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 The landscape of computational nuclear physics
Ultimate goal: predictive & systematically improvable QCD-based theory for nuclei/!
                       nuclear reactions/nuclear matter with quantified uncertainties 

Open questions:
— quantitative understanding of Nd scattering and light nuclei (3NF problem)!
— systematic overbinding of heavier nuclei (A ~ 40): too soft interactions?!
— is it possible to describe heavy nuclei without additional fine tuning?!
— nuclei on the edge of stability, exotics (e.g. tetra-neutron?)!
— interface with lattice QCD

  The method: chiral EFT for nuclear forces/currents + ab-initio „few“-body approaches 

Strategies:
— high orders, no fine tuning in LECs, no tuning to heavy nuclei, error analysis

EE, Krebs, Meißner; Low Energy Nuclear Physics International Collaboration (LENPIC)

— allow for some fine tuning in LECs and fit to heavy nuclei, error analysis

— interactions optimized for specific few-body methods, e.g. local forces & QMC
The Oak Ridge group: Ekström, Carlsson, Wendt, Papenbrock, Hagen, … 

[Faddeev-Yakubovski, No Core Shell Model, Quantum Monte Carlo, Lorentz Integral 
Transform, Coupled Cluster, Lattice, self-consistent Gorkov-Green’s functions,…]

Gezerlis, Tews, EE, Gandolfi, Hebeler, Nogga, Schwenk, Piarulli, Girlanda, Schiavilla, Navarro Perez, …



 Chiral Effective Field Theory
Chiral Perturbation Theory: expansion of the scattering amplitude in powers of Q, 

Q = 
momenta of external particles or Mπ  ~ 140 MeV

breakdown scale Λb

Weinberg, Gasser, Leutwyler, Meißner, ... 

Write down Leff [π, N, …], !
identify relevant diagrams at a given order,!
do Feynman calculus, !
fit LECs to exp data, !
make predictions…

Chiral EFT for nuclear systems: expansion for nuclear forces + resummation (Schrödinger eq.)
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Weinberg, van Kolck, Kaiser, EE, Glöckle, Meißner, Entem, Machleidt, Krebs, ... 

unified approach for ππ, πN, NN
systematically improvable

consistent many-body forces and currents
error estimations

nonperturbative treatment of chiral nuclear forces in the Schrödinger equation requires the 
introduction of a finite cutoff [alternatively, use semi-relativistic approach, EE, Gegelia, et al. ’12…’15]

derivation of nuclear forces is not just calculation of Feynman diagrams; have to deal with 
non-uniqueness and renormalizability… [more details in the lectures]

Notice:
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Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.

4
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4

being investigated…have been worked out 



 Chiral expansion of the nuclear forcesNuclear χEFT in the Precision Era Evgeny Epelbaum

Zwei-Nukleon-Kraft

Führender Beitrag 

Korrektur 1. Ordnung

Korrektur 2. Ordnung

Korrektur 3. Ordnung

Drei-Nukleon-Kraft Vier-Nukleon-KraftTwo-nucleon force Three-nucleon force Four-nucleon force

LO (Q0)   

NLO (Q2)

N2LO (Q3)

N3LO (Q4)

N4LO (Q5)

Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.

4

being investigated…have been worked out 

Second-generation chiral NN potentials up to N4LO (partially N5LO)

— semilocal (local r-space regularization of OPEP & TPEP, Gaussian cutoff for contacts)
Epelbaum, Krebs, Meißner, EPJA 51 (2015) 53;  PRL 115 (2015) 122301

— nonlocal (spectral function regularization for TPEP + nonlocal regulator)
Entem, Machleidt, Nosyk, PRC 96 (2017) 024004
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Figure 2: The long-range part of the nuclear force is completely predicted by the chiral symmetry
of QCD and experimental information on the pion-nucleon system.

part of the interaction and thus maintains the analytic structure of the amplitude in the low-energy
domain. This feature is in contrast with the non-local momentum-space regulator employed in the
first-generation NN potentials of Refs. [47, 48] of the type

V (p⃗, p⃗ ′)→V reg(p⃗, p⃗ ′) =V (p⃗, p⃗ ′)exp
(

−
p2n+ p′2n

Λ2n

)

, n= 2,3 , (2.7)

where p⃗, p⃗ ′ are the initial and final momenta of the nucleons in the center of mass system (CMS),
which distorts the long-range part of the interaction. Another advantage of the regulator in Eq. (2.5)
is that it cuts off precisely the undesired short-range components of the pion exchange contributions
which cannot be meaningfully predicted in chiral EFT instead of their large-momentum parts as
does the non-local regulator in Eq. (2.7). This makes the additional spectral-function regularization
(SFR) [75] of the two-pion exchange components, which was used e.g. in Refs. [48, 76] to tame
the unphysically strong attraction at short distances at N2LO [41], obsolete. This is a particularly
welcome feature in view of the ongoing and upcoming 3NF studies, in which the implementation
of the SFR would be rather non-trivial. The insensitivity of the calculated NN observables to the
value of the exponent in Eq. (2.5) is demonstrated in [18]. For contact interactions, we used in
Refs. [18, 19] a non-local Gaussian regulator in momentum space with the cutoff set to Λ= 2/R.

2.3 Determination of the LECs

I am now in the position to specify the employed values of the various LECs and begin with
the long-range part of the potential due to exchange of pion(s). Here, the framework of chiral
EFT shows its full power by allowing one to predict the long-range part of the nuclear force in a
parameter-free way using the available experimental information on the pion-nucleon system and
exploiting the constraints due to the chiral symmetry of QCD as visualized schematically in Fig. 2.
At orders N2LO, N3LO and N4LO, one needs to specify the values of the order-Q2, order-Q3 and
order-Q4 πN LECs ci, di and ei, respectively. At N2LO and N3LO, we used in [18] the values
of c1 = −0.81, c2 = 3.28, c3 = −4.69, c4 = 3.40, d̄1 + d̄2 = 3.06, d̄3 = −3.27, d̄5 = 0.45 and
d̄14 − d̄15 = −5.65 from the order-Q3 fits to πN data in the physical region [77] and inside the
Mandelstam triangle [78]. Further, the LEC d18 is adjusted to reproduce the observed value of the
Goldberger-Treiman discrepancy. Here and in the following, the values of the LECs are given in
units of GeV−n. The bars over the LECs indicate that I am using the convention of Ref. [77] by
setting the dimensional regularization scale equal to the pion mass. At N4LO, we employ the values
from our order-Q4 fit to Karlsruhe-Helsinki partial-wave analysis of πN scattering [55], namely:
c1 =−0.75, c2 = 3.49, c3 =−4.77, c4 = 3.34, d̄1+ d̄2 = 6.21, d̄3 =−6.83, d̄5 = 0.78, d̄14− d̄15 =
−12.02, ē14 = 1.52 and ē17 =−0.37. These values are in a reasonable agreement with the ones of

8

Long-range nuclear forces are completely determined by the  
chiral symmetry of QCD + experimental information on πN scattering

predicted in a parameter-free way
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where p⃗, p⃗ ′ are the initial and final momenta of the nucleons in the center of mass system (CMS),
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Long-range nuclear forces are completely determined by the  
chiral symmetry of QCD + experimental information on πN scattering

predicted in a parameter-free way

Ordonez et al.;  Kaiser;  EE, Krebs, Meißner; Entem, Machleidt; …
The long-range NN force up to N4LO [Q5] 

