Zurab Tavartkiladze (Hia State Univ, Georgia)

The Methods of the Quantum Field Theory: Particle Physics of Standard Model and Beyond; Intersection with Cosmology,

II Semester

4) Minimal Supersymmetric Standard Model (MSSM) and Its Phenomenology. (8 hours)

- 1) Introduction to II Semester. (3 hours)
- 2) Problems and Puzzles with SM. . (2 hours)
- Supersymmetric (SUSY) Theories and Their Main Properties. (8 hours)
- 5) Need for Going Beyond SM and MSSM. . (2 hours)
- 6) Neutrino Masses and Mixings. . (3 hours)
- 7) Grand Unified Theories (GUT). . (10 hours)
- **8) Flavor Problem.** . (5 hours) 9) Various Scenarios and Models of Neutrino Masses and Mixings. Application of Flavor

Symmetries. . (4 hours)

- 10) Constraints on New Physics. (3 hours).
- 11) Baryon Asymmetry. . (8 hours)

Zurab Tavartkiladze

(Ilia State Univ, Georgia)

Flavor beyond the standard model Three Family SU(5) GUT & Inverted Neutrino Mass Hierarchy

arXiv:1303.1211

Phys.Lett.B706 (2012) 398;

Neutrino Data

global 3ν oscillation analysis

Parameter	Best fit	$1\sigma \text{ range}$ \leftarrow Fogli et	al
$\delta m^2/10^{-5} \text{ eV}^2 \text{ (NH or IH)}$	7.54	7.32 - 7.80 1205.525	
$\sin^2 \theta_{12}/10^{-1}$ (NH or IH)	3.07	2.91 - 3.25	•
$\Delta m^2/10^{-3} \text{ eV}^2 \text{ (NH)}$	2.43	2.33 - 2.49	
$\Delta m^2/10^{-3} \text{ eV}^2 \text{ (IH)}$	2.42	2.31 - 2.49	
$\sin^2 \theta_{13}/10^{-2} \text{ (NH)}$	2.41	2.16 - 2.66	
$\sin^2 \theta_{13}/10^{-2}$ (IH)	2.44	2.19-2.67	
$\sin^2 \theta_{23}/10^{-1} \text{ (NH)}$	3.86	3.65 - 4.10	
$\sin^2 \theta_{23}/10^{-1}$ (IH)	3.92	parameter best fit ±	
δ/π (NH)	1.08	$\Delta m_{21}^2 \left[10^{-5} \text{eV}^2 \right]$ $7.59_{-0.1}^{+0.2}$	20 18
δ/π (IH)	1.09	$\Delta m_{31}^2 \left[10^{-3} \text{eV}^2 \right] $ $ 2.50_{-0.1}^{+0.0} $ $ -(2.40_{-0}^{+0}) $	
		$\sin^2 \theta_{12}$ 0.312 $^{+0.0}_{-0.0}$	
Daya Bay Discovery (2012)		$\sin^2 \theta_{23} \qquad 0.52^{+0.0}_{-0.0} \\ 0.52 \pm 0.0$	
	Schwetz et a	$ \begin{array}{c c} & 0.013^{+0.0}_{-0.0} \\ \hline & 0.016^{+0.0}_{-0.0} \end{array} $	
		$\delta = \begin{pmatrix} -0.61^{+0.7}_{-0.6} \\ (-0.41^{+0.6}_{-0.7}) \end{pmatrix}$	- /

Evidences for New Physics:

Atmospheric & Solar Neutrino 'scales'

$$\Delta m_{\text{atm}}^2 = 2.4 \cdot 10^{-3} \text{eV}^2$$
 $\Delta m_{\text{sol}}^2 = 7.9 \cdot 10^{-5} \text{eV}^2$

Origin of these scales and mixings?

