Global fits to $b \rightarrow s\ell\ell$ and violation of lepton-flavour universality

Sébastien Descotes-Genon

in collab. with B. Capdevila, A. Crivellin, L. Hofer, J. Matias, J. Virto

Laboratoire de Physique Théorique CNRS, Univ. Paris-Sud, Université Paris-Saclay 91405 Orsay, France

5th Autumn School & Workshop of RTN, Tbilisi, Sep 25th 2017

S. Descotes-Genon (LPT-Orsay)

 $b
ightarrow s\ell\ell$ and LFUV

Anomalies in $b \rightarrow s \ell \ell$

Anomalies in branching ratios

- $Br(B \rightarrow K\mu\mu)$ (up), $Br(B \rightarrow K^*\mu\mu)$ (down), $Br(B_s \rightarrow \phi\mu\mu)$ too low wrt SM
- q^2 invariant mass of $\ell\ell$ pair
- removing bins dominated by J/ψ and ψ' resonances
- large hadronic uncertainties from form factors at
 - Large-meson recoil/low *q*²: light-cone sum rules
 - Low-meson recoil/large *q*²: lattice QCD

Anomalies in angular observables

 Basis of 6 optimised observables *P_i* (angular coeffs) with reduced hadronic uncertainties

[Matias, Krüger, Becirevic, Schneider, Mescia, Virto, SDG, Ramon, Hurth; Hiller, Bobeth, Van Dyk...]

- Measured at LHCb with 1 fb⁻¹ (2013) and 3 fb⁻¹ (2015)
- Discrepancies for some (but not all) observables, in particular two bins for P'₅ deviating from SM by 2.8 σ and 3.0 σ
- Belle 2016: confirmation, with larger uncertainties
- CMS and ATLAS 2017: large unc., agree only partially with LHCb

Anomalies in lepton flavour universality : Br

- LFU-test ratios $R_{\mathcal{K}} = \frac{Br(B \to \mathcal{K} \mu \mu)}{Br(B \to \mathcal{K} ee)}$ and $R_{\mathcal{K}^*} = \frac{Br(B \to \mathcal{K}^* \mu \mu)}{Br(B \to \mathcal{K}^* ee)}$ for LHCb
- hadronic uncertainties/effects cancel largely in the SM (V A interaction only) and for $q^2 \ge 1$ GeV² (m_ℓ effects negligible)
- in SM, a single form factor cancel in R_K = 1, but several polarisations and form factors in R_{K*} (small q²-dep.)
- small effects of QED radiative corrections (1-3 %)
- LHCb: 2.6 σ for $R_{K[1,6]}$, 2.3 and 2.6 σ for $R_{K^*[0.045,1.1]}$ and $R_{K^*[1.1,6]}$

Anomalies in LFU: angular observables

Belle also compared $b \rightarrow see$ and $b \rightarrow s\mu\mu$ in 2016

- different systematics from LHCb
- 2.6 σ deviation for $\langle P'_5 \rangle^{\mu}_{[4.8]}$ versus 1.3 σ deviation for $\langle P'_5 \rangle^{e}_{[4.8]}$
- same indication by looking at $Q_5 = P_5^{\mu\prime} P_5^{e\prime}$, deviating from SM
- more data needed to confirm this hint of LFU violation (LFUV)

A global framework for the anomalies

$$\mathcal{H}^{SM}_{b
ightarrow s\gamma(*)}\propto \sum V^*_{ts}V_{tb}\mathcal{C}_i\mathcal{O}_i$$

to separate short and long distances ($\mu_b = m_b$)

$$\mathcal{H}^{SM}_{b
ightarrow s\gamma(*)}\propto \sum V^*_{ts}V_{tb}\mathcal{C}_i\mathcal{O}_i$$

to separate short and long distances ($\mu_b = m_b$)

$$\mathcal{H}^{SM}_{b
ightarrow s\gamma(*)}\propto \sum V^*_{ts}V_{tb}\mathcal{C}_i\mathcal{O}$$

to separate short and long distances ($\mu_b = m_b$)

• $\mathcal{O}_7 = \frac{e}{g^2} m_b \, \bar{s} \sigma^{\mu\nu} (1 + \gamma_5) F_{\mu\nu} \, b$ [real or soft photon]

$$\mathcal{H}^{SM}_{b
ightarrow s\gamma(*)}\propto \sum V^*_{ts}V_{tb}\mathcal{C}_i\mathcal{O}_i$$

to separate short and long distances ($\mu_b = m_b$)

$$\mathcal{H}^{SM}_{b
ightarrow s\gamma(*)}\propto \sum V^*_{ts}V_{tb}\mathcal{C}_i\mathcal{O}_i$$

 $B \xrightarrow{c.t} \\ B \xrightarrow{g} \\ g \xrightarrow{g} \\$

to separate short and long distances $(\mu_b = m_b)$ • $\mathcal{O}_7 = \frac{e}{g^2} m_b \bar{s} \sigma^{\mu\nu} (1 + \gamma_5) F_{\mu\nu} b$ [real or soft photon] • $\mathcal{O}_9 = \frac{e^2}{g^2} \bar{s} \gamma_\mu (1 - \gamma_5) b \bar{\ell} \gamma^\mu \ell$ [$b \rightarrow s \mu \mu$ via Z/hard $\gamma \dots$] • $\mathcal{O}_{10} = \frac{e^2}{g^2} \bar{s} \gamma_\mu (1 - \gamma_5) b \bar{\ell} \gamma^\mu \gamma_5 \ell$ [$b \rightarrow s \mu \mu$ via Z] $\mathcal{C}_7^{SM} = -0.29, \ \mathcal{C}_9^{SM} = 4.1, \ \mathcal{C}_{10}^{SM} = -4.3$

 $A = C_i$ (short dist) × Hadronic qties (long dist)

NP changes short-distance C_i or add new operators \mathcal{O}_i

- Chirally flipped ($W \rightarrow W_R$)
- (Pseudo)scalar ($W \rightarrow H^+$)
- Tensor operators ($\gamma \rightarrow T$)

S. Descotes-Genon (LPT-Orsay)

 $\mathcal{O}_7 \rightarrow \mathcal{O}_{7'} \propto \bar{s} \sigma^{\mu\nu} (1 - \gamma_5) F_{\mu\nu} b$

 $\mathcal{O}_9, \mathcal{O}_{10} \rightarrow \mathcal{O}_S \propto \bar{s}(1 + \gamma_5)b\bar{\ell}\ell, \mathcal{O}_P$

 $\mathcal{O}_9 \rightarrow \mathcal{O}_T \propto \bar{s} \sigma_{\mu\nu} (1 - \gamma_5) b \, \bar{\ell} \sigma_{\mu\nu} \ell$

Global analysis of $b ightarrow s\ell\ell$ anomalies

175 observables in total (no CP-violating obs) [Capdevila, Crivellin, SDG, Matias, Virto]

- $B \to K^* \mu \mu$ (Br, $P_{1,2}, P'_{4,5,6,8}, F_L$ in large- and low-recoil bins) • $B \to K^* ee$ ($P_{1,2,3}, P'_{4,5}, F_L$ in large- and low-recoil bins) • $B_s \to \phi \mu \mu$ (Br, $P_1, P'_{4,6}, F_L$ in large- and low-recoil bins) • $B \to K \mu \mu$ (Br in many bins)
- R_K, R_{K*}, Q_{4,5}

- (large-recoil bins)
- $B \rightarrow X_s \gamma, B \rightarrow X_s \mu \mu, B_s \rightarrow \mu \mu, B_s \rightarrow \phi \gamma(\text{Br}), B \rightarrow K^* \gamma(\text{Br}, A_I, S_{K^* \gamma})$

Global analysis of $b ightarrow s\ell\ell$ anomalies

175 observables in total (no CP-violating obs) [Capdevila, Crivellin, SDG, Matias, Virto]