3π-exchange potential is considerably 
weaker than the 2π-one and is 

described by contacts

order-Q2 πN 
amplitude

πN amplitude up to!
 order Q4

πN amplitude up 
to order-Q3

The TPE potential can be derived by taking the phase-space integral of the πN amplitudes 
computed in ChPT (Lorentz-transformed to the proper kinematics…) Kaiser ’00



 Pion-nucleon scattering
Chiral expansion of the pion-nucleon scattering amplitude up to Q4
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Q4 �0.75 3.49 �4.77 3.34 6.21 �6.83 0.78 �12.02 1.52 �10.41 6.08 �0.37 3.26

⇥3 + Q4 �0.95 1.90 �1.78 1.50 2.40 �3.87 1.21 �5.25 �0.24 �6.35 2.34 �0.39 2.81

�-contribution 0 2.81 �2.81 1.40 2.39 �2.39 0 �4.77 1.87 �4.15 4.15 �0.17 1.32

�p
0(0) = 4.45µ�2 � 8.31µ�1 + 6.03µ0 + 3.22µ + . . . = 4.64 [10�4 fm4]

µ ⇥ M⇥/mN

c�2 = �c�3 = 2c�4 =
4h2

A

9(m� � mN)
⇤ 2.8GeV�1

1

� �i/�
n
⇥, �i = O(1)

Le� = L� + L�N

ci di ei

LEC N2LO fits ⌅ + ⇤ + ⌃

C̃res
1S0 �(0.12 . . . 0.16) �0.12

Cres
1S0 (1.16 . . . 1.37) 1.28

C̃res
3S1 �(0.13 . . . 0.16) �0.10

Cres
3S1 (0.42 . . . 0.72) 0.66

Cres
�1 �(0.36 . . . 0.47) �0.41

LEC Fit value Fit value

g1 1.37 ± 0.30 2.27 (fixed)

b3 [GeV�1] 1.76 ± 0.95 1.79 ± 1.23

b4 [GeV�1] 0.14 ± 0.39 �0.67 ± 0.54

b5 [GeV�1] 4.21 ± 0.47 5.10 ± 0.66

b6 [GeV�1] �2.11 ± 0.97 �2.30 ± 1.23

⇧2/dof 5.15 5.53

c1 c2 c3 c4 d̄1 + d̄2 d̄3 d̄5 d̄14 � d̄15 ē14 ē15 ē16 ē17 ē18
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FIG. 5: ⇡+p ! ⇡+p di↵erential cross section at T
⇡

= 43.3 MeV as a representative example of
the quality of our fits (carried out to all available data for T

⇡

< 100 MeV). In the upper panel,
the orange, pink and red (dotted, dashed and solid) bands refer to Q2, Q3 and Q4 results in the
covariant approach including theoretical uncertainties, respectively. In the lower panel the orange,
pink and red (dotted, dashed and solid) bands refer to Q2 + �1, Q3 + �1 and Q4 + �1 results in the
covariant approach including theoretical uncertainties, respectively. Experimental data of Ref. [63]
are taken from the GWU-SAID data base [61].
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π+p → π+p @ Tπ = 43.3 MeV

Q2

Q3

Q4

Siemens et al., PRC 94 (2016) 014620
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HB ChPT with and without Δ(1232) DOF
Fettes, Meißner ’98, ’00;  Krebs, Gasparyan, EE ’12

— comparison with the Karlsruhe-Helsinki (KH) and SAID (GWU) partial-wave analyses…
Covariant baryon ChPT using the IR framework
Becher, Leutwyler ’00; Hoferichter et al. ’10

Covariant baryon ChPT using the EOMS scheme
Alarcon, Camalich, Oller ’13;  Chen, Yao, Zheng’13

Covariant baryon ChPT using the EOMS scheme with explicit Δ(1232) DOF
Yao, Siemens, Bernard, EE, Gasparyan, Gegelia, Krebs, Meißner ’16;  Siemens, Bernard, EE, Gasparyan, Krebs, Meißner ’16,’17

— also without relying on PWA (i.e. applied to real data) and in combination with the!
    reaction πN ➝ ππN



 Pion-nucleon scattering
Pion-nucleon Roy-Steiner equations
Dietsche et al., JHEP 1206 (12) 043;  Hoferichter et al., Phys. Rept. 625 (16) 1

Integral equations in the form of dispersion 
relations which incorporate constraints from 
analyticity, unitarity & crossing symmetry

Input: S-,P-waves at high energy, inelasticities, !
D- & higher waves, scatt. lengths (had. atoms)

Output: reliable results for S-,P-waves with 
systematic uncertainties; subthreshold coef-
ficients, determination of the σ-term…

πN phase shifts from the RS analysis
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πN scattering: from ChPT to Roy–Steiner equations Bastian Kubis and Jacobo Ruiz de Elvira
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f 1+ and f 2+. We combine both effects by adding them in quadrature, leading to the results for the
imaginary parts plotted in Fig. 7.

For completeness we also show the results for the real parts, see Fig. 8. Apart from the S-wave
all partial waves are strongly dominated by the Born terms close to threshold, where they take a
large (but finite) value that would overshadow any structure in the remainder of the amplitude if
included in the plot. For this reason, the scale is cut off much earlier, focusing on the part of the
partial waves where the respective resonances occur. In general, we find that deviations from the
KH80 results are at a similar level as already observed for the imaginary parts, with error analysis
performed in the same way as in Fig. 7.
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f 1+ and f 2+. We combine both effects by adding them in quadrature, leading to the results for the
imaginary parts plotted in Fig. 7.

For completeness we also show the results for the real parts, see Fig. 8. Apart from the S-wave
all partial waves are strongly dominated by the Born terms close to threshold, where they take a
large (but finite) value that would overshadow any structure in the remainder of the amplitude if
included in the plot. For this reason, the scale is cut off much earlier, focusing on the part of the
partial waves where the respective resonances occur. In general, we find that deviations from the
KH80 results are at a similar level as already observed for the imaginary parts, with error analysis
performed in the same way as in Fig. 7.
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f 1+ and f 2+. We combine both effects by adding them in quadrature, leading to the results for the
imaginary parts plotted in Fig. 7.

For completeness we also show the results for the real parts, see Fig. 8. Apart from the S-wave
all partial waves are strongly dominated by the Born terms close to threshold, where they take a
large (but finite) value that would overshadow any structure in the remainder of the amplitude if
included in the plot. For this reason, the scale is cut off much earlier, focusing on the part of the
partial waves where the respective resonances occur. In general, we find that deviations from the
KH80 results are at a similar level as already observed for the imaginary parts, with error analysis
performed in the same way as in Fig. 7.
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Closer to the kinematics relevant for nuclear 
forces…

NN potential
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Relevant LECs (in GeV-n) extracted from πN scattering 

Determination of the low-energy constants

Energy bin LO NLO N2LO N3LO N4LO N4LO+

neutron-proton data

0 � 100 MeV 130.11 3.79 1.46 1.08 1.08 1.08

0 � 200 MeV 104.71 19.88 3.21 1.14 1.09 1.10

0 � 300 MeV 111.24 52.03 8.78 1.51 1.15 1.13

proton-proton data

0 � 100 MeV 2046.58 33.68 6.67 0.86 0.84 0.84

0 � 200 MeV 1649.58 115.60 81.11 1.95 (1.08) 0.97

0 � 300 MeV 1301.41 104.38 84.24 2.73 (1.28) 1.18

c1 c2 c3 c4 d̄1 + d̄2 d̄3 d̄5 d̄14 � d̄15 ē14 ē17

[Q4]HB,NN, GW PWA �1.13 3.69 �5.51 3.71 5.57 �5.35 0.02 �10.26 1.75 �0.58

[Q4]HB,NN, KH PWA �0.75 3.49 �4.77 3.34 6.21 �6.83 0.78 �12.02 1.52 �0.37

[Q4]HB,NN, Roy-Steiner �1.10 3.57 �5.54 4.17 6.18 �8.91 0.86 �12.18 1.18 �0.18

[Q4]covariant, data �0.82 3.56 �4.59 3.44 5.43 �4.58 �0.40 �9.94 �0.63 �0.90
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— some LECs show sizable correlations (especially c1 and c3)…
Notice:

— KH PWA and Roy-Steiner LECs lead to comparable results in the NN sector
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The short-range part of the nuclear force (contact interactions)
Organizational principle for contact terms according to NDA (Weinberg’s counting)
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FIG. 8: (Color online) Chiral expansion of the np phase shifts in comparison with the Nijmegen [49] (solid dots) and the GWU
[6] (open triangles) np partial wave analysis. Black dotted, orange dashed, green short-dashed-dotted, blue dashed-double-
dotted and violet long-dashed-dotted lines show the results at LO, NLO, N2LO, N3LO and N4LO, respectively, calculated
using the cuto↵ ⇤ = 450MeV. Only those partial waves are shown which involve contact interactions at N4LO.
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FIG. 9: (Color online) Chiral expansion of the np F-wave phase shifts in comparison with the Nijmegen [49] (solid dots) and
the GWU [6] (open triangles) np partial wave analysis. Black dotted, orange dashed, green short-dashed-dotted, blue dashed-
double-dotted, violet long-dashed-dotted and red solid lines show the results at LO, NLO, N2LO, N3LO, N4LO and N4LO+,
respectively, calculated using the cuto↵ ⇤ = 450MeV. Only those partial waves are shown which involve contact interactions
at N4LO.

and thus have to be re-fitted at every chiral order. As discussed in Ref. [60], the natural size of the LECs in the
spectroscopic notation can be estimated via

|C̃i| ⇠ 4⇡

F 2
⇡

, |Ci| ⇠ 4⇡

F 2
⇡⇤

2
b

, |Di| ⇠ 4⇡

F 2
⇡⇤

4
b

, |Ei| ⇠ 4⇡

F 2
⇡⇤

6
b

, (7.82)

Convergence of the chiral expansion for np phase shifts [Λ = 450 MeV]

Patrick Reihert et al., in preparation
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Figure 8: Predictions for the np differential cross section dσ/dΩ, the analyzing power Ay, the
rotation parameter R, the polarization-transfer parameters Dt , Rt and At and the spin-correlation
parameters Cnn, Ckp, Cpp, Ckk, Azx and Azz at Elab = 143MeV calculated up to N4LO based on the
cutoff of R = 0.9fm. Data for the cross section are at Elab = 142.8MeV and taken from [92] and
for the analyzing power from [93]. For remaining notation see Fig. 6.

Using Eqs. (3.3) and (3.4) and adopting Q = Mπ/Λb, our predictions for AS at N4LO is AS =
0.8844± 0.0002 fm−1/2 while the accuracy for η is beyond the quoted figures. For the rd and Q,
our results are incomplete as we do not include relativistic corrections and meson-exchange current
contributions. The estimated size of these corrections is consistent with the deviation between our
values and the empirical numbers, see [18] for an extended discussion.

4. Beyond the two-nucleon system

Having developed the new generation of NN potentials up to N4LO and the novel approach
to uncertainty quantification, which has been validated in the NN system, we are well prepared to
test nuclear chiral EFT in heavier systems and to systematically analyze the role of the 3NF, which
has been the subject of intense experimental research at FZ Jülich, GANIL, KVI, RIKEN, TUNL
and other laboratories. This is the main goal of the recently formed Low Energy Nuclear Physics
International Collaboration (LENPIC). The numerical implementation of the 3NF regularized in
the same way as the NN potentials of Refs. [18, 19] is currently in progress so that no results

16

NLO
N2LO
N3LO
N4LO



Energy bin N3LO Idaho 500/600 N4LO/N4LO+ CD Bonn 2000 Nijm II

neutron-proton data

0 � 100 MeV 1.17/1.35 1.08/1.08 1.08 1.08

0 � 200 MeV 1.17/1.33 1.09/1.10 1.07 1.07

0 � 300 MeV 1.24/1.38 1.15/1.13 1.09 1.11

proton-proton data

0 � 100 MeV 0.96/1.28 0.84/0.84 0.84 0.83

0 � 200 MeV 1.28/1.55 1.34/0.97 0.95 0.96

0 � 300 MeV 1.37/2.04 1.46/1.18 0.99 1.03

Elab bin LO NLO N2LO N3LO N4LO N4LO+

neutron-proton scattering data
0 � 100 73 2.2 1.2 1.08 1.08 1.07
0 � 200 62 5.4 1.8 1.09 1.08 1.06
0 � 300 75 14 4.4 1.99 1.18 1.10

proton-proton scattering data
0 � 100 2300 10 2.1 0.91 0.88 0.86
0 � 200 1780 91 33 2.00 1.42 0.95
0 � 300 1380 89 38 3.42 1.67 0.99
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Description of NN scattering data [Λ = 450 MeV]

+ 4 LEC
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2 LECs + 7 + 1 IB LECs + 12 LECs + 1 IB LEC

Description of NN scattering data [Λ = 450 MeV]

+ 4 LEC

!
!
          With four parameters I can fit an!
          elephant, and with five I can!
          make him wiggle his trunk.

John von Neumann
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2 LECs + 7 + 1 IB LECs + 12 LECs + 1 IB LEC

Description of NN scattering data [Λ = 450 MeV]

+ 4 LEC

no new !
LECs

no new !
LECs

Clear evidence of the (parameter-free) chiral 2π-exchange! 

!
!
          With four parameters I can fit an!
          elephant, and with five I can!
          make him wiggle his trunk.

John von Neumann



 
χ2 per datum for the description of the np and pp scattering data

Elab bin CD Bonn(43) Nijm I(41) Nijm II(47) Reid93(50) N4LO+
(27+1), this work

neutron-proton scattering data

0 � 100 1.08 1.07 1.08 1.09 1.07
0 � 200 1.08 1.07 1.07 1.09 1.06
0 � 300 1.09 1.09 1.10 1.11 1.10

proton-proton scattering data

0 � 100 0.88 0.87 0.87 0.85 0.86
0 � 200 0.98 0.99 1.00 0.99 0.95
0 � 300 1.01 1.05 1.06 1.04 0.99
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4

High-precision NN potentials versus chiral N4LO+ [Λ = 450 MeV]

for the first time, chiral NN potential reaches the precision and even outperforms 
the most sophisticated phenomenological potentials! 

at the same time, the number of adjustable parameters is reduced by ~ 40%!
        yet another evidence of the importance of the 2π-exchange! 

our results can be regarded as a new PWA and provide quantification of statistical 
and systematic uncertainties in the extracted phase shifts. 



 
Beyond the 2N system
LENPIC Collaboration

LENPIC: Low Energy Nuclear Physics International Collaboration
LENPIC

Goal: precision tests of chiral nuclear forces & currents in light nuclei

Strategy: go to high orders, do not compromise the πN LECs, no fine!
                 tuning to heavy nuclei, careful error analysis



  Few-N results without 3NF
Is there evidence for missing 3N forces effects? Yes!