Unexplained in SM/MSSM $\leftarrow m_{\nu} \lesssim 10^{-4} \text{ eV}$

Without New Physics
$$m_{
u} \sim \frac{M_{EW}^2}{M_{Pl}}$$

Charged fermion masses & mixings

Observed Noticeable Hierarchies:

$$\lambda_t \sim 1 \ , \qquad \lambda_u : \lambda_c : \lambda_t \sim \lambda^8 : \lambda^4 : 1$$

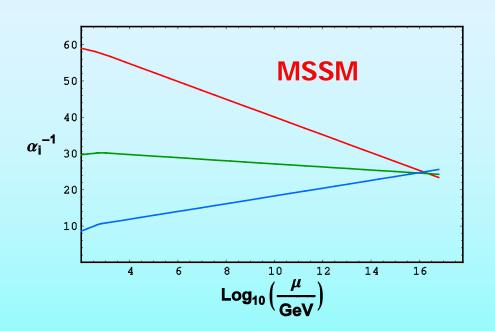
$$\lambda_b \sim \lambda_\tau \sim \frac{m_b}{m_t} \tan \beta \ , \qquad \lambda_d : \lambda_s : \lambda_b \sim \lambda^4 : \lambda^2$$
 With $\lambda=0.2$
$$\lambda_e : \lambda_\mu : \lambda_\tau \sim \lambda^5 : \lambda^2 : 1$$

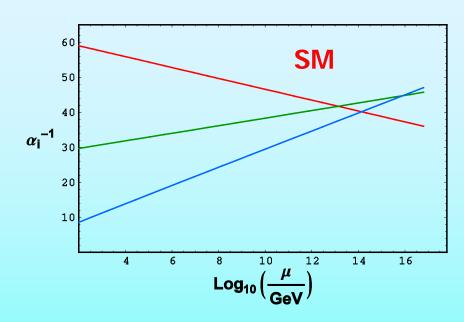
$$V_{us} \approx \lambda \ , \qquad V_{cb} \approx \lambda^2 \ , \qquad V_{ub} = \lambda^4 - \lambda^3$$

What is origin of these hierarchies? Is there any relation or sum rule? Why three families?

Within SM no answer to these questions...

SUSY Unification vs. non-SUSY





- In MSSM→ Good coupling unification
 - → GUT is revamped!

Within SUSY & GUT, the problem of flavor remains unsolved.

Flavor symmetry GF distinguishing families can explain hierarchies

Simplest possibility: GF=U(1)F (Froggatt, Nielsen'79)

$$U(1)_F$$
: $\phi_i \to e^{iQ(\phi_i)}\phi_i$

$$Q(F_i)=n_i\;,\qquad Q(F_i^c)=\bar{n}_i\;,\qquad Q(H)=0\;,\qquad Q(X)=-1$$
 'flavon'

With $n_i + \bar{n}_j \neq 0$: coupling $F_i F_j^c \mathcal{H}$ forbidden!

$$\left(\frac{X}{M_*}\right)^{n_i+\bar{n}_j}F_iF_j^cH\longrightarrow \epsilon^{n_i+\bar{n}_j}F_iF_j^cH \qquad \begin{array}{c} \Rightarrow \text{Suppressed} \\ \text{couplings emerge} \end{array}$$

$$\frac{\langle X \rangle}{M_*} \equiv \epsilon \ll 1$$
 - cut off scale (simplest possibility $M_* \sim M_{
m Pl}$)

Several/multiple flavons also can be considered

New SUSY SU(5) x U(1)Flavor Models

U(1)Flavor: Non-Anomalous Flavor Symmetry

SU(5) Matter: 10i , 5i*

U(1)Flavor Charge: Q[10i] , Q[5i*]

SU(5) Scalars: H(5) , $H^*(5^*)$, $\Sigma(24)$

Charge: Q[H] , Q[H*] , 0

Extra matter: Only SU(5) Singlets (# = or < 3) For anomaly cancellation & RH Neutrinos

Flavons: X[q], X*[-q] For U(1)Flavor Breaking

Search for Economical Setup..

Anomaly Cancellation

$SU(5)^3$ Vanishes with:

$$10 + \overline{5} + \psi(R) + \overline{\psi}(\overline{R}) + 1$$

$$H(5) + \overline{H}(\overline{5}) + \Sigma(24) \qquad R \in SU(5) \qquad \text{Singlets}$$

Minimal Setup:

No $\psi + \overline{\psi}$ states beyond min. SUSY SU(5)

i.e. Three 10's + four
$$5*$$
's + one H(5) + one $\Sigma(24)$ $Q(\Sigma) = 0$

$$SU(5)^{2} \cdot U(1)_{F}: \quad A_{551} = \frac{3}{2} \sum_{i=1}^{3} Q(10_{i}) + \frac{1}{2} \left(\sum_{k=1}^{4} Q(\bar{5}_{k}) + Q(5) \right) = 0 ,$$

$$(U(1)_{F})^{3}: \quad A_{111} = 10 \sum_{i=1}^{3} Q(10_{i})^{3} + 5 \left(\sum_{k=1}^{4} Q(\bar{5}_{k})^{3} + Q(5)^{3} \right) + \sum_{s} Q_{s}^{3} = 0 ,$$

$$(Gravity)^{2} \cdot U(1)_{F}: \quad A_{GG1} = TrQ = 10 \sum_{i=1}^{3} Q(10_{i}) + 5 \left(\sum_{k=1}^{4} Q(\bar{5}_{k}) + Q(5) \right) + \sum_{s} Q_{s} = 0 ,$$

