a nutshell Heavy Mass Limit Effective Weak Hamiltonian QCD Sum Rules Introduction to Renormalization Group

 Renormalization Group Equation (RGE) for the coefficients

$$\sum_{i} \left[\delta_{ij} \left(\mu \frac{\partial}{\partial \mu} + \beta(\alpha_{s}) \frac{\partial}{\partial \alpha_{s}} \right) + \gamma_{ij}^{T}(\alpha_{s}) \right] C_{j}(\Lambda/\mu, \alpha_{s}) = \mathbf{0}$$

- This is a system of linear differential equations:
 → Once the initial conditions are known, the solution is in general unique
- RGE Running: Use the RGE to relate the coefficients at different scales

イロト 不得 とくほ とくほとう

 Effective Field Theories
 EFT in a nutshell

 Heavy Mass Limit
 Effective Weak Hamiltonian

 QCD Sum Rules
 Introduction to Renormalization Group

• The coefficients are at $\mu = \Lambda$ (at the "matching scale")

$$C_i(\Lambda/\mu = 1, \alpha_s) = \sum_n a_i^{(n)} \left(\frac{\alpha_s}{4\pi}\right)^n$$

perturbative calculation

イロト イポト イヨト イヨト

3

• Perturbative calculation of the RG functions β and γ_{ij}

$$\beta(\alpha_s) = \alpha_s \sum_{n=0}^{\infty} \beta^{(n)} \left(\frac{\alpha_s}{4\pi}\right)^{n+1} \quad \gamma_{ij}(\alpha_s) = \sum_{n=0}^{\infty} \gamma^{(n)}_{ij} \left(\frac{\alpha_s}{4\pi}\right)^{n+1}$$

• RG functions can be calculated from loop diagrams:

$$eta^{(0)} = -rac{2}{3}(33-2n_{
m f}) \quad \gamma_{ij}$$
 depends on the set of \mathcal{O}_i

 Effective Field Theories
 EFT in a nutshell

 Heavy Mass Limit
 Effective Weak Hamiltonian

 QCD Sum Rules
 Introduction to Renormalization Group

• Structure of the perturbative expansion of the coefficient at some other scale

$$\begin{aligned} \mathbf{c}_{i}(\Lambda/\mu,\alpha_{s}) &= \\ \mathbf{b}_{i}^{00} \\ + & \mathbf{b}_{i}^{11}\left(\frac{\alpha_{s}}{4\pi}\right)\ln\frac{\Lambda}{\mu} + \mathbf{b}_{i}^{10}\left(\frac{\alpha_{s}}{4\pi}\right) \\ + & \mathbf{b}_{i}^{22}\left(\frac{\alpha_{s}}{4\pi}\right)^{2}\ln^{2}\frac{\Lambda}{\mu} + \mathbf{b}_{i}^{21}\left(\frac{\alpha_{s}}{4\pi}\right)^{2}\ln\frac{\Lambda}{\mu} + \mathbf{b}_{i}^{20}\left(\frac{\alpha_{s}}{4\pi}\right)^{2} \\ + & \mathbf{b}_{i}^{33}\left(\frac{\alpha_{s}}{4\pi}\right)^{3}\ln^{3}\frac{\Lambda}{\mu} + \mathbf{b}_{i}^{32}\left(\frac{\alpha_{s}}{4\pi}\right)^{3}\ln^{2}\frac{\Lambda}{\mu} + \mathbf{b}_{i}^{31}\left(\frac{\alpha_{s}}{4\pi}\right)^{3}\ln\frac{\Lambda}{\mu} + \cdots \end{aligned}$$

(ロ) (同) (目) (日) (日) (の)

Effective Field Theories EFT in a nutshell Heavy Mass Limit Effective Weak Hamiltonian QCD Sum Rules Introduction to Renormalization Group

• LLA (Leading Log Approximation): Resummation of the *b*ⁿⁿ_i terms

$$C_i(\Lambda/\mu,\alpha_s) = \sum_{n=0}^{\infty} b_i^{nn} \left(\frac{\alpha_s}{4\pi}\right)^n \ln^n \frac{\Lambda}{\mu}$$

 \rightarrow leading terms in the expansion of the RG functions $\bullet\,$ NLLA (Next-to-leading log approximation):

$$C_i(\Lambda/\mu,\alpha_s) = \sum_{n=0}^{\infty} \left[b_i^{nn} + b_i^{n+1,n} \left(\frac{\alpha_s}{4\pi}\right) \right] \left(\frac{\alpha_s}{4\pi}\right)^n \ln^n \frac{\Lambda}{\mu}$$

イロト イポト イヨト イヨト

 \rightarrow next-to-leading terms of the RG functions

Effective Field Theories EFT in a nutshell Heavy Mass Limit Effective Weak Hamiltonian QCD Sum Rules Introduction to Renormalization Group

- Typical Proceedure:
 - "Matching" at the scale $\mu = M_W$
 - "Running" to a scale of the order $\mu = m_b$
 - ullet ightarrow includes operator mixing
- Resummation of the large logs $\ln(M_W^2/m_b^2)$
 - "Matching" at the scale $\mu = m_b$
 - "Running" to the scale mc
- Resummation of the "large" logs $\ln(m_b^2/m_c^2)$
- ...
- Untli $\alpha_s(\mu)$ becomes too large ...

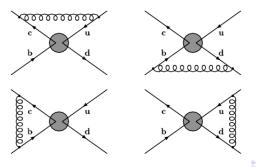
<ロ> (四) (四) (三) (三) (三)

EFT in a nutshell Effective Weak Hamiltonian Introduction to Renormalization Group

$H_{\rm eff}$ for *b* decays at low scales

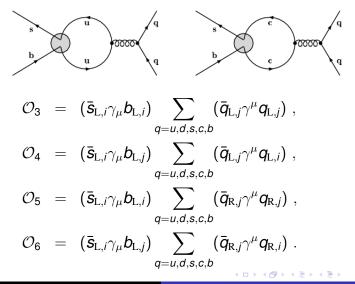
- Effective interaction: $H_{\text{eff}} = \frac{4G_F}{\sqrt{2}} \lambda_{\text{CKM}} \sum_k \hat{C}_k(\Lambda) \mathcal{O}_k(\Lambda)$
- "Tree" Operators"

$$\mathcal{O}_{1} = (\bar{c}_{L,i}\gamma_{\mu}s_{L,j})(\bar{d}_{L,j}\gamma_{\mu}u_{L,i}) , \\ \mathcal{O}_{2} = (\bar{c}_{L,i}\gamma_{\mu}s_{L,i})(\bar{d}_{L,j}\gamma_{\mu}u_{L,j}) .$$



EFT in a nutshell Effective Weak Hamiltonian Introduction to Renormalization Group

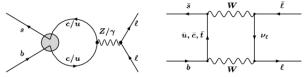
If two flavours are equal: QCD Penguin Operators



EFT in a nutshell Effective Weak Hamiltonian Introduction to Renormalization Group

ъ

- Electroweak Penguins: Replace the Gluon by a Z_0 or Photon: $\mathcal{P}_7 \cdots \mathcal{P}_{10}$
- Rare (FCNC) Processes:



$$\mathcal{O}_{7} = \frac{e}{16\pi^{2}} m_{b}(\bar{s}_{L,\alpha}\sigma_{\mu\nu}b_{R,\alpha})F^{\mu\nu}$$

$$\mathcal{O}_{8} = \frac{g}{16\pi^{2}} m_{b}(\bar{s}_{L,\alpha}T^{a}_{\alpha\beta}\sigma_{\mu\nu}b_{R,\alpha})G^{a\mu\nu}$$

$$\mathcal{O}_{9} = \frac{1}{2}(\bar{s}_{L}\gamma_{\mu}b_{L})(\bar{\ell}\gamma^{\mu}\ell)$$

$$\mathcal{O}_{10} = \frac{1}{2}(\bar{s}_{L}\gamma_{\mu}b_{L})(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)$$

Effective Field Theories EFT in a nutshell Heavy Mass Limit Effective Weak Hamiltonian QCD Sum Rules Introduction to Renormalization Group

