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The strong coupling constant αs = g2/(4π) is one of the fun-

damental parameters of the Standard Model, one of the three

gauge couplings, a ”fundamental constant” of nature. Like other

constants, it must be determined from the experiment. The pre-

cise determination of αs is one of the most important aims of

particle physics.

The value of αs is of fundamental importance for our understand-

ing of QCD and the standard model. It is an important input to

precision studied of potential discrepancies between experiment

and theory relevant to searches for beyond the Standard Model

physics.

It has been determined experimentally in a larger number of in-

dependent processes, over a wide range of scales. Its variation



over the range 1.78GeV < µ < Mz is in excellent agreement with

QCD, –a highly non-trivial test of the theory. Predictions for

its energy dependence based on the renormalization group equa-

tions were confirmed. Critical tests of the standard model and

the discovery of physics beyond the Standard Model essentially

depend on the precise numerical value of αs.

The reference value for the coupling constant is commonly given

at the scale Mz = 91.187GeV. A world average value of the the

MS scheme coupling in 2016

αs(M
2
z ) = 0.1181± 0.0011.

Bethke 2016



One of the highest-precision low-energy determination comes

from finite energy sum rule (FESR) analyses of hadronic τ de-

cay non-strange data. The accuracy of the experimental data,

for the invariant mass distributions, available from ALEPH and

OPAL collaborations is very high.

ALEPH 1998,2005,2008, 2013/14

OPAL 1998

On the theoretical side very accurate results are available, the

τ-decay rate is calculated up to order α4
s

P.A. Baikov, K.G. Chetyrkin J.H. Kuhn, (2008)



■ τ is the only lepton heavy enough to decay into hadrons.

The characteristic scale of the process is the mass of the τ ,

mτ = 1.7768GeV,. The perturbative QCD is still applicable,

since αs(mτ) ≈ 0.300.

Main ingredients of the pQCD calculations is the renormalization

group improved perturbation theory and the Wilson’s Operator

Product Expansion (OPE) that provide a systematic approxima-

tion scheme for high-energy calculations of physical quantities in

the space-like region (q2 = −Q2 < 0).

In the time-like region perturbation theory cannot be used di-

rectly. The calculations is performed owing to the hypothesis of

global quark-hadron duality suggested by



E. Poggio, H. Quinn, and S. Weinberg 1977,Phys.Rev.D13 1958-1968 (1976)

For more recent formulation of the duality see

Shifman, M.A.Quark-hadron duality. Boris Ioffe Festschrift. At the Frontier

of Particle Physics,2001



In the pioneering work

E. Braaten, S. Narison, A. Pich, Nucl. Phys. B 373 (1992) 581.

was demonstrated the applicability of pQCD for description the

inclusive semi-hadronic decays of the tau.

■ Central quantity to be of interest is the τ decay rate into

hadrons, normalized to the lepton decay rate

Rτ(s0) =
Γ(τ− → ντ + hadrons)

Γ(τ− → ντe−ν̄e)
(1)

where s0 = m2
τ : mτ = 1.77682GeV. At the parton level

Rτ = Nc(|Vud|2 + |Vus|2) ≈ 3



We shall be concerned only with the decays into non-strange

hadrons in the vector channel

Rτ(s0)|non−strange,V = 6SEW |Vud|
∫ s0

0

d Rτ(s)

d s
d s (2)

where

d Rτ(s)

d s
= wτ(s, s0)v1(s) (3)

with

wτ(s, s0) =
1

s0
(1− s/s0)

2(1 + 2s/s0)

and

v1(s) = 2π ImΠ(1)(s + ıε)



The theoretical analysis of Rτ,V (s0) involves the two-point corre-

lation function for the vector color singlet quark currents, (isovector-

vector current)

Vµ(x) = ū(x)γµd(x)

Πµν(q
2) = ı

∫
d4x exp(ıqx)〈0|T (Vµ(x)V

+
ν (0)))|0〉 (4)

Πµν(q
2) = (−gµνq2 + qµqν)Π

(1)(q2) + qµqνΠ
(0)(q2),

A powerful method to evaluate QCD predictions for the τ decays

is the Finite Energy Sum Rules (FESR)

N.V. Krasnikov, A.A. Pivovarov, A.N. Tavkhelidze, Z. Phys. C 19 (1983)

301.