LENPIC: Low Energy Nuclear Physics International Collaboration
LENPIC

np total cross section [R = 0.9 fm]

Nuclear χEFT in the Precision Era Evgeny Epelbaum
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Figure 7: Chiral expansion of the np total cross section at different energies based on R = 0.9 fm
in comparison with experimental data of Ref. [90]. The horizontal band shows the result of the
NPWA.

Table 2: Deuteron binding energy Bd (in MeV), asymptotic S state normalization AS (in fm−1/2),
asymptotic D/S state ratio η , radius rd (in fm), quadrupole moment Q (in fm2) and the D-state
probability PD (in %) based on the cutoff R= 0.9 fm. Notice that rd and Q are calculated without
including exchange current contributions and relativistic corrections. References to experimental
data/empirical values can be found in Ref. [18].

LO NLO N2LO N3LO N4LO Empirical
Bd 2.0235 2.1987 2.2311 2.2246⋆ 2.2246⋆ 2.224575(9)
AS 0.8333 0.8772 0.8865 0.8845 0.8844 0.8846(9)
η 0.0212 0.0256 0.0256 0.0255 0.0255 0.0256(4)
rd 1.990 1.968 1.966 1.972 1.972 1.97535(85)
Q 0.230 0.273 0.270 0.271 0.271 0.2859(3)
PD 2.54 4.73 4.50 4.19 4.29
⋆The deuteron binding energy has been taken as input in the fit.

NPWA and confirm a good convergence of the chiral expansion. More results for NN observables
can be found in Refs. [18, 19].

As already advertised, the novel approach to uncertainty quantification is not restricted to a
particular choice of the regulator. Carrying out the error analysis for calculations based on different
choices of R thus provides a useful consistency check of the method. In Fig. 9, we show the results
for the total cross section at all orders starting from NLO and for all considered cutoff choices.
Within the quoted errors, the predictions based on different values of R agree with each other and
the NPWA for all orders in the chiral expansion. The accuracy of the predicted results for the cross
section shows the same dependence on the cutoff as the quality of the fits discussed in section 2.4.

In Table 2, we list our results for the deuteron properties. At the considered accuracy level,
the chiral expansion is nearly converged already at N3LO except for PD which is not an observable
quantity.8 The predicted values for AS and η are in excellent agreement with the empirical numbers.

8PD = 5%±1% has been used as an additional “data” point in the fits at N3LO and N4LO in order to stabilize the
results, see Ref. [18] for more detail.
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Discrepancies between theory and data well outside the range of quantified uncertainties
clear evidence for missing 3NF effects ➙

Magnitude of the required 3NF contributions matches well the estimated size of N2LO terms
consistent with the chiral power counting ➙
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  Few-N results without 3NF

LENPIC: Low Energy Nuclear Physics International Collaboration
LENPIC

LENPIC Collaboration (Maris et al.), EPJ Web of Conf. 113 (2016) 04015
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Figure 2. Results for 4He: gs
energy and point-proton rms
radius (rp) at different chiral
order, with both theoretical
(chiral) uncertainty estimates
(blue) and many-body numerical
uncertainties (red), with
experimental values in green.
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Figure 3. Results for 6Li: gs energy, excitation energies of the two lowest excited states, and gs magnetic moment
at different chiral order.

weakens. We also see a dramatic difference in convergence rate: the strongly bound nucleus 4He
converges more rapidly than the weakly bound nucleus 6Li; furthermore, up to N2LO convergence is
rapid, but at N3LO and N4LO our results for 6Li are far from being converged, even at Nmax = 18.

In order to improve the convergence of the many-body calculations we apply the Similarity Renor-
malization Group (SRG) at the three-body level to ’soften’ the chiral NN interaction [8–11]. Indeed,
at SRG evolution values of α = 0.04 fm4 and α = 0.08 fm4 we do find rapid convergence of the
many-body calculation, and, including induced 3N interactions, only very weak dependence on
the SRG evolution. Up to N2LO, the SRG evolution produces results for 6Li to within a fraction
of a percent of those without SRG; at N3LO and N4LO the results with the SRG evolution are
significantly better converged than, and within the extrapolation uncertainties of, the uncon-
verged results without SRG evolution. Finally, as a cross-check we also confirm that, to within
our estimated numerical accuracy, our results for 4He agree with results obtained in the Faddeev–
Yakubovsky framework [6].

In figures 2 and 3 we summarize our results at different orders in the chiral expansion. In addition
to the estimated numerical uncertainties in the many-body calculation, we also display the estimated
theoretical chiral uncertainties following [3–6]. The chiral uncertainties decrease with increasing chi-
ral order (as they should). However, the many-body numerical uncertainty increases with increasing
chiral order, and at N3LO and N4LO our results for 6Li are dominated by the many-body uncertainties.
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Calculations performed 
by Pieter Maris in the 
framework of the!
No-Core Shell Model
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3NF structure functions at large distance are!
model-independent and parameter-free predictions!
based on χ symmetry of QCD + exp. information on πN system
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Nuclear lattice simulations: !
A novel ab initio approach to nuclei and nuclear reactions
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Lattice EFT for medium-mass nuclei
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Ab initio calculation of the spectrum and structure of 16O
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Symmetry-sign extrapolations
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Ab initio alpha–alpha scattering
Serdar Elhatisari1, Dean Lee2, Gautam Rupak3, Evgeny Epelbaum4, Hermann Krebs4, Timo A. Lähde5, Thomas Luu1,5 &  
Ulf-G. Meißner1,5,6

Processes such as the scattering of alpha particles (4He), the 
triple-alpha reaction, and alpha capture play a major role in 
stellar nucleosynthesis. In particular, alpha capture on carbon 
determines the ratio of carbon to oxygen during helium burning, 
and affects subsequent carbon, neon, oxygen, and silicon burning 
stages. It also substantially affects models of thermonuclear type Ia 
supernovae, owing to carbon detonation in accreting carbon–oxygen 
white-dwarf stars1–3. In these reactions, the accurate calculation 
of the elastic scattering of alpha particles and alpha-like nuclei—
nuclei with even and equal numbers of protons and neutrons—is 
important for understanding background and resonant scattering 
contributions. First-principles calculations of processes involving 
alpha particles and alpha-like nuclei have so far been impractical, 
owing to the exponential growth of the number of computational 
operations with the number of particles. Here we describe an  
ab initio calculation of alpha–alpha scattering that uses lattice Monte 
Carlo simulations. We use lattice effective field theory to describe 
the low-energy interactions of protons and neutrons, and apply a 
technique called the ‘adiabatic projection method’ to reduce the 
eight-body system to a two-cluster system. We take advantage of 
the computational efficiency and the more favourable scaling with 
system size of auxiliary-field Monte Carlo simulations to compute 
an ab initio effective Hamiltonian for the two clusters. We find 
promising agreement between lattice results and experimental phase 
shifts for s-wave and d-wave scattering. The approximately quadratic 
scaling of computational operations with particle number suggests 
that it should be possible to compute alpha scattering and capture 
on carbon and oxygen in the near future. The methods described 
here can be applied to ultracold atomic few-body systems as well 
as to hadronic systems using lattice quantum chromodynamics to 
describe the interactions of quarks and gluons.