Finding: Embedding $SU(5) \times U(1) \in G$

- **a.** G = SO(N) Orthogonal group
- **b.** G Exceptional group, such as $E_6, E_8 \cdots$
- c. G = SU(N) Unitary group

Let's start with SU(5)xU(1) ⊂ SU(N) Embedding

→ Interesting family pattern

c. * $SU(5) \times U(1)_F \subset SU(7)$ Embedding

$$\mathbf{SU(7)} - \text{plets}: \quad \mathbf{35} \sim \Psi_{[\mathbf{ijk}]}, \quad \bar{\mathbf{7}} \sim \chi^{\mathbf{i}} \quad (i, j, k = 1, \dots, 7)$$

Anomaly free: $35 + 2 \times 7$

$$SU(7) \rightarrow SU(6) \times U(1)_7 \rightarrow SU(5) \times U(1)_6 \times U(1)_7$$

$$Y_{U(1)_6} = \frac{1}{\sqrt{60}} \text{Diag}(1, 1, 1, 1, 1, -5)$$

 $Y_{U(1)_7} = \frac{1}{\sqrt{84}} \text{Diag}(1, 1, 1, 1, 1, 1, -6)$

$$35 = 20_3 + 15_{-4} = (10_{-3} + \overline{10}_3)_3 + (10_2 + 5_{-4})_{-4}$$
$$\bar{7} = \bar{6}_{-1} + 1_6 = (\bar{5}_{-1} + 1_5)_{-1} + (1_0)_6,$$

* Started with SU(7) because SU(6) ⊂ E6 (already considered)

c. $SU(5) \times U(1)_F \subset SU(7)$ Embedding (cntd.)

With 'flips': $\overline{10} \to 10, \, 5 \to \overline{5}$ all anomalies remain intact

Three family of $(10+\bar{5})$ (anomaly free):

$$(10_{-3} + 10_3)_3 + (10_2 + \overline{5}_{-4})_{-4} + 2 \times [(\overline{5}_{-1} + 1_5)_{-1} + (1_0)_6]$$

-- Possible to build superpositios of U(1)s: $\bar{a}Q_{U(1)_6}+\bar{b}Q_{U(1)_7}$

$$10_{-3\bar{a}+3\bar{b}} + 10_{3\bar{a}+3\bar{b}} + 10_{2\bar{a}-4\bar{b}} + \bar{5}_{-4\bar{a}-4\bar{b}} + 2 \times (\bar{5}_{-\bar{a}-\bar{b}} + 1_{5\bar{a}-\bar{b}} + 1'_{6\bar{b}})$$

RHN's for see-saw

Finding: Embedding $SU(5) \times U(1) \in G$

E6->SO(10)xU(1)"
$$\rightarrow$$
SU(5)xU(1)":

$$27 = 16[1] + 10[-2] + 1'[4] =$$
 $(10 + 5* + 1)[1] + (5 + 5'*)[-2] + 1'[4]$

Consider superposition

$$\bar{Q}_{sup} = \bar{a}Q_{U(1)_6} + \bar{b}Q_{U(1)_7} + \bar{c}Q_{U(1)_{E_6}}$$

Model

Content:

$$10_{-3\bar{a}+3\bar{b}+p\bar{c}} + 10_{3\bar{a}+3\bar{b}-p\bar{c}} + 10_{2\bar{a}-4\bar{b}+\bar{c}} + \bar{5}_{-4\bar{a}-4\bar{b}-2\bar{c}} + \bar{5}_{-\bar{a}-\bar{b}+\bar{c}} + \bar{5}_{-\bar{a}-\bar{b}-2\bar{c}} + \bar{5}_{-\bar{a}-\bar{b}+\bar{c}} + \bar{5}_{-\bar{a}-\bar{b}-2\bar{c}} + \bar{5}_{-\bar{a}-\bar{b}+\bar{c}} + 1_{5\bar{a}-\bar{b}+\bar{c}} + 1_{5\bar{a}-\bar{b}+4\bar{c}} + 1_{6\bar{b}+k\bar{c}}' + 1_{6\bar{b}-k\bar{c}}'$$

$$5_q + \bar{5}_{-q}$$
with
$$30\bar{a}(3+2p) = \bar{c}(2k^2 + 10p^2 - 27)$$

Selection:
$$\{\bar{a}, \bar{b}, \bar{c}\} = \{-\frac{1}{2}, \frac{1}{6}, \frac{5}{3}\}, \quad p = q = k = 0$$