- $B \to K^* \mu \mu$ (Br, $P_{1,2}, P'_{4,5,6,8}, F_L$ in large- and low-recoil bins) • $B \to K^* ee$ ($P_{1,2,3}, P'_{4,5}, F_L$ in large- and low-recoil bins) • $B_s \to \phi \mu \mu$ (Br, $P_1, P'_{4,6}, F_L$ in large- and low-recoil bins) • $B_s \to \phi \mu \mu$ (Br, $P_1, P'_{4,6}, F_L$ in large- and low-recoil bins)
- $B \rightarrow K \mu \mu$ (Br in many bins) • $R_{K}, R_{K^*}, Q_{4,5}$ (large-recoil bins)
- $B \to X_s \gamma, B \to X_s \mu \mu, B_s \to \mu \mu, B_s \to \phi \gamma(\mathsf{Br}), B \to K^* \gamma(\mathsf{Br}, A_l, S_{K^* \gamma})$
- Various computational approaches
 - inclusive: OPE
 - excl large-meson recoil: QCD fact, Soft-collinear effective theory
 - excl low-meson recoil: Heavy quark eff th, Quark-hadron duality

Global analysis of $b ightarrow s\ell\ell$ anomalies

175 observables in total (no CP-violating obs) [Capdevila, Crivellin, SDG, Matias, Virto]

- $B \to K^* \mu \mu$ (Br, $P_{1,2}, P'_{4,5,6,8}, F_L$ in large- and low-recoil bins) • $B \to K^* ee$ ($P_{1,2,3}, P'_{4,5}, F_L$ in large- and low-recoil bins) • $B_s \to \phi \mu \mu$ (Br, $P_1, P'_{4,6}, F_L$ in large- and low-recoil bins) • $B \to K \mu \mu$ (Br in many bins)
- $R_K, R_{K^*}, Q_{4,5}$

- (large-recoil bins)
- $B \to X_s \gamma, B \to X_s \mu \mu, B_s \to \mu \mu, B_s \to \phi \gamma(\text{Br}), B \to K^* \gamma(\text{Br}, A_I, S_{K^* \gamma})$
- Various computational approaches
 - inclusive: OPE
 - excl large-meson recoil: QCD fact, Soft-collinear effective theory
 - excl low-meson recoil: Heavy quark eff th, Quark-hadron duality

Frequentist analysis

- $C_i(\mu_{ref}) = C_i^{SM} + C_i^{NP}$, with C_i^{NP} assumed to be real (no CPV)
- Experimental correlation matrices provided (from all exp)
- Theoretical inputs (form factors...) with correlation matrix computed treating all theo errors as Gaussian random variables

S. Descotes-Genon (LPT-Orsay)

 $b
ightarrow s\ell\ell$ and LFUV

1D and 2D fits for NP in $b ightarrow s \mu \mu$ only

- Fits to sets "All" (175 obs) or "LFUV" (17 obs: $b \rightarrow s\mu\mu$ LFUV, $b \rightarrow s\gamma$, $B_s \rightarrow \mu\mu$, $B \rightarrow X_s\mu\mu$)
- Hypotheses "NP in some C_i only" to be compared with SM

	All						LFUV					
1D Hyp.	Bfp	1σ		Pull _{SM}		p-value %		Bfp		1σ	Pull _{SM}	p-value %
$C_{9\mu}^{\rm NP}$	-1.11	[-1.28, -0.94]		5.8		68		-1.76	[-2.36	6, -1.23]	3.9	69
$C_{9\mu}^{\rm NP} = -C_{10\mu}^{\rm NP}$	-0.62	[-0.75, -0.49]		5.3		58		-0.66	[-0.84	4, -0.48]	4.1	78
$\mathcal{C}_{9\mu}^{\rm NP} = -\mathcal{C}_{9\mu}^{\prime} \Big \Big $	-1.01	[-1.18, -	0.84]	5.4	4	61		-1.64	[-2.13	3, -1.05]	3.2	32
		All				LFUV						
2D Hyp.	E	Best fit Pull		SM	p-۱	value % E		Best	fit	Pull _{SM}	p-valu	ie %
$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{10\mu}^{\mathrm{NP}})$	(-1.	01,0.29)	5.7	7		72		(-1.30,0	0.36)	3.7	75	5
$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{7}')$	(-1.	13,0.01)	5.5	5		69		(-1.85,-	0.04)	3.6	66	6
$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{9'\mu})$	(-1.	(-1.15,0.41)		6		71		(-1.99,0	0.93)	3.7	72	2
$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{10'\mu})$	(-1.22,-0.22)		5.7	7	72			(-2.22,-	0.41)	3.9	85	5

p-value : χ²_{min} considering N_{dof} (SM: All 11.3%, LFUV 4.4%) ⇒goodness of fit: does the hypothesis give an overall good fit ?
 Pull_{SM} : χ²_{min}(C_i = 0) - χ²_{min} ⇒metrology: how much does the hyp. solve SM deviations ?

S. Descotes-Genon (LPT-Orsay)

 $b \rightarrow s \ell \ell$ and LFUV

Some favoured scenarios

- $C_{9\mu}^{NP} \simeq -1$ favoured in all "good" scenarios
- NP in $C_{9\mu}$ only: *p*-value=68%, pull_{SM} = 5.8 σ , [-1.28, -0.94] at 1 σ

• LHCb dominates the field !

S. Descotes-Genon (LPT-Orsay)

 $b
ightarrow s\ell\ell$ and LFUV

Improving on the main anomalies

- $C_{9\mu}^{NP} \simeq -1$ favoured in all "good" scenarios
- Not all anomalies "solved", but many are alleviated

Largest pulls	$\langle P_5' \rangle^{[4,6]}$	$\langle P_5' \rangle^{[6,8]}$	$R_{K}^{[1,6]}$	$R_{K^*}^{[0.045,1.1]}$
Experiment	-0.30 ± 0.16	-0.51 ± 0.12	$0.745\substack{+0.097\\-0.082}$	$0.66\substack{+0.113\\-0.074}$
SM pred.	-0.82 ± 0.08	-0.94 ± 0.08	1.00 ± 0.01	0.92 ± 0.02
Pull (σ)	-2.9	-2.9	+2.6	+2.3
Pred. $C_{9\mu}^{NP} = -1.1$	-0.50 ± 0.11	-0.73 ± 0.12	0.79 ± 0.01	0.90 ± 0.05
$Pull(\sigma)$	-1.0	-1.3	+0.4	+1.9

Largest pulls	$R_{K^*}^{[1.1,6]}$	$\mathcal{B}^{[2,5]}_{B_{\!s} ightarrow\phi\mu^+\mu^-}$	$\mathcal{B}^{[5,8]}_{B_s ightarrow \phi\mu^+\mu^-}$
Experiment	$0.685^{+0.122}_{-0.083}$	0.77 ± 0.14	$\textbf{0.96} \pm \textbf{0.15}$
SM pred.	1.00 ± 0.01	1.55 ± 0.33	$\textbf{1.88} \pm \textbf{0.39}$
Pull (σ)	+2.6	+2.2	+2.2
Pred. $C_{9\mu}^{NP} = -1.1$	0.87 ± 0.08	$\textbf{1.30} \pm \textbf{0.26}$	1.51 ± 0.30
Pull (σ)	+1.2	+1.8	+1.6

Consistency between fits to All and LFUV obs

S. Descotes-Genon (LPT-Orsay)

 $b \rightarrow s \ell \ell$ and LFUV

Tbilisi (25/09/17) 13

Consistency: P'_5 from LFUV obs

- Fit to LFUV obs only to determine C^{NP}_{9µ}
- ... then predict value of P'_5
- Confirms the very good agreement between fits to LFUV only and the other observables
- Disagreements with Standard Model in b → sℓℓ
 obey a pattern

Consistency: by channels, low versus large recoil

$b ightarrow s \mu \mu$: 6D hypothesis

Letting all 6 Wilson coefficients for muons vary (but only real)

	Best fit	1 σ	2 σ
$\mathcal{C}_7^{\rm NP}$	+0.03	[-0.01, +0.05]	[-0.03, +0.07]
$\mathcal{C}_{9\mu}^{\mathrm{NP}}$	-1.12	[-1.34, -0.88]	[-1.54, -0.63]
$\mathcal{C}_{10\mu}^{\text{NP}}$	+0.31	[+0.10, +0.57]	[-0.08, +0.84]
$\mathcal{C}_{7'}$	+0.03	[+0.00, +0.06]	[-0.02, +0.08]
$\mathcal{C}_{9'\mu}$	+0.38	[-0.17, +1.04]	[-0.59, +1.58]
$\mathcal{C}_{10'\mu}$	+0.02	[-0.28, +0.36]	[-0.54, +0.68]