In recent years there has been much progress in ab initio scattering 
and reactions involving light4–6 and medium-mass7,8 nuclei. However, 
for most numerical methods, the number of computational operations 
increases markedly when the projectile nucleus has more than a few 
nucleons. Therefore it remains a challenge to study many important 
processes that are relevant for stellar astrophysics such as alpha–alpha 
scattering, alpha–carbon scattering and radiative capture, as well as car-
bon and oxygen burning in massive star evolution and thermo nuclear 
supernovae9.

We describe lattice calculations for which the number of compu-
tational (floating point) operations for the A1-body +  A2-body prob-
lem scales as roughly (A1 +  A2)2; this scaling is mild enough to make 
first-principles calculations of alpha processes possible. We use the 
formalism of lattice effective field theory10–12 (EFT) and a technique 
for elastic scattering and inelastic reactions on the lattice called the 
‘adiabatic projection method’13–17.

Chiral EFT is a framework for organizing the low-energy nuclear 
interactions of protons and neutrons according to powers of momenta 
and factors of the mass of the pion; see ref. 18 for a review of the theory. 

The important interactions are at leading order (LO), the next largest 
contributions are at next-to-leading order (NLO), and then follows 
next-to-next-to-leading order (NNLO). We present an ab initio calcula-
tion of  4He +  4He scattering going up to NNLO terms in chiral EFT. We 
find promising agreement with experimental data19–22 for the s-wave 
and d-wave phase shifts; improvements can be achieved by including 
higher-order terms in the chiral expansion.

The adiabatic projection method addresses the cluster–cluster scat-
tering problem on the lattice by using Euclidean time projection to 
construct an effective two-cluster Hamiltonian. By Euclidean time pro-
jection we mean multiplication by exp(−Hτ), where H is the underly-
ing microscopic Hamiltonian and τ is Euclidean time. We use natural 
units, where the reduced Planck constant ћ and the speed of light c 
are set to one. Even though the actual lattice calculations use discrete 
time steps, we refer to the continuous Euclidean time parameter τ  for 
notational simplicity.

Our starting point is a three-dimensional spatial lattice that is peri-
odic with length L in each dimension. We take a set of initial two-alpha 
states | 〉R , labelled by their separation vector R, as illustrated in Fig. 1. 
We take the initial alpha wavefunctions to be Gaussian wave packets, 
so that at large separations they factorize as a tensor product of two 
individual alpha clusters:

∑| 〉 = | + 〉 ⊗ | 〉R r R r
r

1 2

where r is a summation variable corresponding to the location of the 
second cluster. The summation over r produces two-alpha states with 
total momentum equal to zero. Rather than dealing with a large array 
of three-dimensional vectors R, we project onto spherical harmonics 
ℓ ℓY , z

 with angular momentum quantum numbers ℓ ℓ, z:

∑ δ| 〉 = ( ′) | ′〉
′

| |′
ℓ ℓ

ℓ ℓ RR Y R
R

RR
,

, ,
z

z

where δ is the Kronecker delta function. We only consider cases where 
R =  | R|  <  L/2.

On the lattice, the symmetry group of spatial rotations is broken down 
to a cubic subgroup. Nevertheless, at low scattering energies, this approx-
imate rotational symmetry is very accurate, provided that artefacts due  
to the periodic volume are removed. We remove these artefacts using a 
hard spherical wall boundary; the spherical harmonic projection tech-
nique is useful for extracting data for selected partial waves. This method 
has been extended to particles with spin and partial wave mixing, and 
shows excellent agreement with continuous-space calculations23.

We use Euclidean time projection to form dressed cluster states:

τ| 〉 = (− )| 〉τ
ℓ ℓ ℓ ℓR H Rexp, ,z z

The evolution in Euclidean time automatically incorporates the 
induced deformation and polarization of the alpha clusters as they 
approach each other. The deformation and polarization are due to the 
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In Fig. 4 we show phase shifts for d-wave scattering versus laboratory 
energy at LO, NLO and NNLO, compared with experimental data19–22. 
The green dashed (LO), blue short-dashed (NLO), and red solid lines 
(NNLO) are determined from fits to the lattice data using the effective 
range expansion. Although there are differences, the NNLO results 
agree fairly with the experimental results. As in the s-wave case, we 
show the extrapolated values and errors in the limit Lt →  ∞, using 
lattice data for Lt =  4 to Lt =  10. Details of the extrapolation fit and all 
associated error estimates are discussed in Methods. We determined 
the centre-of-mass energy and the decay width of the d-wave reso-
nance of the phase shift data from ref. 22 to be ER =  2.92(18) MeV and 
Γ =  1.34(50) MeV, respectively. Owing to the large decay width, there 
is some model dependence in the definitions of the resonance param-
eters; we discuss several different definitions and determinations in 
Methods. At LO we find ER =  1.10(12) MeV and Γ =  0.32(10) MeV, 
at NLO ER =  3.84(16) MeV and Γ =  3.22(21) MeV, and at NNLO 
ER =  3.27(12) MeV and Γ =  2.09(16) MeV.

To summarize, we present an ab initio calculation of 4He +  4He scat-
tering. We use lattice EFT and the adiabatic projection method to com-
pute phase shifts for s-wave and d-wave scattering up to NNLO, and 
find promising agreement with experimental data. To perform these 
calculations, we used spherical wave projections of the lattice initial 
states and a new algorithm that performs updates of both the auxiliary 
field configurations and alpha cluster positions. A schematic of the 
method is given in Extended Data Fig. 1.

Perhaps the most notable outcome of this study is a numerical 
method for simulating scattering and reactions that has a very favour-
able scaling with particle number. The number of computational oper-
ations needed for the A1-body +  A2-body problem scales roughly as 
(A1 +  A2)2 for light and medium-mass nuclei, and the algorithm does 
not require the projectile to be very light. Because sign oscillations 
are greatly suppressed for alpha-like nuclei12,27, our approach appears 
to be a viable method for studying important processes such as alpha 
scattering and capture on 12C. Direct experimental data for alpha cap-
ture on 12C is not possible, owing to Coulomb barrier suppression at 
energies relevant for stellar nucleosynthesis, and extrapolations from 

higher energies have uncertainties that exceed the 10% accuracy needed 
for stellar evolution models.

Nevertheless, there has been progress in measuring the contribu-
tion from subthreshold states28 and cumulative R-matrix analyses 
using multiple data sources such as beta-delayed alpha-decay of 16N 
and 4He +  12C elastic scattering29. Ab initio lattice calculations can con-
tribute to these efforts by calculating asymptotic normalization coeffi-
cients for subthreshold states, determining the direct capture rate onto 
the ground state, and providing low-energy data on 4He +  12C elastic 
scattering. For these future calculations, we expect that about four times 
as much computing time as the roughly two million core hours used 
for this work will be required; the computational resources available 
appear sufficient to keep stochastic errors under control. To reduce 
systematic errors, we are currently working on including lattice nuclear 
forces at the next-higher order in the chiral expansion, reducing the 
lattice spacing, improving the lattice action, and doing precision tests 
of systematic errors in the adiabatic projection method. If necessary, 
the ab initio lattice results will be further improved by including short-
range operators in the adiabatic Hamiltonian to make fine adjustments 
to the energies of near-threshold states of 16O.

There is an obvious overlap between lattice calculations using the 
adiabatic projection method and halo EFT. Therefore it might be 
fruitful to look for synergies between the two methods. In cases where 
there is a large scale separation between the low-energy scattering and 
high-energy internal excitations, benchmark tests can be made between 
halo EFT and lattice calculations. Furthermore, ab initio calculations 
can be used to determine input data for halo EFT, as done in ref. 30. 
In cases where the separation of scales is not large, lattice calculations 
can be used to guide improvement of halo EFT to include nuclear 
core excitations. It also might be useful to treat the lattice adiabatic 
Hamiltonian as a halo EFT for clusters, and explore extensions to three- 
and four-cluster systems. This method could potentially be used to 
investigate multi-alpha-cluster structures in 12C and 16O.