Identification:

$$Q_{10_i} = \{2. - 1, 0\}$$
, $Q_{\bar{5}_i} = \{0, -2, -3\}$, $Q_H = 0$, $Q_{\bar{H}} = 2$
$$Q_1 = \{1, 1, -1, 4\}$$

Yukawa couplings are fixed:

Hierarhical, good fit with: $\bar{\epsilon} \sim 1/10$, $\epsilon \sim 0.2\bar{\epsilon}^2$

$$\bar{\epsilon} \sim 1/10 \; , \; \epsilon \sim 0.2 \bar{\epsilon}^2$$

$$\rightarrow$$
 (1, 1), (1, 3), (3, 1) elements ≈ 0

Texture zeros:
$$Y_{U,D,E} \propto \begin{pmatrix} 0 & \epsilon & 0 \\ \epsilon & \bar{\epsilon}^2 & \bar{\epsilon} \\ 0 & \bar{\epsilon} & 1 \end{pmatrix}$$

Quark Sector

Basis:
$$q^T Y_U u^c h_u$$

$$q^T Y_U u^c h_u$$
 $q^T Y_D d^c h_d$

$$Y_U \simeq \begin{pmatrix} 0 & \lambda \bar{\epsilon}^2 & 0 \\ \lambda \bar{\epsilon}^2 & a_u \bar{\epsilon}^2 e^{i\xi_u} & \bar{\epsilon} \\ 0 & \bar{\epsilon} & 1 \end{pmatrix} \lambda_t^0$$

$$Y_D \simeq \begin{pmatrix} e^{i\varphi'} & 0 & 0 \\ 0 & e^{i\varphi} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & c\lambda\bar{\epsilon}^2 & 0 \\ kc\lambda\bar{\epsilon}^2 & a_d\bar{\epsilon}^2e^{i\xi_d} & b\bar{\epsilon} \\ 0 & b'\bar{\epsilon} & 1 \end{pmatrix} \lambda_b^0$$

do not contribute to masses. Relevant for CP

Fit for:
$$\tan \beta = 5 - 15$$

input:
$$m_t(m_t) = 163.68 \text{ GeV}, \quad m_b(m_b) = 4.24 \text{ GeV}$$

 $\bar{\epsilon} = 0.0847 \; , \quad \lambda = 0.0176 \; , \quad a_u = 0.6 \; , \quad a_d = 3.7 \; ,$
 $b = -0.798 \; , \quad b' = -7.13 \; , \quad c = 27.07 \; , \quad k = 0.864$
 $\xi_u = 0 \; , \quad \xi_d = -0.065 \; , \quad \varphi = -2.696 \; , \quad \varphi' = -0.97$

output:

$$(m_u, m_d, m_s, m_c)$$
 (2 GeV) = (2.1, 4.67, 91.44, 1082) MeV
 $\mu = M_Z$: $|V_{us}| = 0.2252$, $|V_{cb}| = 0.042$
 $|V_{ub}| = 0.00349$, $\overline{\rho} = 0.117$, $\overline{\eta} = 0.34$

Neutrino Sector:

Dirac & Majorana Couplings

$$m_D \propto egin{array}{cccc} & \mathbf{1}_1 & \mathbf{1}_2 & \mathbf{1}_3 \ & ar{5}_1 & \epsilon & \epsilon & ar{\epsilon} \ & ar{\epsilon}^2 & ar{\epsilon}^2 & ar{\epsilon}^4 \ & ar{\epsilon} & ar{\epsilon}^3 \ \end{pmatrix} H$$

$$\bar{M}_{\nu} = m_D M_R^{-1} m_D^T \approx \begin{pmatrix} e & c & d \\ c & b^2 & ab \\ d & ab & a^2 \end{pmatrix}$$