- Pattern: $C_7^{NP} \gtrsim 0$, $C_{9\mu}^{NP} < 0$, $C_{10\mu}^{NP} > 0$, $C_7' \gtrsim 0$, $C_{9\mu}' > 0$, $C_{10\mu}' \gtrsim 0$ • C_9 is consistent with SM only above 3σ
- All others are consistent with zero at 1σ except for C_{10} at 2 σ
- Pull_{SM} for the 6D fit is 5.0 σ (used to be 3.6 σ)

Other recent analyses (smaller sets of data/other approaches) : same patterns, different significances [Altmannshofer, Stangl, Straub; Ciuchini, Coutinho, Fedele, Franco,

Paul, Silvestrini, Valli; Geng, Grinstein, Jäger, Camalich, Ren, Shi; Hurth, Mahmoudi, Martinez Santos, Neshatpour...]S. Descotes-Genon (LPT-Orsay) $b \rightarrow s\ell\ell$ and LFUVTbilisi (25/09/17)16

Consistency with analysis of (Altmannshofer, Stangl, Straub)

- Different angular obs.
- Different form factor inputs
- Different hadronic corrections
- Same NP scenarios favoured (higher significances for

[Altmannshofer, Stangl, Straub]

NP in both $b \rightarrow s \mu \mu$ and $b \rightarrow s e e$

- Up to now, only NP in $b \rightarrow s \mu \mu$, what about $b \rightarrow see$?
- Need for contribution for $C_{9\mu}$ (angular obs, Br) but not for C_{9e}
- But not forbidden either: for instance, $C_{9\mu} = -3C_{9e}$ very good (U(1) models for neutrino mixing [Bhatia, Chakraborty, Dighe])

S. Descotes-Genon (LPT-Orsay)

 $b \rightarrow s \ell \ell$ and LFUV

Cross-checking theoretical uncertainties

$C_9^{NP} = C_9^{New Physics}$ or $C_9^{Non Perturbative}$?

SM alternative to explain these deviations/anomalies ?

- hadronic effects ($B \rightarrow K^* \mu \mu$, $B_s \rightarrow \phi \mu \mu$ at low and large recoils)
- statistical fluctuation and/or pb with e/μ (R_K , R_{K^*})
- bad luck (short-distance scenarios can accomodate all discrepancies very well by chance)

 \Longrightarrow Lack the consistency of the short-distance explanation

But it remains essential to

- Understand better the sources of hadronic uncertainties SM
- Add more observables to confirm/distinguish the patterns

 $B \rightarrow K^* \ell \ell$ decays play an important role in global fits and thus in these discussions !

Two sources of hadronic uncertainties

$$\mathcal{A}(\mathcal{B} \to \mathcal{K}^* \ell \ell) = \frac{G_F \alpha}{\sqrt{2}\pi} \mathcal{V}_{tb} \mathcal{V}^*_{ts} [(\mathcal{A}_\mu + \mathcal{T}_\mu) \bar{u}_\ell \gamma^\mu \nu_\ell + \mathcal{B}_\mu \bar{u}_\ell \gamma^\mu \gamma_5 \nu_\ell]$$

Two sources of hadronic uncertainties

$$A(B \to K^*\ell\ell) = \frac{G_F\alpha}{\sqrt{2\pi}} V_{tb} V_{ts}^* [(A_\mu + T_\mu)\bar{u}_\ell \gamma^\mu v_\ell + B_\mu \bar{u}_\ell \gamma^\mu \gamma_5 v_\ell]$$

• Local contributions (more terms if NP in non-SM C_i): form factors

$$\begin{array}{lll} \boldsymbol{A}_{\mu} & = & -\frac{2m_{b}q^{\nu}}{q^{2}}\mathcal{C}_{7}\langle V_{\lambda}|\bar{\boldsymbol{s}}\sigma_{\mu\nu}P_{R}b|B\rangle + \mathcal{C}_{9}\langle V_{\lambda}|\bar{\boldsymbol{s}}\gamma_{\mu}P_{L}b|B\rangle \\ \boldsymbol{B}_{\mu} & = & \mathcal{C}_{10}\langle V_{\lambda}|\bar{\boldsymbol{s}}\gamma_{\mu}P_{L}b|B\rangle & \lambda: \ \boldsymbol{K}^{*} \ \text{helicity} \end{array}$$

S. Descotes-Genon (LPT-Orsay)

 $b
ightarrow s\ell\ell$ and LFUV

Two sources of hadronic uncertainties

$$A(B \to K^* \ell \ell) = \frac{G_F \alpha}{\sqrt{2\pi}} V_{tb} V_{ts}^* [(A_\mu + T_\mu) \bar{u}_\ell \gamma^\mu v_\ell + B_\mu \bar{u}_\ell \gamma^\mu \gamma_5 v_\ell]$$

Form factors (local)

Charm loop (non-local)

• Local contributions (more terms if NP in non-SM C_i): form factors

$$\begin{array}{lll} \mathbf{A}_{\mu} & = & -\frac{2m_{b}q^{\nu}}{q^{2}}\mathcal{C}_{7}\langle V_{\lambda}|\bar{\mathbf{s}}\sigma_{\mu\nu}P_{R}b|B\rangle + \mathcal{C}_{9}\langle V_{\lambda}|\bar{\mathbf{s}}\gamma_{\mu}P_{L}b|B\rangle \\ \mathbf{B}_{\mu} & = & \mathcal{C}_{10}\langle V_{\lambda}|\bar{\mathbf{s}}\gamma_{\mu}P_{L}b|B\rangle & \lambda: \ K^{*} \ \text{helicity} \end{array}$$

• Non-local contributions (charm loops): hadronic contribs.

 T_{μ} contributes like $\mathcal{O}_{7,9}$, but depends on q^2 and external states

S. Descotes-Genon (LPT-Orsay)

 $b
ightarrow s\ell\ell$ and LFUV

Form factors

• low K^* recoil: lattice, with correlations

[Horgan, Liu, Meinel, Wingate]

• large *K** recoil: B-meson Light-Cone Sum Rule,

large error bars and no correlations [Khodjamirian, Mannel, Pivovarov, Wang]

• all: fit K*-meson LCSR + lattice, small errors bars, correlations

Form factors

• low K^* recoil: lattice, with correlations

[Horgan, Liu, Meinel, Wingate]

• large *K** recoil: B-meson Light-Cone Sum Rule,

large error bars and no correlations [Khodjamirian, Mannel, Pivovarov, Wang]

• all: fit K^* -meson LCSR + lattice, small errors bars, correlations

Reduce uncertainties and restore correlations among 7 form factors using EFT correlations arising in $m_b \to \infty$, e.g., at large K^* recoil $\xi_{\perp} = \frac{m_B}{m_B + m_{K^*}} V = \frac{m_B + m_{K^*}}{2E_{K^*}} A_1 = T_1 = \frac{m_B}{2E_{K^*}} T_2 + O(\alpha_s, \Lambda/m_b) \text{ corr}$ S. Descotes-Genon (LPFOrsay)

Form factors (local)

Charm loop (non-local)

Form factors (local)

Charm loop (non-local)

Uncertainties in form factors ?

- form factor inputs + correlations from EFT with limit $m_b \rightarrow \infty$ but $O(\Lambda/m_b)$ power corrections to this limit
- Power corrs with large impact on optimised obs. ? [Camalich, Jäger]

Form factors (local)

Charm loop (non-local)

Uncertainties in form factors ?

- form factor inputs + correlations from EFT with limit $m_b \rightarrow \infty$ but $O(\Lambda/m_b)$ power corrections to this limit
- Power corrs with large impact on optimised obs. ? [Camalich, Jäger]
- No, but accurate predictions require
 [Matias, Virto, Hofer, Capdevilla, SDG]
 - appropriate def of soft form factors $\xi_{\perp,||}$ in $m_b \to \infty$ limit (scheme)
 - correlations from EFT (heavy-quark sym.) among form factors
 - power corrs varied in agreement with form factor inputs

Form factors (local)

Charm loop (non-local)

Uncertainties in form factors ?