The correlation function Π(q2) is an analytic function in the
whole complex z = q2 plane but the cut z ∈ (0,∞). Let w(z) be
any analytic function in the cut plane, then FESR follows from
the Cauchy’s theorem for the product w(z)Π(z).∫ s0

0
w(s)v1(s) d s = −

π

ı

∮
|z|=s0

w(z)Π(z) dz (5)

∫ s0

0
w(s)v1(s) d s = −

1

4ıπ

∮
|z|=s0

w1(z)

z
D(−z) dz (6)

where D(Q2) (Q2 = −q2) is the Adler function

D(Q2) = D(−q2) = −4π2q2
d

q2
Π(q2) (7)

and

w1(z) =
∫ z

s0
w(z)d z. (8)



In QCD Π(q2) can be represented as

Π(Q2)QCD = Π(Q2)pQCD + ∆(q2)|DV (9)

where ∆(q2)|DV is non-perturbative duality violating contribution
which will be ignored in the sequel and

Π(Q2)|pQCD = Π(Q2)|PT + Π(Q2)|OPE (10)

D(Q2)|pQCD = D(Q2)|PT + D(Q2)|OPE

(11)

where

D(Q2)|PT =
∑

n=0

dn

(
Q2

µ2

)(
αs(µ2)

π

)n

(12)

where αs is the running coupling parameter of QCD. Using Renor-
malization Group invariance

D(Q2)|PT =
∑

n=0

Kn

(
αs(Q2)

π

)n

(13)



with

K0 = K1 = 1, K2 = 1.6398, K3 = 6.3710, K4 = 49.0757.

Baikov P. A., Chetyrkin K. G., Kuhn J. H.(2008)Phys.Rev.Lett.101: 012002.

the running coupling αs(Q2) is solved from the RG equation

Q2 d

dQ2
αs(Q

2) = β(αs(Q
2)) =

∑
k=0

βkαs(Q
2)

k+2

the last coefficient β4 was calculated recently

Baikov P. A., Chetyrkin K. G., Kuhn J. H.(2017)Phys.Rev.Lett. 082002.



The RG invariance and the analyticity cannot be combined un-
ambiguously. The most popular methods are

1) fixed order perturbation theory (FOPT)
2) contour improved perturbation theory (CIPT)
A.A. Pivovarov, Z. Phys. C 53 (1992) 461

F. Le Diberger, A Pich Phys. Lett. B 286 (1992) 147.

3) The analytic approaches to pQCD
D.V. Shirkov, I. Solovtsov 1998

Arguments have been given that CIPT, conceptually, is not
well defined: the predictions obtained within CIPT presumably
may be distorted due to the non-physical Landau singularities
which present in the running coupling. The Kallen-Lehmann An-
alyticity of the correlators is a strong consequence of the general
principles of the QFT.



■ Conceptual and practical problems in RG improved per-

turbation theory

From general principles of local field theory (Lorentz-invariance,

causality, positivity of energy, unitarity etc) follows the cut-plane

analyticity for the physical quantities.

However, the running coupling violates the cut-plane analyticity

because of the ”Landau ghost pole” problem:

The one-loop order running coupling

αs(Q
2) =

1

β0 ln(Q2/Λ2)
≈

Λ2

β0(Q2 − Λ2))
(14)



■Analytic or dispersive approaches to pQCD

To overcome this obstacle analytic or dispersive approaches to

perturbative QCD are being developed.

Redmond 1959 Phys.Rev.: dispersive approach to QED

The most prominent analytic approach: the Analytic Perturba-

tion Theory (APT)

D.V. Shirkov, I.L. Solovtsov, Phys. Rev. Lett. 79 (1997) 1209.

K.A. Milton, I.L. Solovtsov, O.P. Solovtsova, Phys. Lett. B415 (1997) 104.