Coefficients of the Operators (One Loop)

$C_i(\mu)$	$\mu = 10.0\mathrm{GeV}$	$\mu = 5.0 \mathrm{GeV}$	$\mu = 2.5 \mathrm{GeV}$
C_1	0.182	0.275	0.40
C_2	-1.074	-1.121	-1.193
C_3	-0.008	-0.013	-0.019
C_4	0.019	0.028	0.040
C_5	-0.006	-0.008	-0.011
C_6	0.022	0.035	0.055
$C_{i}(u)$		$\mu = 5 \text{ GeV}$	

$\mathbf{U}_{i}(\mu)$	$\mu = 2.5 \text{ GeV}$	$\mu = 5 \text{ GeV}$	$\mu = 10 \text{ GeV}$
$C_7^{\rm eff}$	-0.334	-0.299	-0.268
$C_8^{\rm eff}$	-0.157	-0.143	-0.131
$rac{2\pi}{lpha} \hat{C}_9$	1.933	1.788	1.494

Thomas Mannel, University of Siegen Flavour Pl

ヘロン 人間 とくほど 人間とう

ъ

Heavy Quark Effective Theory Heavy Quark Expansion Soft Collinear Effective Theory

Heavy Quark Limit

Isgur, Wise, Voloshin, Shifman, Georgi, Grinstein, ...

- 1/m_Q Expansion: Substantial Theoretical Progress!
- Static Limit: m_b , $m_c \rightarrow \infty$ with fixed (four)velocity

$$v_Q = rac{p_Q}{m_Q}, \qquad Q = b, c$$

In this limit we have

$$\left. egin{array}{l} m_{Hadron} = m_Q \ p_{Hadron} = p_Q \end{array}
ight\} m{v}_{Hadron} = m{v}_Q$$

- For m_Q → ∞ the heavy quark does not feel any recoil from the light quarks and gluons (Cannon Ball)
- This is like the H-atom in Quantum Mechanics I!

Effective Field Theories Heavy Quark Effect Heavy Mass Limit Heavy Quark Expar QCD Sum Rules Soft Collinear Effect

Heavy Quark Symmetries

- The interaction of gluons is identical for all quarks
- Flavour enters QCD only through the mass terms
 - $m \rightarrow 0$: (Chiral) Flavour Symmetry (Isospin)
 - $m \rightarrow \infty$ Heavy Flavour Symmetry
 - Consider *b* and *c* heavy: Heavy Flavour SU(2)
- Coupling of the heavy quark spin to gluons:

$$H_{int} = rac{g}{2m_Q} ar{Q} (ec{\sigma} \cdot ec{B}) Q \quad \stackrel{m_Q o \infty}{\longrightarrow} \quad 0$$

イロト イポト イヨト イヨ

- Spin Rotations become a symmetry
- Heavy Quark Spin Symmetry: SU(2) Rotations
- Spin Flavour Symmetry Multiplets

Heavy Quark Effective Theory Heavy Quark Expansion Soft Collinear Effective Theory

Mesonic Ground States

Bottom:

$$egin{aligned} |(m{b}ar{u})_{J=0}
angle &= |m{B}^{-}
angle \ |(m{b}ar{d})_{J=0}
angle &= |m{B}^{0}
angle \ |(m{b}ar{s})_{J=0}
angle &= |m{B}_{s}
angle \end{aligned}$$

Charm:

$$egin{aligned} |(m{c}ar{m{u}})_{J=0}
angle &= |m{D}^0
angle \ |(m{c}ar{m{d}})_{J=0}
angle &= |m{D}^+
angle \ |(m{c}ar{m{s}})_{J=0}
angle &= |m{D}_s
angle \end{aligned}$$

$$egin{aligned} |(m{b}ar{u})_{J=1}
angle &= |m{B}^{*-}
angle \ |(m{b}ar{d})_{J=1}
angle &= |m{\overline{B}}^{*0}
angle \ |(m{b}ar{s})_{J=1}
angle &= |m{\overline{B}}^{*}_s
angle \end{aligned}$$

$$\begin{array}{l} |(\textbf{\textit{C}} \bar{\textbf{\textit{U}}})_{J=1}\rangle = |\textbf{\textit{D}}^{*0}\rangle \\ |(\textbf{\textit{C}} \bar{\textbf{\textit{d}}})_{J=1}\rangle = |\textbf{\textit{D}}^{*+}\rangle \\ |(\textbf{\textit{C}} \bar{\textbf{s}})_{J=1}\rangle = |\textbf{\textit{D}}^{*}_{s}\rangle \end{array}$$

イロン 不同 とくほう イヨン

3

Heavy Quark Effective Theory Heavy Quark Expansion Soft Collinear Effective Theory

・ロト ・ ア・ ・ ヨト ・ ヨト

ъ

Baryonic Ground States

$$\begin{split} \left| \left[(ud)_{0} Q \right]_{1/2} \right\rangle &= \left| \Lambda_{Q} \right\rangle \\ \left| \left[(uu)_{1} Q \right]_{1/2} \right\rangle, \left| \left[(ud)_{1} Q \right]_{1/2} \right\rangle, \left| \left[(dd)_{1} Q \right]_{1/2} \right\rangle &= \left| \Sigma_{Q} \right\rangle \\ \left| \left[(uu)_{1} Q \right]_{3/2} \right\rangle, \left| \left[(ud)_{1} Q \right]_{3/2} \right\rangle, \left| \left[(dd)_{1} Q \right]_{3/2} \right\rangle &= \left| \Sigma_{Q}^{*} \right\rangle \\ \left| \left[(us)_{0} Q \right]_{1/2} \right\rangle, \left| \left[(ds)_{0} Q \right]_{1/2} \right\rangle &= \left| \Xi_{Q} \right\rangle \\ \left| \left[(us)_{1} Q \right]_{1/2} \right\rangle, \left| \left[(ds)_{1} Q \right]_{1/2} \right\rangle &= \left| \Xi_{Q} \right\rangle \\ \left| \left[(us)_{1} Q \right]_{3/2} \right\rangle, \left| \left[(ds)_{1} Q \right]_{3/2} \right\rangle &= \left| \Xi_{Q}^{*} \right\rangle \\ \left| \left[(ss)_{1} Q \right]_{3/2} \right\rangle, \left| \left[(ds)_{1} Q \right]_{3/2} \right\rangle &= \left| \Xi_{Q}^{*} \right\rangle \\ \left| \left[(ss)_{1} Q \right]_{1/2} \right\rangle &= \left| \Omega_{Q} \right\rangle \\ \left| \left[(ss)_{1} Q \right]_{3/2} \right\rangle &= \left| \Omega_{Q}^{*} \right\rangle \end{aligned}$$

Effective Field Theories Hea Heavy Mass Limit Hea QCD Sum Rules Sof

Heavy Quark Effective Theory Heavy Quark Expansion Soft Collinear Effective Theory

Wigner Eckart Theorem for HQS

• HQS imply a "Wigner Eckart Theorem"

 $\left\langle \mathcal{H}^{(*)}(\boldsymbol{v}) \right| \mathcal{Q}_{\boldsymbol{v}} \Gamma \mathcal{Q}_{\boldsymbol{v}'} \left| \mathcal{H}^{(*)}(\boldsymbol{v}') \right\rangle = \mathcal{C}_{\Gamma}(\boldsymbol{v}, \boldsymbol{v}') \xi(\boldsymbol{v} \cdot \boldsymbol{v}')$

with $H^{(*)}(v) = D^{(*)}(v)$ or $B^{(*)}(v)$

- $C_{\Gamma}(v, v')$: Computable Clebsh Gordan Coefficient
- $\xi(\mathbf{v} \cdot \mathbf{v}')$: Reduced Matrix Element
- ξ(v · v'): universal non-perturbative Form Faktor:
 Isgur Wise Funktion
- Normalization of ξ at v = v':

$$\xi(\mathbf{v}\cdot\mathbf{v}'=\mathbf{1})=\mathbf{1}$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Heavy Quark Effective Theory Heavy Quark Expansion Soft Collinear Effective Theory

Heavy Quark Effective Theory

- The heavy mass limit can be formulated as an effective field theory
- Expansion in inverse powers of m_Q
- Define the static field h_v for the velocity v

$$h_v(x) = e^{im_Q v \cdot x} rac{1}{2} (1 + v) b(x)$$
 $p_Q = m_Q v + k$

HQET Lagrangian

$$\mathcal{L} = \overline{h}_{v}(iv \cdot D)h_{v} + \frac{1}{2m_{Q}}\overline{h}_{v}(iD)^{2}h_{v} + \cdots$$

• Dim-4 Term: Feynman rules, loops, renormalization...