- form factor inputs + correlations from EFT with limit $m_b \rightarrow \infty$ but $O(\Lambda/m_b)$ power corrections to this limit
- Power corrs with large impact on optimised obs. ? [Camalich, Jäger]
- No, but accurate predictions require [Matias, Virto, Hofer, Capdevilla, SDG]
 - appropriate def of soft form factors $\xi_{\perp,||}$ in $m_b \rightarrow \infty$ limit (scheme)
 - correlations from EFT (heavy-quark sym.) among form factors
 - power corrs varied in agreement with form factor inputs
- [Camalich, Jäger] artefacts from ill-advised scheme/variation for pcs
Charm-loop contribution

Form factors (local)

Charm loop (non-local)

Charm-loop contribution

Form factors (local)

Charm loop (non-local)

Uncertainties from charm loops ?

[Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli]

- Effect well-known (loop process, charmonium resonances)
- Yields q^2 and hadron-dependent contrib with $\mathcal{O}_{7,9}$ -like structures
 - Contribution $\Delta C_9^{BK(*)}$ from LCSR computation [Khodjamirian, Mannel et al.]
 - Global fits use this result as order of magn, or $O(\Lambda/m_b)$ estimates

Charm-loop contribution

Form factors (local)

Charm loop (non-local)

Uncertainties from charm loops ?

[Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli]

- Effect well-known (loop process, charmonium resonances)
- Yields q^2 and hadron-dependent contrib with $\mathcal{O}_{7,9}$ -like structures
 - Contribution $\Delta C_9^{BK(*)}$ from LCSR computation [Khodjamirian, Mannel et al.]
 - Global fits use this result as order of magn, or $O(\Lambda/m_b)$ estimates
- Bayesian extraction from ${\it B}
 ightarrow {\it K}^* \mu \mu$ performed by [Ciuchini et al.]
 - q^2 dependence in agreement with $\Delta C_9^{BK(*)}$ + constant C_9^{NP}
 - no need for extra q²-dep. contribution (no missed hadronic contrib)
 - actually not contradicting results of global fits, though less precise

[Matias, Virto, Hofer, Capdevilla, SDG; Hurth, Mahmoudi, Neshatpour]

Cross-check: q^2 -dependence of C_9

[Capdevila, Crivellin, Matias, Virto, SDG]

- Fit to C_9^{NP} from individual bins of $b \to s \mu \mu$ data (NP only in $C_{9\mu}$)
 - NP in C_9 from short distances, q^2 -independent
 - Hadronic physics in C_9 related to $c\bar{c}$ dynamics, (likely) q^2 -dependent
- No indication of additional q²-dependence missed by the fit
- Can be checked for other NP scenarios
- In agreement with other analyses [Altmanshoffer, Straub]
- Further estimates from LHCb data-driven analyses (D. Van Dyk's talk)

S. Descotes-Genon (LPT-Orsay)

 $b \rightarrow s \ell \ell$ and LFUV

Tbilisi (25/09/17) 25

Looking for more observables

LFUV in branching ratios

 R_{K^*} with conservative [Khodjamirian et al] but R_{ϕ} computed with [Bharucha et al]

LFUV in angular observables: Q_i, B_i, M

[Capdevilla, Matias, Virto, SDG]

Expecting measurements of BR and angular coefficients for $B \rightarrow K^* ee$

- null SM tests (up to m_{ℓ} effects): $Q_i = P_i^{\mu} P_i^{e}$, $B_i = \frac{J_i^{\mu}}{J_i^{e}} 1$
- angular coeffs J_5 and J_{6s} with only a linear dependence on C_9

$$\textit{M} = (\textit{J}_{5}^{\mu} - \textit{J}_{5}^{e})(\textit{J}_{6s}^{\mu} - \textit{J}_{6s}^{e})/(\textit{J}_{6s}^{\mu}\textit{J}_{5}^{e} - \textit{J}_{6s}^{e}\textit{J}_{5}^{\mu})$$

- cancellation of hadronic contribs in C_9 if NP in $C_{9\mu}$ only
- different sensitivity to NP scenarios compared to R_{K(*)}

S. Descotes-Genon (LPT-Orsay)

LFUV in angular observables: Q_i, B_i

S. Descotes-Genon (LPT-Orsay)

Additional observables: P_1 and P_2 at very low q^2

At very low q^2 , C_9 kinematically suppressed in P_1 and P_2 \implies way of probing other Wilson coefficients

[Becirevic, Schneider, Capdevila, Hofer, Matias, SDG]

S. Descotes-Genon (LPT-Orsay)

Outlook

B physics anomalies

- $b \rightarrow s \ell^+ \ell^-$ with many obs., more or less sensitive to hadronic unc.
- Interesting deviations from SM expectations
- Indications of violation of lepton flavour universality
- Global fit supports large $C_{9\mu}^{NP}$ with very good consistency (Br vs angular vs R, channels, recoil regions, LFUV and All obs...)
- Does not seem to favour hadronic explanations (power corrections for form factors, charm loop contributions)

Where to go?

- Other LFU violating observables: $R_{\phi}, Q_{i}...$
- Charm loops (estimates, data-driven info on resonances, new obs)
- More determinations of form factors to control uncertainties
- More accurate constraints on other Wilson coefficients ($\mathcal{C}_{9'}, \mathcal{C}_{10}$)
- Model building to connect with other anomalies (like $b
 ightarrow c \ell
 u_\ell$)

A lot of (interesting) work on the way !

S. Descotes-Genon (LPT-Orsay)

Thank you for your attention !

From 2013 to 2016

Many improvements from experiment and theory, but...

[SDG, J. Matias, Virto] (2013)

[SDG, L. Hofer J. Matias, Virto] (2016)

Anomalies in angular obs: CMS and ATLAS

- ATLAS and CMS in 2017, but with larger uncertainties
- ATLAS: full basis, deviation in P'_5 (OK with LHCb) and P'_4 (not OK)
- CMS: only P₁ and P'₅ using input on F_L from earlier analyses (not clear why) leading to lower P'₅ than others
- There is more to $B
 ightarrow K^* \mu \mu$ than just P_5'
 - P₂ also interesting deviations in LHCb 1 fb⁻¹ data in [2,4] bin (but not seen at 3 fb⁻¹ due to too large F_L leading to large uncert.)
 - useful that other optimised observables in agreement with SM

A few recent global fits (before R_{K^*})

	[SDG, Hofer	[Straub, Stangl &	[Hurth, Mahmoudi,
	Matias, Virto]	Altmannshofer]	Neshatpour]
Statistical	Frequentist	Frequentist	Frequentist
approach	$\Delta \chi^2$	$\Delta \chi^2$	$\Delta\chi^2$ & χ^2
Data	LHCb	Averages	LHCb
${\it B} ightarrow {\it K}^* \mu \mu$ data	P _i , Max likelihood	S_i , Max likelihood	S_i , Max I.& moments
Form	B-meson LCSR	[Bharucha, Straub, Zwicky]	[Bharucha, Straub, Zwicky]
factors	[Khodjamirian et al.]	fit light-meson LCSR	
	+ lattice QCD	+ lattice QCD	
Theo approach	soft and full ff	full ff	soft and full ff
<i>c</i> c̄ large recoil	magnitude from	polynomial param	polynomial param
	[Khodjamirian et al.]		
\mathcal{C}^{μ}_{9} 1D 1 σ	[-1.22,-0.79]	[-1.54,-0.53]	[-0.27,-0.13]
pull _{SM}	4.2 <i>σ</i>	3.7 σ	4.2σ
"good	see before	$\mathcal{C}_9^{NP}, \mathcal{C}_9^{NP} = -\mathcal{C}_{10}^{NP}$	$(\mathcal{C}_{9}^{NP}, \mathcal{C}_{9'}^{NP}), (\mathcal{C}_{9}^{NP}, \mathcal{C}_{10}^{NP})$
scenarios"		$(\mathcal{C}_9^{NP},\mathcal{C}_{9'}^{NP}),(\mathcal{C}_9,\mathcal{C}_{10}^{NP})$	

 \Longrightarrow Good overall agreement for the results of the three fits

S.	Desco	tes-Genon	(LPT-Orsay)
----	-------	-----------	------------	---

$B ightarrow K^* (ightarrow K \pi) \mu \mu$

Rich kinematics

 differential decay rate in terms of 12 angular coeffs J_i(q²)

with $q^2 = (p_{\ell^+} + p_{\ell^-})^2$

 interferences between 8 transversity amplitudes for B → K*(→ Kπ)V*(→ ℓℓ)

[Ali, Hiller, Matias, Krüger, Mescia, SDG, Virto, Hofer, Bobeth, van Dyk, Buras, Altmanshoffer, Straub, Bharucha,

Zwicky, Gratrex, Hopfer, Becirevic, Sumensari, Zukanovic-Funchal ...]