The Adler function (or correlator) satisfies the dispersion relation

D(Q2) = Q2
∫ ∞
0

2v1(s)ds

(s + Q2)2
, (15)



the inversion formula reads

v1(s) =
1

4πı

∮ −s+ıε

−s−ıε

D(z)

z
d z, (16)

Dpt(Q
2) = D0(1 +

∞∑
n=1

dnαn
s (Q

2)),

Dan(Q
2) = D0(1 +

∞∑
n=1

dnAn(Q
2))

An(Q
2) =

1

π

∫ ∞
0

ρn(σ, f)

σ + Q2
dσ



where

ρn(σ) = Im{αs(−σ − ı0)}n,

in this framework the analytically improved solution to the RGE

is introduced, at the one loop order the analytic APT coupling

takes the form

A1(Q
2)|1−loops = 1/ ln(Q2/Λ2) + Λ2/(Λ2 −Q2) (17)

However, it was shown in the work

B.V. Geshkenbein, B.L. Ioffe and K.N. Zyablyuk, Phys.Rev. D64: 093009,2001

That APT with massless quarks is in strong contradiction

with experiment.



More serious difficulty is that APT violates the OPE. It pre-

dicts new power suppressed contributions of ultraviolet origin in

the correlators, that are not included in OPE. At present the

experiment does not confirm the presence of such terms.



Exact explicit solutions to the RG equation and the Lambert-

W function

The analyticity structure of the two-loop and higher order run-

ning coupling function was studied in

1. B. Magradze: In proceedings of the 10th International Seminar ”QUARKS-

98” May 1998

2. E. Gardi, G. Grunberg and M. Karliner June 1998

3. B. Magradze: Proc. A. Razmadze Math.Inst. 118,111 (1998)

4. B. Magradze: Int. J. Mod. Phys. A15,2715 (2000)



5. D. Kourashev, B. Magradze, Theor. Math. Phys. 135, 531 (2003)

6. B. Magradze: Few Body Systems V40, 2006, pp. 71-99

In these papers the solutions to the RGE were expressed in terms

of the Lambert W function. The Lambert W function is the

multivalued solution of

Wk(z) exp{Wk(z)} = z, (18)

the branches of W are denoted Wk(z), k = 0,±1, . . . The relevant

branch of W (z) which determines the coupling depends on the

number of light quark flavours nf . Thus, for 0 ≤ nf ≤ 8 and a

real positive Q2 the explicit expression for the MS scheme running



coupling at the two-loop order reads

B.A. Magradze Proceedings of A. Razmadze Mathematical Institute 118, 111,(1998)

a
(2)
s (Q2) = −

β0

β1

1

1 + W−1(ζ)
: ζ = −

1

eb1

(
Q2

Λ2

)−1/b1

, (19)

where β0 and β1 are the first two β-function coefficients

β0 =
1

4

(
11−

2

3
nf

)
, β1 =

1

16

(
102−

38

3
nf

)
,

b1 = β1/β2
0, Λ ≡ ΛMS and W−1 denotes the branch of the

Lambert W function.

On the other hand, a running coupling at higher orders may

be expanded in powers of the exact (explicitly solved) two-loop

order coupling



Kourashev, D.S., Magradze, B.A.: Theor. Math. Phys. 135, 531 (2003)

α
(k−loops)
s (Q2) =

∞∑
n=1

C(k)
n α

(two−loops)n
s (Q2)|exact, (20)

where the numerical coefficients C(k)
n are determined in terms of

the β-function coefficients (see Appendix A). It has been shown

in

Magradze, B.A.: Few-Body Systems 40,71-99 (2006)

that this series has a sufficiently large radius of convergence in

the space of the coupling constants.



The non-perturbative part is the asymptotic series

Π(s)|OPE ≈
∑

D=2,4..

CD(−s)〈OD(µ)〉|vac

(−s)D/2
(21)

s = q2, CD(−s) is the Wilson coefficient and < OD > |vac is the

QCD condensate of dimension D = 2k. It can be represented

also as

Π(s)|OPE =
∑

k=1,2..

C2k(s)

(−s)k
(22)

where C2k(s) is the QCD condensate combination of dimension

D = 2k. Usually in the Wilson coefficients the weak dependence

on s is ignored i.e. C2k(s) = constant They depend on s via

αs(s). Up to logarithmic corrections proportional to α2
s

C2k(s) ≈ C
(0)
2k + C

(1)
2k αs(m

2
τ )



Choosing special weights w(s) = sn n = 0,1 . . ., in the sum rule

we may determine the condensate combinations by perturbation

theory and the data.