Effective Field Theories Heavy Quark Effective Theory Heavy Mass Limit QCD Sum Rules Soft Collinear Effective Theory

Application: Determination of V_{cb} from $B \to D^{(*)} \ell \bar{\nu}_{\ell}$

- Kinematic variable for a heavy quark: Four Velovity v
- Differential Rates

$$egin{aligned} rac{d\Gamma}{d\omega}(B o D^* \ell ar{
u}_\ell) &= rac{G_F^2}{48 \pi^3} |V_{cb}|^2 m_{D^*}^3 (\omega^2 - 1)^{1/2} P(\omega) (\mathcal{F}(\omega))^2 \ rac{d\Gamma}{d\omega}(B o D \ell ar{
u}_\ell) &= rac{G_F^2}{48 \pi^3} |V_{cb}|^2 (m_B + m_D)^2 m_D^3 (\omega^2 - 1)^{3/2} (\mathcal{G}(\omega))^2 \end{aligned}$$

ヘロア 人間 アメヨア 人口 ア

- with $\omega = vv'$ and
- $P(\omega)$: Calculable Phase space factor
- \mathcal{F} and \mathcal{G} : Form Factors

Heavy Quark Effective Theory Heavy Quark Expansion Soft Collinear Effective Theory

イロン イ理 とく ヨン イヨン

Heavy Quark Symmetries

- Normalization of the Form Factors is known at vv' = 1: (both initial and final meson at rest)
- Corrections can be calculated / estimated

$$\mathcal{F}(\omega) = \eta_{\text{QED}} \eta_A \left[1 + \delta_{1/\mu^2} + \cdots \right] (\omega - 1) \rho^2 + \mathcal{O}((\omega - 1)^2)$$

$$\mathcal{G}(1) = \eta_{\text{QED}} \eta_V \left[1 + \mathcal{O} \left(\frac{m_B - m_D}{m_B + m_D} \right) \right]$$

• Parameter of HQS breaking: $\frac{1}{\mu} = \frac{1}{m_c} - \frac{1}{m_b}$ • $\eta_A = 0.960 \pm 0.007, \ \eta_V = 1.022 \pm 0.004, \ \delta_{1/\mu^2} = -(8 \pm 4)\%, \ \eta_{\text{QED}} = 1.007$

Heavy Quark Effective Theory Heavy Quark Expansion Soft Collinear Effective Theory

$B \rightarrow D^{(*)}$ Form Factors

• Lattice Calculations of the deviation from unity

$$\mathcal{F}(1)=0.903\pm0.13$$

$$\mathcal{G}(1) = 1.033 \pm 0.018 \pm 0.0095$$

A. Kronfeld et al.

Zero Recoil Sum Rules

$$\mathcal{F}(1)=0.86\pm0.04$$

$$\mathcal{G}(1) = 1.04 \pm 0.02$$

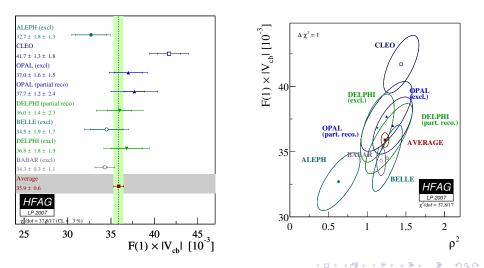
・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

P. Gambino et al.

Heavy Quark Effective Theory Heavy Quark Expansion Soft Collinear Effective Theory

$B ightarrow D^* \ell ar u_\ell$



Thomas Mannel, University of Siegen Flavour Physics, Lecture 2

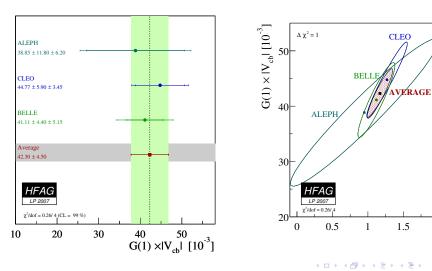
Heavy Quark Effective Theory Heavy Quark Expansion Soft Collinear Effective Theory

2

æ

 ρ^2

$B ightarrow D \ell ar{ u}_\ell$



Effective Field Theories Heavy Mass Limit QCD Sum Rules Heavy Quark Effective T Heavy Quark Expansion Soft Collinear Effective T

Inclusive Decays: Heavy Quark Expansion

Operator Product Expansion = Heavy Quark Expansion (Chay, Georgi, Bigi, Shifman, Uraltsev, Vainstain, Manohar. Wise, Neubert, M....)

$$\begin{split} &\Gamma \propto \sum_{X} (2\pi)^{4} \delta^{4} (P_{B} - P_{X}) |\langle X | \mathcal{H}_{eff} | B(v) \rangle|^{2} \\ &= \int d^{4}x \, \langle B(v) | \mathcal{H}_{eff}(x) \mathcal{H}_{eff}^{\dagger}(0) | B(v) \rangle \\ &= 2 \, \operatorname{Im} \int d^{4}x \, \langle B(v) | T \{ \mathcal{H}_{eff}(x) \mathcal{H}_{eff}^{\dagger}(0) \} | B(v) \rangle \\ &= 2 \, \operatorname{Im} \int d^{4}x \, e^{-im_{b}v \cdot x} \langle B(v) | T \{ \widetilde{\mathcal{H}}_{eff}(x) \widetilde{\mathcal{H}}_{eff}^{\dagger}(0) \} | B(v) \rangle \end{split}$$

イロト イポト イヨト イヨト

• Last step: $p_b = m_b v + k$, Expansion in the residual momentum k Effective Field Theories Heavy Mass Limit QCD Sum Rules Soft Collinear Effective T

• Perform an OPE: *m_b* is much larger than any scale appearing in the matrix element

$$\int d^{4}x e^{-im_{b}vx} T\{\widetilde{\mathcal{H}}_{eff}(x)\widetilde{\mathcal{H}}_{eff}^{\dagger}(0)\}$$
$$= \sum_{n=0}^{\infty} \left(\frac{1}{2m_{Q}}\right)^{n} C_{n+3}(\mu) \mathcal{O}_{n+3}(\mu)$$

ightarrow The rate for $B
ightarrow X_c \ell ar
u_\ell$ can be written as

$$\Gamma = \Gamma_0 + \frac{1}{m_Q}\Gamma_1 + \frac{1}{m_Q^2}\Gamma_2 + \frac{1}{m_Q^3}\Gamma_3 + \cdots$$

イロト イポト イヨト イヨト

• The Γ_i are power series in $\alpha_s(m_Q)$: \rightarrow Perturbation theory! Effective Field Theories Heavy Quark Effective Theory Heavy Mass Limit QCD Sum Rules Soft Collinear Effective Theory

- Γ₀ is the decay of a free quark ("Parton Model")
- Γ₁ vanishes due to Heavy Quark Symmetries
- Γ_2 is expressed in terms of two parameters

$$2M_{H}\mu_{\pi}^{2} = -\langle H(v)|\bar{Q}_{v}(iD)^{2}Q_{v}|H(v)\rangle$$

$$2M_{H}\mu_{G}^{2} = \langle H(v)|\bar{Q}_{v}\sigma_{\mu\nu}(iD^{\mu})(iD^{\nu})Q_{v}|H(v)\rangle$$

 μ_{π} : Kinetic energy and μ_{G} : Chromomagnetic moment • Γ_{3} two more parameters

$$2M_{H}\rho_{D}^{3} = -\langle H(v)|\bar{Q}_{v}(iD_{\mu})(ivD)(iD^{\mu})Q_{v}|H(v)\rangle$$

$$2M_{H}\rho_{LS}^{3} = \langle H(v)|\bar{Q}_{v}\sigma_{\mu\nu}(iD^{\mu})(ivD)(iD^{\nu})Q_{v}|H(v)\rangle$$

 ρ_D : Darwin Term and ρ_{LS} : Chromomagnetic moment

Heavy Quark Effective Theory Heavy Quark Expansion Soft Collinear Effective Theory

New: $1/m_b^4$ Contribution Γ_4 (Dassinger, Turczyk, M.)