It would be exciting to extend the methods presented here to lat-
tice quantum chromodynamics (QCD) and construct adiabatic 
Hamiltonians for hadronic systems. All of the techniques used in our 
lattice simulations have immediate analogues in lattice QCD. The initial 
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Figure 3 | s-wave phase shifts. s-wave phase shifts δ0 at LO (green 
triangles), NLO (blue circles), and NNLO (red squares) versus laboratory 
energy ELab, compared with experimental data19–22 (black asterisks). The 
theoretical error bars indicate 1 s.d. uncertainty due to Monte Carlo errors 
and the extrapolation of that data to infinite projection time. The green 
dashed (LO), blue short-dashed (NLO), and red solid (NNLO) lines are 
determined from fits to the lattice data using the effective range expansion. 
The black dot-dashed line in the inset shows NLO results using halo EFT 
with point-like alpha particles26.
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In Fig. 4 we show phase shifts for d-wave scattering versus laboratory 
energy at LO, NLO and NNLO, compared with experimental data19–22. 
The green dashed (LO), blue short-dashed (NLO), and red solid lines 
(NNLO) are determined from fits to the lattice data using the effective 
range expansion. Although there are differences, the NNLO results 
agree fairly with the experimental results. As in the s-wave case, we 
show the extrapolated values and errors in the limit Lt →  ∞, using 
lattice data for Lt =  4 to Lt =  10. Details of the extrapolation fit and all 
associated error estimates are discussed in Methods. We determined 
the centre-of-mass energy and the decay width of the d-wave reso-
nance of the phase shift data from ref. 22 to be ER =  2.92(18) MeV and 
Γ =  1.34(50) MeV, respectively. Owing to the large decay width, there 
is some model dependence in the definitions of the resonance param-
eters; we discuss several different definitions and determinations in 
Methods. At LO we find ER =  1.10(12) MeV and Γ =  0.32(10) MeV, 
at NLO ER =  3.84(16) MeV and Γ =  3.22(21) MeV, and at NNLO 
ER =  3.27(12) MeV and Γ =  2.09(16) MeV.

To summarize, we present an ab initio calculation of 4He +  4He scat-
tering. We use lattice EFT and the adiabatic projection method to com-
pute phase shifts for s-wave and d-wave scattering up to NNLO, and 
find promising agreement with experimental data. To perform these 
calculations, we used spherical wave projections of the lattice initial 
states and a new algorithm that performs updates of both the auxiliary 
field configurations and alpha cluster positions. A schematic of the 
method is given in Extended Data Fig. 1.

Perhaps the most notable outcome of this study is a numerical 
method for simulating scattering and reactions that has a very favour-
able scaling with particle number. The number of computational oper-
ations needed for the A1-body +  A2-body problem scales roughly as 
(A1 +  A2)2 for light and medium-mass nuclei, and the algorithm does 
not require the projectile to be very light. Because sign oscillations 
are greatly suppressed for alpha-like nuclei12,27, our approach appears 
to be a viable method for studying important processes such as alpha 
scattering and capture on 12C. Direct experimental data for alpha cap-
ture on 12C is not possible, owing to Coulomb barrier suppression at 
energies relevant for stellar nucleosynthesis, and extrapolations from 

higher energies have uncertainties that exceed the 10% accuracy needed 
for stellar evolution models.

Nevertheless, there has been progress in measuring the contribu-
tion from subthreshold states28 and cumulative R-matrix analyses 
using multiple data sources such as beta-delayed alpha-decay of 16N 
and 4He +  12C elastic scattering29. Ab initio lattice calculations can con-
tribute to these efforts by calculating asymptotic normalization coeffi-
cients for subthreshold states, determining the direct capture rate onto 
the ground state, and providing low-energy data on 4He +  12C elastic 
scattering. For these future calculations, we expect that about four times 
as much computing time as the roughly two million core hours used 
for this work will be required; the computational resources available 
appear sufficient to keep stochastic errors under control. To reduce 
systematic errors, we are currently working on including lattice nuclear 
forces at the next-higher order in the chiral expansion, reducing the 
lattice spacing, improving the lattice action, and doing precision tests 
of systematic errors in the adiabatic projection method. If necessary, 
the ab initio lattice results will be further improved by including short-
range operators in the adiabatic Hamiltonian to make fine adjustments 
to the energies of near-threshold states of 16O.

There is an obvious overlap between lattice calculations using the 
adiabatic projection method and halo EFT. Therefore it might be 
fruitful to look for synergies between the two methods. In cases where 
there is a large scale separation between the low-energy scattering and 
high-energy internal excitations, benchmark tests can be made between 
halo EFT and lattice calculations. Furthermore, ab initio calculations 
can be used to determine input data for halo EFT, as done in ref. 30. 
In cases where the separation of scales is not large, lattice calculations 
can be used to guide improvement of halo EFT to include nuclear 
core excitations. It also might be useful to treat the lattice adiabatic 
Hamiltonian as a halo EFT for clusters, and explore extensions to three- 
and four-cluster systems. This method could potentially be used to 
investigate multi-alpha-cluster structures in 12C and 16O.

It would be exciting to extend the methods presented here to lat-
tice quantum chromodynamics (QCD) and construct adiabatic 
Hamiltonians for hadronic systems. All of the techniques used in our 
lattice simulations have immediate analogues in lattice QCD. The initial 
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Figure 3 | s-wave phase shifts. s-wave phase shifts δ0 at LO (green 
triangles), NLO (blue circles), and NNLO (red squares) versus laboratory 
energy ELab, compared with experimental data19–22 (black asterisks). The 
theoretical error bars indicate 1 s.d. uncertainty due to Monte Carlo errors 
and the extrapolation of that data to infinite projection time. The green 
dashed (LO), blue short-dashed (NLO), and red solid (NNLO) lines are 
determined from fits to the lattice data using the effective range expansion. 
The black dot-dashed line in the inset shows NLO results using halo EFT 
with point-like alpha particles26.
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Figure 4 | d-wave phase shifts. d-wave phase shifts δ2 at LO (green 
triangles), NLO (blue circles), and NNLO (red squares) versus laboratory 
energy ELab, compared with experimental data19–22 (black asterisks). The 
theoretical error bars indicate 1 s.d. uncertainty due to Monte Carlo errors 
and the extrapolation of that data to infinite projection time. The green 
dashed (LO), blue short-dashed (NLO), and red solid (NNLO) lines are 
determined from fits to the lattice data using the effective range expansion.
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interactions of individual nucleons between the two alpha clusters, as 
well as to repulsion as a result of the Pauli exclusion principle for iden-
tical fermions.