The approach presented in this talk is motivated by the ansatz

frequently used in the ITEF (SVZ) QCD sum rule framework.

The quark-hadron duality can be implemented via the following

ansatz for the hadronic spectral function

v1(s) ' v1(s)|semi.exp = θ(sc − s)v1(s)|exp + θ(s− sc)v1(s)|pQCD,

(23)

R.A. Bertlmann. G. Launer and de Rafael 1985

Peris, S., Perrottet, M., de Rafael, E. 1998

sc denotes the continuum threshold, the energy squared above

which we trust perturbative QCD, v1(s)|exp is the spectral func-

tion measured on the experiment and v1(s)|pQCD is determined

by the theoretical model, i.e. QCD.



Let us choose in the FESR the “spectral weights” associated
with the spectral moments of the hadronic invariant mass distri-
butions

wkl(s, s0) =
1

s0

(
1−

s

s0

)k+2(
s

s0

)l (
1 + 2

s

s0

)
(24)

where k, l = 0,1 . . . we choose s0 = m2
τ , and the moments are

given by

Rkl(s0) =
∫ s0

sthr

wkl(s, s0)v1(s)d s,

taking into account the ansatz (20) we write the FESR as∫ s0

sc

wkl(s)v1(s)|exd s = −
1

4πı

(∮
|z|=s0

−
∮
|z|=sc

)
w1,kl(−z)

z
D(z)|PTd z

(25)
where s0 = m2

τ > sc. In the assumed approximation the in-
tegrated OPE contributions cancel on the RHS of the FESR.



Let us assume that at s = sc the integrated DVs are also small

and can be ignored. So that, the RHS of the FESR should be

calculable in pure PT.

The dimension two FESR

An independent sum rule follows, in the chiral limit, from the

absence of the operator of dimension d = 2 in the OPE of the

correlator ∫ sc

sth

v1(s)|exd s =
1

4ıπ

∮
|z|=sc

z + sc

z
D(z)|PTd z (26)

We will assume that the parameter sc is the same in FESRs (22)

and (23).



We will use the updated and corrected data (in 2013/2014) from
the ALEPH collaboration

M. Davier et al. Eur.Phys.J. C44:2803(2014)

The input values

mτ = 1.77682± 0.00016GeV

Be = 0.17818± 0.00032,

SEW = 1.0198± 0.0006

|Vud| = 0.97418± 0.00019

Data for the invariant mass distribution sfm2(s) is organized in
bins with variable width, the bin number k is centered at sbin(k)
and has width dsbin(k). 1 ≤ k ≤ 80.

v1(sbin(k)) =
m2

τ sfm2(k)

6|Vud|SEW100BewT (sbin(k))dsbin(k)
(27)



Note that a wkl FESR (23) should be compatible with the dimension-
two FESR (24). Each of these FESRs relates the parameters
sc and QCD scale parameter in the MS scheme Λ ≡ ΛMS. The
compatibility condition of the two FESRs leads to the system of
equations for the parameters

F kl
1 (sc,Λ) = Ikl

1 (sc)|ex (28)

F2(sc,Λ) = I2(sc)|ex (29)

where F kl
1 (sc,Λ) and F2(sc,Λ) denote the QCD parts of the wkl

and dimension-two FESRs respectively. We seek admissable so-
lutions in the domain

1GeV2 ≤ sc < m2
τ , (30)

0.280GeV ≤ Λ ≤ 0.420GeV (31)

With these restrictions with the ALEPH data the system admits
a unique solution. In the numerical calculations we have used the



RG equation at four loop order. We employed the very accurate
analytic approximation to the four-loop order running coupling
determined in terms of the Lambert-W function. We employ
N3LO approximation to the Adler function.

The error analysis
The errors were determined using the system equations (26)-
(27) with the covariance matrices provided by ALEPH.

Results

We have solved numerically the system (26)-(27)for several wkl

weights. We give results obtained using modified FOPT (FOPT+)
and CIPT (CIPT+) approaches (based on the wkl FESRs (23))
separately. Results are given in Tables 1 and 2



Table 1. The CIPT+ results obtained from the ALEPH τ decay

data in the MS scheme, and using wk,l FESRs. The errors are

given from the experimental uncertainties only.