$B ightarrow K^* (ightarrow K \pi) \mu \mu$

Rich kinematics

 differential decay rate in terms of 12 angular coeffs J_i(q²)

with $q^2 = (p_{\ell^+} + p_{\ell^-})^2$

 interferences between 8 transversity amplitudes for B → K*(→ Kπ)V*(→ ℓℓ)

[Ali, Hiller, Matias, Krüger, Mescia, SDG, Virto, Hofer, Bobeth, van Dyk, Buras, Altmanshoffer, Straub, Bharucha,

Zwicky, Gratrex, Hopfer, Becirevic, Sumensari, Zukanovic-Funchal ...]

- Transversity amplitudes (K* polarisation, ll chirality) in terms of Wilson coefficients and 7 form factors A_{0,1,2}, V, T_{1,2,3}
- EFT relations between form factors in limit $m_B \rightarrow \infty$, either when K^* very soft or very energetic (low/large-recoil)

$B ightarrow K^* (ightarrow K \pi) \mu \mu$

Rich kinematics

 differential decay rate in terms of 12 angular coeffs J_i(q²)

with $q^2 = (p_{\ell^+} + p_{\ell^-})^2$

 interferences between 8 transversity amplitudes for B → K*(→ Kπ)V*(→ ℓℓ)

[Ali, Hiller, Matias, Krüger, Mescia, SDG, Virto, Hofer, Bobeth, van Dyk, Buras, Altmanshoffer, Straub, Bharucha,

Zwicky, Gratrex, Hopfer, Becirevic, Sumensari, Zukanovic-Funchal ...]

- Transversity amplitudes (K* polarisation, ll chirality) in terms of Wilson coefficients and 7 form factors A_{0,1,2}, V, T_{1,2,3}
- EFT relations between form factors in limit m_B → ∞, either when K* very soft or very energetic (low/large-recoil)
- Build ratios of J_i where form factors cancel in these limits
- Optimised observables *P_i* with reduced hadronic uncertainties

[Matias, Krüger, Becirevic, Schneider, Mescia, Virto, SDG, Ramon, Hurth; Hiller, Bobeth, Van Dyk]

S. Descotes-Genon (LPT-Orsay)

Low and large K^* recoils for $B \to K^* \mu \mu$

Sensitivity of observables to form factors

- P_i designed to have limited sensitivity to form factors
- S_i CP-averaged version of J_i

$$P_1=rac{2S_3}{1-F_L} \qquad F_L=rac{J_{1c}+ar{J}_{1c}}{\Gamma+ar{\Gamma}} \qquad S_3=rac{J_3+ar{J}_3}{\Gamma+ar{\Gamma}}$$

Illustration for arbritrary NP point for two sets of LCSR form factors:

green [Ball, Zwicky] Versus gray [Khodjamirian et al.]

more or less easy to discriminate against yellow (SM prediction)

S. Descotes-Genon (LPT-Orsay)

SM predictions and LHCb results at 1 fb $^{-1}$

[SDG, Matias, Virto]

- P_2 same zero as A_{FB} , related to C_9/C_7
- $P_{5'} \rightarrow -1$ as q^2 grows due to $A^R_{\parallel,\parallel} \ll A^L_{\parallel,\parallel}$ for $C_9^{SM} \simeq -C_{10}^{SM}$
- A negative shift in C_7 and C_9 can move them in the right direction

S. Descotes-Genon (LPT-Orsay)

Focus on P_5'

In large recoil limit with no right-handed current, with $\xi_{\perp,||}$ ffs

 $\begin{array}{ll} A_{\perp,||}^{L} & \propto & \pm \left[\mathcal{C}_{9} - \mathcal{C}_{10} + 2\frac{m_{b}}{s}\mathcal{C}_{7} \right] \xi_{\perp}(s) & A_{\perp,||}^{R} \propto \pm \left[\mathcal{C}_{9} + \mathcal{C}_{10} + 2\frac{m_{b}}{s}\mathcal{C}_{7} \right] \xi_{\perp}(s) \\ A_{0}^{L} & \propto & - \left[\mathcal{C}_{9} - \mathcal{C}_{10} + 2\frac{m_{b}}{m_{B}}\mathcal{C}_{7} \right] \xi_{||}(s) & A_{0}^{R} \propto - \left[\mathcal{C}_{9} + \mathcal{C}_{10} + 2\frac{m_{b}}{m_{B}}\mathcal{C}_{7} \right] \xi_{||}(s) \\ \bullet & \text{In SM, } \mathcal{C}_{9} \simeq - \mathcal{C}_{10} \text{ leading to } |A_{\perp,||}^{R}| \ll |A_{\perp,||}^{L}| \\ \bullet & \text{If } \mathcal{C}_{9}^{\mathsf{NP}} < 0, \ |A_{0,||,\perp}^{R}| \text{ increases, } |A_{0,||,\perp}^{L}| \text{ decreases, } |P_{5}'| \text{ gets lower} \\ \bullet & \text{For } P_{4}', \text{ sum with } A_{0,||}, \text{ so not sensitive to } \mathcal{C}_{9} \text{ in the same way} \end{array}$

S. Descotes-Genon (LPT-Orsay)

Power corrections

- Factorisable power corrections (form factors)
 - Parametrize power corrections to form factors (at large recoil):

$$F(q^2) = F^{\text{soft}}(\xi_{\perp,\parallel}(q^2)) + \Delta F^{\alpha_s}(q^2) + a_F + b_F \frac{q^2}{m_B^2} + \dots$$

- Fit *a_F*, *b_F*, ... to the full form factor *F* (taken e.g. from LCSR)
 - Respect correlations among $a_{F_i}, b_{F_i}, ...$ and kinematic relations
 - Choose appropriate definition of ξ_{||,⊥} from form factors (scheme) or take into account correlations among form factors
- Vary power corrections as 10% of the total form factor around the central values obtained for *a_F*, *b_F*...

Power corrections

- Factorisable power corrections (form factors)
 - Parametrize power corrections to form factors (at large recoil):

$$F(q^2) = F^{\text{soft}}(\xi_{\perp,\parallel}(q^2)) + \Delta F^{\alpha_s}(q^2) + a_F + b_F \frac{q^2}{m_B^2} + \dots$$

• Fit *a_F*, *b_F*, ... to the full form factor *F* (taken e.g. from LCSR)

- Respect correlations among $a_{F_i}, b_{F_i}, ...$ and kinematic relations
- Choose appropriate definition of ξ_{||,⊥} from form factors (scheme) or take into account correlations among form factors
- Vary power corrections as 10% of the total form factor around the central values obtained for a_F, b_F...

• Nonfactorisable power corrections (extra part from amplitudes)

- Extract from $\langle K^*\gamma^*|H_{e\!f\!f}|B
 angle$ the part not associated to form factors
- Multiply each of them with a complex q²-dependent factor

 $\mathcal{T}_i^{had} \rightarrow \left(1 + \frac{r_i(q^2)}{r_i}\right) \mathcal{T}_i^{had}, \quad r_i(s) = r_i^a e^{i\phi_i^a} + r_i^b e^{i\phi_i^b}(s/m_B^2) + r_i^c e^{i\phi_i^c}(s/m_B^2)^2.$

• Vary $r_i^{a,b,c} = 0 \pm 0.1$ and phase $\phi_i^{a,b,c}$ free for $i = 0, \perp, ||$

Correlating form factors

Implement correlations among form factors

• Soft form factor approach

[Matias, Virto, Hofer, Mescia, SDG...]