• Five new parameters:

- $\langle \vec{E}^2 \rangle$: Chromoelectric Field squared
- $\langle \vec{B}^2 \rangle$: Chromomagnetic Field squared
- $\langle (\vec{p}^2)^2 \rangle$: Fourth power of the residual *b* quark momentum
- $\langle (\vec{p}^2)(\vec{\sigma}\cdot\vec{B})\rangle$: Mixed Chromomag. Mom. and res. Mom. sq.

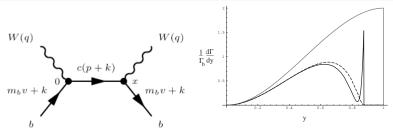
・ロト ・ 理 ト ・ ヨ ト ・

 $\langle (\vec{p} \cdot \vec{B})(\vec{\sigma} \cdot \vec{p}) \rangle$: Mixed Chromomag. field and res. helicity

Some of these can be estimated in naive factorization

Heavy Quark Effective Theory Heavy Quark Expansion Soft Collinear Effective Theory

Spectra of Inclusive Decays



• Endpoint region: $\rho = m_c^2/m_b^2$, $y = 2E_\ell/m_b$

$$\frac{d\Gamma}{dy} \sim \Theta(1-y-\rho) \left[2 + \frac{\lambda_1}{(m_b(1-y))^2} \left(\frac{\rho}{1-y}\right)^2 \left\{ 3 - 4\frac{\rho}{1-y} \right\} \right]$$

• Reliable calculation in HQE possible for the moments of the spectrum

Effective Field Theories Heavy Quark Effective Theory Heavy Mass Limit QCD Sum Rules Soft Collinear Effective Theory

Application: V_{cb} from $b \rightarrow c \ell \bar{\nu}$ inclusive

- Tree level terms up to and including $1/m_b^5$ known
- $\mathcal{O}(\alpha_s)$ and full $\mathcal{O}(\alpha_s^2)$ for the partonic rate known
- $\mathcal{O}(\alpha_s)$ for the μ_π^2/m_b^2 is known
- QCD insprired modelling for the HQE matrix elements
- New: Complete α_s/m_b^2 , including the μ_G terms Alberti, Gambino, Nandi (arXiv:1311.7381) ThM, Pivovarov, Rosenthal (arXiv:1405.5072, arXiv:1506.08167)
- This was the remaining parametrically largest uncertainty

ヘロア 人間 アメヨア 人口 ア

Effective Field Theories Heavy Quark Effective Theory Heavy Mass Limit QCD Sum Rules Soft Collinear Effective Theory

- Alberti et al.: Phys.Rev.Lett. 114 (2015) 6, 061802 and JHEP 1401 (2014) 147
 - Calculation of the differential rate including the charm mass

イロト イポト イヨト イヨト

- partially numerical calculation
- ThM, Pivovarov, Rosenthal:
 Phys.Lett. B741 (2015) 290-294
 - Fully analytic calculation
 - limit $m_c \rightarrow 0$
 - Possibility to include *m_c* in a Taylor series
- Results do agree, surprisingly steep m_c dependence

Heavy Quark Effective Theory Heavy Quark Expansion Soft Collinear Effective Theory

・ロット (雪) () () () ()

Result for V_{cb}

• Inclusive Decay (HQE / OPE)
$$V_{cb} = 42.21 \pm 0.78$$
 (Gambino et al. 2015)

• Exclusive decay (Lattice FF) $V_{cb}=39.36\pm0.78$ (Fermilab/Milc 2015)

• Exclusive decay (Zero Recoil Sum rule) $V_{cb} = 41.4 \pm 0.9$ (Gambino et al. 2015)

- Problem: How to deal with "energetic" light degrees of freedom = Endpoint regions of the spectra ?
- More than two scales involved!
- Inclusive Rates in the Endpoint become (Korchemski, Sterman)

 $d\Gamma = H * J * S$

with * = Convolution

・ロト ・厚ト ・ヨト・

- *H*: Hard Coefficient Function, Scales $\mathcal{O}(m_b)$
- *J*: Jet Function, Scales $\mathcal{O}(\sqrt{m_b \Lambda_{\text{QCD}}})$
- S: Shape function, Scales $\mathcal{O}(\Lambda_{QCD})$

Effective Field Theories Heavy Quark Effective Theory Heavy Mass Limit QCD Sum Rules Soft Collinear Effective Theory

Basics of Soft Collinear Effective Theory

• Heavy-to-light decays:

Kinematic Situations with energetic light quarks hadronizing into jets or energetic light mesons p_{fin} : Momentum of a light final state meson

$$p_{ ext{fin}}^2 \sim \mathcal{O}(egin{aligned} & \mathbf{V} \cdot oldsymbol{p}_{ ext{fin}} \sim \mathcal{O}(oldsymbol{m}_b) & \mathbf{V} \cdot oldsymbol{p}_{ ext{fin}} \sim \mathcal{O}(oldsymbol{m}_b) \end{aligned}$$

• Use light-cone vectors $n^2 = \bar{n}^2 = 0$, $n \cdot \bar{n} = 2$:

$$p_{ ext{fin}} = rac{1}{2}(n \cdot p_{ ext{fin}})ar{n} \quad ext{and} \quad v = rac{1}{2}(n + ar{n})$$

• Momentum of a light quark in such a meson:

$$p_{\text{light}} = \frac{1}{2} [(n \cdot p_{\text{light}})\bar{n} + (\bar{n} \cdot p_{\text{light}})n] + p_{\text{light}}^{\perp}$$

Heavy Quark Effective Theory Heavy Quark Expansion Soft Collinear Effective Theory

SCET Power Counting

- Define the parameter $\lambda = \sqrt{\Lambda_{\rm QCD}/m_b}$
- The light quark invariant mass (or virtuality) is assumed to be

$$p_{ ext{light}}^2 = (n \cdot p_{ ext{light}})(ar{n} \cdot p_{ ext{light}}) + (p_{ ext{light}}^{\perp})^2 \sim \lambda^2 m_b^2$$

• The components of the quark momentum have to scale as

$$(n \cdot p_{ ext{light}}) \sim m_b \quad (\bar{n} \cdot p_{ ext{light}}) \sim \lambda^2 m_b \qquad p_{ ext{light}}^\perp \sim \lambda m_b$$

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Soft Collinear Effective Theory

A brief look at SCET (Bauer, Stewart, Pirjol, Beneke, Feldmann ...)

ヘロト 人間 ト ヘヨト ヘヨト

- QCD quark field q is split into a collinear component ξ and a soft one with $\xi = \frac{1}{4} \hbar m_{-} \hbar_{+} q$
- The Lagrangian $\mathcal{L}_{OCD} = \bar{q}(i\mathcal{D})q$ is rewritten in terms of the collinear field

$$\mathcal{L} = \frac{1}{2} \bar{\xi} \not n_+ (in_- D) \xi - \bar{\xi} i \not D_\perp \frac{1}{in_+ D + i\epsilon} \frac{\not n_+}{2} i \not D_\perp \xi$$

Expansion according to the above power couning:

$$\textit{in}_+\textit{D} = \textit{in}_+\partial + \textit{gn}_+\textit{A}_{c} + \textit{gn}_+\textit{A}_{us} = \textit{in}_+\textit{D}_c + \textit{gn}_+\textit{A}_{us}$$

Leading L becomes non-local: Wilson lines

Heavy Quark Effective Theory Heavy Quark Expansion Soft Collinear Effective Theory

イロト イポト イヨト イヨト

Practical Consequences of SCET

 Similar to HQS: Relations between for factors at large momentum transfer

$$\langle {\cal B}({m v})|ar b {m \Gamma} {m q}|\pi({m p})
angle \propto \zeta({m vp}),\,\zeta_{//}({m vp}),\,\zeta_{\perp}({m vp})$$

For energetic pion only three independent form factors (Charles et al.)