(K,L) Λnf=3 GeV αs(mτ) sc GeV2

(0,0) 0.349± 0.021exp 0.322± 0.011exp 1.70± 0.03exp
(1,0) 0.339± 0.019exp 0.316± 0.010exp 1.73± 0.03exp
(1,1) 0.344± 0.020exp 0.319± 0.011exp 1.72± 0.03exp
(1,2) 0.348± 0.022exp 0.321± 0.011exp 1.70± 0.03exp
(1,3) 0.358± 0.025exp 0.327± 0.013exp 1.68± 0.04exp



Table 2. The same quantities as in Table 1 but obtained using

FOPT+.

(K,L) Λnf=3 GeV αs(mτ) sc GeV2

(0,0), 0.303± 0.024exp 0.298± 0.012exp 1.69± 0.03exp
(1,0), 0.299± 0.022exp 0.296± 0.011exp 1.72± 0.02exp
(1,1), 0.299± 0.024exp 0.296± 0.012exp 1.72± 0.03exp
(1,2), 0.303± 0.024exp 0.298± 0.012exp 1.69± 0.03exp
(1,3), 0.306± 0.028exp 0.299± 0.014exp 1.69± 0.03exp



As our best values for αs(m2
τ ), we take the values from the w0,0

FESR

αs(m
2
τ )|

nf=3

FOPT+ = 0.298± 0.012|ex, (32)

αs(m
2
τ )

nf=3

CIPT+ = 0.322± 0.011|ex (33)

Performing evaluation of the αs values to the Z0-mass scale

αs(M
2
z )|nf=5

FOPT+ = 0.1158± 0.0016|ex + 0.0005|ev (34)

αs(M
2
z )|nf=5

CIPT+ = 0.1189± 0.0013|ex + 0.0005|ev (35)

The CIPT+ value here is in good agreement with the recent

world summary of the determinations of the strong coupling con-

stant.



Conclusions

▲ We have determined the numerical value for the strong cou-

pling constant αs(m2
τ ) from the inclusive semi-hadronic decays

of the τ lepton in the vector channel. We analyze the corrected

ALEPH data using five FESRs based on the spectral weights

wkl(s). in combination with the dimension two FESR. In the

wkl FESRS we have chosen the duality region specifically: the

integration interval in the energy squared range have been lim-

ited from below 0 < sc < s < m2
τ . This enable us to eliminate

the non-perturbative OPE contributions from the FESRs. In

standard frameworks the presence of these terms makes the an-

alyzes very difficult. Another advantage is that the non-physical

contributions comming from the Landau singularities of the run-

ning are also eliminated. Assuming that the duality radius of



the dimension two FESR is equal to the continuum threshold sc

used in the wkl FESRs we determine the parameters sc and αs

numerically.

▲ We presented five result for the parameters αs(m2
τ ) and sc

obtained from different wkl FESRs. All these results agree with

one another within the errors quoted. We have given for the

strong coupling constant values obtained with the FOPT+ and

CIPT+ resummation schemes separately. The differences be-

tween FOPT and CIPT values are found to be larger than these

in other approaches. The CIPT and FOPT values for the param-

eter sc obtained within the same wkl FESR are very close, while

their values from different FESRs are consistent within errors.



▲ Taking the average of ”FOPT” and ”CIPT” values for the

coupling (corresponding to the w00 FESR) we find

αs(m
2
τ ) = 0.310± 0.012ex ± 0.012th = 0.310± 0.017 (36)

This should be compared with the most recent results from other

groups

αs(m
2
τ ) = 0.332(12) M.Davier et.al,Eur.Phys.J.(2014)

= 0.328(12) A.Pich, A.Rodriguez,P.R.D94(2016)

= 0.301(10) D.Boito etal.P.R.D91(2015)

= 0.309(9) includingOPALdataD.Boito

the agreement is reasonable.



▲Thus we conclude that owing to the optimal choice of the

duality radius and weight functions in the FESR, at the duality

point s = sc, the duality violating contributions to the wkl FESRs

become small and they can be safely ignored. This can achieved

only for special class of weights wkl. Contamination of the ex-

tracted coupling values from the condensates is also minimized

due to restricting the duality region 0 < sc < s < m2
τ .