• Decompose, e.g., $V = \frac{m_B + m_{K^*}}{m_B} \xi_{\perp} + \Delta V^{\alpha_s} + \Delta V^{\Lambda}$

with hard gluons ΔV^{α_s} , power corrections $\Delta V^{\Lambda} = O(\Lambda/m_B)$

- Define soft form factors by setting some $\Delta=0$
- (Factorisable) power corrs. from fit to full form factors,

embedding correlations from large-recoil

• $B \rightarrow V\ell\ell$ from soft form factors + hard gluons + power corrections

Correlating form factors

Implement correlations among form factors

• Soft form factor approach

[Matias, Virto, Hofer, Mescia, SDG...]

• Decompose, e.g., $V = \frac{m_B + m_{K^*}}{m_B} \xi_{\perp} + \Delta V^{\alpha_s} + \Delta V^{\Lambda}$

with hard gluons ΔV^{α_s} , power corrections $\Delta V^{\Lambda} = O(\Lambda/m_B)$

- Define soft form factors by setting some $\Delta=0$
- (Factorisable) power corrs. from fit to full form factors,

embedding correlations from large-recoil

- $B \rightarrow V\ell\ell$ from soft form factors + hard gluons + power corrections
- Full form factor approach

[Buras, Ball, Bharucha, Altmannshofer, Straub...]

- Full form factors with correlations
- $B \rightarrow V \ell \ell$ from correlated full form factors
 - + hard gluons & power corrs. not from form factors (nonfactorisable)

Correlating form factors

Implement correlations among form factors

• Soft form factor approach

[Matias, Virto, Hofer, Mescia, SDG...]

• Decompose, e.g., $V = \frac{m_B + m_{K^*}}{m_B} \xi_{\perp} + \Delta V^{\alpha_s} + \Delta V^{\Lambda}$

with hard gluons ΔV^{α_s} , power corrections $\Delta V^{\Lambda} = O(\Lambda/m_B)$

- Define soft form factors by setting some $\Delta=0$
- (Factorisable) power corrs. from fit to full form factors,

embedding correlations from large-recoil

- $B \rightarrow V\ell\ell$ from soft form factors + hard gluons + power corrections
- Full form factor approach

[Buras, Ball, Bharucha, Altmannshofer, Straub...]

- Full form factors with correlations
- $B \rightarrow V \ell \ell$ from correlated full form factors
 - + hard gluons & power corrs. not from form factors (nonfactorisable)

Choice of observables

- optimised observables *P_i* with limited sensitivity to form factors
- averaged angular coefficients S_i with larger sensitivity

Very large power corrections ? (1)

• Scheme: choice of definition for the two soft form factors (all equivalent for $m_B \rightarrow \infty$)

$$\{\xi_{\perp},\xi_{\parallel}\} = \{V, \alpha A_1 + \beta A_2\}, \{T_1, A_0\}, \dots$$

• Power corrections for the other form factors from dimensional estimates or fit to available determinations (LCSR)

$$F(q^2) = F^{\text{soft}}(\xi_{\perp,\parallel}(q^2)) + \Delta F^{\alpha_s}(q^2) + a_F + b_F \frac{q^2}{m_B^2} + ...$$

 For some schemes, large(r) uncertainties found for some optimised observables [Camalich, Jäger]

Very large power corrections ? (1)

• Scheme: choice of definition for the two soft form factors (all equivalent for $m_B \rightarrow \infty$)

$$\{\xi_{\perp},\xi_{\parallel}\} = \{V, \alpha A_1 + \beta A_2\}, \{T_1, A_0\}, \dots$$

• Power corrections for the other form factors from dimensional estimates or fit to available determinations (LCSR)

$$F(q^2) = F^{ ext{soft}}(\xi_{\perp,\parallel}(q^2)) + \Delta F^{lpha_s}(q^2) + a_F + b_F rac{q^2}{m_B^2} + ...$$

 For some schemes, large(r) uncertainties found for some optimised observables [Camalich, Jäger]

Observables are scheme independent, but procedure to compute them can be either scheme dependent or not
a) Include all correlations among uncertainties for power corr more accurate, but hinges on detail of ff determination
b) Assign 10% uncorrelated uncertainties for power corrs *a_F*, *b_F* depends on scheme (setting *a_F* = *b_F* = 0 for two form factors)

S. Descotes-Genon (LPT-Orsay)

Very large power corrections ? (2)

Very large power corrections ? (2)

Scheme dependence of observables

Using the connection between full and soft form factors at large recoil, keeping power corrections

$$\begin{split} P_5'(6\,\text{GeV}^2) &= P_5'|_{\infty}(6\,\text{GeV}^2) \Bigg(1 + 0.18 \frac{2a_{V_-} - 2a_{T_-}}{\xi_{\perp}} - 0.73 \frac{2a_{V_+}}{\xi_{\perp}} + 0.02 \frac{2a_{V_0} - 2a_{T_0}}{\tilde{\xi}_{\parallel}} \\ &+ \text{nonlocal terms} \Bigg) + O\left(\frac{m_{K^*}}{m_B}, \frac{\Lambda^2}{m_B^2}, \frac{q^2}{m_B^2}\right). \end{split}$$

$$P_1(6\,\text{GeV}^2) = -1.21\frac{2a_{V_+}}{\xi_\perp} + 0.05\frac{2b_{\mathcal{T}_+}}{\xi_\perp} + \text{nonlocal terms} + O\left(\frac{m_{K^*}}{m_B}, \frac{\Lambda^2}{m_B^2}, \frac{q^2}{m_B^2}\right),$$

- scheme dependence of P'₅ not fully taken into account in [Camalich, Jäger]
- allows one to understand the scheme dependence of P_i
- P_5' and P_1 with reduced unc. if ξ_{\perp} defined from V ($a_{V_+} = 0$)

(SDG, Hofer, Matias, Virto)

Cross-checks: F. factors

- Soft form factor approach ([Khodjamirian et al.] ff + EFT correls) vs full ff ([Altmannshofer, Straub] with [Bharucha et al.] ff with correls and small errors)
- Similar results using either optimised or angular coeffs (if correlations of form factors included through EFT)

Cross-checks: F. factors & power corrs (SDG, Hofer, Matias, Virto)

- Soft form factor approach ([Khodjamirian et al.] ff + EFT correls) vs full ff ([Altmannshofer, Straub] with [Bharucha et al.] ff with correls and small errors)
- Similar results using either optimised or angular coeffs (if correlations of form factors included through EFT)
- Increasing power corrections weakens role of large recoil, but low recoil enough to pull fit away from the SM

S. Descotes-Genon (LPT-Orsay)

Charm-loop effects: large recoil

- Short-distance (hard gluons)
 - $C_9 \rightarrow C_9 + Y(q^2) = C_9 + \delta C_{9,\text{SD}}^{BK(^*)}(q^2)$, dependence on m_c
 - higher-order short-distance QCD via QCDF/HQET

Charm-loop effects: large recoil

- Short-distance (hard gluons)
 - $C_9 \rightarrow C_9 + Y(q^2) = C_9 + \delta C_{9,SD}^{BK(*)}(q^2)$, dependence on m_c
 - higher-order short-distance QCD via QCDF/HQET
- Long-distance (soft gluons)
 - $\Delta \mathcal{C}_9^{\mathcal{BK}(^*),i} > 0 \; (i=0,||,\perp) \; \text{using LCSR}$ [Khodjamirian, Mannel, Pivovarov, Wang]
 - Computed for q² < 0 and small, then extrapolated through dispersion relation reincluding J/ψ (but many unknown parameters)
 - For us, order of magnitude: $\Delta C_9^{BK^*}|_{KMPW} = \delta C_{9,SD}^{BK(*)} + \delta C_{9,LD}^{BK(*)}$ taking $\Delta C_9^{BK^*,i} = \delta C_{9,SD}^{BK(*),i} + \mathbf{s}_i \delta C_{9,LD}^{BK(*),i}$ with $\mathbf{s}_i = 0 \pm 1$

S. Descotes-Genon (LPT-Orsay)

Charm-loop fit to $B \rightarrow K^* \ell \ell$ (1)