Correction can be calculated as in HQET

Basic Idea (Shifman, Vainshtein, Zakharaov, 1978)

• Start from a suitably chosen correlation function, e.g.

$$T(q^2) = \int d^4x \, e^{-iqx} \langle 0|T[j(x)j^{\dagger}(0)|0
angle$$

- This can be calculated perturbatively as $q^2 \rightarrow -\infty$.
- On the other hand, it has a dispersion relation

$$T(q^2) = \int rac{ds}{2\pi} \, rac{
ho(s)}{s-q^2+i\epsilon} + ext{possible subtractions}$$

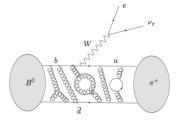
with $\rho(s) \sim \langle 0|j(x)j^{\dagger}(0)0 \rangle = \sum_{n} \langle 0|j(x)|n \rangle \langle n|j^{\dagger}(0)0 \rangle$

• Estimates for $\langle 0|j(x)|n\rangle$ from e.g. positivity statements

Application: Determination of V_{ub} from exclusive $b ightarrow u \ell ar{ u}$

$\square B \rightarrow \pi \ell \nu_{\ell}$, determination of $|V_{ub}|$

 decay amplitude parametrized by hadronic form factors



→ < Ξ →</p>

 $\langle \pi^+(\boldsymbol{\rho})|\bar{u}\gamma_\mu b|\bar{B}^0(\boldsymbol{\rho}+\boldsymbol{q})
angle = f^+_{B\pi}(\boldsymbol{q}^2)\Big[...\Big]_\mu + f^0_{B\pi}(\boldsymbol{q}^2)\Big[...\Big]_\mu$

V_{ub} determination [BaBar,Belle]

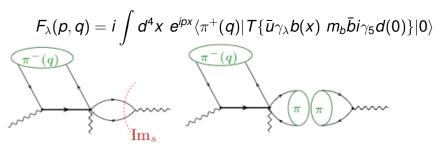
$$\left(\frac{1}{\tau_B}\right)\frac{dBR(\bar{B}^0\to\pi^+l^-\nu)}{dq^2} = \frac{G_F^2|V_{ub}|^2}{24\pi^3}\rho_\pi^3|f_{B\pi}^+(q^2)|^2 + O(m_l^2)$$

 $0 < q^2 < (m_B - m_\pi)^2 \sim 26~{
m GeV}^2$,

• form factors accessible in lattice QCD at $q^2\gtrsim 16~{
m GeV^2}$

$f_+(q^2)$ from QCD Sum Rules (Ball, Zwicky, Khodjamirian, ...)

- Dispersion Relation and Light Cone Expansion
- Study a Correlation Function



・ 同 ト ・ ヨ ト ・ ヨ ト

- Yields an estimate for $f_B f_+(q^2)$
- Limited to small q²

Results from LCSR

Uncertainties from

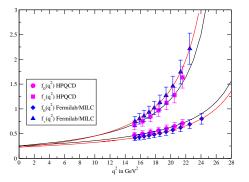
- Higher Twists (\geq 4)
- b quark mass and renormalization scale
- Values of the condensates
- Threshold and Borel parameters
- Pion Distribution amplitude

$$egin{aligned} f_+(0) &= 0.27 imes \ &\left[1 \pm (5\%)_{tw>4} \pm (3\%)_{m_b,\mu} \pm (3\%)_{\langle ar{q}q
angle} \pm (3\%)_{s^B_0,M} \pm (8\%)_{a^\pi_{2,4}}
ight] \end{aligned}$$

• Extrapolation to $q^2 \neq 0$ by a pole model

Lattice QCD for Heavy to Light Form Factors

- Results reliable for large q^2
- Unquenched results are available
- Extrapolation to small q² by a pole model Becirevic, Kaidalov



Rate for $q^2 \ge 16 \,\mathrm{GeV}^2$

$$\begin{split} |V_{ub}|^2 \times (1.31 \pm 0.33) \, \mathrm{ps^{-1}} \\ |V_{ub}|^2 \times (1.80 \pm 0.48) \, \mathrm{ps^{-1}} \end{split}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

(HPQCD / Fermilab MILC)

Status of V_{ub}

- From QCD LCSR: $V_{ub} = (3.32 \pm 0.26) \times 10^{-3}$
- PDG 2104:
 - Inclusive (LC-OPE): $V_{ub} = (4.41 \pm 0.25) \times 10^{-3}$
 - Exclusive (Combined): $V_{ub} = (3.28 \pm 0.29) \times 10^{-3}$

イロト イポト イヨト イヨト

æ

• This is the famous tension between the $V_{ub}s$

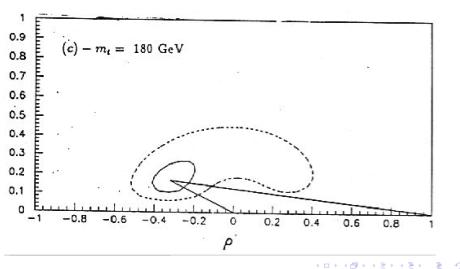
The history of the UT since \sim 1993

- Situation in 1993:
 - HQET was still young (~ 3 years)
 - Hadronic Matrix elements for $\Delta m_d \sim f_B^2$ were quite uncertain
 - V_{ub}/V_{cb} was known at the level of $\sim 20\%$
 - The top quark mass was still $m_t \sim (140 \pm 40) \text{ GeV}$

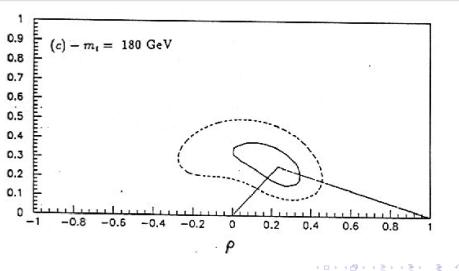
◆□> ◆◎> ◆注> ◆注>

- No CP violation has been observed except ε_K
- The UT still could have been "flat"

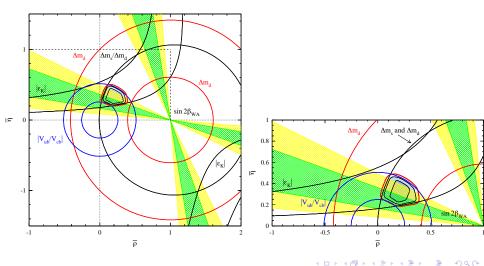
Unitarity triangle 1993: $f_B = 135 \pm 25$ MeV



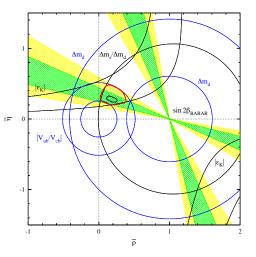
Unitarity triangle 1993: $f_B = 200 \pm 30 \text{ MeV}$



2001: First observation of "Non-Kaon CPV"

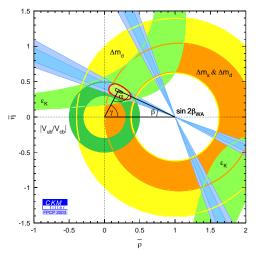


Unitarity Triangle 2001



◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Unitarity Triangle 2002



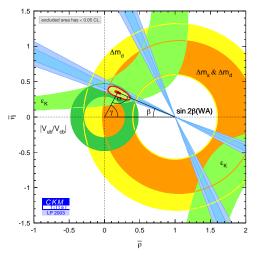
 Some improvement of *V_{ub}* / *V_{cb}* through the Heavy Quark Expansion