With these dressed cluster states, we compute matrix elements of the 
full microscopic Hamiltonian with respect to the dressed cluster states:

= 〈 | | ′〉 ( )τ τ τ′
ℓ ℓ ℓ ℓ ℓ ℓH R H R[ ] 1R R,
, , ,z z z

Because the dressed cluster states are not orthogonal, we construct a 
norm matrix:

= 〈 | ′〉τ τ τ′
ℓ ℓ ℓ ℓ ℓ ℓN R R[ ]R R,
, , ,z z z

The radial adiabatic Hamiltonian is defined as a matrix product:

= ( )τ τ τ τ
− / − /

′ ′
ℓ ℓ ℓ ℓH N H N[ ] [ ] 2a
R R R R,
, 1 2 1 2

,
,z z

In the limit of large projection time τ , the spectrum of the adiabatic 
Hamiltonian reproduces the low-energy finite-volume spectrum of the 
microscopic Hamiltonian H. In ref. 17, it is shown that in the asymp-
totic region where the alpha clusters are widely separated, the adiabatic 
Hamiltonian reduces to a simple two-cluster Hamiltonian with only 
infinite-range interactions such as the Coulomb interaction between 
the otherwise non-interacting clusters. Although this may seem an 
obvious result, it is a non-trivial statement that the dependence on the 
projection time τ drops out from the adiabatic Hamiltonian at large 
distances.

We study 4He +  4He scattering using the same lattice action that is 
used to study the Hoyle state of 12C (ref. 11). The spatial lattice spacing 
is a =  1.97 fm and the Euclidean-time, or temporal, lattice spacing is 
at =  1.32 fm. Revisiting these calculations in the future with different 
lattice spacings and including higher-order terms in the chiral expan-
sion will provide a useful measure of systematic errors in lattice calcu-
lations of larger nuclear systems.

We perform projection Monte Carlo simulations with auxiliary fields 
to compute the matrices τ ′

ℓ ℓH[ ]R R,
, z  and τ ′

ℓ ℓN[ ]R R,
, z  on a periodic cubic lattice 

with volume L3 =  (16 fm)3; see ref. 24 for an overview of methods used 
in lattice EFT. The total projection time for the initial and final dressed 
cluster states together is 2τ, which is equal to the product of the number 
of time steps Lt and the temporal lattice spacing at. We determine 
τ ′
ℓ ℓN[ ]R R,
, z  from calculations with Lt time steps and τ ′

ℓ ℓH[ ]R R,
, z  from calcula-

tions with Lt +  1 time steps. The extra time step for τ ′
ℓ ℓH[ ]R R,
, z  is needed 

to calculate the matrix elements of H in equation (1). For these calcu-
lations, a new algorithm is used to allow for Monte Carlo updates of the 
auxiliary fields as well as updates of the alpha cluster positions.

We compute the radial adiabatic Hamiltonian using equation (2) and 
extend it to a much larger volume of (120 fm)3. This is done by 

 computing matrix elements of = ( )τ τ τ τ
− / − /

′ ′
ℓ ℓ ℓ ℓH N H N[ ] [ ] 2a
R R R R,
, 1 2 1 2

,
,z z at large separation (large R  

and R′ ) from single-alpha lattice simulations, and then including the 
Coulomb interaction between the otherwise non-interacting clusters. 
This process also allows us to define a ‘trivial’ two-cluster Hamiltonian 
in which the two alpha clusters are non-interacting except for the 
infinite-range Coulomb interaction.

With the radial adiabatic Hamiltonian defined in the large (120 fm)3 
box, we extract the scattering phase shifts by imposing a hard spherical 
wall boundary at some radius Rwall and determining the standing wave 
modes. In Fig. 2 we show s-wave radial functions for two different 
radial excitations (2s and 3s) at NNLO using chiral EFT. The error bars 
show 1-standard deviation (s.d.) Monte Carlo errors calculated using 
a jackknife analysis of the lattice data. We could extract the phase shift 
by fitting to the asymptotic behaviour of the radial wavefunction as in 
ref. 17; however, it is more accurate to extract the phase shifts from the 
energy of the standing wave, as discussed in ref. 25.

Figure 3 shows the phase shifts for s-wave scattering versus labo-
ratory energy at LO, NLO, and NNLO in chiral EFT, compared with 
experimental data19–22. The green dashed (LO), blue short-dashed 
(NLO), and red solid lines (NNLO) are determined from fits to the 
lattice data using the effective range expansion (see Methods). For 
further comparison, the inset of Fig. 3 shows NLO results using 
halo EFT with point-like alpha particles26. Halo EFT is an effec-
tive theory in which clusters of tightly bound nucleons are treated 
as point particles. Our LO results do not include Coulomb effects 
and so have substantially different behaviour near the alpha–alpha 
scattering threshold. The NLO and NNLO phase shifts are quite 
similar, and both agree fairly well with the experimental data. The 
close agreement between NLO and NNLO results is probably acci-
dental: several contributions appearing at NNLO seem to cancel 
each other out. The same does not occur for the d-wave phase shifts. 
The results and error bars shown in Fig. 3 are computed from lat-
tice phase-shift data for Lt =  4 to Lt =  10 and extrapolating to the 
limit Lt →  ∞. Details of the extrapolation fit and all associated 
error estimates are discussed in Methods. The observed energy of 
the s-wave resonance in the centre-of-mass frame is 0.09184 MeV 
above threshold. For the lattice results, we find that the ground 
state is 0.79(9) MeV below threshold at LO, and 0.11(1) MeV below 
threshold at both NLO and NNLO (the errors in parentheses here 
and elsewhere represent 1 s.d.).

R 

Figure 1 | Initial state clusters. Initial state | 〉R  composed of two alpha-
particle wave packets on the lattice separated by the displacement vector R. 
Each alpha-particle wave packet consists of four nucleons. Protons are red; 
neutrons are blue; spins are represented as arrows.

2s state
3s state
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Figure 2 | s-wave scattering radial wavefunctions. The second-lowest-
energy (red squares) and third-lowest-energy (blue circles) s-wave radial 
wavefunctions for spherical wall radius Rwall ≈  36 fm (grey dashed line) at 
NNLO plotted versus radial distance. The dashed and double-dot-dashed 
lines show the fits to a Coulomb wavefunction for the second and third 
radial states, respectively. The error bars indicate 1-s.d. Monte Carlo errors 
calculated using a jackknife analysis of the lattice data.
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Used lattice EFT to extract the effective !
Hamiltonian for two interacting α-clusters !
(adiabatic projection method [A. Rokash et al., PRC 92 (15) 054612])

First ab initio calculation of alpha-alpha scattering!

Phase shifts obtained emp-
loying a hard spherical wall 
boundary at asymptotically 
large distances

Promising scaling with 
respect to the number of 
particles as  ~ (A1 + A2)2

 Ab initio alpha-alpha scattering
Elhatisari, Lee, Rupak, EE, Krebs, Lähde, Luu, Meißner, Nature 528 (2015) 111



 Summary and outlook

Frontiers & challenges for the near future:

Precision physics beyond the 2N system: challenge the theory 
Test predictive power (N3LO contributions to 3NF & 4NF are parameter-
free, 3H β-decay is parameter-free up to N3LO after fixing 3NF@N2LO, …)
3NF & long-standing puzzles in 3N continuum
Push theory to heavier nuclei (underbinding? radii?)
More reliable error analysis
Test different power counting schemes

—

—
—
—
—

Chiral EFT as a tool to deal with nuclear effects when looking at physics !
of/beyond the SM (parity violation, EDM, 0νββ, proton charge radius,…) 

EFT for lattice QCD (extrapolations), lattice QCD for EFT (quark mass 
dependence, „data“, …)

25 years after Weinberg’s proposal, the most precise nuclear forces finally 
come from chiral EFT! 



spares…
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Figure 4: Cutoff dependence of the phase shifts calculated at N2LO (left panel) and N3LO (right
panel). Dashed-double-dotted, solid, dashed-dotted, dashed and dotted lines show the results for
R= R1, . . . ,R5 as defined in Eq. (2.8), respectively. For remaining notation see Fig. 3.

order-Q5 contributions to the TPE potential. The obtained results suggest – fully in line with the
Weinberg power counting [1] – that the theoretical uncertainty at NLO and N3LO is dominated by
the neglected TPE contributions at orders Q3 and Q5, respectively. Indeed, if certain order-Q4 and
order-Q6 contact interactions would have to be promoted to lower orders in violation with naive
dimensional analysis as suggested e.g. in [66, 83, 82], the inclusion of the order-Q3 and order-Q5

TPE contributions alone would not result in the improved accuracy of the fits at N2LO and N4LO.
I now briefly address the residual cutoff dependence of our results. Fig. 4 shows the np phase

shifts at N2LO and N3LO for all considered choices of the regulator. As expected, the residual
cutoff dependence at N2LO is efficiently absorbed into redefinition of the order-Q4 contact inter-
actions at N3LO. I do not show the results at N4LO, but they turn out to be very similar to those at
N3LO what concerns the dependence on the regulator R.