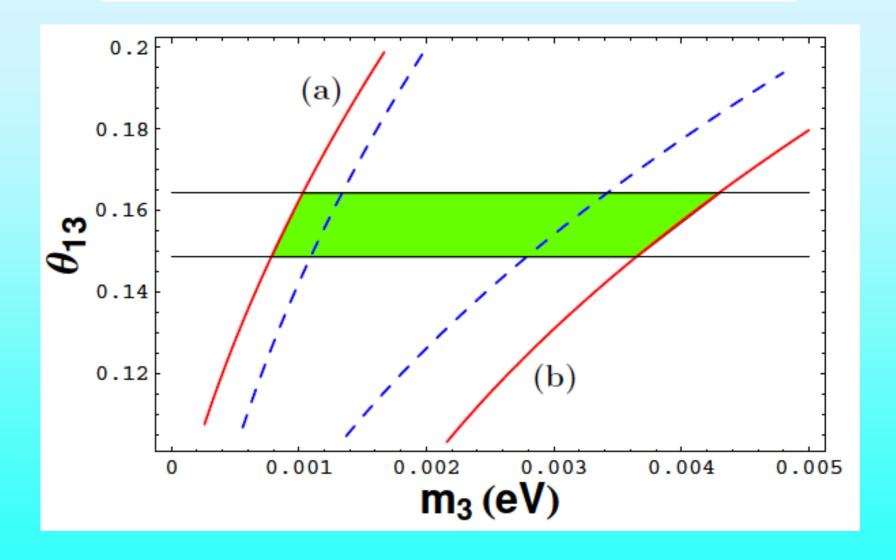
$$\bar{M}_{\nu}^{(2,2)}\bar{M}_{\nu}^{(3,3)} - (\bar{M}_{\nu}^{(2,3)})^2 \simeq 0$$

Relations
$$\rightarrow$$
 $\tan^2 \theta_{13} = \frac{m_3}{m_2} \left| s_{12}^2 e^{i\rho_1} + \frac{m_2}{m_1} c_{12}^2 \right|$

$$2\delta = \pi - \rho_2 + \operatorname{Arg}\left(s_{12}^2 e^{i\rho_1} + \frac{m_2}{m_1} c_{12}^2\right)$$

Predict inverted hierarchical neutrinos

$$\tan^2 \theta_{13} = \left| \frac{m_3}{m_2} |s_{12}^2 e^{i\rho_1} + \frac{m_2}{m_1} c_{12}^2| + \frac{K^2}{m_1 m_2} e^{i\kappa} \right|$$



SUMMARY

- SUSY SU(5)xU(1)Flavor model proposed:
 - Non-anomalous flavor sym. → texture zeros;
 - successful ch. fermion mass hierarchies;
 - predictive neutrino sector
 — inverted hierarchical

THANK YOU!

Backup Slides:

$$\tan^2 \theta_{13} = \left| \frac{m_3}{m_2} |s_{12}^2 e^{i\rho_1} + \frac{m_2}{m_1} c_{12}^2| + \frac{K^2}{m_1 m_2} e^{i\kappa} \right|$$

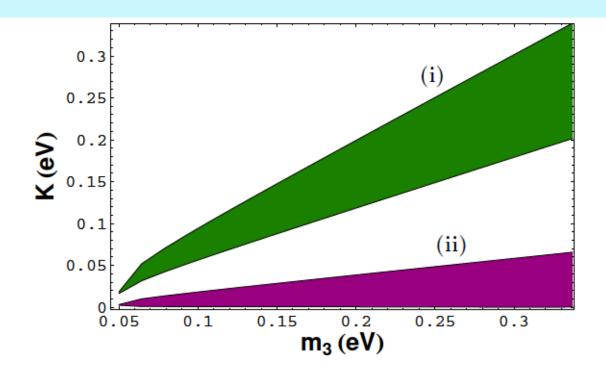


Figure 1: Region (i): Needed values of K, realizing normal hierarchical neutrino masses. Region (ii): Values of K within considered scenario with normal ordering of neutrino masses of Eq. (56).