• $c\bar{c}$ contributions to 3 K^* helicity amplitudes $g_{1,2,3}$ as q^2 -polynomial • params from Bayesian fit to data [Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valii]

In units of C_9 : Short-Dist, QCDF, fit, KMPW $\Delta C_9^{BK^*}$

constrained fit: imposing SM + ΔC₉^{BK*} [Khodjamirian et al.] at q² < 1 GeV² yields q²-dependent cc̄ contribution, with "large" coefs for q⁴
Charm-loop fit to $B \to K^* \ell \ell$ (1)

- $c\bar{c}$ contributions to 3 K^* helicity amplitudes $g_{1,2,3}$ as q^2 -polynomial
- params from Bayesian fit to data [Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli]

In units of C_9 : Short-Dist, QCDF, fit, KMPW $\Delta C_9^{BK^*}$

- constrained fit: imposing SM + ΔC₉^{BK*} [Khodjamirian et al.] at q² < 1 GeV² yields q²-dependent cc̄ contribution, with "large" coefs for q⁴
- unconstrained fit: polynomial agrees with $\Delta C_9^{BK^*}$ + large cst C_9^{NP} identical for all 3 helicity amplitudes

Charm-loop fit to $B \to K^* \ell \ell$ (1)

- $c\bar{c}$ contributions to 3 K^* helicity amplitudes $g_{1,2,3}$ as q^2 -polynomial
- params from Bayesian fit to data [Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli]

In units of C_9 : Short-Dist, QCDF, fit, KMPW $\Delta C_9^{BK^*}$

- constrained fit: imposing SM + ΔC₉^{BK*} [Khodjamirian et al.] at q² < 1 GeV² yields q²-dependent cc̄ contribution, with "large" coefs for q⁴
- unconstrained fit: polynomial agrees with $\Delta C_9^{BK^*}$ + large cst C_9^{NP} identical for all 3 helicity amplitudes
- constrained fit forced at low q^2 , compensation skewing high q^2

Charm-loop fit to $B \to K^* \ell \ell$ (1)

- $c\bar{c}$ contributions to 3 K^* helicity amplitudes $g_{1,2,3}$ as q^2 -polynomial
- params from Bayesian fit to data [Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli]

In units of C_9 : Short-Dist, QCDF, fit, KMPW $\Delta C_9^{BK^*}$

- constrained fit: imposing SM + ΔC₉^{BK*} [Khodjamirian et al.] at q² < 1 GeV² yields q²-dependent cc̄ contribution, with "large" coefs for q⁴
- unconstrained fit: polynomial agrees with $\Delta C_9^{BK^*}$ + large cst C_9^{NP} identical for all 3 helicity amplitudes
- constrained fit forced at low q^2 , compensation skewing high q^2
- no dynamical hadronic explanation for enhancement at high q²

S. Descotes-Genon (LPT-Orsay)

Problem related to q⁴ contribution ? [Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli]

- strong q² dependence due to hadronic, not NP ?
- not clear: q^4 dependence already from $C_i \times FF(q^2)$

Problem related to q^4 contribution ? [Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli] • strong q^2 dependence due to hadronic, not NP ? • not clear: q^4 dependence already from $C_i \times FF(q^2)$

In units of C_9 : Short-Dist, QCDF, fit, KMPW $\Delta C_9^{BK^*}$

• Bayesian fit without q^4 need same C_9^{NP} in all three K^* helicities

Problem related to q^4 contribution ? [Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli] • strong q^2 dependence due to hadronic, not NP ? • not clear: q^4 dependence already from $C_i \times FF(q^2)$

In units of C_9 : Short-Dist, QCDF, fit, KMPW ΔC_9^{BK}

• Bayesian fit without q^4 need same C_q^{NP} in all three K^* helicities

 Frequentist fits indicate no improvement by adding q⁴ term, and adding C₉ better pull than 12 independent coefficients

[Capdevila, Hofer, Matias, SDG; Hurth, Mahmoudi, Neshatpour]

Problem related to q^4 contribution ? [Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli] • strong q^2 dependence due to hadronic, not NP ? • not clear: q^4 dependence already from $C_i \times FF(q^2)$

In units of C_9 : Short-Dist, QCDF, fit, KMPW ΔC_9^{BK}

• Bayesian fit without q^4 need same C_q^{NP} in all three K^* helicities

 Frequentist fits indicate no improvement by adding q⁴ term, and adding C₉ better pull than 12 independent coefficients

[Capdevila, Hofer, Matias, SDG; Hurth, Mahmoudi, Neshatpour]

 if cc̄, why same constant C₉^{NP} for all mesons and helicities, which explanation for R_{K(*)}, what causes deviations in low-recoil BRs ?

S. Descotes-Genon (LPT-Orsay)

(Capdevila, Hofer, Matias, SDG)

$$\begin{split} A^0_{L,R} &= A^0_{L,R}(s_i=0) + \frac{N}{q^2} \left(h^{(0)}_0 + \frac{q^2}{1 \text{ GeV}^2} h^{(1)}_0 + \frac{q^4}{1 \text{ GeV}^4} h^{(2)}_0 \right), \\ A^{\parallel}_{L,R} &= A^{\parallel}_{L,R}(s_i=0) \\ &\quad + \frac{N}{\sqrt{2}q^2} \left[(h^{(0)}_+ + h^{(0)}_-) + \frac{q^2}{1 \text{ GeV}^2} (h^{(1)}_+ + h^{(1)}_-) + \frac{q^4}{1 \text{ GeV}^4} (h^{(2)}_+ + h^{(2)}_-) \right], \\ A^{\perp}_{L,R} &= A^{\perp}_{L,R}(s_i=0) \\ &\quad + \frac{N}{\sqrt{2}q^2} \left[(h^{(0)}_+ - h^{(0)}_-) + \frac{q^2}{1 \text{ GeV}^2} (h^{(1)}_+ - h^{(1)}_-) + \frac{q^4}{1 \text{ GeV}^4} (h^{(2)}_+ - h^{(2)}_-) \right], \end{split}$$

- $s_i = 0$ means no contrib from long-distance $c\bar{c}$
- *n* order of the polynomial added, coeffs fit in frequentist framework

0	testing nested hyp: pull from $\chi^{2(n-1)}_{min} - \chi^{2(n)}_{min}$						$(\chi_{\min}^{2(-1)} = SM)$			
	п	0		1		2		3		
	$B ightarrow K^*\mu\mu,C^{\mu,\mathrm{NP}}_9=0$	2.88	(0.8 <i>σ</i>)	17.90	(3.5 <i>σ</i>)	0.08	(0.0 <i>σ</i>)	0.34	(0.1 <i>σ</i>)	
	$B \rightarrow K^* \mu \mu, C_9^{\mu, \mathrm{NP}} = -1.1$	4.79	(1.3 <i>σ</i>)	9.73	(2.3 <i>σ</i>)	0.20	(0.0 <i>σ</i>)	0.39	(0.1 <i>σ</i>)	
	$b ightarrow s\ell\ell,C_9^{\mu,\mathrm{NP}}=0$	1.55	(0.4 <i>σ</i>)	21.40	(3.9 <i>σ</i>)	0.61	(0.1 <i>σ</i>)			

No need for high-order polyn or strong q^2 -dep impossible with short distance contrib, contrary to claims by [Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli]

S. Descotes-Genon (LPT-Orsay)

Charm loop from resonances in $B \to K \ell \ell$ data

C₉^{eff} = C₉^{SD}+sum of resonant Breit-Wigner (ω, ρ⁰, φ, charmonia)
LHCb data driven fit to couplings and phases, as well as C₉, C₁₀
4 equivalent sols, with tiny contrib from resonances below J/ψ

Charm loop from resonances in $B \to K \ell \ell$ data

C₉^{eff} = C₉^{SD}+sum of resonant Breit-Wigner (ω, ρ⁰, φ, charmonia)
LHCb data driven fit to couplings and phases, as well as C₉, C₁₀
4 equivalent sols, with tiny contrib from resonances below J/ψ
agrees with (tiny) ΔC₉^{BK} [Khodjamirian et al.] ⇒(C₉, C₁₀) OK with global fits