ヘロア 人間 アメヨア 人口 ア

э

• More data on ${\cal A}_{ m CP}(B o J/\Psi K_s)$

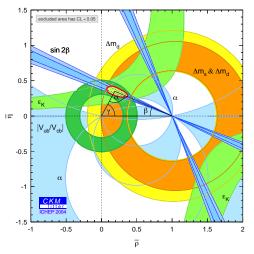
Unitarity Triangle 2003



- Slight improvement of f²_BB_B from lattice calculations
- Still more data on ${\cal A}_{
 m CP}(B o J/\Psi K_s)$
- Central value of *V_{ub}/V_{cb}* slightly moved

ヘロン ヘアン ヘビン ヘビン

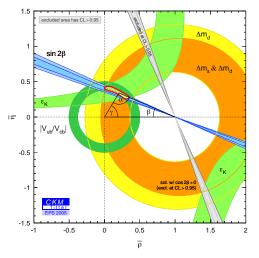
Unitarity Triangle 2004



- More improvement of $f_B^2 B_B$ from lattice calculations
- Still more data on ${\cal A}_{
 m CP}(B o J/\Psi K_s)$
- First constraints on the angle α from B → ρρ

ヘロン ヘアン ヘビン ヘビン

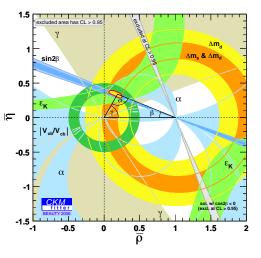
Unitarity Triangle 2005



- Still more data on ${\cal A}_{
 m CP}(B o J/\Psi K_s)$
- Exclusion of the "wrong branch" of β
- Dramatic Improvement of V_{ub} from the HQE

ヘロン ヘアン ヘビン ヘビン

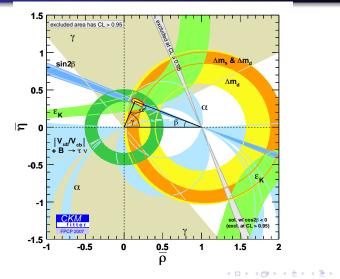
Unitarity Triangle 2006



- TEVATRON measurement of Δm_s
- Tighter constraints on α
- First constraints on γ from CPV in $B \rightarrow K\pi$

ヘロト 人間 ト ヘヨト ヘヨト

Unitarity traingle 2007



ъ

Unitarity Triangle Now



æ

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2

Conclusions on Tools and Phenomenoogy

- There are more phenomenological methods which have not been mentioned
 - QCD factorization for non-leptonic decays
 - HQE calculations of neutral meson mixings
 - Multibody decays
 - CP Violation measurements and phenomenology

・ロト ・ 理 ト ・ ヨ ト ・

- We are in the era of precision flavor physics
- Sensitivity to NEW PHYSICS?

Lecture 3 Flavor Beyond the Standard Model

Thomas Mannel

Theoretische Physik I U

Universität Siegen

School on "Physics in the Standard Model and Beyond" Tblisi, 28.09. - 30.09.2017

Contents

- Why Study Flavour Physics?
- Why do we believe in TeV Physics?
- Hints from the leptonic sector
- 2 Minimal Flavour Violation
 - Quarks
 - Leptons

3 Flavor Models

Guesses for Mass Matrices

.⊒...>

Why do we believe in TeV Physics? Hints from the leptonic sector

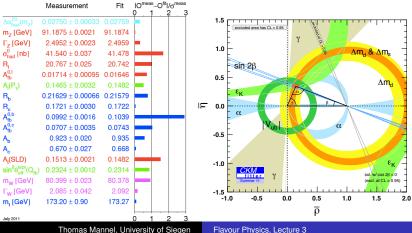
ヘロト 人間 とくほとくほとう

3

Why Study Flavour Physics?

Thomas Mannel, University of Siegen Flavour Physics, Lecture 3

- The Standard Model passed all tests up to the 100 GeV Scale:
- LEP: test of the gauge Structure
- Flavour factories: test of the Flavour Sector

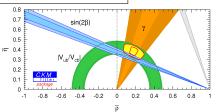


Thomas Mannel, University of Siegen

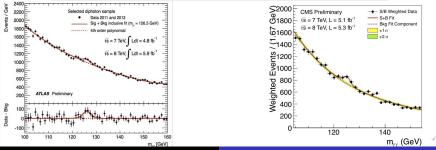
Why do we believe in TeV Physics? Hints from the leptonic sector

No significant deviation has been found (yet)!

... only a few "tensions" (= Observables off by 2σ or even less)



LHC will perform a direct test of the TeV Scale



Thomas Mannel, University of Siegen

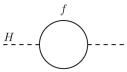
Flavour Physics, Lecture 3

Why do we believe in TeV Physics? Hints from the leptonic sector

ヘロン 人間 とくほ とくほ とう

Why do we believe in TeV Physics?

- Theoretical argument:
- Stabilization of the electroweak scale:



Quadratic Dependence on the cut-off

$$\Delta m_{H}^2 = -rac{\lambda_f^2}{8\pi^2}\Lambda_{
m UV}^2$$

• Drives the Higgs mass up to the UV cut off $\Lambda_{\rm UV} \sim \textit{M}_{\rm PL}$

Why do we believe in TeV Physics? Hints from the leptonic sector

・ 同 ト ・ 三 ト ・

• Stabilization at the TeV scale: e.g. through SUSY:

Only logarithmic divergence

$$\Delta m_{H}^{2} = m_{\mathrm{soft}}^{2} \frac{\lambda}{16\pi^{2}} \ln\left(\frac{\Lambda_{\mathrm{UV}}}{m_{\mathrm{soft}}}\right)$$

*m*_{soft} ~ O(TeV): Splitting between particles and particles

ヘロト 人間 ト ヘヨト ヘヨト

- How strong are these arguments?
- Could there something be wrong with our understanding of
 - electroweak symmetry breaking?
 - scale and conformal invariance? (c.f. Lee Wick Model)
 - ...
- Does flavour tell us something about this? and what?

Why do we believe in TeV Physics? Hints from the leptonic sector

What can Flavour tell us?

- Effective field theory picture:
- Standard model (without right handed ν's) is the (dim-4) starting point.
- Any new physics manifests itself as higher dimensional operators:

$$\mathcal{L} = \mathcal{L}_{\dim 4}^{SM} + \mathcal{L}_{\dim 5} + \mathcal{L}_{\dim 6} + \cdots$$

 $\bullet \ \mathcal{L}_{dim\,n}$ are suppressed by large mass scales

$$\mathcal{L}_{\dim n} = \frac{1}{\Lambda^{n-4}} \sum_{i} C_n^{(i)} O_n^{(i)}$$

 $O_n^{(i)}$: Operators of dimension *n*, $SU(3)_C \times SU(2)_W \times U(1)_Y$ gauge invariant $C_n^{(i)}$: dimensionless couplings

Thomas Mannel, University of Siegen

Flavour Physics, Lecture 3

Why do we believe in TeV Physics? Hints from the leptonic sector

イロト イポト イヨト イヨト

Quark Flavour Physics

• For Quarks there is no contribution to $\mathcal{L}_{dim 5}$

• Some of the $O_i^{(n)}$ mediate $\Delta F = 2$ flavour transitions:

- $\Lambda \sim 1000$ TeV from Kaon mixing ($C_i = 1$)
- Λ ~ 1000 TeV from D mixing
- $\Lambda \sim 400$ TeV from B_d mixing
- $\Lambda \sim 70$ TeV from B_s mixing

イロト イポト イヨト イヨト

- "New physics" is around the corner??
- Are the flavour data a hint at a new physics scale well above the TeV scale?
- ... there are a few corners where O(1) flavour effects are still possible, c.f. Charm CPV
- Are there lessons from history?

