School and Workshop "Physics of the Standard Model and Beyond"

Neutrino Oscillations and Probing the Neutrino Mass Hierarchy

Rezo Shanidze

High Energy Physics Institute Javakhishvili Tbilisi State University

26 September 2017

Neutrino fluxes and the evidence for the neutrino oscillations

• Oscillation phenomenology: PNMS mixing matrix

• Current status of v-oscillation measurements and NMH

• Probing NHM with the atmospheric neutrinos: KM3NeT/ORCA

Summary and Outlook

Neutrino Fluxes

Solar Neutrino Fluxes

RPP-2016, Neutrino mass, mixing and oscillations http://pdg.lbl.gov/2017/reviews/rpp2016-rev-neutrino-mixing.pdf

C. Pena-Garay and A.M. Serenelli, arXiv:0811.2424

Solar Neutrino Experiments

- Radio-chemical detection: Homestake(Cl-Ar), Gallex, GNO, SAGE (Ga-Ge)
- Water Cherenkov detectors: Kamiokande(K), Super-K, SNO
- Scintilator detectors: KamLAND, Borexino

Homestake expriment: 100 000 galons (380 m³) of C_2Cl_4 $v_e^{+37}Cl \rightarrow {}^{37}Ar + e^{-}(814 \text{ keV})$ ${}^{71}Ga \rightarrow {}^{71}Ge$ (233 keV)

R. Shanidze, RTN-2017

Solar Neutrino Problem

Radio-chemical experiments (Homestake, Gallex, GNO, SAGE): Deficit of solar- v_{a} with respect to SSM predictions.

Results from Homestake (${}^{37}Cl \rightarrow {}^{37}Ar$) experiments

 $7^{1}Ga \rightarrow 7^{1}Ge (SNU)$ GALLEX $77.5 \pm 6.2_{-4.7}^{+4.3}$ GNO $62.9_{-5.3}^{+5.5} \pm 2.5$ GNO+GALLEX $69.3 \pm 4.1 \pm 3.6$ SAGE $65.4_{-3.0}^{+3.1} + 2.6$ SSM [PPS08(GS)] $127.9_{-8.2}^{+8.1}$

Results from 71 Ga \rightarrow 71 Ge experiments and the prediction of the SSM [BPS08(GS)] SNU (Solar Neutrino Unit):

 10^{-36} v-captures per atom per second.

Neutrino Oscillations

$$2\nu$$
 – mixing:

Mixing of flavor neutrinos (v_{α}, v_{β}) with massive neutrino states (v_1, v_2)

$$\mathbf{v}_{\alpha} = \mathbf{u}_{\alpha i} \mathbf{v}_{i}$$
 $\alpha = e, \mu$ $i = 1, 2$

$$u_{\alpha i} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$$

$$\mathbf{v}_{\alpha}(x) = \cos \Theta \mathbf{v}_{1}(x) + \sin \Theta \mathbf{v}_{2}(x)$$

Bruno Pontekorvo

Neutrino propagation:
$$P_{\alpha\alpha} + P_{\alpha\beta} = 1$$
 $P_{\alpha\alpha}^{-}$ - survival(disappearance) probability $P_{\alpha\beta}^{-}$ - appearance probability

$$P_{\alpha\beta}(\theta, \Delta m_{21}^2, L, E_{\nu}) = \sin^2 2\theta \sin^2 \left(\frac{\Delta m_{12}^2 L}{4E_{\nu}}\right)$$

Oscillation parameters: heta , Δm^2_{21}

Evidence for Neutrino Oscillations

Super-K Collaboration (Y. Fukuda et al), Phys.Rev.Lett. 81 (1998) 1562 Evidence for oscillation of atmospheric neutrinos 0

-1

5932 Events

0

cosine zenith

Neutrino Oscillations: 3v Flavors

3 neutrino case:

(

$$v_{\alpha} = u_{\alpha i} v_i$$

 $u_{\alpha i} = U_{PMNS}$
 $\alpha = e, \mu, \tau i = 1, 2, 3$

PMNS matrix (Pontecorvo–Maki–Nakagawa Sakata)

$$U_{PMNS} = \begin{pmatrix} u_{e1} & u_{e2} & u_{e3} \\ u_{\mu 1} & u_{\mu 2} & u_{\mu 3} \\ u_{\tau 1} & u_{\tau 2} & u_{\tau 3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \times \begin{pmatrix} c_{13} & 0 & e^{i\delta}s_{13} \\ 0 & 1 & 0 \\ -e^{-i\delta}s_{13} & 0 & c_{13} \end{pmatrix} \times \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$c_{ij} = \cos \Theta_{ij} \quad s_{ij} = \sin \Theta_{ij}$$

Oscillation parameters:
$$\begin{cases} \Theta_{23}, \ \Theta_{13}, \ \Theta_{12}, \ \delta_{CP} & \Delta m_{32}^2 = \Delta m_{31}^2 - \Delta m_{21}^2 \\ \Delta m_{32}^2, \ \Delta m_{31}^2, \ \Delta m_{21}^2, \ \Delta m_{21}^2 & \pm \Delta m_{32}^2 = m_3^2 - m_2^2 \end{cases}$$

(Neutrino Mass Hierarchy, NMH)

$$P(\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{\tau}) = \sin^{2}(2\theta_{23})\cos^{4}(\theta_{13})\sin^{2}(\Delta m_{32}^{2}L_{\nu}/4E_{\nu})$$
(ignoring Δm_{21}^{2} , δ and matter effects)

R. Shanidze, RTN-2017

Oscillation Experiments

Solar(v_{1}) and reactor(\overline{v}_{2}): Δm_{21}^2 , Θ_{12} Homestake, Gallex, GNO, SAGE Super-K, SNO KamLAND, Borexino Δm_{31}^2 , Θ_{13} Reactor(\overline{v}_{a}): Double Chooz, Daya Bay,

 Δm_{32}^2 , Θ_{23}

Atmospheric neutrinos(ν_μ, ν_e): Super-K, MACRO, ANTARES, IceCube/DeepCore

Accelerator beams (ν_μ): CERN: CNGS(Opera, ICARUS) FNAL: MINOS, NOvA KEK: K2K, T2K

RENO

Solar Neutrino Oscillations: SNO and KamLAND

(CC)

(NC)

SNO: Solar-v flux: Good agreement with SSM.

KamLAND: Measurement of: $\Theta_{12} \Delta M_{12}^{2}$

• $v_e + {}^{2}H(D) \rightarrow p + p + e^{-1}$ • $v_x + {}^{2}H(D) \rightarrow p + n + v_x$

R. Shanidze, RTN-2017

Tbilisi, 26/09/2016

 $e^+e^- \rightarrow 2\gamma \quad np \rightarrow {}^2H + \gamma$

Measurement of $\Theta_{_{13}}$

The Daya Bay experiment.

$$\frac{13}{13} \sin^2 2\theta_{13} = 0.092 \pm 0.016(\text{stat}) \pm 0.005(\text{syst})^*$$

RENO: $0.113 \pm 0.013(\text{stat}) \pm 0.019(\text{syst})$

* Daya Bay Collaboration (F.P. An et al.), Phys.Rev.Lett. 108 (2012), 171803 Observation of electron-antineutrino disappearance at Daya Bay 0.109 ± 0.030(stat) ± 0.025(syst)

Neutrino Oscillation with Accelerator v-Beams

Accelerator Long Baseline Neutrino Experiments (LBNE)

LBNE	L[km]	$E_{p}[GeV]$	Detector	
K2K	250	12	Super-K(WC)	$\nu_{\mu} \rightarrow \nu_{\mu}$
Т2К	295	30	Super-K	$\nu_{\mu} \rightarrow \nu_{\mu} / \nu_{e}$
OPERA	732	450	OPERA	$\nu_{\mu} \rightarrow \nu_{\tau}$
MINOS	735	120	5.4 kton M-Cal.	$\nu_{\mu} \rightarrow \nu_{\mu} / \nu_{e}$
NOvA	810	120	15 kton LS-Det.	$\nu_{\mu} \rightarrow \nu_{\mu} / \nu_{e}$