Charm loop from resonances in $B \to K \ell \ell$ data

• $C_9^{\text{eff}} = C_9^{SD}$ +sum of resonant Breit-Wigner (ω, ρ^0, ϕ , charmonia) • LHCb data driven fit to couplings and phases, as well as C_9, C_{10} • 4 equivalent sols, with tiny contrib from resonances below J/ψ • agrees with (tiny) ΔC_9^{BK} [Khodjamirian et al.] \Longrightarrow (C_9, C_{10}) OK with global fits • extension to $B \to K^* \ell \ell$ from [Blake et al.], agrees with $c\bar{c}$ models for fits

Data-driven charm loop contribution (1)

[Bobeth, Chrzaszcz, Van Dyk, Virto]

Rather than fitting unphysical polynomial with arbritray coefficients

- Known analytic structure of charm loop contribution
 - Analytical up to poles and a cut starting $q^2 = 4M_D^2$
 - Inherit all singularities from form factors (M_{B_s} pole for instance)
- Appropriate parametrisation valid up to DD cut
 - *z*-expansion (better conv below cut, mapped into disc $|z| \le 1$)
 - Poles for J/ψ and ψ' + good asymptotic behaviour

$$\begin{split} \eta_{\alpha}^{*} \mathcal{H}^{\alpha \mu} &= i \int d^{4}x \; e^{iq \cdot x} \langle \bar{K}^{*}(k,\eta) | T\{j_{\text{em}}^{\mu}(x), \mathcal{C}_{2}\mathcal{O}_{2}(y)\} | \bar{B}(p) \rangle \\ z(q^{2}) &= \frac{\sqrt{t_{+} - q^{2}} - \sqrt{t_{+} - t_{0}}}{\sqrt{t_{+} - q^{2}} + \sqrt{t_{+} - t_{0}}}, \quad t_{+} = 4M_{D}^{2}, \quad t_{0} = t_{+} - \sqrt{t_{+}(t_{+} - M_{\psi(2S)}^{2})} \\ \mathcal{H}_{\lambda}(z) &= \frac{1 - z \, z_{J/\psi}^{*}}{z - z_{J/\psi}} \frac{1 - z \, z_{\psi(2S)}^{*}}{z - z_{\psi(2S)}} \Big[\sum_{k=0}^{K \leq 2} \alpha_{k}^{(\lambda)} z^{k} \Big] \mathcal{F}_{\lambda}(z) \end{split}$$

Data-driven charm loop contribution (2)

[Bobeth, Chrzaszcz, Van Dyk, Virto]

0.8

- Exploit info to determine the coefficients
 - Experimental info: discarded LHCb bins to fix J/ψ ans ψ' residues
 - Theoretical info: LCSR for q² ≤ 0 (most accurate)
- Compute the observables
 - cc contribution in agreement with earlier estimates
 - P'_5 for SM in disagreement with LHCb data
 - Agreement if $C_9^{NP} \simeq -1.1$
 - Access to intermediate region between J/ψ and ψ'
 - Extension possible to other $b \rightarrow s\ell\ell$ modes

S. Descotes-Genon (LPT-Orsay)

Charm-loop effects : resonances (1)

- Low recoil: quark-hadron duality
 - Average "enough" resonances to equate quark and hadron levels
 - Model estimate yield a few % for $BR(B o K \mu \mu)$ [Beylich, Buchalla, Feldmann]

Charm-loop effects : resonances (1)

- Low recoil: quark-hadron duality
 - Average "enough" resonances to equate quark and hadron levels
 - Model estimate yield a few % for $BR(B o K \mu \mu)$ [Beylich, Buchalla, Feldmann]

- Probably (?) effect of similar size for $B \rightarrow K^* \mu \mu$ (BR and angular obs.)
- OPE corrections + NLO QCD corrections + complex correction of 10% for each transversity amplitude
- Difficulties to explain $B \to K\ell\ell$ low-recoil spectrum using $\sigma(e^+e^- \to hadrons)$ and naive factorisation [Lyon, Zwicky]

Charm-loop effects : resonances (1)

- Low recoil: quark-hadron duality
 - Average "enough" resonances to equate quark and hadron levels
 - Model estimate yield a few % for $BR(B o K \mu \mu)$ [Beylich, Buchalla, Feldmann]

- Probably (?) effect of similar size for $B \rightarrow K^* \mu \mu$ (BR and angular obs.)
- OPE corrections + NLO QCD corrections + complex correction of 10% for each transversity amplitude
- Difficulties to explain $B \to K\ell\ell$ low-recoil spectrum using $\sigma(e^+e^- \to hadrons)$ and naive factorisation [Lyon, Zwicky]

• Large recoil

- $q^2 \leq$ 7-8 GeV² to limit the impact of J/ψ tail
- Still need to include the effect of *cc* loop

(tail of resonances + nonresonant)

• LHCb on $B \rightarrow K \mu \mu$: resonance tails have very limited impact

Charm-loop effects : resonances (2)

On the basis of a model for $c\bar{c}$ resonances for low-recoil $B \to K\mu\mu$ [Zwicky and Lyon] proposed very large $c\bar{c}$ contrib for large-recoil $B \to K^*\mu\mu$

$$\mathcal{C}_9^{\text{eff}} = \mathcal{C}_9^{SM} + \mathcal{C}_9^{NP} + \eta h(q^2) \text{ and } \mathcal{C}_{9'} = \mathcal{C}_{9'}^{NP} + \eta' h(q^2)$$

where $\eta+\eta'=-2.5$ where conventional expectations are $\eta=1,\eta'=0$

- P_2 and P_5' could have more zeroes for $4 \le q^2 \le 9 \text{ GeV}^2$
- $P'_{5[6,8]}$ would be above or equal to $P'_{5[4,6]}$, whereas global effects (like C_9^{NP}) predicts $P'_{5[6,8]} < P'_{5[4,6]}$ in agreement with experiment
- Not in agreement with LHCb findings for $B \to K\ell\ell$
- R_K and R_{K^*} unexplained since it would affect identically $\ell = e, \mu$ S. Descotes-Genon (LPT-Orsay) $b \rightarrow s\ell\ell$ and LFUV Tbilisi (25/09/17)

55

Cross-checks: Charm-loop dependence

- For each $B \to K^* \mu \mu$ transversity $\Delta C_9^{BK(*),i} = \delta C_{9,\text{pert}}^{BK(*),i} + s_i \delta C_{9,\text{non pert}}^{BK(*),i}$
- Ditto for B_s → φ, with all 6 s_i independent
- For $B \to K \mu \mu$, $c\bar{c}$ estimated as very small
- Increasing the range allowed for s_i makes low-recoil and $B \rightarrow K \mu \mu$ dominate more and more
- Does not alter the pull, and does not explain LFUV

NP interpretations

No consistent global alternative from SM/long-dist. for $b
ightarrow {\it s}\ell\ell$

- hadronic effects ($B \rightarrow K^* \mu \mu$, $B_s \rightarrow \phi \mu \mu$ at low and large recoils)
- statistical fluctuation and/or pb with e/μ (R_K , R_{K^*})
- bad luck (short-distance scenarios can accomodate all discrepancies very well by chance)

NP interpretations

No consistent global alternative from SM/long-dist. for $b
ightarrow {\it s}\ell\ell$

- hadronic effects ($B \rightarrow K^* \mu \mu$, $B_s \rightarrow \phi \mu \mu$ at low and large recoils)
- statistical fluctuation and/or pb with e/μ (R_K , R_{K^*})
- bad luck (short-distance scenarios can accomodate all discrepancies very well by chance)

NP models with new scale around TeV

- Z' boson and leptoquarks are favourite
- Partial compositeness and NP in $b
 ightarrow c\bar{c}s$ also investigated
- but susy (MSSM) not favoured (hard to generate large C_{9μ}-like contribution without having flavour problems in other places)

[Buras, De Fazio, Girrbach, Blanke, Altmannshofer, Straub, Crivellin, D'Ambrosio,

Becirevic, Sumensari, Isidori, Greljo, Jäger, Lenz...]

S. Descotes-Genon (LPT-Orsay)

 $b
ightarrow s\ell\ell$ and LFUV

Tbilisi (25/09/17) 5