13 possible options for the pairs $(Q_H, Q_{\bar{H}})$:

$$(Q_H, Q_{\bar{H}})^{(i)} = \{ (q, -q), (q, -4\bar{a} - 4\bar{b} - 2\bar{c}), (q, -\bar{a} - \bar{b} + \bar{c}), (q, -\bar{a} - \bar{b} - 2\bar{c}), (-4\bar{a} - 4\bar{b} - 2\bar{c}, -\bar{a} - \bar{b} + \bar{c}), (-4\bar{a} - 4\bar{b} - 2\bar{c}, -\bar{a} - \bar{b} - 2\bar{c}), (-4\bar{a} - 4\bar{b} - 2\bar{c}, q), (-\bar{a} - \bar{b} + \bar{c}, -4\bar{a} - 4\bar{b} - 2\bar{c}), (-\bar{a} - \bar{b} + \bar{c}, -\bar{a} - \bar{b} - 2\bar{c}), (-\bar{a} - \bar{b} + \bar{c}, q), (-\bar{a} - \bar{b} - 2\bar{c}, -4\bar{a} - 4\bar{b} - 2\bar{c}), (-\bar{a} - \bar{b} - 2\bar{c}, -\bar{a} - \bar{b} + \bar{c}), (-\bar{a} - \bar{b} - 2\bar{c}, q) \},$$

In comb. of different mass matrices leads to many cases to be investigated

Two flavons offer interesting possibilities (to be explored in details)

$$Q[X] = -\beta$$
, $Q[\overline{X}] = \beta$

some more U(1)_F assignments:

A: $10_0 + \bar{5}_0$,

B: $10_{\alpha} + \bar{5}_{-3\alpha} + 1_{5\alpha}$, $(\alpha \neq 0)$,

C: $10_{a+b} + \bar{5}_{a-3b} + 1_{a+5b} + 5_{-2a-2b} + \bar{5}'_{-2a+2b} + 1'_{4a}$, $(a \neq 0, a \neq -5b)$,

 $\mathbf{D}: \quad 10_{-3\bar{a}+3\bar{b}} + 10_{3\bar{a}+3\bar{b}} + 10_{2\bar{a}-4\bar{b}} + \bar{5}_{-4\bar{a}-4\bar{b}} + 2 \times (\bar{5}_{-\bar{a}-\bar{b}} + 1_{5\bar{a}-\bar{b}} + 1'_{6\bar{b}}), \ (\bar{b} \neq 0).$

Or with $30\bar{a}(3+2p) = \bar{c}(2k^2+10p^2-27)$ $1_{5\bar{a}-\bar{b}+\bar{c}} + 1_{5\bar{a}-\bar{b}+4\bar{c}} + 1'_{6\bar{b}+k\bar{c}} + 1'_{6\bar{b}-k\bar{c}} + 1'_{6\bar{b}-k\bar{c}}$

Many combinations.., but restrictions - no extra `exotics'

Give 6 combined options:

ABB ABC BBB BBC 2

Three family SU(5) GUT!

U(1)_F Breaking

Flavon(s) needed for U(1)_F Breaking & for generating Yukawa couplings

Tempting to use singlet(s) (1 or/and 1') responsible for anomaly cancellation.

-However, no realistic model has been found.

-- Introduce $X_{-\beta} + X_{\beta}$ flavons – Minimal flavon setup In SU(5)x U(1)_F , the FI-term $\xi \int d^4\theta V_{U(1)F}$ is allowed

D-term:
$$D_{U(1)F} = \xi - \beta |X|^2 + \beta |\overline{X}|^2$$

& superpotential:

$$W_{Flavon} = \lambda S \left(X \overline{X} - \mu^2 \right) + \frac{1}{2} m_S S^2 + \sigma \frac{1}{3} S^3$$

*Without S, higher order superpotential/Kahler terms may do the job

U(1) F Breaking (contd.)

All F's & D = 0 \Rightarrow unique solution (no degeneracy) fixed VEVs: $\langle S \rangle = 0, \ X, \overline{X} \neq 0$

a)
$$\frac{\xi}{\beta} < 0$$
, $|\mu|^2 \ll -\frac{\xi}{\beta}$, $|X| \ll |\overline{X}|$

b)
$$\frac{\xi}{\beta} > 0$$
, $|\mu|^2 \ll \frac{\xi}{\beta}$, $|X| \gg |\overline{X}|$

c)
$$|\mu|^2 \sim \frac{\xi}{\beta}, \qquad |X| \sim |\overline{X}|$$

Expansion Parameters:

$$\epsilon = \frac{\langle X \rangle}{M_{Pl}}, \quad \overline{\epsilon} = \frac{\langle \overline{X} \rangle}{M_{Pl}}, \quad \epsilon \neq \overline{\epsilon}$$