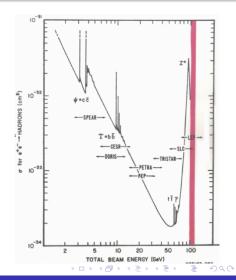
Why do we believe in TeV Physics? Hints from the leptonic sector

The Top Quark Story

- First indirect hint to a heavy top quark:
 B B Oscillation of ARGUS (1987)
- The world in 1987 ("PETRA Days"): The top was believed to be at ~ 25 GeV

... based on good theoretical arguments

 ARGUS could not have seen anything with a 25 GeV Top (within SM)



イロト イポト イヨト イヨト

- The consequences:
 - (-) No Toponium
 - (-) No Top quark discovery at LEP and SLC
 - (-) No "New Physcis $\mathcal{O}(30 \text{ GeV})$ " just around the corner
 - (+) CP violation in the *B* sector may become observable
 - (+) GIM is weak for bottom quarks
- This was actually good for Flavour Physics ...
- GIM suppressed decays as a probe for large scales
- From current data: TeV "New Physics" must have a flavour structure close to the one of the SM
- $\bullet \rightarrow$ Concept of "Minimal Flavour Violation" (MFV)

Why do we believe in TeV Physics? Hints from the leptonic sector

・ 同 ト ・ ヨ ト ・ ヨ ト

Hints from the leptonic sector

- $\mathcal{L}^{SM}_{dim 4}$ does not have a right handed neutrino
- ... thus no mixing for the leptons
- Discovery of Neutrino Osciallations: Nontrivial Flavour Physics of Leptons
- Important observation: The combination

$$N_{i} = (H^{c,\dagger}L_{i}), \quad L_{i} = \begin{pmatrix} \nu_{L,i} \\ \ell_{L,i} \end{pmatrix}, H^{c} = (i\tau^{2})H^{*}, H = \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix}$$

has no SM Quantum numbers

Why do we believe in TeV Physics? Hints from the leptonic sector

イロト イポト イヨト イヨト

 This allows for a Unique dim -5 Operator: Generates Majorana masses for the ν's

$$\mathcal{L}_{\mathrm{dim}\,5} = rac{1}{\Lambda_{\mathrm{LNV}}} \sum_{ij} C_5^{ij} (\bar{L}_j H^c)^c (H^{c,\dagger} L_i)$$

- Generates a mixing matrix for the leptons (PMNS Matrix), analogous to the CKM Matrix
- This term is Lepton Number Violating, related to the scale $\Lambda_{\rm LNV}$
- Small Neutrino masses: Λ_{LNV} must be high, almost as big as the GUT scale?
- Hopefully Λ_{QFV} and Λ_{LFV} is not that high!

Minimal Flavour Violation

- Flavour Violation of TeV "new physics" must be very close to one of the Standard Model
- Concept of "minimal flavour violation": All Flavour Violation (and CP violation) is CKM like (D'Ambrosio et al. '02, Ciuchini et al. '98, Buras et al. '00)
- More precise definition D'Ambrosio et al., hep-ph/0207036
- Leptonic Sector has also been considered as well Grinstein et al., hep-ph/0507001, hep-ph/0601111
- Standard Model is Minimally Flavour Violating per definition

ヘロト 人間 ト ヘヨト ヘヨト

- Most of the commonly used new physics models are constructed to solve any others but the flavor problems!
- .. but we hope to see something at LHC!
- So it has to be MFV!

ヘロン 人間 とくほ とくほ とう

3

Quarks Leptons

Flavour Symmetry: Quarks

• Largest Quark Flavour Symmetry commuting with the Gauge Group of the Standard Model

 $G_F = SU(3)_{Q_L} imes SU(3)_{U_R} imes SU(3)_{D_R}$

with

$$Q_L = \left(egin{array}{c} U_L \ D_L \end{array}
ight) \sim (\mathbf{3},\mathbf{1},\mathbf{1}) \quad U_R \sim (\mathbf{1},\mathbf{3},\mathbf{1}) \quad D_R \sim (\mathbf{1},\mathbf{1},\mathbf{3})$$

• G_F is explicitely broken by the Yukawa couplings

$$\mathcal{L}_{ ext{Yuk}} = ar{m{Q}}_L m{H} m{Y}_{m{D}} m{D}_R + ar{m{Q}}_L oldsymbol{\widetilde{H}} m{Y}_{m{U}} m{U}_R$$

ヘロト 人間 とくほとく ほとう

Quarks Leptons

• Diagonalization of the Yukawa Couplings

$$Y_D^{ ext{diag}} = V_{DL}^{\dagger} Y_D V_{DR}$$
 $Y_U^{ ext{diag}} = V_{UL}^{\dagger} Y_U V_{UR}$

- Leads after Spontaneous Symmetry Breaking to diagonal Mass Matrices for the Quarks
- Note that $V_{\textit{UR}} \in \textit{SU}(3)_{\textit{U}_{\textit{R}}}$ and $V_{\textit{DR}} \in \textit{SU}(3)_{\textit{DR}}$
- ... but both V_{UL} and V_{DL} should be $\in SU(3)_{Q_L}$
- this leads to a relative and observable mismatch and

$$V_{
m CKM} = V_{U_L}^\dagger V_{D_L}$$

• Using mass eigenstates, *V*_{CKM} appears as the matrix of charged current couplings.

・ロット (雪) () () () ()

Quarks Leptons

Spurions

- Trick to parametrize explicit symmetry breaking: Introduce "Spurions"
- Spurion: Field with a well defined transformation under the symmetry to be explicitly broken.
- Write all terms that are allowed by the symmetry with a finite number of insertions of the spurion field(s)
- "Freeze" the spurion field(s) to a nonzero value:
 "vacuum expectation value"
- Explicit Symmetry breaking = Spontaneous Symmetry Breaking without the Higgs degrees of freedom
- Small symmetry breaking: Power counting for the spurion insertions is needed.

Yukawa Couplings as Spurions

 Interpret the Yukawa couplings as spurion fields transforming as

 $Y_U \sim (3, \bar{3}, 1)$ $Y_U \sim (3, 1, \bar{3})$

- In this way the Yukawa terms become formally invariant under G_F
- "Freezing" the Yukawa couplings to the observed values breaks *G_F* explicitely.
- Minimal Flavour Violation: The two spurions Y_U and Y_D are the only sources of flavour violation.

・ロト ・同ト ・ヨト ・ヨト

Example $B \rightarrow X_s \gamma$ in MFV

- The $b \rightarrow s\gamma$ decay is a $D_R \rightarrow D_L$ transition.
- $\bar{Q}_L D_R$ is not invariant under G_F
- $\bar{Q}_L Y_D D_R \rightarrow \bar{D}_L m_d^{\text{diag}} D_R$ is flavour diagonal.
- $\bar{Q}_L Y_U Y_U^{\dagger} Y_D D_R \rightarrow \bar{D}_L V_{CKM}^{\dagger} (m_u^{diag})^2 V_{CKM} m_d^{diag} D_R$ minimal number of spurions for a flavour transition.
- Leading term in $b \rightarrow s\gamma$: $\bar{s}_L V_{ts}^* V_{tb} m_t^2 m_b b_R$
- Right handed helicities suppressed by a power of the quark mass
- FCNC require at least two CKM matrix elements, at least one of which is off diagonal
- GIM: no FCNC's in case of degenerate quark masses

Quarks Leptons

Flavour Symmetry: Leptons

• "Minimal field content" (no right handed neutrino)

$$E_L = \left(egin{array}{c}
u_L \\ e_L \end{array}
ight) \quad E_R = e_R$$

• Smaller flavour group for the leptons

$$ilde{G}_{F}=SU(3)_{E_{L}} imes SU(3)_{E_{R}}$$

- Transformations under \tilde{G}_F : $E_L \sim (3,1)$ and $E_R \sim (1,3)$
- Yukawa term for the leptons

$$L_{\rm Yuk} = \bar{E}_L H \underline{Y}_E E_R$$

 Y_E can be diagonalized by a G
_F transformation No flavour mixing for leptons !

Quarks Leptons

Lepton Flavour Violation: Higher Dimensional Operators

• Dim-5 operator leading to a ν Majorana Mass Term

$$\begin{aligned} \mathcal{L}_{\mathrm{Maj}} &= \frac{1}{2\Lambda_{\mathrm{LN}}} \left(N^{T} g N \right) \\ \text{with} \quad N &= \left(T_{3}^{(R)} + \frac{1}{2} \right) H^{\dagger} L \\ \text{and} \quad H &= \frac{1}{\sqrt{2}} \left(\begin{array}{cc} \nu + h_{0} + i\chi_{0} & \sqrt{2}\phi_{+} \\ -\sqrt{2}\phi_{-} & \nu + h_{0} - i\chi_{0} \end{array} \right) \end{aligned}$$

- Λ_{LN} : Scale of lepton number violation
- g: New Spurion field transforming as $(\overline{6}, 1)$ under \tilde{G}_F
- Y_E , g can (in general) not be diagonal simultaneously

▶ < ≣ ▶ ...