It is also instructive to look at χ̃2 per datum for the reproduction of the phase shifts of the
NPWA as a function of the cutoff R. Here, for the sake of brevity, I restrict myself to N3LO and to
the single energy bin of Elab = 0− 200 MeV. We find the following pattern for np phase shifts by
decreasing the values of the regulator starting from the softest choice of R= 1.2 fm:

χ̃2/datum = 1.8R=1.2 fm → 0.8R=1.1 fm → 0.6R=1.0 fm → 0.7R=0.9 fm → 0.8R=0.8 fm ,
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Figure 4: Cutoff dependence of the phase shifts calculated at N2LO (left panel) and N3LO (right
panel). Dashed-double-dotted, solid, dashed-dotted, dashed and dotted lines show the results for
R= R1, . . . ,R5 as defined in Eq. (2.8), respectively. For remaining notation see Fig. 3.

order-Q5 contributions to the TPE potential. The obtained results suggest – fully in line with the
Weinberg power counting [1] – that the theoretical uncertainty at NLO and N3LO is dominated by
the neglected TPE contributions at orders Q3 and Q5, respectively. Indeed, if certain order-Q4 and
order-Q6 contact interactions would have to be promoted to lower orders in violation with naive
dimensional analysis as suggested e.g. in [66, 83, 82], the inclusion of the order-Q3 and order-Q5

TPE contributions alone would not result in the improved accuracy of the fits at N2LO and N4LO.
I now briefly address the residual cutoff dependence of our results. Fig. 4 shows the np phase

shifts at N2LO and N3LO for all considered choices of the regulator. As expected, the residual
cutoff dependence at N2LO is efficiently absorbed into redefinition of the order-Q4 contact inter-
actions at N3LO. I do not show the results at N4LO, but they turn out to be very similar to those at
N3LO what concerns the dependence on the regulator R.

It is also instructive to look at χ̃2 per datum for the reproduction of the phase shifts of the
NPWA as a function of the cutoff R. Here, for the sake of brevity, I restrict myself to N3LO and to
the single energy bin of Elab = 0− 200 MeV. We find the following pattern for np phase shifts by
decreasing the values of the regulator starting from the softest choice of R= 1.2 fm:

χ̃2/datum = 1.8R=1.2 fm → 0.8R=1.1 fm → 0.6R=1.0 fm → 0.7R=0.9 fm → 0.8R=0.8 fm ,
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N3LO [C0 + C2 p2 + C4 p4]

R=1.2 fm
R=1.1 fm
R=1.0 fm
R=0.9 fm
R=0.8 fm

 Residual cutoff dependence



 Regulator (in)dependence

Lab. energy NPWA our result DR, n = 5 DR, n = 7 SFR, 1.0 GeV SFR, 1.5 GeV SFR, 2.0 GeV

proton-proton 1S0 phase shift
10 MeV 55.23 55.22± 0.08 55.22 55.22 55.22 55.22 55.22
100 MeV 24.99 24.98± 0.60 24.98 24.98 24.98 24.98 24.98
200 MeV 6.55 6.56± 2.2 6.55 6.56 6.56 6.56 6.57

neutron-proton 3S1 phase shift
10 MeV 102.61 102.61± 0.07 102.61 102.61 102.61 102.61 102.61
100 MeV 43.23 43.22± 0.30 43.28 43.20 43.17 43.21 43.22
200 MeV 21.22 21.2± 1.4 21.2 21.2 21.2 21.2 21.2

proton-proton 3P0 phase shift
10 MeV 3.73 3.75± 0.04 3.75 3.75 3.75 3.75 3.75
100 MeV 9.45 9.17± 0.30 9.15 9.18 9.18 9.17 9.17
200 MeV �0.37 �0.1± 2.3 �0.1 �0.1 �0.1 �0.1 �0.1

proton-proton 3P1 phase shift
10 MeV �2.06 �2.04± 0.01 �2.04 �2.04 �2.04 �2.04 �2.04
100 MeV �13.26 �13.42± 0.17 �13.43 �13.41 �13.41 �13.42 �13.42
200 MeV �21.25 �21.2± 1.6 �21.2 �21.2 �21.2 �21.2 �21.2

proton-proton 3P2 phase shift
10 MeV 0.65 0.65± 0.01 0.66 0.65 0.65 0.65 0.65
100 MeV 11.01 11.03± 0.50 10.97 11.06 11.07 11.05 11.04
200 MeV 15.63 15.6± 1.9 15.6 15.5 15.5 15.5 15.6

2

How do our results depend on the specific form of the regulator 

and/or additional spectral function regularization 

T = V + V G0T = V + V G0V + V G0V G0V + . . .
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Selected phase shifts (in deg.) for different values of ΛSFR and n at N3LO[R = 0.9 fm]

T = V + V G0T = V + V G0V + V G0V G0V + . . .
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negligible regulator dependence (compared to the estimated theor. accuracy)



 Deuteron properties R=0.9 fm
EE, Krebs, Meißner, arXiv:1412.0142 [nucl-th], arXiv:1412.4623 [nucl-th]

LO NLO N N N empirical
B 2.0235 2.1987 2.2311 2.2246* 2.2246* 2.224575(9)
A 0.8333 0.8772 0.8865 0.8845 0.8844 0.8846(9)
η 0.0212 0.0256 0.0256 0.0255 0.0255 0.0256(4)
rd 1.990 1.968 1.966 1.972 1.972 1.97535(85)
Q [fm
PD 2.54 4.73 4.50 4.19 4.29

0.230 0.273 0.270 0.271 0.271 0.2859(3)

— fast convergence of the chiral expansion (PD is not observable)

— error estimation (assuming Q=Mπ/Λb)
AS:  LO: 0.83(5) → NLO: 0.878(13) → N2LO: 0.887(3) → N3LO: 0.8845(8) → N4LO: 0.8844(2)
η:  LO: 0.021(5) → NLO: 0.026(1) → N2LO: 0.0256(3) → N3LO: 0.0255(1) → N4LO: 0.0255
→ theoretical results for AS,η at N4LO are more accurate than empirical numbers

— results for rd and Q do not take into account MECs and relativistic corrections:
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[Kohno ’83] predictions in agreement with the datard: →
rel. corrections + 1π-exchange MEC: 

T = V + V G0T = V + V G0V + V G0V G0V + . . .
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the remaining deviation of 0.007 fm2 agrees with the expected size of [Phillips ’07]