Neutrino Telescopes: ANTARES and IceCube

ANTARES Collaboration, Phys. Lett., B714 (2012) 224-230
 Measurement of Atmospheric Neutrino Oscillations with the ANTARES Neutrino Telescope

 IceCube Collaboration, Phys. Rev. D91 (2015), 072004
 Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data

Neutrino Oscillation Parameters

Parameter	NMH	Best fit ¹	1σ range ¹	RPP-2016	Unit
δm^2		7.37	7.21 – 7.54	7.53 ± 0.18	$10^{-5} eV^2$
$\sin^2\Theta_{12}$		2.97	2.81 - 3.14	3.07 ^{+0.13} -0.12	10-1
Δm^2	NH	2.50	2.46 - 2.54	2.45 ± 0.05	
	IH	2.46	2.42 – 2.51	2.52 ± 0.05	$10^{-3} eV^2$
$\sin^2\Theta_{_{23}}$	NH	4.37	4.17 – 4.70	5.1 ± 0.4	1
	IH	5.69	4.28 – 4.91 ⊕ 5.18 – 5.97	5.0 ± 0.4	10-1
$\sin^2\Theta_{13}$	NH	2.14	2.05 – 2.25		2
	IH	2.18	2.06 – 2.27	2.10 ± 0.11	10-2

$$\delta m^2 = \Delta m_{21}^2 \qquad \Delta m^2 = \Delta m_{32}^2$$

¹ F. Capozzi, E. Lisic, A. Marrone, D. Montaninoe, A. Palazzod, l.Phys. B908 (2016) 218 Neutrino masses and mixings: Status of known and unknown 3v parameters

Neutrino Mass Hierarchy

E. Akhmedov, S. Razzaque and A. Yu. Smirnov, JHEP 1302 (2013) 082 Mass hierarchy, 2-3 mixing and CP-phase with Huge Atmospheric Neutrino Detectors

Probing the Neutrino Mass Hierarchy

Neutrino oscillogram obtained after smearing $\mu(v_{\mu})$ events in the (E₁-cos θ_{1}) plane with $\sigma_{\rm F}$ =0.2E and $\sigma_{\rm A}$ = $(m_{p}/E_{v})^{1/2}$

correspond to different systematic uncertainties

The KM3NeT/ORCA Project

R. Shanidze, RTN-2017

KM3NeT/ORCA Simulations

KM3NeT/ORCA simulation chain includes:

v-interactions (Genie), simulation of detector response (KM3Sim), simulation of the optical background, trigger simulation.

KM3NeT/ORCA Sensitivity to NMH

KM3NeT/ORCA neutrino mass hierarchy sensitivity for a detector wit 9m vertical spacing.

Left plot: NMH dependency on Θ_{23} for two values δ_{CP} for 3 years of operation time.

Right: NMH significance evolution over time for two selected values of θ_{23} .

Summary and Outlook

- Atmospheric, accelerator, solar and reactor neutrino experiments have provided compelling evidence for the neutrino oscillations.
- Neutrino oscillation parameters: PMNS mixing angles Θ_{12} , Θ_{13} , Θ_{23} and squared mass differences Δm^2_{32} and Δm^2_{21} are measured and defined.
- Neutrino oscillation parameters NMH (neutrino mass hierarchy), $\delta_{_{CP}}$ and octant of $\Theta_{_{23}}$ are still undefined from the current experiments.
- Neutrino oscillation parameters (including NHM, Θ_{23} octant, δ_{CP}) will be defined with high a precision in the future experimental projects such as JUNO, DUvE, KM3NeT/ORCA, Hyper-K, INO, IceCube/PINGU.