Quarks Leptons

New Physics in MFV: Quarks

- Generic point of view: Consider the Standard model as an effective theory, valid at the electroweak scale
- "New Physics" enters below *M_W* through power suppressed operators with dimensions ≥ 6
- Assume that Y_U , Y_D (and Y_E) are still the only spurions explicitly breaking flavour
- The flavour transitions of the new-physics contributions are still suppressed by the same CKM factors and masses as in the Standard Model

イロト 不得 とくほ とくほとう

• Focus first on quarks ...

Quarks Leptons

Power Counting and Wolfenstein Parametrization

- $\bullet\,$ Power Counting \sim "small" symmetry breaking
- Implemented by the Wolfenstein parametrization

$$V_{\rm CKM} \sim \left(egin{array}{ccc} 1 & \lambda & \lambda^3 \ \lambda & 1 & \lambda^2 \ \lambda^3 & \lambda^2 & 1 \end{array}
ight) ~~\lambda \sim 0.2$$

- Quark Masses (except top) are small compared to the electroweak scale
- Additional spurion insertions yields more suppression (except for $t \rightarrow b$ transitions, fllavour diagonal)
- Consider only minimal number of spurion insertions
 - $\bullet~$ Up to four insertions for right \rightarrow right transitions

Quarks Leptons

Effective Field Theory Picture of New Physics

• List the various quark transitions:

	U_L	U _R	D_L	D _R
\bar{U}_L	$V_{u_L}^{\dagger} Y_D Y_D^{\dagger} V_{u_{\underline{L}}}$	$V_{u_L}^{\dagger} Y_D Y_D^{\dagger} Y_U V_{u_R}$	$V_{u_L}^{\dagger} V_{d_L}$	$V_{u_L}^{\dagger} Y_D V_{d_R}$
	$=V_{\rm CKM}\hat{m}_D^2 V_{\rm CKM}^{\dagger}$	$=V_{ m CKM}\hat{m}_D^2V_{ m CKM}^\dagger\hat{m}_U$	$= V_{\rm CKM}$	$= V_{\rm CKM} \hat{m}_D V_{\rm CKM}^{\dagger}$
\bar{U}_R	h.c.	$V_{u_B}^{\dagger} Y_{II}^{\dagger} Y_D Y_D^{\dagger} Y_U V_{u_B}$	$V_{u_R}^{\dagger} Y_U^{\dagger} V_{d_L}$	$V_{u_R}^{\dagger} Y_U^{\dagger} Y_D V_{d_R}$
		$= \hat{m}_U V_{\rm CKM} \hat{m}_D^2 V_{\rm CKM}^{\dagger} \hat{m}_U$	$= \hat{m}_U V_{\rm CKM}$	$= \hat{m}_U V_{\rm CKM} \hat{m}_D V_{\rm CKM}^{\dagger}$
\bar{D}_L	h.c.	h.c.	$V_{d_L}^{\dagger} Y_U Y_U^{\dagger} V_{d_L}$	$V_{d_L}^{\dagger} Y_U Y_U^{\dagger} Y_D V_{d_R}$
			$=V_{\rm CKM}^{\dagger}\hat{m}_U^2 V_{\rm CKM}$	$=V_{\rm CKM}^{\dagger}\hat{m}_U^2 V_{\rm CKM}\hat{m}_D$
Ē _R	h.c.	h.c.	h.c.	$V_{d_D}^{\dagger} Y_D^{\dagger} Y_U Y_U^{\dagger} Y_D V_{d_B}$
				$= \hat{m}_D V_{\rm CKM}^{\dagger} \hat{m}_U^2 V_{\rm CKM} \hat{m}_D$

• Loops may change the number of insertions: Suppressed by powers of Wolfenstein λ

Quarks Leptons

New Physics in MFV: Leptons

- Majorana term is a "new physics" contribution
- Distinguish between the scale of lepton flavour violation and lepton number violation
- For dim-6 operators: Possible Spurion combinations

 $g^{\dagger} imes g\sim ar{6} imes 6=1+8+27$

- Bilinears (e.g. τ → μγ) are governed by Δ = (g[†] × g)₈ → predicts e.g. relations between τ → μγ and τ → eγ
- Four fermion operators for e.g. $\tau \rightarrow \mu \mu \mu$ can have a contribution of the 27-plet

イロト 不得 とくほ とくほ とうほ

• Even in MFV no relation between

 $\tau \rightarrow \boldsymbol{e}\gamma \text{ and } \tau \rightarrow \boldsymbol{e}\mu\mu$

Guesses for Mass Matrices

Flavor Models

Top-down instead of bottom-up

- How to get an Idea about the mass matrices:
 - Guess some matrices with as few parameters as possible:

"Textures" as many zeros as possible

 Use some symmetry to obtain (at least qualitatively) some insight into mass matrices
 e.g. a simple horizontal U(1)

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

• ", or are the parameters "just so"?

A B > 4
 B > 4
 B

Textures: Two Family Example

- Find two matrices \mathcal{M}_u and \mathcal{M}_d with less than five parameters
- \rightarrow Relation(s) between m_u , m_c , m_d , m_s and Θ_c Simplest guess: Diagonal \mathcal{M}_u and nondiagonal \mathcal{M}_d

$$\mathcal{M}_u = \left(egin{array}{cc} m_u & 0 \\ 0 & m_c \end{array}
ight) \qquad \mathcal{M}_d = \left(egin{array}{cc} 0 & a \\ a & 2b \end{array}
ight)$$

- $\bullet\,$ Matrix diagonalizing \mathcal{M}_d is already the CKM Matrix
- Four Parameters \rightarrow One relation !

• Model predicts $\tan \Theta_C = \sqrt{\frac{m_d}{m_s}}$ (which is not bad!)

イロト 不得 とくほ とくほとう

- Has been done also for three families
- Guesses often supported by assuming (discrete) symemtries
- Typical structure: $\tan \theta_{ij} \sim \sqrt{m_i/m_j}$
- Remains Guesswork, until some deeper understanding of the guesses emerges.

Flavour Invariants

- Precise form of the mass matrices depend on the basis choice in Flavor space
- Basis independent statements only as a relation between Invariants
- For the two-family case these are e.g.

$$\begin{split} I_1 &= \operatorname{Tr}(Y_U Y_U^{\dagger}) \quad I_2 &= \operatorname{Tr}(Y_D Y_D^{\dagger}) \\ I_3 &= \operatorname{Tr}(Y_U Y_U^{\dagger} Y_U Y_U^{\dagger}) \quad I_4 &= \operatorname{Tr}(Y_D Y_D^{\dagger} Y_D Y_D^{\dagger}) \\ I_5 &= \operatorname{Tr}(Y_D Y_D^{\dagger} Y_U Y_U^{\dagger}) \end{split}$$

ヘロト ヘアト ヘヨト ヘ

 There are as many independent Invariants as there are physical parameters

ヘロト 人間 とくほとくほとう

Conclusion on New Physics in Flavor

- Unlike in the gauge sector we do not have a guiding principle to construct a theory of flavor
- CKM as well as MFV is just a parametrization of ignorance
- No new physics model explainig flavor
- ... maybe wit the exception of some "Frogatt Nielsen like" models
- can the parameters be "just so"?

Guesses for Mass Matrices

Overall Conclusions

- BaBar and Belle established the CKM picture of flavor
- LHCb is running, squeezing the SM further:
 - $B_{s} \rightarrow \mu \mu$
 - $B \to K^* \ell \ell$
 - V_{ub} measurements
- Belle 2 is upcoming:
 - Factor of 10 or 20 more data
 - Significant increase in precision
 - Look for rare and impossible decays
- At the end:

Possible a clear indirect hint to BSM physics?

• But how can we finally tell, if the scales are really very high?